The KITMUS Test for Knowledge Integration from Multiple Sources

Anonymous ACL submission

Abstract

Natural language understanding models make
inferences using information from multiple
sources. An important class of such inferences
are those that require both background knowl-
edge, presumably contained in a model’s pre-
trained parameters, and instance-specific in-
formation that is supplied at inference time.
However, the integration and reasoning abili-
ties of NLU models in the presence of multiple
knowledge sources have been largely under-
studied. In this work, we propose a test suite
of coreference resolution tasks that require rea-
soning over multiple facts and an accompany-
ing dataset with individual subtasks that we
vary in order to control the knowledge source
of relevant facts. We evaluate state-of-the-art
coreference resolution models on our dataset.
Our results indicate that several models strug-
gle to reason on-the-fly over knowledge ob-
served both at train time and at inference time.
However, with task-specific training, a subset
of models demonstrates the ability to integrate
certain knowledge types from multiple sources.

1 Introduction

Progress on natural language understanding (NLU)
benchmarks has recently been driven by pretrained
large language models (LLMs), which may be
adapted to specific tasks via finetuning (Peters
et al., 2018; Devlin et al., 2019; Le Scao and Rush,
2021). These models draw on a variety of knowl-
edge sources, such as knowledge given in inputs at
inference time and train-time knowledge contained
in their parameters, usually acquired via pretrain-
ing.

Recent work suggests that models can use train-
time knowledge in tasks like translation and ques-
tion answering to obtain performance gains (Brown
et al., 2020; Roberts et al., 2020). However, natu-
ral language understanding often requires knowl-
edge that was only supplied at inference time, be-
cause of, e.g., time sensitivity or instance speci-

Servin is a judge. Kea is a baker. Servin and
Kea met at a park. After a long day at work
deciding cases in a law court, e was happy
to relax.
Figure 1: Example from KITMUS. To resolve the pro-
noun ‘“he,” a model needs to draw on entity-specific

knowledge about an entity’s occupation as well as on
background knowledge about the occupation itself.

ficity. Consider the passage “John saw the presi-
dent on TV”. Pretrained parameters can conceiv-
ably contain information about what presidents do
and what a TV is, but they cannot contain reliable
knowledge about who John is—since “John” is
an instance-specific identifier—or who the presi-
dent is—because the president might have changed
since pretraining. It follows that successful models
for knowledge-intensive NLU tasks might require
the ability to use both train-time and inference-time
knowledge.

To effectively use these two knowledge sources,
models must (1) retrieve relevant information from
each knowledge source, (2) adjudicate between po-
tentially conflicting information, and (3) integrate
multiple units of information from both the knowl-
edge sources and reason over them on the fly. For
example, pretrained parameters might contain the
knowledge that Donald Trump is the president of
the United States, but inference-time inputs might
state that Joe Biden is the president. Based on the
contextual information available in a task, models
must infer the correct president.

We know little about how models make use of
multiple knowledge sources. Drawing on recent
work examining the effects of knowledge conflicts
across different knowledge sources (Longpre et al.,
2021), we aim to more broadly examine the be-
haviour of NLU models in the presence of different
knowledge sources. We introduce a coreference
resolution task designed to probe models’ ability
to draw on knowledge available in different knowl-



edge sources, including in the presence of varying
numbers of entities and noise. Unlike Longpre et al.
(2021), where the focus is on conflicting facts, we
control for when complementary information is
made available to models.

Specifically, in our task, the resolution of a given
pronoun requires two knowledge types as shown
in Figure 1: (1) entity-specific knowledge, such
as “Sevin is a judge” and (2) background knowl-
edge, such as “Judges decide cases in law courts”.
Background knowledge is usually learned during
the pretraining of LLMs and therefore considered
train-time knowledge, while entity-specific knowl-
edge is typically observed at inference time. We
vary the availability of the required information
such that it may either be found in a single source
or in different sources. We evaluate a model’s abil-
ity to integrate and reason over the two knowledge
types given in two knowledge sources.

We propose KITMUS, a test suite containing
instances of our task. Similar to how a litmus
test checks for acidity, the KITMUS test evalu-
ates Knowledge InTegration from MUItiple Sources.
KITMUS’s distinguishing feature is that it contains
texts in which we methodically vary the mapping
of the knowledge types to the knowledge sources,
which allows us to pinpoint the specific strengths
and limitations of models. We also analyze the
behaviour of models when the knowledge is con-
tained only in the instance by introducing variants
where a model needs to reason over fictional knowl-
edge, which is presumably not contained in the pa-
rameters. Unlike previous works, where the knowl-
edge is retrieved (Onoe et al., 2021), we provide
the knowledge necessary to solve the task in each
instance of KITMUS. This allows for a more con-
trolled setting where we can focus on knowledge
integration, rather than on retrieval, which we hold
out as a separate problem. We validate in a human
evaluation study that both background and entity-
specific knowledge are required to perform well
on KITMUS and that the automatically generated
labels are consistent with human annotation'.

We evaluate state-of-the-art coreference resolu-
tion models on the KITMUS test suite. In our ex-
periments, many established models appear unable
to integrate knowledge from two different knowl-
edge sources and reason over them without task-
specific training. With task-specific training, two

!Code for generation and evaluation will be made available
on GitHub.

models—BERT4Coref (Joshi et al., 2019) and C2F
(Lee et al., 2018)—demonstrate the ability to rea-
son over both knowledge observed at train time and
at inference time. However, we find that the abil-
ity to integrate knowledge from different sources
seems to the depend on the knowledge type in that
source. While knowledge integration through con-
catenation at inference time seems to be effective
for entity-specific knowledge, experiments with
fictional knowledge indicate that providing back-
ground knowledge only at inference time is not
sufficient.

