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Abstract

Predictions about people, such as their expected educational achievement or their
credit risk, can be performative and shape the outcome that they are designed to
predict. Understanding the causal effect of predictions on the eventual outcomes is
crucial for foreseeing the implications of future predictive models and selecting
which models to deploy. However, this causal estimation task poses unique chal-
lenges: model predictions are usually deterministic functions of input features and
highly correlated with outcomes. This can make the causal effect of predictions
on outcomes impossible to disentangle from the direct effect of the covariates. We
study this problem through the lens of causal identifiability. Despite the hardness of
this problem in full generality, we highlight three natural scenarios where the causal
effect of predictions can be identified from observational data: randomization in
predictions, overparameterization of the predictive model deployed during data
collection, and discrete prediction outputs. Empirically we show that given our
identifiability conditions hold, standard variants of supervised learning that predict
from predictions by treating the prediction as an input feature can find transferable
functional relationships that allow for conclusions about newly deployed predictive
models. These positive results fundamentally rely on model predictions being
recorded during data collection, bringing forward the importance of rethinking
standard data collection practices to enable progress towards a better understanding
of social outcomes and performative feedback loops.

1 Introduction

Predictions can impact sentiments, alter expectations, inform actions, and thus change the course of
events. Through their influence on people, predictions have the potential to change the regularities
in the population they seek to describe and understand. This insight underlies the theories of
performativity [38] and reflexivity [62] that play an important role in modern economics and finance.
Recently, Perdomo et al. [51] pointed out that the social theory of performativity has important
implications for machine learning theory and practice. Prevailing approaches to supervised learning
assume that features X and labels Y are sampled jointly from a fixed underlying data distribution that
is unaffected by attempts to predict Y from X. Performativity questions this assumption and suggests
that the deployment of a predictive model can disrupt the relationship between X and Y. Hence,
changes to the predictive model can induce shifts in the data distribution. For example, consider a
lender with a predictive model for risk of default — performativity could arise if individuals who are
predicted as likely to default are given higher interest loans, which make default even more likely [41],
akin to a self-fulfilling prophecy. In turn, a different predictive model that predicts smaller risk and
suggests offering more low-interest loans could cause some individuals who previously looked risky
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to be able to pay the loans back, which would appear as a shift in the relationship between features X
and loan repayment outcomes Y. This performative nature of predictions poses a challenge to using
historical data to predict the outcomes that will arise under the deployment of future models.

1.1 Our work

In this work, we aim to understand under what conditions observational data is sufficient to identify
the performative effects of predictions. Only when causal identifiability is established can we rely on
data-driven strategies to anticipate performativity and reason about the downstream consequences
of deploying new models. Towards this goal, we focus on a subclass of performative prediction
problems in this paper where performative effects of predictions solely surface as a shift in the

outcome variable, and the distribution over covariates X is unaffected by the prediction Y. Our goal
is to identify the expected counterfactual outcome

My (z,9) £ E[Y|X = z,do(Y = §)].

Understanding the causal mechanism My is crucial for model evaluation, as well as model opti-
mization. In particular, it allows for offline evaluation of the potential outcome Y of an individual X

subject to a predictive model fiy with the prediction Yy = Jrew (X)) before actually deploying it.

The need for observing predictions. We start by illustrating the hardness of performativity-agnostic
learning by relating performative prediction to a concept shift problem. Using the specifics of the
performative shift, we establish a lower bound on the extrapolation error of predicting Y from X
under the deployment of a new model fp.,, that is different from the model fi.;, deployed during
data collection. In particular, the extrapolation error grows with the distance between the prediction
functions of the two models and the strength of performativity. This lower bound on the extrapolation
error demonstrates the necessity to take performativity into account for reliably predicting Y.

Predicting from predictions. We then explore the feasibility of learning performative effects when

the training data recorded the predictions and training data samples (X, Y, Y) are available. As an
identification strategy for learning My, we focus on building a meta machine learning model that

predicts Y for an individual with features X, subjected to a prediction Y. We term this data-driven
strategy predicting from predictions; it treats the predictions as an input to the meta machine learning
model. The meta model seeks to answer “what would the outcome be if we were to deploy a different
prediction model?” Crucially, this “what if” question is causal in nature; it aims to understand the
potential outcome under an intervention which is different from merely estimating the outcome
variable in previously seen data. Whether such a transferable model is learnable depends on whether
the training data provides causal identifiability [49] Only after causal identifiability is established can
we rely on observational data to select and design optimal prediction models under performativity.

