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Abstract

Natural language understanding models make001
inferences using information from multiple002
sources. An important class of such inferences003
are those that require both background knowl-004
edge, presumably contained in a model’s pre-005
trained parameters, and instance-specific in-006
formation that is supplied at inference time.007
However, the integration and reasoning abili-008
ties of NLU models in the presence of multiple009
knowledge sources have been largely under-010
studied. In this work, we propose a test suite011
of coreference resolution tasks that require rea-012
soning over multiple facts and an accompany-013
ing dataset with individual subtasks that we014
vary in order to control the knowledge source015
of relevant facts. We evaluate state-of-the-art016
coreference resolution models on our dataset.017
Our results indicate that several models strug-018
gle to reason on-the-fly over knowledge ob-019
served both at train time and at inference time.020
However, with task-specific training, a subset021
of models demonstrates the ability to integrate022
certain knowledge types from multiple sources.023

1 Introduction024

Progress on natural language understanding (NLU)025

benchmarks has recently been driven by pretrained026

large language models (LLMs), which may be027

adapted to specific tasks via finetuning (Peters028

et al., 2018; Devlin et al., 2019; Le Scao and Rush,029

2021). These models draw on a variety of knowl-030

edge sources, such as knowledge given in inputs at031

inference time and train-time knowledge contained032

in their parameters, usually acquired via pretrain-033

ing.034

Recent work suggests that models can use train-035

time knowledge in tasks like translation and ques-036

tion answering to obtain performance gains (Brown037

et al., 2020; Roberts et al., 2020). However, natu-038

ral language understanding often requires knowl-039

edge that was only supplied at inference time, be-040

cause of, e.g., time sensitivity or instance speci-041

Servin is a judge. Kea is a baker. Servin and
Kea met at a park. After a long day at work
deciding cases in a law court, he was happy
to relax.

Figure 1: Example from KITMUS. To resolve the pro-
noun “he,” a model needs to draw on entity-specific
knowledge about an entity’s occupation as well as on
background knowledge about the occupation itself.

ficity. Consider the passage “John saw the presi- 042

dent on TV”. Pretrained parameters can conceiv- 043

ably contain information about what presidents do 044

and what a TV is, but they cannot contain reliable 045

knowledge about who John is—since “John” is 046

an instance-specific identifier—or who the presi- 047

dent is—because the president might have changed 048

since pretraining. It follows that successful models 049

for knowledge-intensive NLU tasks might require 050

the ability to use both train-time and inference-time 051

knowledge. 052

To effectively use these two knowledge sources, 053

models must (1) retrieve relevant information from 054

each knowledge source, (2) adjudicate between po- 055

tentially conflicting information, and (3) integrate 056

multiple units of information from both the knowl- 057

edge sources and reason over them on the fly. For 058

example, pretrained parameters might contain the 059

knowledge that Donald Trump is the president of 060

the United States, but inference-time inputs might 061

state that Joe Biden is the president. Based on the 062

contextual information available in a task, models 063

must infer the correct president. 064

We know little about how models make use of 065

multiple knowledge sources. Drawing on recent 066

work examining the effects of knowledge conflicts 067

across different knowledge sources (Longpre et al., 068

2021), we aim to more broadly examine the be- 069

haviour of NLU models in the presence of different 070

knowledge sources. We introduce a coreference 071

resolution task designed to probe models’ ability 072

to draw on knowledge available in different knowl- 073
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edge sources, including in the presence of varying074

numbers of entities and noise. Unlike Longpre et al.075

(2021), where the focus is on conflicting facts, we076

control for when complementary information is077

made available to models.078

Specifically, in our task, the resolution of a given079

pronoun requires two knowledge types as shown080

in Figure 1: (1) entity-specific knowledge, such081

as “Sevin is a judge” and (2) background knowl-082

edge, such as “Judges decide cases in law courts”.083

Background knowledge is usually learned during084

the pretraining of LLMs and therefore considered085

train-time knowledge, while entity-specific knowl-086

edge is typically observed at inference time. We087

vary the availability of the required information088

such that it may either be found in a single source089

or in different sources. We evaluate a model’s abil-090

ity to integrate and reason over the two knowledge091

types given in two knowledge sources.092

We propose KITMUS, a test suite containing093

instances of our task. Similar to how a litmus094

test checks for acidity, the KITMUS test evalu-095

ates Knowledge InTegration from MUltiple Sources.096

KITMUS’s distinguishing feature is that it contains097

texts in which we methodically vary the mapping098

of the knowledge types to the knowledge sources,099

which allows us to pinpoint the specific strengths100

and limitations of models. We also analyze the101

behaviour of models when the knowledge is con-102

tained only in the instance by introducing variants103

where a model needs to reason over fictional knowl-104

edge, which is presumably not contained in the pa-105

rameters. Unlike previous works, where the knowl-106

edge is retrieved (Onoe et al., 2021), we provide107

the knowledge necessary to solve the task in each108

instance of KITMUS. This allows for a more con-109

trolled setting where we can focus on knowledge110

integration, rather than on retrieval, which we hold111

out as a separate problem. We validate in a human112

evaluation study that both background and entity-113

specific knowledge are required to perform well114

on KITMUS and that the automatically generated115

labels are consistent with human annotation1.116

We evaluate state-of-the-art coreference resolu-117

tion models on the KITMUS test suite. In our ex-118

periments, many established models appear unable119

to integrate knowledge from two different knowl-120

edge sources and reason over them without task-121

specific training. With task-specific training, two122

1Code for generation and evaluation will be made available
on GitHub.