2 Related Work

Coreference resolution as a reasoning task:
Coreference resolution is the task of determining
which mentions in a text corefer. In the general
case, which is presented in large coreference reso-
lution datasets such as Ontonotes (Pradhan et al.,
2012), this can mostly be accomplished by exploit-
ing shallow cues such as gender, position, and num-
ber cues (Durrett and Klein, 2013). There has been
extensive work to study NLU models’ ability to
exploit linguistic knowledge that involves these
shallow cues, as well as other properties like se-
mantic roles (Baker et al., 1998; Chambers and
Jurafsky, 2009). The Winograd Schema Challenge
(WSC) (Levesque et al., 2012) inspired a number
of smaller specialized datasets such as GAP (Web-
ster et al., 2018) and Winogrande (Sakaguchi et al.,
2020) where coreference resolution is used as a test
bed for reasoning over knowledge and cases can-
not be solved with shallow features (Emami et al.,
2019; Rahman and Ng, 2012).

Following this line of work, we use templates
that omit shallow cues, such that a model must
integrate knowledge about the world to determine
the coreference. Moreover, KITMUS involves a
more diverse set of knowledge. While WSC and
KnowRef focus on abstract external knowledge
that is valid independent of the specific entities
involved (Emami et al., 2019), KITMUS focuses on
both entity-specific and entity-agnostic knowledge.

World knowledge for reasoning tasks: Prior
work has shown that integrating world knowl-
edge can lead to improvement in coreference
solvers. Bean and Riloff (2004) learn caseframe
co-occurrence statistics, which they use to predict
coreference. Rahman and Ng (2012); Zhang et al.
(2019); Aralikatte et al. (2019); Emami et al. (2019)
showed improved results using data-augmentation.



In the wake of the WSC, several NLU datasets such
as bAbi (Weston et al., 2015) and OpenBookQA
(Mihaylov et al., 2018) were proposed that de-
mand reasoning over knowledge (Mishra et al.,
2018; Mitra et al., 2019). Longpre et al. (2021)
recognized the distinction between train-time and
inference-time knowledge, which they call paramet-
ric and contextual knowledge. The latter is usually
retrieved at inference time from an unstructured
(Koupaee and Wang, 2018) or structured (Rebele
et al., 2016; Liu and Singh, 2004; Singh, 2002)
knowledge base.

Complementing prior tasks that require back-
ground knowledge found in off-the-shelf knowl-
edge bases, KITMUS instances require both entity-
specific and background knowledge—we map a
mentioned entity to its occupation and occupations
to situations, drawing from Onoe et al. (2021). In
their dataset, they pose fact-checking tasks that
require combining entity knowledge with common-
sense knowledge. However, in contrast to our
dataset, they do not provide the required knowl-
edge, and expect models to either use only train-
time knowledge in a closed-book setting or to re-
trieve the knowledge from an external knowledge
base at inference time. In our work, the knowl-
edge associated with each instance of KITMUS is
generated and provided in a controlled setting.

Reasoning over knowledge with Transform-
ers: Clark et al. (2020) study the limits of rea-
soning in transformer models. They investigate
an approach where classical logic facts and rules
are stated using natural language instead of a for-
mal representation, and train transformers to reason
over these types of sentences.

Though our task is presented as a natural lan-
guage text that requires reasoning, and is evaluated
on Transformer models (among others), our work
differs from Clark et al. (2020)’s in that the predic-
tion target is the resolution of pronoun coreferences
within a text. This requires detecting multiple can-
didate mentions and identifying those that corefer
with a pronoun using both train-time and inference-
time knowledge. In contrast, the prediction target
of Clark et al. (2020) is the boolean decision if
a claim is consistent with a set of facts and rules.
Our experiments corroborate the results of Clark
et al. (2020) as we find that the Transformer-based
model BERT4Coref (Joshi et al., 2019) can reason
effectively over inference-time knowledge.

3 The KITMUS Test Suite

In this work, we evaluate the knowledge integration
capability of NLU models in the presence of two
knowledge sources: 1) train-time: knowledge ac-
cumulated in the parameters during (pre-)training
and 2) inference-time: knowledge observed in the
instance.

We formulate a coreference task whose resolu-
tion requires access to two facts. We systemati-
cally vary the presence of these facts across the
knowledge sources to evaluate the models. As an
instantiation of the idea of presenting two facts, we
choose the following knowledge types:

— Entity-specific: occupation of an entity e.g.,

“Telles is a firefighter.”

— Background: situation typical for an occupation

e.g., “a firefighter is putting out fires.”

For example, consider the following task to pre-
dict whether Telles or Drayer is the correct an-
tecedent of the pronoun “she”.

Telles is a firefighter. Drayer is a bus driver.
Telles and Drayer met at the sports bar. After a
long day at work putting out fires, she was happy
to relax. [Correct answer: Telles]

Here, the occupations are firefighter and bus
driver, and the situational cue is putting out fires.
Both the knowledge types are required in order
to resolve this coreference. An illustration of this
knowledge schema can be found in Figure 2.

We explore three main variants of the dataset as
shown in Figure 3. With entity-specific knowledge
always provided in the instance, the variants differ
based on when and where background knowledge
is available:

— BACKGROUND-TRAIN: background knowledge
is available only in the model parameters

— BACKGROUND-BOTH: background knowledge
is available in the model parameters and explic-
itly provided in the instance

— BACKGROUND-INFERENCE: background
knowledge is only available in the instance

Each instance of the task consist of two texts that
are concatenated: a knowledge text—containing
the inference-time knowledge that models are given
access to—and a task text—consisting of the coref-
erence task that models solve.

