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ABSTRACT

Optimizing hyperparameters of machine learning algorithms, especially for lim-
ited labeled data, is important but difficult, because obtaining enough validation
data in such a case is practically impossible. Bayesian model selection enables
hyperparameter optimization without validation data, but it requires Hessian log
determinants, which is computationally demanding for deep neural networks. We
study methods to efficiently approximate Hessian log determinants and empir-
ically demonstrate that approximated Bayesian model selection can effectively
tune hyperparameters of algorithms of deep semi-supervised learning and learn-
ing from noisy labels.

1 INTRODUCTION

Hyperparameter optimization (HO) is essential in practical machine learning. Especially, recent
deep learning algorithms have high flexibilities to be configured properly, and their needs pushes
recent research of HO (Bergstra & Bengio, 2012; Bischl et al., 2021) and AutoML (Hutter et al.,
2019). Especially, gradient-based HO attracts attentions (Bengio, 2000; Do et al., 2009; Domke,
2012; Maclaurin et al., 2015; Pedregosa, 2016; Franceschi et al., 2018; Liao et al., 2018; Shaban
et al., 2019), which is faster than black-box methods and potent to scale to optimizing millions of
hyperparameters (Lorraine et al., 2020).

These HO methods leverage an isolated dataset called a validation set, usually split from a given
training dataset. It is naturally expected that the more validation data we have, the better hyperpa-
rameters we can estimate. However, to obtain more validation data, we need to reduce the number
of training data, which may sacrifice the performance of the original machine learning algorithm.
This dilemma is crucial, especially when the number of labeled data is limited (Oliver et al., 2018).

Indeed, we can select models, in other words, compare hyperparameter configurations without using
validation data. In other words, we can optimize hyperparameters only with training data by max-
imizing marginal likelihood (ML, also known as evidence). Such an approach is called, Bayesian
model selection, also known as empirical Bayes (Bernardo & Smith, 1994) or evidence approxima-
tion (MacKay, 1992). By applying Laplace’s method to the marginalization, ML can be decomposed
into the log posterior and the log determinant of its Hessian. Thus, maximizing ML can be inter-
preted as regularizing models to be as simple as possible, while fitting training data (Occam’s Razor,
MacKay (2003)). Bayesian model selection is used in Gaussian processes to select hyperparameters
(Mackay, 1998; Rasmussen & Williams, 2006), e.g., to learn invariance of data (van der Wilk et al.,
2018; Schwöbel et al., 2021).

The application of Bayesian model selection to neural networks has more than three decades of
history (Buntine & Weigend, 1991; Neal, 1994; Mackay, 1995). Especially, Mackay (1995) pointed
out that this approach can 1. compare models without validation data, 2. optimize regularization
hyperparameters in an online way, 3. be robust compared to cross-validation, and 4. be achieved by
using gradient-based optimization. Nevertheless, its computational demand makes its application to
deep neural networks difficult, as evaluating ML requires a Hessian w.r.t. neural network parameters.
Therefore, its use is limited to small (Khan et al., 2019) or special (Lyle et al., 2020) neural networks.
Exceptionally, Immer et al. (2021); Daxberger et al. (2021) approximate the Hessian matrix with
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diagonal or block-diagonal to optimize parameters of priors of Bayesian neural networks. Ru et al.
(2020) adopts cumulated training loss as a cheap alternative to ML for neural architecture search.

This paper aims to broaden the application of Bayesian model selection in deep learning research as
a tool of gradient-based HO methods, especially when the number of labeled data is limited. To this
end, we first compare several efficient log-determinant estimators with the exact ones using small
neural networks. These estimators include structure approximations of the Hessian and stochastic
estimators of log determinants that leverage matrix-vector products. Next, we show that estimated
ML can be used for gradient-based hyperparameter optimization in label-scarce scenarios, namely
semi-supervised learning and learning from noisy labels.

2 BACKGROUND

2.1 TRAINING NEURAL NETWORKS

We assume that we have a training dataset D = {(xi,yi)}Ni=0 consisting of data points xi and their
labels yi, a neural network f : Rdimx → Rdimy parameterized by θ ∈ RP , and hyperparameters
φ ∈ RH . We consider an optimization of the model with the L2 regularization:

argmin
θ

!