Establishing identifiability. For our main technical results, we first show that, in general, observing

Y is not sufficient for identifying the causal effects of predictions. In particular, if the training data
was collected under the deployment of a deterministic prediction function, the mechanism My can

not be uniquely identified. The reason is a lack of coverage in the training data as X and Y are

deterministically bound. Next, we establish several conditions under which observing Y is sufficient
for identifying My . The first condition exploits the presence of randomness in the prediction.
This randomness could be purposely built into the prediction for individual fairness, differential
privacy, or other considerations. The second condition exploits the property that predictive models
are often over-parameterized, which leads to incongruence in functional complexity between different
causal paths, enabling the effects of predictions to be separated from other variables’ effects. The
third condition takes advantage of discreteness in predictions such that performative effects can be
disentangled from the continuous relationship between covariates and outcomes. Together, these
results reveal that particularities of the performative prediction problem can enable us to recover
the causal effect of predictions from observational data. In particular, we show that, under these
conditions, standard supervised learning techniques can be used to find these transferable functional
relationships by treating predictions as model inputs. Empirically, we demonstrate that supervised
learning succeeds in finding My even in finite samples.

We conclude with a discussion of limitations and extensions of our work, pointing out potential
violations of the modeling assumptions underlying our causal analysis and proposing directions for
future work.



1.2 Broader context and related work

The work by Perdomo et al. [51], initiated the discourse of performativity in the context of supervised
learning by pointing out that the deployment of a predictive model can impact the data distribution
we train our models on. Existing scholarship on performative prediction [c.f., 51, 42, 12, 44, 24,
26, 68, 45, 52, 31] has predominantly focused on achieving a particular solution concept with a
prediction function that maps X to Y in the presence of unknown performative effects. We are
interested in understanding the underlying causal mechanism of the performative distribution shift.
Our work is motivated by the seemingly natural approach of lifting the supervised-learning problem
and incorporating the prediction as an input feature when building a meta machine learning model for
explaining Y. By establishing a connection to causal identifiability, our goal is to understand when
such a data-driven strategy can help anticipate the down stream effects of predictions

This work focuses on the setting where predictions lead to changes in the relationship between
covariates X and label Y, while the marginal distribution P(X) over covariates is assumed to be
fixed. This setting where performativity only surfaces in the label describes an interesting subclass of
problems falling under the umbrella of performative (aka. model-induced or decision-dependent)
distribution shifts [51, 37, 12]. Our assumptions are complementary to the strategic classification
framework [8, 20] that focuses on a setting where performative effects concern P(X ), while P(Y|X)
is assumed to remain stable. Consequently, causal questions in strategic classification [e.g., 22,
3, 59] are concerned with identifying stable causal relationships between X and Y. Since we
assume P(Y'|X) can change (i.e. the true underlying ’concept’ determining outcomes can change),
conceptually different questions emerge in our work. Similar in spirit to strategic classification, the
work on algorithmic recourse and counterfactual explanations [32, 28, 65] focuses on the causal link
between features and predictions, whereas we focus on the down-stream effects of predictions.

There are interesting parallels between our work and related work on the offline evaluation of online
policies [e.g., 35, 63, 36, 58]. In particular, [63] explicitly emphasize the importance of logging
propensities of the deployed policy during data collection to be able to mitigate selection bias. In our
work the deployed model can induce a concept shift. Thus, we find that additional information about
the predictions of the deployed model needs to be recorded to be able to foresee the impact of a new
predictive model on the conditional distribution P(Y|X), beyond enabling propensity weighting [55].
A notable work by [66] investigates how predictions at one time step impact predictions in future
time steps. Complementary to these existing works we show that randomness in the predictive model
is not the only way causal effects of predictions can be identified.

For our theoretical results, we build on classical tools from causal inference [48, 57, 64]. In particular,
we distill unique properties of the performative prediction problem to design assumptions for the
identifiability of the causal effect of predictions.

2 The causal force of prediction

Predictions can be performative and impact the population of individuals they aim to predict. For-
mulized it in the language of causal inference [48]: the deployment of a predictive model represents
an intervention on a causal diagram that describes the underlying data generation process of the
population. We will expand on this causal perspective to study an instance of ths performative
prediction problem described below.