models—BERT4Coref (Joshi et al., 2019) and C2F 123

(Lee et al., 2018)—demonstrate the ability to rea- 124

son over both knowledge observed at train time and 125

at inference time. However, we find that the abil- 126

ity to integrate knowledge from different sources 127

seems to the depend on the knowledge type in that 128

source. While knowledge integration through con- 129

catenation at inference time seems to be effective 130

for entity-specific knowledge, experiments with 131

fictional knowledge indicate that providing back- 132

ground knowledge only at inference time is not 133

sufficient. 134

2 Related Work 135

Coreference resolution as a reasoning task: 136

Coreference resolution is the task of determining 137

which mentions in a text corefer. In the general 138

case, which is presented in large coreference reso- 139

lution datasets such as Ontonotes (Pradhan et al., 140

2012), this can mostly be accomplished by exploit- 141

ing shallow cues such as gender, position, and num- 142

ber cues (Durrett and Klein, 2013). There has been 143

extensive work to study NLU models’ ability to 144

exploit linguistic knowledge that involves these 145

shallow cues, as well as other properties like se- 146

mantic roles (Baker et al., 1998; Chambers and 147

Jurafsky, 2009). The Winograd Schema Challenge 148

(WSC) (Levesque et al., 2012) inspired a number 149

of smaller specialized datasets such as GAP (Web- 150

ster et al., 2018) and Winogrande (Sakaguchi et al., 151

2020) where coreference resolution is used as a test 152

bed for reasoning over knowledge and cases can- 153

not be solved with shallow features (Emami et al., 154

2019; Rahman and Ng, 2012). 155

Following this line of work, we use templates 156

that omit shallow cues, such that a model must 157

integrate knowledge about the world to determine 158

the coreference. Moreover, KITMUS involves a 159

more diverse set of knowledge. While WSC and 160

KnowRef focus on abstract external knowledge 161

that is valid independent of the specific entities 162

involved (Emami et al., 2019), KITMUS focuses on 163

both entity-specific and entity-agnostic knowledge. 164

World knowledge for reasoning tasks: Prior 165

work has shown that integrating world knowl- 166

edge can lead to improvement in coreference 167

solvers. Bean and Riloff (2004) learn caseframe 168

co-occurrence statistics, which they use to predict 169

coreference. Rahman and Ng (2012); Zhang et al. 170

(2019); Aralikatte et al. (2019); Emami et al. (2019) 171

showed improved results using data-augmentation. 172
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In the wake of the WSC, several NLU datasets such173

as bAbi (Weston et al., 2015) and OpenBookQA174

(Mihaylov et al., 2018) were proposed that de-175

mand reasoning over knowledge (Mishra et al.,176

2018; Mitra et al., 2019). Longpre et al. (2021)177

recognized the distinction between train-time and178

inference-time knowledge, which they call paramet-179

ric and contextual knowledge. The latter is usually180

retrieved at inference time from an unstructured181

(Koupaee and Wang, 2018) or structured (Rebele182

et al., 2016; Liu and Singh, 2004; Singh, 2002)183

knowledge base.184

Complementing prior tasks that require back-185

ground knowledge found in off-the-shelf knowl-186

edge bases, KITMUS instances require both entity-187

specific and background knowledge—we map a188

mentioned entity to its occupation and occupations189

to situations, drawing from Onoe et al. (2021). In190

their dataset, they pose fact-checking tasks that191

require combining entity knowledge with common-192

sense knowledge. However, in contrast to our193

dataset, they do not provide the required knowl-194

edge, and expect models to either use only train-195

time knowledge in a closed-book setting or to re-196

trieve the knowledge from an external knowledge197

base at inference time. In our work, the knowl-198

edge associated with each instance of KITMUS is199

generated and provided in a controlled setting.200

Reasoning over knowledge with Transform-201

ers: Clark et al. (2020) study the limits of rea-202

soning in transformer models. They investigate203

an approach where classical logic facts and rules204

are stated using natural language instead of a for-205

mal representation, and train transformers to reason206

over these types of sentences.207

Though our task is presented as a natural lan-208

guage text that requires reasoning, and is evaluated209

on Transformer models (among others), our work210

differs from Clark et al. (2020)’s in that the predic-211

tion target is the resolution of pronoun coreferences212

within a text. This requires detecting multiple can-213

didate mentions and identifying those that corefer214

with a pronoun using both train-time and inference-215

time knowledge. In contrast, the prediction target216

of Clark et al. (2020) is the boolean decision if217

a claim is consistent with a set of facts and rules.218

Our experiments corroborate the results of Clark219

et al. (2020) as we find that the Transformer-based220

model BERT4Coref (Joshi et al., 2019) can reason221

effectively over inference-time knowledge.222

3 The KITMUS Test Suite 223

In this work, we evaluate the knowledge integration 224

capability of NLU models in the presence of two 225

knowledge sources: 1) train-time: knowledge ac- 226

cumulated in the parameters during (pre-)training 227

and 2) inference-time: knowledge observed in the 228

instance. 229

We formulate a coreference task whose resolu- 230

tion requires access to two facts. We systemati- 231

cally vary the presence of these facts across the 232

knowledge sources to evaluate the models. As an 233

instantiation of the idea of presenting two facts, we 234

choose the following knowledge types: 235

– Entity-specific: occupation of an entity e.g., 236

“Telles is a firefighter.” 237

– Background: situation typical for an occupation 238

e.g., “a firefighter is putting out fires.” 239

For example, consider the following task to pre- 240

dict whether Telles or Drayer is the correct an- 241

tecedent of the pronoun “she”. 242

Telles is a firefighter. Drayer is a bus driver. 243
Telles and Drayer met at the sports bar. After a 244
long day at work putting out fires, she was happy 245
to relax. [Correct answer: Telles] 246

Here, the occupations are firefighter and bus 247

driver, and the situational cue is putting out fires. 248

Both the knowledge types are required in order 249

to resolve this coreference. An illustration of this 250

knowledge schema can be found in Figure 2. 251

We explore three main variants of the dataset as 252

shown in Figure 3. With entity-specific knowledge 253

always provided in the instance, the variants differ 254

based on when and where background knowledge 255

is available: 256

– BACKGROUND-TRAIN: background knowledge 257

is available only in the model parameters 258

– BACKGROUND-BOTH: background knowledge 259

is available in the model parameters and explic- 260

itly provided in the instance 261

– BACKGROUND-INFERENCE: background 262

knowledge is only available in the instance 263

Each instance of the task consist of two texts that 264

are concatenated: a knowledge text—containing 265

the inference-time knowledge that models are given 266

access to—and a task text—consisting of the coref- 267

erence task that models solve. 268

3.1 BACKGROUND-TRAIN 269

In this variant, entity-specific knowledge is pro- 270

vided at inference time and background knowl- 271

edge about occupations is assumed to be train-time 272
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Figure 2: Schema of different knowledge types in KITMUS.