3.1 BACKGROUND-TRAIN

In this variant, entity-specific knowledge is pro-
vided at inference time and background knowl-
edge about occupations is assumed to be train-time
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Figure 3: Variants of KITMUS based on the source of
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knowledge since information such as “the work of a
firefighter is putting out fires” is likely to have been
observed during pretraining. An example is shown
in Section 3. Here, the entity-specific knowledge
about Telles and Drayer is inference-time; how-
ever, the knowledge about the jobs of a firefighter
and a bus driver is train-time. By evaluating on
this variant, we evaluate whether models have the
ability to integrate and reason over both train-time
and inference-time knowledge effectively.

3.2 BACKGROUND-BOTH

In this variant, background knowledge is provided
at both inference-time and assumed to be captured
by the parameters. Entity-specific and background
facts are present in the same knowledge source.
They both represent inference-time knowledge be-
ing listed in the knowledge text as part of the
inference-time inputs. For example:

Telles is a firefighter. The work of a firefighter
is putting out fires. Drayer is a bus driver. The
work of a bus driver is driving buses. Telles and
Drayer met at the sports bar. After a long day at

work putting out fires, she was happy to relax.

3.3 BACKGROUND-INFERENCE

In order to evaluate whether a model can solve this
task using exclusively inference-time knowledge
(i.e., in the absence of train-time knowledge), we
introduce fictional knowledge. Fictional knowl-
edge such as “the work of a mornisdeiver is gupe-
gaing advaily” is unlikely to have been observed
during pretraining, in contrast to real-world knowl-
edge such as “the work of a baker is baking bread”,
which is likely to have been observed. The entities
in all variants are always fictional, which ensures
that entity-specific knowledge about them has not
been observed at train time. Thus, in this variant,
both knowledge types are fictional and not con-
tained in the pretrained parameters.

Background knowledge about occupations maps
occupations to situations that are typical for the
occupation, such as “baker” and “baking bread”.
To make background knowledge fictional, either
the occupation, the situation, or both have to be fic-
tional. For situations, we furthermore distinguish
between levels of fictionality and define two sub-
variants: 1) word-level fictional situations that use
existing words but describe novel occupations, and
2) character-level fictional situations that use novel
words. The methods we use to generate these fic-
tional occupations and situations are detailed in
section 4.2. Example texts resulting from different
forms of fictionality can be seen in Table 1.

4 Dataset Creation

To construct KITMUS, we manipulate which entities
are mentioned in each instance, what occupations
those entities have, what situations those occupa-
tions pertain to, what contexts they are mentioned
in and if noise is present in the instance.

The dataset entries are generated using English-
language templates. These templates are designed
to control for variables pertaining to entities, occu-
pations, and situations.



Var. Occupation  Situation Example

BB Real Real The work of a firefighter is putting out fires. Whyte is a firefighter[...]After a long
day at work putting out fires, he was happy to relax.

BI Real The work of a firefighter is . Whyte is a firefighter[...] After a
long day at work ehemting smorbtly, he was happy to relax.

BI Real WordFict The work of a firefighter is controlling the pool of an aircraft by using its direc-
tional flight controls. Whyte is a firefighter[...]After a long day at work studying
the stars and the drink, he was happy to relax.

BI Real The work of a is putting out fires. Whyte is a mirituer|[...]After a long
day at work putting out fires, he was happy to relax.

BI The work of a is . Whyte is a mirituer[...]JAfter a long
day at work ehemting smorbtly, he was happy to relax.

BI WordFict The work of a is controlling the pool of an aircraft by using its directional

flight controls. Whyte is a mirituer. [...]JAfter a long day at work controlling the
pool of an aircraft by using its directional flight controls, he was happy to relax.

Table 1: Different combinations of fictional occupations and situations in BACKGROUND-INFERENCE (BI) variant.
An instance of BACKGROUND-BOTH (BB) variant is also shown.

Each entry is structured to first (1) introduce the
entities, (2) then place them in the same location,
and (3) finally, have one of them remember a situ-
ation related to their occupation. The noiseisa
statement about the location intended to act as a dis-
tractor to increase the task difficulty. It both makes
the distance between pronoun and antecedents vari-
able and the evaluation of reasoning abilities for
NLU models more challenging. The template for a
task text with two entities is:

(entity,) and (entityp) met at
(location). (noise).  After a long
day at work (situation), (pronoun) was
happy to relax.

The knowledge text maps entities to their respec-
tive occupations using the phrase “is a”. The tem-
plate for providing inference-time entity-specific
knowledge about two entities is:

(entity,)isa(occupationy).
(entityp)isa(occupationg).

4.1 Resource Pools

We generate texts by randomly sampling from pre-
defined sets of named entities, occupations, situ-
ations, locations, and pronouns. We ensure that
texts included in the train, validation, and test splits
are drawn from non-overlapping subsets of names,
occupations, locations, and noise statements.
Entities are sampled from a pool of the 20,000
most frequent last names from the 2010 U.S. cen-
sus (United States Census Bureau, 2021). We use
last names as entity names in order to avoid in-
troducing gender-related cues. We discard those
last names that are also first names. The order
of entities within a template is also randomized.
We assume that there is no confounding train-time

knowledge based on the entity names in the mod-
els.

Occupations consist of a curated list of 60 com-
mon occupations compiled by scraping a career
website (Indeed, 2021) and the US Labor census
data (US Labor Census, 2021). Following Cao and
Daumé I (2020), we remove referential gender
cues from the occupations such as “fireman”. The
jobs pertaining to very specific domains or related
to one of the locations where entities can meet are
removed from the list.