2.1 Prediction as a partial mediator

Consider a machine learning application relying on a predictive model f that maps features X to a
predicted label Y. We assume the predictive model f is performative in that the prediction Y = f(X)
has a direct causal effect on the outcome variable Y of the individual it concerns. Thereby the
prediction impacts how the outcome variable Y is generated from the features X. The causal diagram
illustrating this setting is visualized in Figure 1.

The features X € X C R? are drawn i.i.d. from a fixed underlying continuous distribution over
covariates Dx with support X. The outcome Y € Y C R is a function of X, partially mediated by
the predlctlon Y € ). The prediction Y is determined by the deployed predlctlve model f: X — ).
For a given prediction function f, every individual is assumed to be sampled i.i.d. from the data
generation process described by the causal graph in Figure 1. We assume the exogenous noise £y is
zero mean, and £y allows the prediction function to be randomized.



a a X =€y ¢x ~Dx (1)
Y = f(X,&) &~Dy (2
a @ Y =g(X,Y) + & &y ~Dy (3)

Figure 1: Performative effects mediated by predictions for a given f

Note that our model is not meant to describe performativity in its full generality (which includes
other ways f may affect P(X,Y")). Rather, it describes an important and practically relevant class of
performative feedback problems that are characterized by two properties: 1) performativity surfaces
only in the label Y, and 2) performative effects are mediated by the prediction, such that Y 1L f | Y,
rather than dependent on the specifics of the decision rule.

Application examples. Causal effects of predictions on outcomes have been documented in multiple
contexts: A bank’s prediction about the client (e.g., his or her creditworthiness in applying for a loan)
determines the interest rate assigned to them, which in turn changes a client’s financial situation [41].
Mathematical models that predict stock prices inform the actions of traders and thus heavily shape
financial markets and economic realities [38]. Zillow’s housing price predictions directly impact
sales prices [39]. Predictions about the severity of an illness play an important role in treatment
decisions and hence the very chance of survival of the patient [34]. Another prominent example from
psychology is the Pygmalion effect [56]. It refers to the phenomenon that high expectations lead to
improved performance, which is widely documented in the context of education [6], sports [61], and
organizations [16]. Examples of such performativity abound, and we hope to have convinced the
reader that the performative effects in the label are important for algorithmic prediction.

2.2 Implications for performativity-agnostic learning

Begin with considering the classical supervised learning task where Y is unobserved. The goal is to
learn a model h : X — Y for predicting the label Y from the features X. To understand the inherent
challenge of classical prediction under performativity, we investigate the relationship between X and
Y more closely. Specifically, the data generation process (Figure 1) implies that

P(Y|X) = /P(Y|?,X)P(Y|X)df/. (4)

This expression makes explicit how the relationship between X and Y that we aim to learn depends

on the predictive model governing P (Y|X ). As a consequence, when the deployed predictive model
at test time differs from the model at training time, performative effects surface as concept shift [17].
Such distribution shift problems are known to be intractable without structural knowledge about
the shift, implying that we can not expect h to generalize to distributions induced by future model
deployments. Let us inspect the resulting extrapolation gap in more detail and put existing positive
results on performative prediction into perspective.

Extrapolation loss. We illustrate the effect of performativity on predictive performance using
a simple instantiation of the structural causal model from Figure 1. Therefore, assume a linear
performative effect of strength o > 0 and a base function g; : & — Y

9(X,Y) = g1(X) +aY. (5)

Now, assume we collect training data under the deployment of a predictive model fy and validate our
model under the deployment of f;,. We adopt the notion of a distribution map from Perdomo et al. [51]
and write Dxy (f) for the joint distribution over (X, Y") surfacing from the deployment of a model
f. We assess the quality of our predictive model i : X — ) over a distribution Dxv (f) induced
by f via the loss function £ : J) x ¥ — R and write Ry (h) := E; ,wp, (s)¢(h(z),y) for the risk
of h on the distribution induced by f. We use i} for the risk minimizer 1} := argmin, ¢ Ry (h),
and H for the hypothesis class we optimize over. Proposition 1 bounds the extrapolation loss and
can be viewed as a concrete instantiation of the more general extrapolation bounds for performative
prediction discussed in [37] within the feedback model from Figure 1.