(x,y)∈D

ℓ(f(x),y;θ,φ) +
γ

2
‖θ‖2, (1)

where ℓ is a loss function, such as cross entropy, and γ is a coefficient of the L2 regularization, which
is also a member of φ. This L2 regularization is equivalent to a weight decay, which is commonly
used in neural network training. The optimization in Equation (1) leads to a maximum a posteriori
(MAP) estimate, because the loss and weight decay terms are in fact a negative log-likelihood and a
negative log-prior, respectively, i.e.,

!

(x,y)∈D

ℓ(f(x),y;θ,φ) = − log p(D|θ,φ), γ

2
‖θ‖2 = − log p(θ|φ). (2)

Most deep learning works have relied on an external validation set V to find the “best” hyperparam-
eters φ with a certain criterion ℓ̃ as

argmin
φ

!

(x′,y′)∈V

ℓ̃(f(x′),y′;θ!,φ) s.t. θ! = argmin
θ

!

(x,y)∈D

ℓ(f(x),y;θ,φ) +
γ

2
‖θ‖2. (3)

In this paper, we optimize φ without using validation data V by using a Bayesian model selection
method scalable to modern neural networks.

2.2 BAYESIAN MODEL SELECTION

Bayesian model selection decides the “best” hyperparameters as φ! = argmaxφ p(D|φ), where
p(D|φ) is a marginal likelihood (ML). Strikingly, we do not need an external validation data V here
to select φ with this rule. By using Laplace’s method1, we can approximate log ML as

log p(D|φ) ≈ log p(D,θ!|φ)− 1

2
log det

"
1

2π

∂2

∂θ2
log p(D,θ!|φ)

#
. (4)

The first term can be decomposed to log p(D|θ!,φ) + log p(θ!|φ), i.e., negative loss and negative
L2 regularization. A difficulty arises in the second term, Hessian log determinant, as the number of
model parameters P increases, because Hessian has quadratically large space complexity O(P 2).
This computational cost is infeasible for modern neural networks.

1See e.g. Bishop (2006) for the detailed derivation.
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2.3 RELATIONSHIP TO INFORMATION CRITERIA

Bayesian model selection is closely related to information criteria (Konishi & Kitagawa, 2007),
such as Akaike’s Information Criterion (AIC, Akaike (1973)), Bayesian Information Criterion (BIC,
Schwarz (1978)). Especially, BIC, defined as − log p(D|θ̂) + dim θ̂

2 log(#D) for a maximum likeli-
hood estimator θ̂, is an approximation of the negative of Eq. (4) by ignoring the terms independent
of the number of data #D2. Watanabe (2013) extended these criteria to WAIC and WBIC, which
are applicable to non-singular models including neural networks. Thomas et al. (2020) showed that
Takeuchi’s Information Criterion (TIC, Takeuchi (1976)) can capture the generalization gap of neu-
ral networks, though TIC is expensive to compute because it needs a Hessian inverse of the true data
distribution.

3 ESTIMATION OF HESSIAN LOG DETERMINANT

To obtain the log ML in Equation (3), we only need a scalar value of the log determinant, rather than
the Hessian itself. Thus, our aim is to estimate the log determinant without computing the possibly
infeasible Hessian. In this section, we first introduce well-behaved approximations of a Hessian
matrix in Section 3.1. Next, we describe estimates of log determinants that leverage the structure
of matrices (Section 3.2) or the stochastic property of log determinants (Section 3.3). Finally, we
empirically compare these estimates in Section 3.4.

3.1 APPROXIMATION OF HESSIAN MATRIX

Because Hessian is not always positive semi-definite, its log determinant is also not always defined.
To ease the problem, a Hessian of the log posterior is usually approximated by a Generalized Gauss-
Newton matrix (GGN),

Gθ =
!

(x,y)∈D

∂z

∂θ

⊤ ∂2ℓ(z,y)

∂z2

∂z

∂θ
, where z = f(x;θ), (5)

or a Fisher information matrix (FIM),

Fθ =
!