Situations are assembled using the occupation
descriptions of the scraped occupations. We man-
ually filter the pairs of situations that are semanti-
cally similar, such as an accountant and an analyst.

Locations are derived from a curated list of 112
locations scraped from a website of common meet-
up places (Happier Human, 2019). We manually
filter out locations that could provide inadvertent
surface cues related to the entities’ occupation, na-
tionality, or gender.

Noise statements are sampled from a collection
of statements based on the selected location in or-
der to maintain a natural flow of the text. Each loca-
tion is associated with 25 noise sentences. The sen-
tences are generated using GPT-2 (Radford et al.,
2019) and manually verified not to include cues
related to any entity or occupation.

Pronouns are sampled randomly from both the
gendered pronouns he and she as well as gender-
indefinite pronouns such as singular they and
the neopronouns ey and ze following the gender-
inclusive coreference resolution dataset GICoref
(Cao and Daumé 111, 2020). Ideally, we would want
the distribution of pronouns to approximate the fre-
quency in naturally occurring text, but few reliable



statistics exist to estimate them. We include 40%
he, 40% she, 10% they, and 10% neopronouns.

Each variant in KITMUS consists of three
subtasks—based on the number of entities—with
increasing difficulty: two entity, three entity, and
four entity subtasks. Each substask has train, val-
idation and test splits with 2000, 400, and 2000
examples respectively. The size of KITMUS is simi-
lar to that of the GAP dataset (Webster et al., 2018),
but is smaller compared to Ontonotes (Pradhan
etal., 2012).

4.2 Fictional Occupations

In order to create fictional background knowledge
that maps occupations to situations, we create fic-
tional occupations and fictional situations. Follow-
ing the work of Malkin et al. (2021), we generate
60 names of fictional occupation by sampling from
a character-level LSTM language model with tem-
perature 0.5. To bias the model towards strings that
can be used as occupation names, we train it on a
reversed sequence of characters and prompt with
the suffix er. We manually filter the words and
eliminate unpronounceable or pre-existing words
in the English.

We employ the following two methodologies
to generate fictional situations: 1) character-level
fictional—like the fictional occupations—is gen-
erated with the suffix prompts ing and 1y, and
2) word-level fictional is generated by randomly
shuffling existing words with the same POS tags
followed by manual filtering based on semantic
plausibility. Examples are shown in Table 1.

4.3 Dataset Formats

We provide the test suite in two formats which
are commonly used by state-of-the-art coreference
solvers: the CoNLL 2012 format (Pradhan et al.,
2012) and the GAP format (Webster et al., 2018).

The CoNLL format contains token and sen-
tence boundaries, Penn Treebank POS tags
(Marcinkiewicz, 1994), and gold coreference clus-
ters for all entity mentions. This means that all
mentions of an entity—including in the knowledge
text—are annotated in a single cluster.

The GAP format operates on character indices
rather than token indices and allows for the annota-
tion of only two entities and only one mention per
entity (excluding the pronoun). This means that
only a single mention of an entity in the task text is
annotated.

4.4 Human Validation

To assess the quality of KITMUS, we conducted a
small human study with six participants. For this,
we created a questionnaire by randomly selecting
5 instances from each subtask—tasks with two,
three, and four entities—of the BACKGROUND-
TRAIN variant. Additionally, from each subtask,
we include 5 instances without any knowledge text.
All the participants answered a total of 60 instances
presented to them in a random order.

When the knowledge text was provided, most
of the participants were able to identify the correct
antecedent. Without knowledge text—no entity-
specific knowledge—all participants indicated that
the instances cannot be answered. This suggests
that there are no inadvertent cues that can be ex-
ploited by humans to solve the task. The high inter-
annotator agreement (0.994 as measured by Fleiss’
kappa (Fleiss et al., 2003)) shows that the test suite
has a high internal validity. The agreement of the
participants with the automatically produced la-
bels indicates that the data generation process is
generally sound. The questionnaire and additional
details can be found in Appendix A.1.

5 Experimental Setup

We evaluate existing coreference resolution models
on the KITMUS test-suite.

5.1 Model Selection

We experiment with two families of coreference
resolution models: 1) general coreference models
and 2) pronoun coreference models.

Models that focus on general coreference resolu-
tion are often trained on the large Ontonotes corpus
in the CoNLL 2012 format (Pradhan et al., 2012).
We include BERT4Coref (Joshi et al., 2019) as an
example of a state-of-the-art models on CoNLL
2012, C2F (Lee et al., 2018), which is the direct
successor to the first end-to-end neural coreference
resolution model (Lee et al., 2017), and Stanford’s
statistical (Clark and Manning, 2015) and neural
(Clark and Manning, 2016) models.

Models that focus on pronoun coreference res-
olution are trained on the smaller GAP dataset in
the GAP format (Webster et al., 2018). We include
GREP (Attree, 2019), the winner of the GAP Kag-
gle competition and PeTra (Toshniwal et al., 2020),
an efficient memory-augmented model.



5.2 Training

We train all models on the train split of KITMUS
and use their default hyperparameters. The train-
ing details are in Appendix A.2. The larger gen-
eral coreference models BERT4Coref and C2F are
conventionally not trained on datasets with just
2000 train instances such as GAP or KITMUS, but
rather trained on Ontonotes and then evaluated on
smaller datasets (Joshi et al., 2019). Since corefer-
ence cases in KITMUS diverge significantly from
those in Ontonotes, we test these models both in
the Ontonotes-trained setting and KITMUS-trained
setting. For these models, we report mean metrics
over 6 train runs. We use only the pretrained ver-
sions of the Stanford models, since they are conven-
tionally used off-the-shelf. We train the GAP-based
models—PeTra and GREP—only on the two entity
subtasks following the GAP format constraints.