a)

b)

c)

Figure 3: Variants of KITMUS based on the source of
background knowledge: (a) BACKGROUND-TRAIN (b)
BACKGROUND-BOTH (c) BACKGROUND-INFERENCE

knowledge since information such as “the work of a273

firefighter is putting out fires” is likely to have been274

observed during pretraining. An example is shown275

in Section 3. Here, the entity-specific knowledge276

about Telles and Drayer is inference-time; how-277

ever, the knowledge about the jobs of a firefighter278

and a bus driver is train-time. By evaluating on279

this variant, we evaluate whether models have the280

ability to integrate and reason over both train-time281

and inference-time knowledge effectively.282

3.2 BACKGROUND-BOTH283

In this variant, background knowledge is provided284

at both inference-time and assumed to be captured285

by the parameters. Entity-specific and background286

facts are present in the same knowledge source.287

They both represent inference-time knowledge be-288

ing listed in the knowledge text as part of the289

inference-time inputs. For example:290

Telles is a firefighter. The work of a firefighter291
is putting out fires. Drayer is a bus driver. The292
work of a bus driver is driving buses. Telles and293
Drayer met at the sports bar. After a long day at294

work putting out fires, she was happy to relax. 295

3.3 BACKGROUND-INFERENCE 296

In order to evaluate whether a model can solve this 297

task using exclusively inference-time knowledge 298

(i.e., in the absence of train-time knowledge), we 299

introduce fictional knowledge. Fictional knowl- 300

edge such as “the work of a mornisdeiver is gupe- 301

gaing advaily” is unlikely to have been observed 302

during pretraining, in contrast to real-world knowl- 303

edge such as “the work of a baker is baking bread”, 304

which is likely to have been observed. The entities 305

in all variants are always fictional, which ensures 306

that entity-specific knowledge about them has not 307

been observed at train time. Thus, in this variant, 308

both knowledge types are fictional and not con- 309

tained in the pretrained parameters. 310

Background knowledge about occupations maps 311

occupations to situations that are typical for the 312

occupation, such as “baker” and “baking bread”. 313

To make background knowledge fictional, either 314

the occupation, the situation, or both have to be fic- 315

tional. For situations, we furthermore distinguish 316

between levels of fictionality and define two sub- 317

variants: 1) word-level fictional situations that use 318

existing words but describe novel occupations, and 319

2) character-level fictional situations that use novel 320

words. The methods we use to generate these fic- 321

tional occupations and situations are detailed in 322

section 4.2. Example texts resulting from different 323

forms of fictionality can be seen in Table 1. 324

4 Dataset Creation 325

To construct KITMUS, we manipulate which entities 326

are mentioned in each instance, what occupations 327

those entities have, what situations those occupa- 328

tions pertain to, what contexts they are mentioned 329

in and if noise is present in the instance. 330

The dataset entries are generated using English- 331

language templates. These templates are designed 332

to control for variables pertaining to entities, occu- 333

pations, and situations. 334
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Var. Occupation Situation Example

BB Real Real The work of a firefighter is putting out fires. Whyte is a firefighter[...]After a long
day at work putting out fires, he was happy to relax.

BI Real CharFict The work of a firefighter is ehemting smorbtly. Whyte is a firefighter[...]After a
long day at work ehemting smorbtly, he was happy to relax.

BI Real WordFict The work of a firefighter is controlling the pool of an aircraft by using its direc-
tional flight controls. Whyte is a firefighter[...]After a long day at work studying
the stars and the drink, he was happy to relax.

BI CharFict Real The work of a mirituer is putting out fires. Whyte is a mirituer[...]After a long
day at work putting out fires, he was happy to relax.

BI CharFict CharFict The work of a mirituer is ehemting smorbtly. Whyte is a mirituer[...]After a long
day at work ehemting smorbtly, he was happy to relax.

BI CharFict WordFict The work of a mirituer is controlling the pool of an aircraft by using its directional
flight controls. Whyte is a mirituer. [...]After a long day at work controlling the
pool of an aircraft by using its directional flight controls, he was happy to relax.

Table 1: Different combinations of fictional occupations and situations in BACKGROUND-INFERENCE (BI) variant.
An instance of BACKGROUND-BOTH (BB) variant is also shown.

Each entry is structured to first (1) introduce the335

entities, (2) then place them in the same location,336

and (3) finally, have one of them remember a situ-337

ation related to their occupation. The noise is a338

statement about the location intended to act as a dis-339

tractor to increase the task difficulty. It both makes340

the distance between pronoun and antecedents vari-341

able and the evaluation of reasoning abilities for342

NLU models more challenging. The template for a343

task text with two entities is:344

⟨entityA⟩ and ⟨entityB⟩ met at345
⟨location⟩. ⟨noise⟩. After a long346
day at work ⟨situation⟩, ⟨pronoun⟩ was347
happy to relax.348