Proposition 1 (Hardness of performativity-agnostic prediction). Consider the data generation pro-
cess in Figure 1 with g given in (5) and fo, f4 being deterministic functions. Take a loss function



£:Y x Y — Rthat is y-smooth and u-strongly convex in its second argument. Let h%, be the risk
minimizer over the training distribution and assume the problem is realizable, i.e., h}e € H. Then,
we can bound the extrapolation loss of h}e on the distribution induced by fy as

%az %x(f97f¢) > ARy, g, (h3,) > %oﬂ %X(f97f¢) (6)

where df, (fo, fo) = Banpy (fo(x) — f5(2))* and ARy, 5, (h) := Ry, (h) = Ry, (h).

The extrapolation loss ARy, r, (h}e) is zero if and only if either the strength of performativity tends
to zero (o — 0), or the predictions of the two predictors fy and fy4 are identical over the support
of Dx. If this is not the case, an extrapolation gap is inevitable. This elucidates the fundamental
hardness of performative prediction from feature, label pairs (X,Y) when performative effects
disrupt the causal relationship between X and Y.

The special case where o = 0 aligns with the assumption of classical supervised learning, in which
there is no performativity. This may hold in practice if the predictive model is solely used for
descriptive purposes, or if the agent making the prediction does not enjoy any economic power [21].
The second special case where the extrapolation error is small is when d%x (fo, fo) — 0. In which
case Dxy (fy) and Dxy (f,) are equal in distribution and hence exhibit the same risk minimizer.
Such a scenario can happen, for example, if the model f is obtained by retraining fy on observational
data and a fixpoint is reached (fy = h’}g). The convergence of policy optimization strategies to
such fixpoints (perfromative stablity) has been studied in prior work [e.g., 51, 42, 12] and enabled
optimality results even in the presence of performative concept shifts, relying on the target model f
not being chosen arbitrarily, but based on a pre-specified update strategy.

3 Identifying the causal effect of prediction

Having illustrated the hardness of performativity-agnostic learning, we explore under what conditions
incorporating the presence of performative predictions into the learning task enables us to anticipate
the perfromative effects of Y on Y. Towards this goal, we assume that the mediator Y in Figure 1
is observed—the prediction takes on the role of the treatment in our causal analysis and we can not
possibly hope to estimate the treatment effect of a treatment that is unobserved.

3.1 Problem setup

Assume we are given access to data points (z, ¥, y) generated i.i.d. from the structural causal model
in Figure 1 under the deployment of a prediction function fy. From this observational data, we wish
to estimate the expected potential outcome of an individual under the deployment of an unseen (but
known) predictive model f4. We note that given our causal graph, the implication of intervening on

the function f can equivalently be explained by an intervention on the prediction Y. Thus, we are
interested in identifying the causal mechanism:

My (2,9) :=E[Y]|X = z,do(Y = )]. (7)
Unlike P(Y'|X), the mecahnism My is invariant to the changes in the predictive model governing

P(Y|X). Thus, being able to identify My~ will allow us to make inferences about the potential
outcome surfacing from planned model updates beyond explaining patterns in historical data. We can
evaluate My to infer y for any x at § = f,(z) for f, being the model of interest.

For simplicity of notation, we will write D(fy) to denote the joint distribution over (X,Y,Y’) of
the observed data collected under the deployment of the predictive model fy. We say My can be
identified, if it can uniquely be expressed as a function of observed data. More formally:

Definition 1 (identifiability). Given a predictive model f, the causal graph in Figure 1, and a set
of assumptions A. We say My is identifiable from D(f), if for any function h that complies with
assumptions A and h(x,§) = My (x,§) for pairs (x,§) € supp(Dxvy (f)) it must also hold that
h(z,9) = My (z,9) for all pairs (z,5) € X x ).

Without causal identifiability, there might be models i’ % My that explain the training distribution
equally well but do not transfer to the distribution induced by the deployment of a new model. Causal
identifiability is crucial for enabling extrapolation. It quantifies the limits of what we can infer given
access to the training data distribution, ignoring finite sample considerations.