5.3 Evaluation

We test all models on the KITMUS test split of each
subtask. We use two metrics to assess each model
performance: antecedent classification F1 and pro-
noun accuracy. Antecedent classification F1 is typ-
ically used for GAP format datasets. It considers
the coreference between each candidate antecedent
mention and the pronoun as a binary classification
decision i.e., for a text with two entities, it consid-
ers two binary predictions and calculates the scores
accordingly. Pronoun accuracy considers for each
pronoun whether the correct candidate antecedent
is predicted by the model, so independent from the
number of entities in a text, only one decision is
made among all possible candidate antecedents.
Additionally, we compare against two baselines:
1) human: the majority decision of human vali-
dation study participants and 2) random: random
choice among the gold candidate mentions.

6 Results and Discussion

6.1 BACKGROUND-TRAIN

Table 2a shows that none of the evaluated models
are able to outperform the random baseline without
task-specific training on KITMUS. When trained
on KITMUS, BERT4Coref (Joshi et al., 2019) and
C2F (Lee et al., 2018) perform significantly bet-
ter than random, as can be seen in Table 2b. The
high performance of BERT4Coref and C2F on the
BACKGROUND-TRAIN variant suggests that both
models have the ability to draw background knowl-
edge from their parameters, entity-specific knowl-

edge from the inference-time inputs, and reason
over them on-the-fly.

One possible reason for the poor performance
of Ontonotes-trained models is that when trained
on general coreference resolution datasets—like
Ontonotes—they learn to exploit surface cues,
which does not transfer to KITMUS where such
cues are removed. Another explanation is that the
structure of the texts in KITMUS, which is designed
to place knowledge in specific knowledge sources,
differs from that of Ontonotes. This might affect
models’ abilities to form useful representations.
However, it is worth noting that the human study
participants could solve the task without difficul-
ties.

We observe that success in solving the task
seems to coincide with the acceptance of input in
the CoNLL format (Pradhan et al., 2012), while
those models that accept the GAP format (Webster
et al., 2018) perform poorly. This could be due to
the lack of mention annotations in the knowledge
text in the GAP format.

Furthermore, BERT4Coref seems to consistently
outperform C2F. One reason for the better per-
formance of BERT4Coref might be the differ-
ence in pretrained LLMs: BERT4Coref uses the
Transformer architecture (Vaswani et al., 2017),
which has been shown to be effective at reasoning
tasks presented in natural language form (Clark
et al., 2020) and utilizing information presented in
inference-time contexts (Petroni et al., 2020), while
C2F uses ELMo (Peters et al., 2018).

Performance of all models decreases as the num-
ber of entities increases, which is unsurprising
since the more candidate entities there are, the less
likely the accidental selection of the correct entity
becomes. In order to explore the effect of the noise
statements, we conduct additional experiments on
the BACKGROUND-TRAIN variant without noise.
The removal of noise does not result in a significant
performance change, as shown in Appendix A.3.

6.2 BACKGROUND-BOTH and
BACKGROUND-INFERENCE

We conduct additional experiments on the
BACKGROUND-BOTH and BACKGROUND-
INFERENCE variants with BERT4Coref and
C2F, since they demonstrate the ability to learn
the BACKGROUND-TRAIN variant of the task.
In Table 3, we report results on the four-entity
subtask, which Table 2 suggests to be the most



Model 2 Entities 3 Entities 4 Entities
BERT4Coref 0.37 0.21 0.11
C2F 0.34 0.17 0.12
Stfd. Neural 0.12 0.06 0.06
Stfd. Stat. 0.01 0.01 0.00
Random 0.50 0.33 0.25

(a) Ontonotes-trained

Model 2 Entities 3 Entities 4 Entities
BERT4Coref 1.00 0.97 0.95
C2F 0.64 0.51 0.47
GREP' 0.51 - -
PeTra' 0.02 - -
Random 0.50 0.33 0.25

(b) KITMUS-trained

Table 2: Accuracy on BACKGROUND-TRAIN variant of KITMUS. Models marked with § operate on GAP format,
all other models operate on the CoNLL format. F1 scores shown in Appendix A.3 track the accuracy scores.

Var.  Occupation  Situation C2F BERT4Coref
BB Real 0.45 0.95
BI Real CharFict  0.24 0.26
BI WordFict  0.18 0.57
BI Real 0.30 0.37
BI CharFict CharFict  0.27 0.23
BI WordFict  0.22 0.27

Table 3: KITMUS-trained accuracy on BACKGROUND-
BoTH (BB) and BACKGROUND-INFERENCE (BI) vari-
ants of KITMUS with four entities. Random performance
is 0.25.

challenging.

The performance of both the models on
BACKGROUND-BOTH and BACKGROUND-TRAIN
variants is comparable. This indicates that redun-
dantly providing background knowledge both at
train time and in inference-time inputs does not
increase models’ ability to absorb knowledge.

In the experiments on BACKGROUND-
INFERENCE variant, models seem unable to
integrate fictional background knowledge—
fictional occupations and situations—observed at
inference time. However, experiments on the other
variants indicate that models are able to integrate
fictional entity-specific knowledge observed at
inference time reliably. This suggests that the
models’ ability to integrate and reason over the
knowledge on-the-fly depends on the knowledge
type—whether the knowledge is background or
entity-specific—and not whether it is fictional or
real. One possible explanation could be that LLMs
observed different frequencies of unseen entities,
occupations, situations during pretraining, which
result in a difference in their ability to adapt to
unseen fictional instances of those categories.