The knowledge text maps entities to their respec-349

tive occupations using the phrase “is a”. The tem-350

plate for providing inference-time entity-specific351

knowledge about two entities is:352

⟨entityA⟩ is a ⟨occupationA⟩.353
⟨entityB⟩ is a ⟨occupationB⟩.354

4.1 Resource Pools355

We generate texts by randomly sampling from pre-356

defined sets of named entities, occupations, situ-357

ations, locations, and pronouns. We ensure that358

texts included in the train, validation, and test splits359

are drawn from non-overlapping subsets of names,360

occupations, locations, and noise statements.361

Entities are sampled from a pool of the 20,000362

most frequent last names from the 2010 U.S. cen-363

sus (United States Census Bureau, 2021). We use364

last names as entity names in order to avoid in-365

troducing gender-related cues. We discard those366

last names that are also first names. The order367

of entities within a template is also randomized.368

We assume that there is no confounding train-time369

knowledge based on the entity names in the mod- 370

els. 371

Occupations consist of a curated list of 60 com- 372

mon occupations compiled by scraping a career 373

website (Indeed, 2021) and the US Labor census 374

data (US Labor Census, 2021). Following Cao and 375

Daumé III (2020), we remove referential gender 376

cues from the occupations such as “fireman”. The 377

jobs pertaining to very specific domains or related 378

to one of the locations where entities can meet are 379

removed from the list. 380

Situations are assembled using the occupation 381

descriptions of the scraped occupations. We man- 382

ually filter the pairs of situations that are semanti- 383

cally similar, such as an accountant and an analyst. 384

Locations are derived from a curated list of 112 385

locations scraped from a website of common meet- 386

up places (Happier Human, 2019). We manually 387

filter out locations that could provide inadvertent 388

surface cues related to the entities’ occupation, na- 389

tionality, or gender. 390

Noise statements are sampled from a collection 391

of statements based on the selected location in or- 392

der to maintain a natural flow of the text. Each loca- 393

tion is associated with 25 noise sentences. The sen- 394

tences are generated using GPT-2 (Radford et al., 395

2019) and manually verified not to include cues 396

related to any entity or occupation. 397

Pronouns are sampled randomly from both the 398

gendered pronouns he and she as well as gender- 399

indefinite pronouns such as singular they and 400

the neopronouns ey and ze following the gender- 401

inclusive coreference resolution dataset GICoref 402

(Cao and Daumé III, 2020). Ideally, we would want 403

the distribution of pronouns to approximate the fre- 404

quency in naturally occurring text, but few reliable 405
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statistics exist to estimate them. We include 40%406

he, 40% she, 10% they, and 10% neopronouns.407

Each variant in KITMUS consists of three408

subtasks—based on the number of entities—with409

increasing difficulty: two entity, three entity, and410

four entity subtasks. Each substask has train, val-411

idation and test splits with 2000, 400, and 2000412

examples respectively. The size of KITMUS is simi-413

lar to that of the GAP dataset (Webster et al., 2018),414

but is smaller compared to Ontonotes (Pradhan415

et al., 2012).416

4.2 Fictional Occupations417

In order to create fictional background knowledge418

that maps occupations to situations, we create fic-419

tional occupations and fictional situations. Follow-420

ing the work of Malkin et al. (2021), we generate421

60 names of fictional occupation by sampling from422

a character-level LSTM language model with tem-423

perature 0.5. To bias the model towards strings that424

can be used as occupation names, we train it on a425

reversed sequence of characters and prompt with426

the suffix er. We manually filter the words and427

eliminate unpronounceable or pre-existing words428

in the English.429

We employ the following two methodologies430

to generate fictional situations: 1) character-level431

fictional—like the fictional occupations—is gen-432

erated with the suffix prompts ing and ly, and433

2) word-level fictional is generated by randomly434

shuffling existing words with the same POS tags435

followed by manual filtering based on semantic436

plausibility. Examples are shown in Table 1.437

4.3 Dataset Formats438

We provide the test suite in two formats which439

are commonly used by state-of-the-art coreference440

solvers: the CoNLL 2012 format (Pradhan et al.,441

2012) and the GAP format (Webster et al., 2018).442

The CoNLL format contains token and sen-443

tence boundaries, Penn Treebank POS tags444

(Marcinkiewicz, 1994), and gold coreference clus-445

ters for all entity mentions. This means that all446

mentions of an entity—including in the knowledge447

text—are annotated in a single cluster.448

The GAP format operates on character indices449

rather than token indices and allows for the annota-450

tion of only two entities and only one mention per451

entity (excluding the pronoun). This means that452

only a single mention of an entity in the task text is453

annotated.454

4.4 Human Validation 455

To assess the quality of KITMUS, we conducted a 456

small human study with six participants. For this, 457

we created a questionnaire by randomly selecting 458

5 instances from each subtask—tasks with two, 459

three, and four entities—of the BACKGROUND- 460

TRAIN variant. Additionally, from each subtask, 461

we include 5 instances without any knowledge text. 462

All the participants answered a total of 60 instances 463

presented to them in a random order. 464

When the knowledge text was provided, most 465

of the participants were able to identify the correct 466

antecedent. Without knowledge text—no entity- 467

specific knowledge—all participants indicated that 468

the instances cannot be answered. This suggests 469

that there are no inadvertent cues that can be ex- 470

ploited by humans to solve the task. The high inter- 471

annotator agreement (0.994 as measured by Fleiss’ 472

kappa (Fleiss et al., 2003)) shows that the test suite 473

has a high internal validity. The agreement of the 474

participants with the automatically produced la- 475

bels indicates that the data generation process is 476

generally sound. The questionnaire and additional 477

details can be found in Appendix A.1. 478

5 Experimental Setup 479

We evaluate existing coreference resolution models 480

on the KITMUS test-suite. 481

5.1 Model Selection 482

We experiment with two families of coreference 483

resolution models: 1) general coreference models 484

and 2) pronoun coreference models. 485

Models that focus on general coreference resolu- 486

tion are often trained on the large Ontonotes corpus 487

in the CoNLL 2012 format (Pradhan et al., 2012). 488

We include BERT4Coref (Joshi et al., 2019) as an 489

example of a state-of-the-art models on CoNLL 490

2012, C2F (Lee et al., 2018), which is the direct 491

successor to the first end-to-end neural coreference 492

resolution model (Lee et al., 2017), and Stanford’s 493

statistical (Clark and Manning, 2015) and neural 494

(Clark and Manning, 2016) models. 495

Models that focus on pronoun coreference res- 496

olution are trained on the smaller GAP dataset in 497

the GAP format (Webster et al., 2018). We include 498

GREP (Attree, 2019), the winner of the GAP Kag- 499

gle competition and PeTra (Toshniwal et al., 2020), 500

an efficient memory-augmented model. 501
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5.2 Training502