(x,·)∈D

Ey′∼p(y′|x,θ)[
∂ℓ(y′|x)

∂θ

∂ℓ(y′|x)
∂θ

⊤
]. (6)

Indeed, these two matrices are equivalent to each other when we use cross entropy or squared loss
(Martens, 2020). By altering a Hessian in Eq. (4) with a GGN and a FIM, the matrix always becomes
strongly positive semi-definite if γ > 0, and thus, its log determinant always exist. These matrices
are also used instead of a Hessian in optimization (Amari, 1998; Schraudolph, 2002; Botev et al.,
2017).

F̄θ =
!

(x,y)∈D

(
∂ℓ(y|x)

∂θ

∂ℓ(y|x)
∂θ

⊤
) (7)

is a computationally efficient alternative of a FIM and called as an “Empirical Fisher” (EF) (Schrau-
dolph, 2002; Roux et al., 2008). Immer et al. (2021); Daxberger et al. (2021) used an Empirical
Fisher instead of an FIM to estimate the log determinant of a Hessian.

3.2 DIAGONAL AND BLOCK-DIAGONAL APPROXIMATION

A Hessian of a neural network is a P × P matrix, which is sometimes infeasibly large to store and
compute its log determinant as its O(P 3) time complexity. We can approximate a Hessian with

2See e.g., Sugiyama (2015) for the detailed derivation.
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a representation that is compact and easy to compute its log determinant by using a diagonal or a
block-diagonal approximation (Ritter et al., 2018; Immer et al., 2021; Daxberger et al., 2021). As a
diagonal approximation, the following approximation as in (Duchi et al., 2011; Kingma & Ba, 2015)
is computationally efficient:

Fθ ≈ E[
∂ℓ

∂θ
]E[

∂ℓ

∂θ
]⊤. (8)

Its ith diagonal element can be obtained by E[
∂ℓ

∂θ
]2i .

As a block-diagonal approximation, K-FAC (Martens & Grosse, 2015; Grosse & Martens, 2016) is
popular, where the FIM or EF’s block corresponding to the lth layer of a neural network is approxi-
mated as

F
(l)
θ ≈ E[al−1a

⊤
l−1]⊗ E[glg⊤

l ], (9)

with al−1, the l − 1th layer’s activation, and gl, the loss derivative w.r.t. al. ⊗ denotes Kronecker
product. Once these matrices ignoring off-(block) diagonal elements are obtained, log determinants
can be computed cheaply as a sum of block-wise log determinants.

3.3 STOCHASTIC APPROXIMATION

Another approach is stochastic estimations of log determinants. For a positive semi-definite matrix
A ∈ RM×M , we can estimate its log determinant with a random probe vector v ∈ RM sampled from
P , a Rademacher distribution or an isotropic Gaussian distribution3, using Hutchinson’s estimator
(Hutchinson, 1990; Avron & Toledo, 2011) as

log detA = tr logA = Ev∼P [v
⊤(logA)v]. (10)

Although directly evaluating a matrix-logarithm logA may be infeasible in our case, v⊤(logA)v
can be efficiently estimated by using matrix-vector product. Namely, v⊤(logA)v can be approxi-
mated by using a degree-m polynomial function p(m)(z) =

$m
i=0 p

(m)
i zi, such as a Taylor polyno-

mial (Boutsidis et al., 2017) or a Chebyshev polynomial of the first kind (Han et al., 2015; 2017),
as

v⊤(logA)v ≈
m!

i=0

p
(m)
i v⊤Aiv. (11)

In the following, we only consider Chebyshev polynomials, because it converges faster than Taylor
polynomials (Phillips, 2003). Alternatively, v⊤(logA)v can also be estimated by the stochastic
Lanczos quadrature method (Ubaru et al., 2017; Chen et al., 2021) as

v⊤(logA)v ≈
m!

i=1

e2i log(di), (12)

where ei is the first element of the ith eigenvector, and di is the ith eigenvalue of a tridiagonal
matrix generated by m iterations of the Lanczos algorithm. Significantly, these approaches do not
require to hold A explicitly, if a matrix-vector product Av is available. Fortunately, in our case,
Gθ is positive semi-definite, and Gθv can be computed by using combination of vector-Jacobian
products and a vector-Hessian product that are efficiently computed with reverse-mode automatic
differentiation tools (Schraudolph, 2002; Baydin et al., 2018), such as PyTorch (Paszke et al., 2019)
and JAX (Bradbury et al., 2018).