Identification with supervised learning. Identifiability of My from samples of D( fy) implies
that the historical data collected under the deployment of fy contains sufficient information to recover
the invariant relationship (7). As a concrete identification strategy, consider the following standard
variant of supervised learning that takes in samples (x, ¢, y) and builds a meta-model that predicts Y’

from X, Y by solving the following risk minimization problem

hsy := argmin E(, 5 ) ~p(fo) [ ({2, 9) — y)? ]. ®)
heH
where H denotes the hypothesis class. We consider the squared loss for risk minimization because it
pairs well with the exogeneous noise £y in (3) being additive and zero mean. The strategy (8) is an
instance of what we term predicting from predictions. Lemma 2 provides a sufficient condition for
the supervised learning solution hgy to recover the invariant causal quantity My .

Lemma 2 (Identification strategy). Consider the data generation process in Figure 1 and a set of
assumptions A. Given a hypothesis class H such that every h € H complies with A and the problem
is realizable, i.e., My € H. Then, if My is causally identifiable from D(fy) given A, the risk
minimizer hgy in (8) will coincide with My-.

3.2 Challenges for identifiability

The main challenge for identification of My from data is that in general, the prediction rule fy which
produces Y is a deterministic function of the covariates X . This means that, for any realization of
X, we only get access to one Y = fy(X) in the training distribution, which makes it challenging
to disentangle the direct and the indirect effects of X on Y. To illustrate this challenge, consider
the function h(z,y) := My (x, fo(z)) that ignores the input parameter ¢ and only relies on x for
explaining the outcome. This function explains y equally well and can not be differentiated from
My based on data collected under the deployment of a deterministic prediction rule fy. The problem
is akin to fitting a linear regression model to two perfectly correlated covariates. More broadly, this
ambiguity is due to what is known as a lack of overlap (or lack of positivity) in the literature of causal
inference [47, 23]. In the covariate shift literature, the lack of overlap surfaces when the covariate
distribution violates the common support assumption and the propensity scores are not well-defined
(see e.g., Pan and Yang [46]). This problem renders causal identification and thus data-driven learning
of performative effects from deterministic predictions fundamentally challenging.

Proposition 3 (Nonidentifiability from deterministic predictions). Consider the structural causal

model in Figure 1. Assume Y non-trivially depends on Y, and the set Y is not a singleton. Then,
given a deterministic prediction function f, the mechanism My is not identifiable from D(f).

The identifiability issue persists as long as the two variables X, Y are deterministically bound and
there is no incongruence or hidden structure that can be exploited to disentangle the direct effect
of X on Y from the indirect effect mediated by Y. In the following, we focus on particularities of
prediction problems and show how they allow us to identify My .

3.3 Identifiability from randomization

We start with the most natural setting that provides identifiability guarantees: randomness in the
prediction function fy. Using standard arguments about overlap [47] we can identify My (z, §) for
any pair z, § with positive probability in the data distribution D( fy) from which the training data is
sampled. To relate this to our goal of identifying the outcome under the deployment of an unseen
model f4 we introduce the following definition:

Definition 2 (output overlap). Given two predictive models fq, f4, the model fq is said to satisfy
output overlap with fo, if for all x € X and any subset Y’ C ) with positive measure, it holds that

/
Plfs(@) € VT _ ©)
Plfo(x) € V]
In particular, output overlap requires the support of the new model’s predictions f,(z) to be contained
in the support of fy(x) for every potential € X'. The following proposition takes advantage of the
fact that the joint distribution over (X, Y") is fully determined by the deployed model’s predictions to
relate output overlap to identification:



Proposition 4. Given the causal graph in Figure 1, the mechanism My (x, ) is identifiable from
D(fo) for any pair x,§ with § = fy(x), as long as f4 is a prediction function that satisfies output
overlap with fy.

Proposition 4 allows us to pinpoint the models f, to which we can extrapolate to from data collected
under fy. Furthermore, it makes explicit that for collecting data to learn about performative effects,
it is ideal to deploy a predictor fy that is randomized so that the prediction output has full support
over ) for any x. Such a model would generate a dataset that guarantees global identification of My
over X x ) and thus robust conclusions about any future deployable model f,. One interesting and
relevant setting that satisfies this property is the differentially private release of predictions through an
additive Laplace (or Gaussian) noise mechanism applied to the output of the prediction function [13].!

While standard in the literature, a caveat of identification from randomization is that there are several
reasons a decision-maker may choose not to deploy a randomized prediction function in performative
environments, including negative externalities and concerns about user welfare [29], but also business
interests to preserve consumer value of the prediction-based service offered. In the context of our
credit scoring example, random predictions would imply that interest rates are randomly assigned
to applicants in order to learn how the rates impact their probability of paying back. We can not
presently observe this scenario, given regulatory requirements for lending institutions.