We train all models on the train split of KITMUS503

and use their default hyperparameters. The train-504

ing details are in Appendix A.2. The larger gen-505

eral coreference models BERT4Coref and C2F are506

conventionally not trained on datasets with just507

2000 train instances such as GAP or KITMUS, but508

rather trained on Ontonotes and then evaluated on509

smaller datasets (Joshi et al., 2019). Since corefer-510

ence cases in KITMUS diverge significantly from511

those in Ontonotes, we test these models both in512

the Ontonotes-trained setting and KITMUS-trained513

setting. For these models, we report mean metrics514

over 6 train runs. We use only the pretrained ver-515

sions of the Stanford models, since they are conven-516

tionally used off-the-shelf. We train the GAP-based517

models—PeTra and GREP—only on the two entity518

subtasks following the GAP format constraints.519

5.3 Evaluation520

We test all models on the KITMUS test split of each521

subtask. We use two metrics to assess each model522

performance: antecedent classification F1 and pro-523

noun accuracy. Antecedent classification F1 is typ-524

ically used for GAP format datasets. It considers525

the coreference between each candidate antecedent526

mention and the pronoun as a binary classification527

decision i.e., for a text with two entities, it consid-528

ers two binary predictions and calculates the scores529

accordingly. Pronoun accuracy considers for each530

pronoun whether the correct candidate antecedent531

is predicted by the model, so independent from the532

number of entities in a text, only one decision is533

made among all possible candidate antecedents.534

Additionally, we compare against two baselines:535

1) human: the majority decision of human vali-536

dation study participants and 2) random: random537

choice among the gold candidate mentions.538

6 Results and Discussion539

6.1 BACKGROUND-TRAIN540

Table 2a shows that none of the evaluated models541

are able to outperform the random baseline without542

task-specific training on KITMUS. When trained543

on KITMUS, BERT4Coref (Joshi et al., 2019) and544

C2F (Lee et al., 2018) perform significantly bet-545

ter than random, as can be seen in Table 2b. The546

high performance of BERT4Coref and C2F on the547

BACKGROUND-TRAIN variant suggests that both548

models have the ability to draw background knowl-549

edge from their parameters, entity-specific knowl-550

edge from the inference-time inputs, and reason 551

over them on-the-fly. 552

One possible reason for the poor performance 553

of Ontonotes-trained models is that when trained 554

on general coreference resolution datasets—like 555

Ontonotes—they learn to exploit surface cues, 556

which does not transfer to KITMUS where such 557

cues are removed. Another explanation is that the 558

structure of the texts in KITMUS, which is designed 559

to place knowledge in specific knowledge sources, 560

differs from that of Ontonotes. This might affect 561

models’ abilities to form useful representations. 562

However, it is worth noting that the human study 563

participants could solve the task without difficul- 564

ties. 565

We observe that success in solving the task 566

seems to coincide with the acceptance of input in 567

the CoNLL format (Pradhan et al., 2012), while 568

those models that accept the GAP format (Webster 569

et al., 2018) perform poorly. This could be due to 570

the lack of mention annotations in the knowledge 571

text in the GAP format. 572

Furthermore, BERT4Coref seems to consistently 573

outperform C2F. One reason for the better per- 574

formance of BERT4Coref might be the differ- 575

ence in pretrained LLMs: BERT4Coref uses the 576

Transformer architecture (Vaswani et al., 2017), 577

which has been shown to be effective at reasoning 578

tasks presented in natural language form (Clark 579

et al., 2020) and utilizing information presented in 580

inference-time contexts (Petroni et al., 2020), while 581

C2F uses ELMo (Peters et al., 2018). 582

Performance of all models decreases as the num- 583

ber of entities increases, which is unsurprising 584

since the more candidate entities there are, the less 585

likely the accidental selection of the correct entity 586

becomes. In order to explore the effect of the noise 587

statements, we conduct additional experiments on 588

the BACKGROUND-TRAIN variant without noise. 589

The removal of noise does not result in a significant 590

performance change, as shown in Appendix A.3. 591

6.2 BACKGROUND-BOTH and 592

BACKGROUND-INFERENCE 593

We conduct additional experiments on the 594

BACKGROUND-BOTH and BACKGROUND- 595

INFERENCE variants with BERT4Coref and 596

C2F, since they demonstrate the ability to learn 597

the BACKGROUND-TRAIN variant of the task. 598

In Table 3, we report results on the four-entity 599

subtask, which Table 2 suggests to be the most 600
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Model 2 Entities 3 Entities 4 Entities

BERT4Coref 0.37 0.21 0.11
C2F 0.34 0.17 0.12
Stfd. Neural 0.12 0.06 0.06
Stfd. Stat. 0.01 0.01 0.00

Random 0.50 0.33 0.25

(a) Ontonotes-trained

Model 2 Entities 3 Entities 4 Entities

BERT4Coref 1.00 0.97 0.95
C2F 0.64 0.51 0.47
GREP† 0.51 - -
PeTra† 0.02 - -

Random 0.50 0.33 0.25

(b) KITMUS-trained
Table 2: Accuracy on BACKGROUND-TRAIN variant of KITMUS. Models marked with † operate on GAP format,
all other models operate on the CoNLL format. F1 scores shown in Appendix A.3 track the accuracy scores.

Var. Occupation Situation C2F BERT4Coref

BB
Real

Real 0.45 0.95
BI CharFict 0.24 0.26
BI WordFict 0.18 0.57

BI
CharFict

Real 0.30 0.37
BI CharFict 0.27 0.23
BI WordFict 0.22 0.27

Table 3: KITMUS-trained accuracy on BACKGROUND-
BOTH (BB) and BACKGROUND-INFERENCE (BI) vari-
ants of KITMUS with four entities. Random performance
is 0.25.