3In the main experiment, we use an isotropic Gaussian distribution, which shows no significant difference
from a Rademacher distribution (Appendix A.1).

4



Under review as a conference paper at ICLR 2022

These methods have been used to estimate Hessian spectra of neural networks (Ghorbani et al.,
2019) or log determinants of Gaussian processes (Dong et al., 2017), but not for Bayesian model
selection of deep neural networks.

3.4 COMPARISON OF APPROXIMATED LOG-DET WITH EXACT LOG-DET

Although computing exact Hessian and GGN matrices is infeasible for modern neural networks with
millions of parameters, computing them for small networks with thousands of parameters is feasible.
To benchmark the ability of approximation methods, we compute exact Hessian and GGN matrices
to obtain their log determinants. As for approximated log determinants, we used the following
methods:

Diag Diagonal approximation of F̄θ as in Eq. (8),

KFAC K-FAC approximation F̄θ as in Eq. (9),

Chebyshev (m) Polynomial approximation of Gθ using Chebyshev polynomials of the first kind
with degree of m as in Eq. (11),

SLQ (m) Stochastic Lanczos quadrature approximation of Gθ with m iterations of the Lanczos
algorithm as in Eq. (12).

For this comparison, we prepared a three-layer MLP model and a variant of LeNet, consisting of
two convolutional layers succeeded by a two-layer MLP, which have 26,500 and 19,700 parameters,
respectively. We trained these models on a subset of MNIST dataset (LeCun et al., 2010), consisting
of hand-written digit images and their labels, for 100 epochs (Fig. 1 Left).

Figure 1 (Right) presents comparisons of log determinants of exact matrices as well as those of
approximated ones. For stochastic estimators, i.e., Chebyshev and SLQ, we reported the averaged
value of 100 trials with different probe vectors. As can be seen, Diag and SLQ (m = 8) well
approximate the actual value, the log determinant of the GGN matrix, on both networks. On the
other hand, the results suggest that K-FAC and Chebyshev approximations may not be appropriate
methods for estimating the GGN matrix’s log determinant. Estimated values by Chebyshev and SLQ
reflect warps in test loss curves, while those by Diag and K-FAC appear almost no reflection of the
warps.

Unlike Diag and K-FAC, Chebyshev(m) and SLQ(m) are stochastic estimators and have a freedom
in the choice of m, which corresponds to the accuracy and computational cost of the approximation.
Figure 2 compares log determinants estimated by Chebyshev(m) and SLQ(m) with m = 4, 8, 12,
and each plot shows 100 trials. We observe that SLQ can approximate the log determinant with
less computational cost and higher accuracy than Chebyshev polynomial, which aligns with the
observations by Dong et al. (2017). This difference may be attributed to the fact that most of the
eigenvalues of (approximated) Hessian matrices of neural networks are quite small (Ghorbani et al.,
2019; Karakida et al., 2019), and Chebyshev polynomial fails to approximate the logarithm function
log x that exponentially goes to the negative infinity as x → 0. See Appendix A.2 for the results
using LeNet.

In the above experiments, we used the entire training data to evaluate log determinants. In practice,
evaluating log determinants on full data is sometimes infeasible, and minibathces are used instead.
Figure 3 compares estimated values of Diag and SLQ (m=8) with different minibatch sizes. Each
plot shows 100 trials with different minibatches. In the case of SLQ, we used different probe vectors
for each minibatch. While the minibatch Diag seems to converge to its full version (c.f . Fig. 1),
the mean of minibatch SLQ appears to approximate the exact log determinant accurately. Its LeNet
counterpart is presented in Appendix A.2.