3.4 Identifiability through overparameterization

The following two sections consider situations where we can achieve identification, without ran-
domization, from data collected under a deterministic fg. Our first result exploits incongruences in
functional complexity arising from machine learning models that are overparameterized [e.g. 30]. By
overparameterization, we refer to the fact that the representational complexity of the model is larger
than the underlying concept it needs to describe.

Assumption 1 (overparameterization). We say a function f is overparameterized with respect to G
over X if there is no function g’ € G and ¢ € R such that f(z) = c- ¢'(z) forall x € X.

A challenge for identification is that for deterministic fy the prediction can be reconstructed from X
without relying on Y, and thus h(z,y) = My (z, fo(x)) can not be differentiated from My based
on observational data. However, note that this ambiguity relies on there being an admissable h such
that h(-, 9) for a fixed ¢ can represent fy. If fy is overparameterized with respect to the hypothesis
class H, this ambiguity is resolved. Let us make this intuition concrete with an example:

Example 3.1. Assume the structural equation for y in Figure 1 is g(x,9) = ax + B§ for some
unknown o, 3. Consider prediction functions fg of the following form fq(x) = ya? + £z for some
v,& > 0. Consider H be the class of linear functions. Then, any admissable estimate h € ‘H takes
the form h(x,y) = o’z + B'{. For h to be consistent with observations we need o' + 5'§ = oo + B¢
and [3'y = [37. This system of equations has a unique solution as long as v > 0 which corresponds
to the case where fy is overparameterized with respect to H. In contrast, for v = 0 the function
h(z,§) = (o + BE)x would explain the training data equally well.

The following result generalizes this argument to separable functions.

Proposition 5. Consider the structural causal model in Figure 1 where fy is a deterministic function.
Assume that g can be decomposed as g( X, }A/) =g1(X)+ oY for some o > 0 and g, € G, where
the function class G is closed under addition (i.e. g1, € G = a1 -g1 +as-go € G Vay,as € R).
Let H contain functions that are separable in X and }A’ linear in }Af and Vh € H it holds that

h(-,9) € G for a fixed §j. Then, if fq is overparameterized with respect to G over the support of Dx,
My is identifiable from D( fp).

3.5 Identifiability from classification

A second ubiquitous source of incongruence that we can exploit for identification is the discrete
nature of predictions in the context of classification. The resulting discontinuity in the relationship

between X and Y enables us to disentangle My from the direct effect of X on Y. This identification
strategy is akin to the popular regression discontinuity design [33] and relies on the assumption that

all other variables in X are continuously related to Y around the discontinuities in Y.

'In Appendix B we discuss two additional natural sources of randomness (randomized decisions and noisy
measurements of covariates) that can potentially help identification with appropriate side-information.
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Figure 2: Extrapolation error of supervised learning with and without access to Y. (a) In the non-identifiable

setting, adding Y as a feature harms generalization performance. (b)-(d) Randomization, overparameterization,
and discrete predictions are each sufficient for avoiding this failure mode.

Proposition 6. Consider the structural causal model in Figure 1 where fy is a deterministic function.
Assume that the structural equation for'Y is separable g(X,Y) = g1(X) + g2(Y),VX, Y for some

differentiable functions g1 and go. Further, suppose X is a continuous random variable and Yisa
discrete random variable that takes on at least two distinct values with non-zero probability. Then,
My is identifiable from D( fp).

Similar to Proposition 5, the separability assumption together with incongruence provides a way
to disentangle the direct effect from the indirect effect of X on Y. Separability is necessary in
order to achieve global identification guarantees without randomness, the identification of entangled
components without overlap is fundamentally hard. Thus, under violations of the separability
assumptions, we can only expect the separable components of g to be correctly identified. Similarly,
a regression discontinuity design only enables the identification of the causal effect locally around
the discontinuity. Extrapolation away from the decision boundary to models f that are substantially
different from fy increasingly relies on separability to hold true.

4 Empirical evaluation

We investigate empirically how well the supervised learning solution hgy in (8) is able to identify the
causal mechanism My from observational data in practical settings with finite data.