challenging.601

The performance of both the models on602

BACKGROUND-BOTH and BACKGROUND-TRAIN603

variants is comparable. This indicates that redun-604

dantly providing background knowledge both at605

train time and in inference-time inputs does not606

increase models’ ability to absorb knowledge.607

In the experiments on BACKGROUND-608

INFERENCE variant, models seem unable to609

integrate fictional background knowledge—610

fictional occupations and situations—observed at611

inference time. However, experiments on the other612

variants indicate that models are able to integrate613

fictional entity-specific knowledge observed at614

inference time reliably. This suggests that the615

models’ ability to integrate and reason over the616

knowledge on-the-fly depends on the knowledge617

type—whether the knowledge is background or618

entity-specific—and not whether it is fictional or619

real. One possible explanation could be that LLMs620

observed different frequencies of unseen entities,621

occupations, situations during pretraining, which622

result in a difference in their ability to adapt to623

unseen fictional instances of those categories.624

BERT4Coref in particular seems to perform con-625

sistently poorly on character-level fictional situa-626

tions compared to real and word-level fictional sit-627

uations. One possible reason could be BERT’s tok-628

enization strategy, which involves pooling subword629

representations (Devlin et al., 2019). In character-630

level fictional words, the subwords are meaningless, 631

rendering their representations unhelpful. This is 632

consistent with previous work showing that rep- 633

resentations of LLMs for character-level fictional 634

“Jabberwocky” words are less useful (Kasai and 635

Frank, 2019) and the presence of out-of-vocabulary 636

words decreases performance of neural models for 637

NLU tasks (Schick and Schütze, 2020; Moon and 638

Okazaki, 2020; He et al., 2021). 639

7 Conclusion 640

We investigated the ability of models to integrate 641

knowledge from multiple knowledge sources to re- 642

solve linguistic ambiguities in a coreference resolu- 643

tion task. We formulated a task that requires access 644

to two knowledge types, entity-specific and back- 645

ground, and controlled for the knowledge sources 646

that the knowledge is available in. 647

Our results show that with task-specific training, 648

some models have the ability to reason over both 649

knowledge observed at train time and at inference 650

time. For these models, knowledge can be inte- 651

grated by concatenating textual knowledge to the 652

model inputs. However, redundant information in 653

multiple knowledge sources does not lead to fur- 654

ther performance improvements. Furthermore, the 655

ability of models to integrate inference-time knowl- 656

edge on-the-fly seems to depend on its knowledge 657

type. Our findings imply that supplying additional 658

information (e.g., from a retriever) at inference 659

time to NLU models can be successful even if the 660

knowledge required for the task has not been ob- 661

served before. However, for tasks similar to ours, 662

adding information on-the-fly might not work in a 663

zero-shot setting without task-specific training. 664

In future work, we would like expand the KIT- 665

MUS test suite with different knowledge types and 666

more naturalistic noise. 667
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8 Ethical Considerations668

Despite the synthetic nature, depending on its use,669

KITMUS might also have adverse impacts.670

The randomized sampling of resources to fill671

slots is meant to minimize bias in terms of the672

demographic cues that might be associated with673

the entities referenced in our tests (e.g., gender and674

nationality).675

The names and occupation descriptions in our676

test suite are drawn from United States governmen-677

tal resources or English-language websites. This678

means that our test suite is not representative and679

likely skewed in terms of names, locations, occu-680

pations, and situations more common in the e.g.,681

anglophone world.682

Additional resources such as noise statements683

and fictional entities were generated using word-684

level and character-level language models trained685

on English-language texts, which are known to686

reproduce a variety of biases found in natural data687

(Bordia and Bowman, 2019; Solaiman et al., 2019).688

While KITMUS is intended as a diagnostic tool,689

users should be aware of these biases and the possi-690

bility of other unintended biases when interpreting691

model performances on this dataset. To document692

these in more detail, our dataset release will be ac-693

companied by a datasheet (Gebru et al., 2018), also694

included in Appendix A.4.695
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A Appendix1005

A.1 Human Validation1006

The participants are graduate students with fluency1007

in English which were recruited via an open call.1008

The participants were compensated with the equiv-1009

alent of 12 USD for their participation.2 The study1010

was approved by a university’s ethics review board1011

and the participants gave their written consent via1012

a form.1013

The participants are tasked to resolve the coref-1014

erences in a randomly sampled subset of KITMUS1015

texts. The task is presented to the participants in1016

a multiple choice questionnaire. The participants1017

are given gold mentions and have to select the an-1018

tecedent that is referred to by the pronoun. The1019

answer options include the names of all mentioned1020

entities and a “can’t say” option to indicate that the1021

question is not answerable. The questionnaire con-1022

tains 60 questions to be completed in 60 minutes,1023

which was generous for most participants.1024

The human validation was conducted using1025

Google forms. The participants are introduced to1026

the task with examples as shown in Figure 4.1027

This is followed by 60 questions where the par-1028

ticipants have to choose one option among all the1029

entity names and “can’t say” indicating that the1030

task could not be solved.1031

A.2 Experiment Details1032

We train all models on Nvidia Quadro RTX 80001033

GPUs in a compute cluster infrastructure. For1034

BERT4Coref, training on the train split of one KIT-1035

MUS subtask took about 8 hours per run. For C2F1036

it took about 16 hours, the training of the ensem-1037

ble model GREP took 18 hours. The training of1038

smaller models and inference on pretrained models1039

took about 4 hours per run.1040

A.3 Additional Results1041

PeTra has higher F1 scores than pronoun accuracy,1042

since it defaults to always predicting true for each1043

antecedent, which results in a recall of 1.00 and a1044

thus a high F1 score.1045

2Matches the minimum wage in the participants’ demo-
graphic

Model Train Data 2 Ent. 3 Ent. 4 Ent.

PeTra

KITMUS

0.66 - -
GREP 0.51 - -
BERT4Coref 1.0 0.97 0.95
C2F 0.64 0.51 0.48

BERT4Coref

Ontonotes

0.43 0.27 0.16
C2F 0.47 0.31 0.25
Stfd. Neural 0.20 0.10 0.10
Stfd. Stat. 0.02 0.02 0.00

Random - 0.50 0.33 0.25

Table 4: Antecedent F1 on BACKGROUND-TRAIN vari-
ant of KITMUS.

Var. Occupation Situation C2F BERT4Coref

BB
Real

Real 0.45 0.95
BI CharFict 0.24 0.27
BI WordFict 0.19 0.57

BI
CharFict

Real 0.30 0.38
BI CharFict 0.27 0.24
BI WordFict 0.22 0.27

Table 5: KITMUS-trained F1 Score on BACKGROUND-
BOTH (BB) and BACKGROUND-INFERENCE (BI) vari-
ants of KITMUS with four entities. Random performance
is 0.25.