Based on these observations, we used Diag and SLQ as approximations of the log determinant for
the experiments in Section 5. Finally, we summarize the comparison of these methods in Table 1.
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Figure 1: Diagonal and Stochastic Lanczos Quadrature (SLQ) approximate log determinant of GGN
matrix accurately. (Left) We trained a three-layer MLP and a variant of LeNet until convergence for
100 epochs. (Right) We computed exact Hessian and GGN matrices of these networks and compare
their log determinants with approximated ones.

Figure 2: SLQ (m) can approximate the exact log determinant more efficiently and accurately than
Chebyshev (m). Log determinant of the exact GGN matrix, SLQ, and Chebyshev of a trained three-
layer MLP are presented.

4 GRADIENT-BASED HYPERPARAMETER OPTIMIZATION USING MARGINAL
LIKELIHOOD

Hyperparameters φ consist of two groups, φd and φn: the posterior p(D,θ|φ) is a differentiable
function for φd but not for φn. φd includes coefficients of multiple loss terms, such as L2 reg-
ularization factor. On the other hand, the number of training epochs and the momentum rate of
optimization can be regarded as φn.

Notably, the above-mentioned Hessian log-determinant estimators are differentiable w.r.t. φd, and
φd can be optimized by using gradient-based optimization of a step size of α as

φd ← φd + α
∂ log p(D|φ)

∂φd
, (13)

together with optimization of θ in an online fashion (Immer et al., 2021), as an Expectation-
Maximization algorithm (Bishop, 2006). Though the parameters θ may not be an MAP estimate
θ! as required in Eq. (4) during training, Immer et al. (2021) found that we can ignore this differ-
ence during online optimization.
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Figure 3: SLQ with minibatches can estimate the exact logdeterminant accurately. Log determinants
of the exact GGN matrix, SLQ, and Diag of a trained three-layer MLP are presented.

Diag K-FAC Chebyshev SLQ

Time Complexity O(P ) O(
$

l P
3
l ) O(mP ) O(mP )

Space Complexity O(P ) O(
$

l P
2
l ) O(mP ) O(mP )

Empirical Precision ! !

Table 1: Summary of comparison of log determinant estimators. Pl is the size of lth block (
$

l Pl =
P ). See Appendix B for the details.

Evaluating ML on the entire dataset D is sometimes difficult in practice, and the following stochastic
gradient of a minibatch B ⊂ D can be used instead as

∂ log p(D|φ)
∂φd

∝ EB⊂D

%
∂ log p(B|φ)

∂φd

&
. (14)

When we apply a stochastic ML estimator, such as Eq. (11), we use Ev∼PEB⊂D

'
∂ log p(v)(B|φ)

∂φd

(
,

where p(v) denotes an ML estimate with a random probe vector v, such as Eqs. (11) and (12). It
is also possible to select φn: namely, for several candidates of φn, such as (φ(1)

n ,φ
(2)
n , . . . ,φ

(M)
n ),

we can select φ!
n = argmax

m
p(D|φd,φ

(m)
n ). This selection can be applied to, for example, neural

architecture search (Ru et al., 2020; Immer et al., 2021).

5 EXPERIMENTS

We demonstrate that gradient-based HO using ML is applicable to limited-labeled data problems.

We maximized ML w.r.t. hyperparameters using stochastic gradient in Eq. (14) after each epoch with
30 iteration of updates. This HO starts after the first 10% of total training iterations for the model
parameter optimization ends. We adopted Adam optimizer (Kingma & Ba, 2015) with learning rate
of 1.0 × 10−4 and gradient norm clipping of 1. In addition to log ML estimations using the whole
model parameters, we also used estimations only using the last-layer parameters as Immer et al.
(2021). We denote results with these estimators as LLO. LLO further reduces the computational
burden of computation of Hessian log determinants, but Immer et al. (2021) reported it may sacrifice
performance in some cases. We found that full SLQ sometimes suffers from numerical instability.

We describe further experimental details in Section 7.

5.1 SEMI-SUPERVISED LEARNING

Semi-supervised learning (SSL) algorithms learn to classify data by leveraging unlabeled data in
addition to limited labeled data (Chapelle et al., 2006). Because labeled data are scarce in this
scenario, HO without validation data is appealing.