Methodology. We generated semi-synthetic data for our experiments, using a Census income
prediction dataset from folktables.org [11]. Using this dataset as a starting point, we simulate
a training dataset and test dataset with distribution shift as follows: First, we choose two different
predictors fg and fy to predict a target variable of interest (e.g. income) from covariates X (e.g. age,
occupation, education, etc.). If not specified otherwise, fy is fit to the original dataset to minimize
squared error, while fy4 is trained on randomly shuffled labels. Next, we posit a function g for

simulating the performative effects. Then, we generate a training dataset of (X, Y, Y') tuples from
the causal model in Figure 1, using the covariates X from the original data, g, and fy to generate Y’

and Y. Similarly, we generate a fest dataset of (X, f’, Y') tuples, using X, g, f,. We assess how well
supervised methods learn transferable functional relationships by fitting a model hgy. to the training
dataset and then evaluating the root mean squared error (RMSE) for regression and the accuracy for
classification on the test dataset. In our figures, we visualize the standard error from 10 replicates
with different random seeds and we compare it to an in-distribution baseline trained and evaluated on
samples of D( f,). If not specified otherwise we use N = 200, 000 samples.

4.1 Necessity of identification guarantees for supervised learning

We start by illustrating why our identification guarantees are crucial for supervised learning under
performativity. Therefore, we instantiate the structural equation g in Figure 1 as

9(X,Y) = gi1(X) +aV (10)

with g1 (X) = BT X and & ~ N/(0, 1). The coefficients 3 are determined by linear regression on
the original dataset. The hyperparameter o quantifies the performativity strength that we vary in our
experiments. The predictions Y are generated from a linear model fy that we modify to illustrate the
resulting impact on identifiability. We optimize hg in (8) over H being the class of linear functions.
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Figure 3: Ablation study of extrapolation performance. (a) We vary mg. Adding Y as a feature helps as soon as
fo is overparameterized with respect to g1 (me > 3). (b) We vary the noise in the predictions of fy. A small
amount of noise is sufficient for identifiability. (c) We vary number of datapoints for training hg..

We start by illustrating a failure mode of supervised learning in a non-identifiability setting (Proposi-
tion 3). Therefore, we let fy be a deterministic linear model fit to the base dataset (fo(X) ~ ' X).
This results in My not being identifiable from D( fy). In Figure 2(a) we can see that supervised
learning indeed struggles to identify a transferable functional relationship from the training data.

The meta model returns hgp (X, Y) =(1+ a)f/, instead of identifying g, which leads to a high
extrapolation error independent of the strength of performativity. While we only show the error for

one fy4 in Figure 2(a), the error grows with the distance d%z (fo, fs). In contrast, when the feature Y
is not included, the supervised learning strategy returns hg; (X) = (1 + )3 " X. The extrapolation
loss of this performativity-agnostic model scales with the strength of performativity (Proposition 1)

and is thus strictly smaller than the error of the model that predicts from predictions.

Next, we move to the regime of our identification results (Proposition 4-6). Therefore, we modify the
way the predictions in the training data are generated. In Figure 2(b) we use additive Gaussian noise

to determine the predictions as Y = f4(X) + 1 with n € A'(0, 02). In Figure 2(c) we augment the
input to fy with second-degree polynomial features to achieve overparameterization. In Figure 2(d)

we round the predictions of fy to obtain discrete values. In all three cases, including Y as a feature is
beneficial and allows the model to match in-distribution accuracy baselines, closing the extrapolation
gap that is inevitable for performativity-agnostic prediction.

4.2 Strength of incongruence and finite samples

We next conduct an ablation study and investigate how the degree of overparameterization and
the noise level for randomized fy impacts the extrapolation performance of supervised learning.
Therefore, we consider the setup in (10) with a general function g;. We fix the level of performativity
at o = 0.5 for this experiment. We optimize hgy. in (8) over H (which we vary).

In Figure 3(a) we investigate the effect of overparameterization of fy on the extrapolation error of hgy .
We choose fully connected neural networks with a single hidden layer to represent the functions gy,
fo and hgy . For g, and H we take a neural network with m = 3 units in the hidden layer. The model
g1 is fit it to the original dataset. We vary the number of units in the hidden layer of fy, denoted my.
As expected, the extrapolation error decreases with the complexity of fg. As soon as mg > my there
is a significant benefit to including predictions as features. In this regime, My becomes identifiable
as Proposition 5 suggests. In turn, without access to Y the model suffers an inevitable extrapolation
gap due to a concept shift that is independent of the properties of fy. In Figure 2(b) we investigate the
effect of the magnitude of additive noise added to the predictions. Here  and g; are linear functions.
We have Y = fy(X) + Bn with n € A(0,1) and we vary the noise level 3. We see that even small
amounts of noise are sufficient for identification and adding Y as a feature to our meta-machine
lenaring model is effective as soon as the noise in fy is non-zero. In Figure 2(c) we fix the noise level
at o = 0.5 and vary the number of samples N. We find that only moderate dataset sizes are necessary
for predicting from predictions to approximate My in our identifiable settings.