BERTA4Coref in particular seems to perform con-
sistently poorly on character-level fictional situa-
tions compared to real and word-level fictional sit-
uations. One possible reason could be BERT’s tok-
enization strategy, which involves pooling subword
representations (Devlin et al., 2019). In character-

level fictional words, the subwords are meaningless,
rendering their representations unhelpful. This is
consistent with previous work showing that rep-
resentations of LLMs for character-level fictional
“Jabberwocky” words are less useful (Kasai and
Frank, 2019) and the presence of out-of-vocabulary
words decreases performance of neural models for
NLU tasks (Schick and Schiitze, 2020; Moon and
Okazaki, 2020; He et al., 2021).

7 Conclusion

We investigated the ability of models to integrate
knowledge from multiple knowledge sources to re-
solve linguistic ambiguities in a coreference resolu-
tion task. We formulated a task that requires access
to two knowledge types, entity-specific and back-
ground, and controlled for the knowledge sources
that the knowledge is available in.

Our results show that with task-specific training,
some models have the ability to reason over both
knowledge observed at train time and at inference
time. For these models, knowledge can be inte-
grated by concatenating textual knowledge to the
model inputs. However, redundant information in
multiple knowledge sources does not lead to fur-
ther performance improvements. Furthermore, the
ability of models to integrate inference-time knowl-
edge on-the-fly seems to depend on its knowledge
type. Our findings imply that supplying additional
information (e.g., from a retriever) at inference
time to NLU models can be successful even if the
knowledge required for the task has not been ob-
served before. However, for tasks similar to ours,
adding information on-the-fly might not work in a
zero-shot setting without task-specific training.

In future work, we would like expand the KIT-
MUS test suite with different knowledge types and
more naturalistic noise.



8 Ethical Considerations

Despite the synthetic nature, depending on its use,
KITMUS might also have adverse impacts.

The randomized sampling of resources to fill
slots is meant to minimize bias in terms of the
demographic cues that might be associated with
the entities referenced in our tests (e.g., gender and
nationality).

The names and occupation descriptions in our
test suite are drawn from United States governmen-
tal resources or English-language websites. This
means that our test suite is not representative and
likely skewed in terms of names, locations, occu-
pations, and situations more common in the e.g.,
anglophone world.

Additional resources such as noise statements
and fictional entities were generated using word-
level and character-level language models trained
on English-language texts, which are known to
reproduce a variety of biases found in natural data
(Bordia and Bowman, 2019; Solaiman et al., 2019).

While KITMUS is intended as a diagnostic tool,
users should be aware of these biases and the possi-
bility of other unintended biases when interpreting
model performances on this dataset. To document
these in more detail, our dataset release will be ac-
companied by a datasheet (Gebru et al., 2018), also
included in Appendix A.4.
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A Appendix

A.1 Human Validation

The participants are graduate students with fluency
in English which were recruited via an open call.
The participants were compensated with the equiv-
alent of 12 USD for their participation.? The study
was approved by a university’s ethics review board
and the participants gave their written consent via
a form.

The participants are tasked to resolve the coref-
erences in a randomly sampled subset of KITMUS
texts. The task is presented to the participants in
a multiple choice questionnaire. The participants
are given gold mentions and have to select the an-
tecedent that is referred to by the pronoun. The
answer options include the names of all mentioned
entities and a “can’t say” option to indicate that the
question is not answerable. The questionnaire con-
tains 60 questions to be completed in 60 minutes,
which was generous for most participants.

The human validation was conducted using
Google forms. The participants are introduced to
the task with examples as shown in Figure 4.

This is followed by 60 questions where the par-
ticipants have to choose one option among all the
entity names and “can’t say” indicating that the
task could not be solved.

A.2 Experiment Details

We train all models on Nvidia Quadro RTX 8000
GPUs in a compute cluster infrastructure. For
BERT4Coref, training on the train split of one KIT-
MUS subtask took about 8 hours per run. For C2F
it took about 16 hours, the training of the ensem-
ble model GREP took 18 hours. The training of
smaller models and inference on pretrained models
took about 4 hours per run.

A.3 Additional Results

PeTra has higher F1 scores than pronoun accuracy,
since it defaults to always predicting t rue for each
antecedent, which results in a recall of 1.00 and a
thus a high F1 score.

“Matches the minimum wage in the participants’ demo-
graphic
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Model Train Data 2 Ent. 3 Ent. 4 Ent.
PeTra 0.66 - -

GREP 0.51 - -

BERT4Coref  <'™UYS 10 097 095
C2F 0.64 0.51 0.48
BERT4Coref 0.43 0.27 0.16
C2F Ontonotes 0.47 0.31 0.25
Stfd. Neural 0.20 0.10 0.10
Stfd. Stat. 0.02 0.02 0.00
Random - 0.50 0.33 0.25

Table 4: Antecedent F1 on BACKGROUND-TRAIN vari-
ant of KITMUS.

Var. Occupation  Situation C2F BERT4Coref
BB Real 0.45 0.95
BI Real CharFict 0.24 0.27
BI WordFict 0.19 0.57
BI Real 0.30 0.38
BI CharFict CharFict  0.27 0.24
BI WordFict  0.22 0.27

Table 5: KITMUS-trained F1 Score on BACKGROUND-
BoOTH (BB) and BACKGROUND-INFERENCE (BI) vari-
ants of KITMUS with four entities. Random performance
is 0.25.

Model Train Data 2 Ent. 3 Ent. 4 Ent.
PeTra 0.02 - -
GREP 0.48 - -
BERT4Coref  <I™US 999 097 092
C2F 0.66 049 043
BERT4Coref 042 023 013
C2F Ontonot 033 0.9 0.13
Stfd. Neural nonotes 920 0.11  0.09
Stfd. Stat. 003 002 001
Random - 0.50 0.33 0.25

Table 6: Pronoun accuracy on BACKGROUND-TRAIN
variant of KITMUS with no noise statements added.