We used an SSL algorithm of FixMatch (Sohn et al., 2020) with an objective function of
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CIFAR-10 (1,000) CIFAR-10 (250) CIFAR-100 (1,000)

Baseline 6.37 9.74 47.5

Diag 6.44 12.7 50.7
Diag (LLO) 6.59 12.8 53.2
SLQ 5.91 8.21 48.2
SLQ (LLO) 5.78 7.20 46.8

Table 2: SLQ can effectively optimize hyperparameters of FixMatch without validation data. Test
error rates on CIFAR-10 and CIFAR-100 are presented. The figures in parentheses correspond to
the number of labeled data.

E(x,y)∼DL
ℓC(f(x),y) + EεE u s.t.

u∼DU ,max f(s!(u))>η
ℓC (f(sε(u)), ς(f(u)/τ)) , (15)

where ℓC is cross entropy loss, DL,DU are labeled and unlabeled data, s is a strong image trans-
formation policy with randomness ε, ς is the softmax function, η is a confidence threshold, and τ
is a temperature parameter. We optimized η and τ by maximizing ML derived from Eq. (15). We
simulated a semi-supervised dataset by hiding some labels of CIFAR-10 and CIFAR-100 datasets
(Krizhevsky, 2009), which is a common procedure in SSL research (Oliver et al., 2018). The ratio
of labeled to unlabeled data in minibatch was set to 4 and trained for 1.3× 105 iterations. We used
WideResNet-28-2 (Zagoruyko & Komodakis, 2016) as an image classifier.

Table 2 shows test error rates. The baseline uses the default values η = 1 and τ = 0.95. After
optimizing hyperparameters initialized with these values, SLQ (LLO) achieved performance im-
provement of 2.5% on CIFAR-10 with 250 labeled data. We observed that SLQ decreases both the
threshold and temperature as training proceeds, which yields more solid pseudo labels and more
unlabeled data to be used. Diag, on the other hand, enlarges the temperature, which results in poor
performance.

5.2 LEARNING FROM NOISY LABELS

Deep neural networks can memorize randomly assigned labels of image datasets (Arpit et al., 2017).
Because such label noise problem is inevitable, robust learning algorithms are required. For HO, a
cleanly labeled validation set is needed in this setting, but they are hard to obtain in practice.

We adopted a generalized cross entropy loss (Zhang & Sabuncu, 2018), which is a loss function of

ℓq(f(x),y) =
1− ς(f(x))q

q
. (16)

When q → 0, ℓq behaves as the cross entropy loss, which converges faster but is sensitive to noise.
On the other hand, when q → 1, ℓq acts as the mean absolute error, which is robust but converges
slower, especially when the number of categories is large. Therefore, this hyperparameter q needs to
be carefully chosen, and we optimize q by maximizing ML. We simulated noisy labels by replacing
randomly chosen labels of CIFAR-10 and CIFAR-100 with others. We adopted WideResNet-28-2
(Zagoruyko & Komodakis, 2016).

Table 3 presents test error rates when 40% of labels are corrupted. The baselines are generalized
cross entropy of q = 0 (cross entropy), q = 1 (mean absolute error), and q = 0.7 as Zhang
& Sabuncu (2018). For HO, we initialized q = 0. Again, Diag and SLQ consistently yielded
performance increase without relying on external validation data.

6 CONCLUSION

In this paper, we studied efficient approximations of Bayesian model selection for deep neural net-
works and demonstrated that this approach is effectively applicable to gradient-based hyperparam-
eter optimization in the limited-labeled data scenarios. Specifically, we first compared methods
to efficiently approximate Hessian log determinants and found that diagonal approximation and
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CIFAR-10 (40%) CIFAR-100 (40%)

Baseline (q = 0) 15.7 40.8
Baseline (q = 0.7) 11.4 37.8
Baseline (q = 1) 11.2 97.3

Diag 9.91 33.5
Diag (LLO) 9.94 33.3
SLQ 9.78 34.7
SLQ (LLO) 9.97 33.4

Table 3: Diag can effectively optimize hyperparameters of Generalized Cross Entropy without vali-
dation data. Test error rates on CIFAR-10 and CIFAR-100 with 40% of label noise are presented.

stochastic Lanczos quadrature are effective for the approximation. Then, we empirically showed
that hyperparameters could be optimized by maximizing the estimated marginal likelihoods in a
gradient-based manner.