Model Train Data 2 Ent. 3 Ent. 4 Ent.

PeTra

KITMUS

0.02 - -
GREP 0.48 - -
BERT4Coref 0.99 0.97 0.92
C2F 0.66 0.49 0.43

BERT4Coref

Ontonotes

0.42 0.23 0.13
C2F 0.33 0.19 0.13
Stfd. Neural 0.20 0.11 0.09
Stfd. Stat. 0.03 0.02 0.01

Random - 0.50 0.33 0.25

Table 6: Pronoun accuracy on BACKGROUND-TRAIN
variant of KITMUS with no noise statements added.

A.4 Datasheet 1046

A.4.1 Motivation 1047

For what purpose was the dataset created? 1048

The KITMUS dataset was created to enable re- 1049

search on reasoning over knowledge for the task 1050

of coreference resolution - i.e. given a piece of 1051

text, identify mentions and determine whether or 1052

not they co-refer. The dataset was created with the 1053

intention to focus on those cases of coreference 1054

resolution that require knowledge about specific 1055

entities and their occupations to accomplish the 1056

task. 1057

Who created the dataset and on behalf of 1058

which entities? 1059

The dataset was created by the authors of this pa- 1060
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Figure 4: Task introduction with examples for the participants of human validation.

per (details omitted during review for anonymity).1061

Who funded the creation of the dataset?1062

Funding was provided by multiple sources (de-1063

tails omitted during review for anonymity).1064

Any other comments?1065

None.1066

A.4.2 Composition 1067

What do instances that comprise the dataset 1068

represent? 1069

The dataset consist of text pairs that were gener- 1070

ated to capture knowledge about entities, occupa- 1071

tions, and situations, as well as coreference cases 1072

whose resolution depends on this knowledge. The 1073

labels are clusters of tokens in the text. 1074

How many instances are there in total? 1075

13



There are 4400 · 3 · (2 + 1 + 5) = 105600 in-1076

stances in total: 4400 instances for each of the three1077

entity numbers for variants BACKGROUND-TRAIN1078

(also without noise), BACKGROUND-BOTH, and1079

five versions of BACKGROUND-INFERENCE with1080

different degrees of fictionality.1081

Does the dataset contain all possible instances1082

or is it a sample of instances from a larger set?1083

The dataset contains all instances that we gen-1084

erated. They are generated by filling slots in a1085

template by sampling from a pool of resources.1086

The pool of resources only contains a subset of1087

resources in the world, and the sampling process1088

selects a random subset of the pool of resources.1089

What data does each instance consist of?1090

The instances are pairs of template-generated1091

texts: one knowledge text and one task text. The1092

knowledge text contains knowledge about fictional1093

entities and real or fictional occupations in text1094

form. The task text contains a case of coreference1095

involving the same fictional entities. Labels for the1096

coreferences are given in the form of coreference1097

clusters over tokens.1098

Is there a label associated with each instance?1099

Yes. The label is a coreference cluster that rep-1100

resents the true resolution of the coreference pre-1101

sented in the text.1102

Is any information missing from individual1103

instances?1104

No.1105

Are relationships between individual in-1106

stances made explicit?1107

Yes. The entities are fictional and created sepa-1108

rately for each instance. Instances are completely1109

independent from each other and are not consis-1110

tent across the dataset, i.e. conflicting knowledge1111

may be given for the same fictional entity across1112

different instances in the dataset.1113

Are there recommended data splits?1114

Yes. Each subcategory of the dataset is provided1115

in recommended data splits of 2000 train in-1116

stances, 400 validation instances, and 20001117

test instances. The numbers are chosen for size1118

comparability with other coreference resolution1119

datasets such as GAP (Webster et al., 2018). Re-1120

sources are disjunct across the splits for each sub-1121

category, which enables the evaluation of the ability1122

of models to generalize beyond observed resources.1123

Are there any errors, sources of noise, or re-1124

dundancies in the dataset?1125

None that we are aware of. Since the dataset is1126

template-generated, only the intentionally provided 1127

noise in the appropriate subcategory is present. We 1128

control for redundancies in the dataset. A human 1129

validation has not brought to light any errors in the 1130

dataset, however, due to the synthetic nature of the 1131

dataset texts can appear wooden and non-natural to 1132

readers. 1133

Is the dataset self-contained, or does it link to 1134

or otherwise rely on external resources? 1135

The dataset is created using external resources 1136

to fill slots in templates, but the finished dataset is 1137

entirely self-contained. 1138

Does the dataset contain data that might be 1139

considered confidential? 1140

The dataset contains only information about fic- 1141

tional entities and public knowledge about occupa- 1142

tions which is not confidential. 1143

Does the dataset contain data that, if viewed 1144

directly, might be offensive, insulting, threaten- 1145

ing, or might otherwise cause anxiety? 1146

Both the templates and the resources used to fill 1147

the slots were manually inspected for content that 1148

might cause anxiety to viewers. 1149

The dataset does not contain any text that might 1150

cause anxiety to viewers. 1151

Does the dataset identify any subpopulations? 1152

The fictional entities have neither an explicit 1153

age nor gender. The only distinguishing features 1154

of the entities are their names and occupations, 1155

which are uniformly sampled, and their pronoun 1156

use, which is sampled according to the following 1157

distribution: 40% he, 40% she, 10% they, and 1158

10% neopronouns. 1159

Is it possible to identify individuals either di- 1160

rectly or indirectly? 1161

No. Since the entities are entirely fictional, 1162

any similarities to existing individuals are due to 1163

chance. 1164

Does the dataset contain data that might be 1165

sensitive in any way? 1166

No. 1167

Any other comments? 1168

None. 1169

A.4.3 Collection Process 1170

How was the data associated with each instance 1171

acquired? 1172

The data was generated by filling slots in tem- 1173

plates that were hand-engineered. The slot-filling 1174

resources were obtained from publicly available 1175

raw text sources such as governmental name statis- 1176

tics and professional job websites. Noise sentences 1177
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were generated with the language model GPT-21178