A.4 Datasheet
A.4.1 Motivation

For what purpose was the dataset created?

The KITMUS dataset was created to enable re-
search on reasoning over knowledge for the task
of coreference resolution - i.e. given a piece of
text, identify mentions and determine whether or
not they co-refer. The dataset was created with the
intention to focus on those cases of coreference
resolution that require knowledge about specific
entities and their occupations to accomplish the
task.

Who created the dataset and on behalf of
which entities?

The dataset was created by the authors of this pa-
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Example 1: Glven a text and a pranoun (marked In red), identify which of the
entities (marked In different colors) the pronoun refers 1o based on the
Information given in the text. Here, "she” refers to Cullinan, therefore the correct
answer Is "Cullinan”.

Sherrard is a real estate agent. The work of a photographer is taking photos
professionally. The work of a real estate agent is making money from
selling land for development. Cullinan is a photographer. Cullinan and
Sherrard met at the street fair. After a long day at work taking photos
professionally, she was happy to relax.

@ Cullinan
O Sherrard
(O can't say

Example 2: In this text, we do not know who spent a long day at work giving
lectures in a university. Therefore we choose "Can't say”.

Bridgeman and Zazueta met at the museum tour. After a long day at
work giving lectures in a university, he was happy to relax.

o Bridgeman
O Lazueta

@ Can't say

Example 3: The pronouns can be “he", "she’, or gender-neutral pronouns such as
singular "they”, "ey", or "ze". You can assume that all entitles In a text use the
same pronouns.

Ake is a researcher. Marmolejo 1s an accountant. Marmolejo and Ake
met at the networking event. After a long day at work doing research ina
research lab, they were happy to relax.

O Marmolejo

@ Ake

O Can't say

Laprade is an author. Knickerbocker is a politician. Laprade and
Knickerbocker met at the wedding. After a long day at work writing
books or novels professionally, ey was happy to relax.

@ Laprade

O Knickerbocker

O Can't say

Figure 4: Task introduction with examples for the participants of human validation.

per (details omitted during review for anonymity).
Who funded the creation of the dataset?

Funding was provided by multiple sources (de-
tails omitted during review for anonymity).

Any other comments?

None.
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A.4.2 Composition

What do instances that comprise the dataset
represent?

The dataset consist of text pairs that were gener-
ated to capture knowledge about entities, occupa-
tions, and situations, as well as coreference cases
whose resolution depends on this knowledge. The
labels are clusters of tokens in the text.

How many instances are there in total?



There are 4400 - 3 - (2 + 1 + 5) = 105600 in-
stances in total: 4400 instances for each of the three
entity numbers for variants BACKGROUND-TRAIN
(also without noise), BACKGROUND-BOTH, and
five versions of BACKGROUND-INFERENCE with
different degrees of fictionality.

Does the dataset contain all possible instances
or is it a sample of instances from a larger set?

The dataset contains all instances that we gen-
erated. They are generated by filling slots in a
template by sampling from a pool of resources.
The pool of resources only contains a subset of
resources in the world, and the sampling process
selects a random subset of the pool of resources.

What data does each instance consist of?

The instances are pairs of template-generated
texts: one knowledge text and one task text. The
knowledge text contains knowledge about fictional
entities and real or fictional occupations in text
form. The task text contains a case of coreference
involving the same fictional entities. Labels for the
coreferences are given in the form of coreference
clusters over tokens.

Is there a label associated with each instance?

Yes. The label is a coreference cluster that rep-
resents the true resolution of the coreference pre-
sented in the text.

Is any information missing from individual
instances?

No.

Are relationships between individual in-
stances made explicit?

Yes. The entities are fictional and created sepa-
rately for each instance. Instances are completely
independent from each other and are not consis-
tent across the dataset, i.e. conflicting knowledge
may be given for the same fictional entity across
different instances in the dataset.

Are there recommended data splits?

Yes. Each subcategory of the dataset is provided
in recommended data splits of 2000 train in-
stances, 400 validation instances, and 2000
test instances. The numbers are chosen for size
comparability with other coreference resolution
datasets such as GAP (Webster et al., 2018). Re-
sources are disjunct across the splits for each sub-
category, which enables the evaluation of the ability
of models to generalize beyond observed resources.

Are there any errors, sources of noise, or re-
dundancies in the dataset?

None that we are aware of. Since the dataset is
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template-generated, only the intentionally provided
noise in the appropriate subcategory is present. We
control for redundancies in the dataset. A human
validation has not brought to light any errors in the
dataset, however, due to the synthetic nature of the
dataset texts can appear wooden and non-natural to
readers.

Is the dataset self-contained, or does it link to
or otherwise rely on external resources?

The dataset is created using external resources
to fill slots in templates, but the finished dataset is
entirely self-contained.

Does the dataset contain data that might be
considered confidential?

The dataset contains only information about fic-
tional entities and public knowledge about occupa-
tions which is not confidential.

Does the dataset contain data that, if viewed
directly, might be offensive, insulting, threaten-
ing, or might otherwise cause anxiety?

Both the templates and the resources used to fill
the slots were manually inspected for content that
might cause anxiety to viewers.

The dataset does not contain any text that might
cause anxiety to viewers.

Does the dataset identify any subpopulations?

The fictional entities have neither an explicit
age nor gender. The only distinguishing features
of the entities are their names and occupations,
which are uniformly sampled, and their pronoun
use, which is sampled according to the following
distribution: 40% he, 40% she, 10% they, and
10% neopronouns.