This approach is only applicable to hyperparameters that are directly dependent on loss values. Ad-
ditionally, some hyperparameters of optimizing algorithms may be converted to optimizable ones.
For example, as we discussed in Section 2.1, a weight decay factor can be regarded as an L2 regu-
larization factor, and a learning rate can be viewed as a multiplier of a loss value. Neural network
architectures can also be treated in this way (Liu et al., 2018). Thus, we believe that this HO ap-
proach is widely applicable, without requiring validation data.

7 REPRODUCIBILITY

7.1 DATA PROCESSING

For training images of MNIST used in Section 3.4, we standardized them using their training data
statistics. For training images of CIFAR-10 and CIFAR-100 used in Sections 5.1 and 5.2, we applied
random horizontal flipping and random cropping into 32×32 pixels after padding 4 pixels to each
border as standard data augmentation. Then, both training and testing images are standardized by
statistics of training data.

7.2 IMPLEMENTATION DETAILS

We implemented the methods using PyTorch v1.9.0 (Paszke et al., 2019) using CUDA 11.1 and
conducted experiments on NVIDIA A100 GPUs. We set a random seed for each experiment and
reported averaged values of three runs with different seeds. During computation of ML, Batch
Normalization (Ioffe & Szegedy, 2015) in neural networks is computed using running statistics.

For stochastic log determinant estimators, we used isotropic Gaussian vectors as probes. See Ap-
pendix A.1 for comparison with ones using Rademacher probe vectors. To compute K-FAC, we
used backpack4.

The FixMatch algorithm in Section 5.1 follows hyperparameter configurations of a PyTorch imple-
mentation5 except for the ratio of labeled to unlabeled data in minibatch (set to 4) and the number
of training iterations (set to 1.3×105). We updated log ML after each epoch, where an epoch is 440
iterations. The activation function of WideResNet is replaced with Leaky ReLU with a slope of 0.1
following (Sohn et al., 2020).

Training with Generalized Cross Entropy in Section 5.2 is for 200 epochs with a minibatch size of
128. After each epoch, the log ML is updated with a minibatch size of 512. The model is trained
with SGD with a momentum of 0.9 and a weight decay of 5.0× 10−4. The initial learning rate was
set to 0.1, which decays according to the cosine annealing rule.

4https://backpack.pt/
5https://github.com/kekmodel/FixMatch-pytorch/
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7.3 SOURCE CODE

We will make the source code to reproduce the experiments publicly available after publication.
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A ADDITIONAL EXPERIMENTS

A.1 STOCHASTIC LOG-DET ESTIMATORS WITH RADEMACHER DISTRIBUTION

In the main part, we adopted random probe vectors sampled from the standard normal distribution.
Hutchinson (1990) used the Rademacher distribution, and (Fitzsimons et al., 2016) used the mutu-
ally unbiased bases (MUB) in a complex space, which may be difficult to apply to our case. The
use of these distributions reduces the variance of trace estimators. Figure 4 shows estimated log
determinants when using Rademacher random vectors. Compared with Gaussian vectors in Fig. 2,
Rademacher random vectors show only limited difference.

Figure 4: Estimated log determinants of Rademacher-based SLQ and a Chebyshev polynomial. We
found no significant difference from Gaussian-based ones presented in Fig. 2.

A.2 LENET COUNTERPARTS

We present LeNet counterparts of Figs. 2, 3 and 4 in Figs. 5 to 7. Importantly, the choice of networks
does not alter our claims.

Figure 5: LeNet counterpart of Fig. 2.

B ON COMPUTATIONAL COMPLEXITIES

We shortly explain computational complexities in Table 1. Block-wise cubic time complexity of
K-FAC (O(

$
l P

3
l )) stems from the need for the exact log determinant computation for each block.

The computation of Chebyshev and SLQ is dominated by m times of matrix-vector products of
GGN matrices and probe vectors, each of which costs O(P ).
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Figure 6: LeNet counterpart of Fig. 4.

Figure 7: LeNet counterpart of Fig. 3.
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