5 Discussion

This paper focused on identifying the causal effect of predictions on outcomes from observational
data. We point out several natural situations where this causal question can be answered, but we



also highlight situations where observational data is not sufficiently informative to reason about
performative effects. By establishing a connection between causal identifiability and the feasibility
of anticipating performative effects using data-driven techniques, this paper contributes to a better
understanding of the suitability of supervised learning techniques for explaining social effects arising
from the deployment of predictive models in economically and socially relevant applications.

We hope the positive results in this work serve as a message for data-collection: only if predictions are
observed, they can be incorporated to anticipate the performative effects of future model deployments.
Thus, access to this information is crucial for an analyst hoping to understand the effects of deployed
predictive models, an engineer hoping to foresee consequences of model updates, or a researcher
studying performative phenomena. To date, such data is scarcely available in benchmark datasets,
hindering the progress towards a better understanding of performative effects, essential for the reliable
deployment of algorithmic systems in the social world.

At the same time we have shown that the deterministic nature of prediction poses unique challenges

for causal identifiability even if Y is observed. Thus, the success of observational designs (as shown
in our empirical investigations) is closely tied to the corresponding identifiability conditions being
satisfied. Our results must not be understood as a green-light to justify the use of supervised learning
techniques to address performativity in full generality beyond the scope of our theoretical results.

Limitations and Extensions. The central assumption of our work is the causal model in Figure 1.
While carving out a rich and interesting class of performative prediction problems that allows us
to articulate the challenges of covariates and predictions being coupled, it can not account for all
mechanisms of performativity. This in turn gives rise to interesting questions for follow-up studies.

A first neglected aspect is performativity through social influence. Our causal model, relies on the
stable unit treatment value assumption (SUTVA) [23]. There is no possibility for the prediction of one
individual to impact the outcome of his or her peers. Such an individualistic perspective is not unique
to our paper but prevalent in existing causal analyses and model-based approaches to performative
prediction and strategic classification [e.g., 20, 25, 43, 3, 18, 22]. Spillover effects [cf. 60, 64, 1, 40]
are yet unexplored in the context of performative prediction. Nevertheless, they have important
implications for how causal effects should be estimated and interpreted. In the context of our work
they imply that an intervention on f can no longer be explaind solely by changing an individual’s
prediction. As a result, approaches for microfounding performative effect based on models learned
from simple, unilateral interventions on an individual’s prediction result in different causal estimates
than supervised learning based methods for identification as studied in this work. A preliminary study
included in Appendix C shows that data-driven techniques can pick up on interference patterns in the
data and benefit from structural properties such as network homophily [19], whereas individualistic
modeling misses out on the indirect component arising from neighbors influencing each other.

A second aspect is performativity in non-causal prediction. Our model posits that prediction is solely
based on features X that are causal for the outcome Y. This is a desirable situation in many practical
applications because causal predictions disincentivize gaming of strategic individuals manipulating
their features [43, 3] and offer explanations for the outcome that persist across environments [54, 7].
Nevertheless, non-causal variables are often included as input features in practical machine learning
prediction tasks. Establishing a better understanding for the implications of the resulting causal
dependencies due to performativity could be an important direction for future work.

Finally, performative effect can also lead to covariate shift and impact the joint distribution
P(X,Y) = P(Y|X)P(X) over covariates and labels. We assumed that performative effects
only surface in P(Y'|X). For our theoretical results, this implied that overlap in the X variable
across environments is trivially satisfied, which enabled us to pinpoint the challenges of learning
performative effects due to the coupling between X and Y. For establishing identification in the
presence of a causal arrow fy — X additional steps are required to ensure identifiability.
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1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes] see
Appendix F.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]
3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]

(b) Did you mention the license of the assets? [Yes]

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]
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