Is it possible to identify individuals either di-
rectly or indirectly?

No. Since the entities are entirely fictional,
any similarities to existing individuals are due to
chance.

Does the dataset contain data that might be
sensitive in any way?

No.

Any other comments?

None.

A.4.3 Collection Process

How was the data associated with each instance
acquired?

The data was generated by filling slots in tem-
plates that were hand-engineered. The slot-filling
resources were obtained from publicly available
raw text sources such as governmental name statis-
tics and professional job websites. Noise sentences



were generated with the language model GPT-2
(Radford et al., 2019) and manually edited and
verified to conform with the rest of the dataset.
Fictional occupation names and descriptions were
created by random sampling from a character-level
LSTM language model following methodology of
Malkin et al. (2021).

What mechanisms or procedures were used
to collect the data?

The dataset was generated using Python scripts,
which will be made publicly available in a GitHub
repository.

If the dataset is a sample from a larger set,
what was the sampling strategy?

Not applicable. The entire dataset will be re-
leased.

Who was involved in the data collection pro-
cess and how were they compensated?

Not applicable. There was no human involved
in the dataset creation prcoess.

Over what timeframe was the data collected?

The dataset was created immediately prior to the
submission of this draft for review.

Were any ethical review processes conducted
for the data collection process?

Not applicable, data was not collected. The hu-
man evaluation study used to evaluate the dataset
was approved by an institutional review board.

Did you collect the data from the individuals
in question directly, or obtain it via third parties
or other sources?

The dataset was created via templates. The re-
sources were collected directly from publicly avail-
able data online.

Were the individuals in question notified
about the data collection?

The resources were collected directly online
from institutions and authors who made the re-
sources available publicly. The authors and institu-
tions were not explicitly informed about the way
their resources are used in this dataset.

Did the individuals in question consent to the
collection and use of their data?

Not applicable.

If consent was obtained, were the consenting
individuals provided with a mechanism to re-
voke their consent in the future or for certain
uses?

Not applicable.

Has an analysis of the potential impact of the
dataset and its use on data subjects been con-
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ducted?
No.
Any other comments?
None.

A.4.4 Preprocessing

Was any preprocessing/cleaning/labeling of the
data done?

The template building blocks were manually tok-
enized and POS tagged with the Stanford CoreNLP
pipeline, which was then manually verified. In
terms of resources, the occupations were filtered
manually to avoid overlaps in descriptions. Refer-
ential gender cues such as “fireman” were removed
from the occupations. Occupations pertaining to
very specific domains or related to location were
removed from the list. GPT-2 generated noise sen-
tences were manually checked for coherence and
also tokenized and POS tagged with the Stanford
CoreNLP pipeline. Fictional occupation names and
descriptions were likewise manually checked for
coherence and suitability.

Was the “raw” data saved in addition to the
preprocessed/cleaned/labeled data?

No.

Is the software that was used to prepro-
cess/clean/label the data available?

The Stanford CoreNLP pipeline is avail-
able here: https://stanfordnlp.github.
io/CoreNLP/.

Any other comments?

None.

A.4.5 Uses

Has the dataset been used for any tasks already?

None.

Is there a repository that links to any or all
papers or systems that use the dataset?

Not applicable.

What (other) tasks could the dataset be used
for?

The dataset could potentially be used for re-
search on mention detection, cross-document coref-
erence resolution, or entity linking, since the anno-
tations are compatible with these tasks as well.

Is there anything about the composition of the
dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future
uses?

Due to its template-generated nature, the data
does not consist of naturally occurring texts and


https://stanfordnlp.github.io/CoreNLP/
https://stanfordnlp.github.io/CoreNLP/
https://stanfordnlp.github.io/CoreNLP/

should not be used for purposes which require nat-
urally occurring texts.

Are there tasks for which the dataset should
not be used?

The entities in the texts are entirely fictional and
have an arbitrary distribution of attributes. Conse-
quently, the information in this dataset should not
be used to make decisions about real people.

Any other comments?

None.

A.4.6 Distribution

Will the dataset be distributed to third parties
outside of the entity on behalf of which the
dataset was created?

Yes, the dataset will be available publicly on the
internet.

How will the dataset be distributed?

The dataset will be released in the GitHub repos-
itory for this paper (details omitted for anonymity).

When will the dataset be distributed?

Upon publication of the corresponding paper.

Will the dataset be distributed under a copy-
right or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)?

The dataset and the code used to generate it will
be distributed under the license specified in the
GitHub repository for the dataset. In the repository,
we will also request to cite the corresponding paper
if the dataset is used.

Have any third parties imposed IP-based or
other restrictions on the data associated with
the instances?

None that we are aware of.

Do any export controls or other regulatory
restrictions apply to the dataset or to individual
instances?

None that we are aware of.

Any other comments?

No.

A.4.7 Maintenance

Who will be supporting/hosting/maintaining the
dataset?

The first author(s) will support and maintain the
dataset (details omitted for anonymity).

How can the owner/curator/manager of the
dataset be contacted?

Omitted for anonymity.

Is there an erratum?

No. Future updates and known errors will be
specified in the README . md of the repository.
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Will the dataset be updated?

Currently, no updates are planned.

If the dataset relates to people, are there ap-
plicable limits on the retention of the data asso-
ciated with the instances?

Not applicable, since the entities are fictional.

Will older versions of the dataset continue to
be supported/hosted/maintained?

In the case of updates, the original version of the
dataset will always be available on GitHub via a
tagged release.

If others want to extend/augment/build
on/contribute to the dataset, is there a mech-
anism for them to do so?

Suggestions for the augmentation of the dataset
can be made via GitHub pull requests.

Any other comments?

None.