(Radford et al., 2019) and manually edited and1179

verified to conform with the rest of the dataset.1180

Fictional occupation names and descriptions were1181

created by random sampling from a character-level1182

LSTM language model following methodology of1183

Malkin et al. (2021).1184

What mechanisms or procedures were used1185

to collect the data?1186

The dataset was generated using Python scripts,1187

which will be made publicly available in a GitHub1188

repository.1189

If the dataset is a sample from a larger set,1190

what was the sampling strategy?1191

Not applicable. The entire dataset will be re-1192

leased.1193

Who was involved in the data collection pro-1194

cess and how were they compensated?1195

Not applicable. There was no human involved1196

in the dataset creation prcoess.1197

Over what timeframe was the data collected?1198

The dataset was created immediately prior to the1199

submission of this draft for review.1200

Were any ethical review processes conducted1201

for the data collection process?1202

Not applicable, data was not collected. The hu-1203

man evaluation study used to evaluate the dataset1204

was approved by an institutional review board.1205

Did you collect the data from the individuals1206

in question directly, or obtain it via third parties1207

or other sources?1208

The dataset was created via templates. The re-1209

sources were collected directly from publicly avail-1210

able data online.1211

Were the individuals in question notified1212

about the data collection?1213

The resources were collected directly online1214

from institutions and authors who made the re-1215

sources available publicly. The authors and institu-1216

tions were not explicitly informed about the way1217

their resources are used in this dataset.1218

Did the individuals in question consent to the1219

collection and use of their data?1220

Not applicable.1221

If consent was obtained, were the consenting1222

individuals provided with a mechanism to re-1223

voke their consent in the future or for certain1224

uses?1225

Not applicable.1226

Has an analysis of the potential impact of the1227

dataset and its use on data subjects been con-1228

ducted? 1229

No. 1230

Any other comments? 1231

None. 1232

A.4.4 Preprocessing 1233

Was any preprocessing/cleaning/labeling of the 1234

data done? 1235

The template building blocks were manually tok- 1236

enized and POS tagged with the Stanford CoreNLP 1237

pipeline, which was then manually verified. In 1238

terms of resources, the occupations were filtered 1239

manually to avoid overlaps in descriptions. Refer- 1240

ential gender cues such as “fireman” were removed 1241

from the occupations. Occupations pertaining to 1242

very specific domains or related to location were 1243

removed from the list. GPT-2 generated noise sen- 1244

tences were manually checked for coherence and 1245

also tokenized and POS tagged with the Stanford 1246

CoreNLP pipeline. Fictional occupation names and 1247

descriptions were likewise manually checked for 1248

coherence and suitability. 1249

Was the “raw” data saved in addition to the 1250

preprocessed/cleaned/labeled data? 1251

No. 1252

Is the software that was used to prepro- 1253

cess/clean/label the data available? 1254

The Stanford CoreNLP pipeline is avail- 1255

able here: https://stanfordnlp.github. 1256

io/CoreNLP/. 1257

Any other comments? 1258

None. 1259

A.4.5 Uses 1260

Has the dataset been used for any tasks already? 1261

None. 1262

Is there a repository that links to any or all 1263

papers or systems that use the dataset? 1264

Not applicable. 1265

What (other) tasks could the dataset be used 1266

for? 1267

The dataset could potentially be used for re- 1268

search on mention detection, cross-document coref- 1269

erence resolution, or entity linking, since the anno- 1270

tations are compatible with these tasks as well. 1271

Is there anything about the composition of the 1272

dataset or the way it was collected and prepro- 1273

cessed/cleaned/labeled that might impact future 1274

uses? 1275

Due to its template-generated nature, the data 1276

does not consist of naturally occurring texts and 1277
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should not be used for purposes which require nat-1278

urally occurring texts.1279

Are there tasks for which the dataset should1280

not be used?1281

The entities in the texts are entirely fictional and1282

have an arbitrary distribution of attributes. Conse-1283

quently, the information in this dataset should not1284

be used to make decisions about real people.1285

Any other comments?1286

None.1287

A.4.6 Distribution1288

Will the dataset be distributed to third parties1289

outside of the entity on behalf of which the1290

dataset was created?1291

Yes, the dataset will be available publicly on the1292

internet.1293

How will the dataset be distributed?1294

The dataset will be released in the GitHub repos-1295

itory for this paper (details omitted for anonymity).1296

When will the dataset be distributed?1297

Upon publication of the corresponding paper.1298

Will the dataset be distributed under a copy-1299

right or other intellectual property (IP) license,1300

and/or under applicable terms of use (ToU)?1301

The dataset and the code used to generate it will1302

be distributed under the license specified in the1303

GitHub repository for the dataset. In the repository,1304

we will also request to cite the corresponding paper1305

if the dataset is used.1306

Have any third parties imposed IP-based or1307

other restrictions on the data associated with1308

the instances?1309

None that we are aware of.1310

Do any export controls or other regulatory1311

restrictions apply to the dataset or to individual1312

instances?1313

None that we are aware of.1314

Any other comments?1315

No.1316

A.4.7 Maintenance1317

Who will be supporting/hosting/maintaining the1318

dataset?1319

The first author(s) will support and maintain the1320

dataset (details omitted for anonymity).1321

How can the owner/curator/manager of the1322

dataset be contacted?1323

Omitted for anonymity.1324

Is there an erratum?1325

No. Future updates and known errors will be1326

specified in the README.md of the repository.1327

Will the dataset be updated? 1328

Currently, no updates are planned. 1329

If the dataset relates to people, are there ap- 1330

plicable limits on the retention of the data asso- 1331

ciated with the instances? 1332

Not applicable, since the entities are fictional. 1333

Will older versions of the dataset continue to 1334

be supported/hosted/maintained? 1335

In the case of updates, the original version of the 1336

dataset will always be available on GitHub via a 1337

tagged release. 1338

If others want to extend/augment/build 1339

on/contribute to the dataset, is there a mech- 1340

anism for them to do so? 1341

Suggestions for the augmentation of the dataset 1342

can be made via GitHub pull requests. 1343

Any other comments? 1344

None. 1345
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