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Abstract
In vision-language models (VLMs), visual tokens
usually bear a significant amount of computa-
tional overhead despite sparsity of information
in them when compared to text tokens. To ad-
dress this, most existing methods learn a network
to prune redundant visual tokens using certain
training data. Differently, we propose a text-
guided training-free token optimization mecha-
nism dubbed SparseVLM that eliminates the need
of extra parameters or fine-tuning costs. Given
that visual tokens complement text tokens in
VLM’s linguistic reasoning, we select relevant
text tokens to rate the significance of visual to-
kens using self-attention matrices and, then, prune
visual tokens using the proposed strategy to max-
imize sparsity while retaining information. In
particular, we introduce a rank-based strategy to
adaptively determine the sparsification ratio for
each layer, alongside a token recycling method
that compresses pruned tokens into more compact
representations. Experimental results show that
SparseVLM increases the efficiency of various
VLMs in a number of image and video under-
standing tasks. Our code is available at https:
//github.com/Gumpest/SparseVLMs.

1. Introduction
Benefiting from advancements in large language models
(LLMs) (Radford et al., 2019; Brown et al., 2020; Touvron
et al., 2023; Peng et al., 2023; Zhang et al., 2024a), the
realm of vision-language models (VLMs) has undergone
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significant progress. To combine visual signals with textual
semantics, the mainstream practice in VLMs (Team et al.,
2023; Bai et al., 2023; Chen et al., 2024b; Li et al., 2024c;
2023a) employs sequential visual representation, where im-
ages are extracted into visual tokens and sent into an LLM
decoder. With modal alignment and instruction fine-tuning
(Du et al., 2022; Liu et al., 2024a; Zhu et al., 2024b), recent
VLMs successfully adapt LLMs to the vision domain and
inherit their perception and reasoning abilities.

Despite the promising performance, further incorporation of
visual tokens inevitably introduces a huge memory and com-
putational overhead when compared to LLMs, particularly
for high-resolution images (Li et al., 2024c) and long videos
(Lin et al., 2024). For instance, a 672×672 image in LLaVA
(Liu et al., 2024b) yields 2304 visual tokens that span over
half of the context length. However, the information in
images is typically more sparse than in natural languages
(Marr, 2010), resulting in inefficiency when naı̈vely pro-
cessing both modalities. To address this, existing methods
extract more compact image representations by modifying
the image encoder or projector (Alayrac et al., 2022; Li
et al., 2024b; Dai et al., 2023; Cha et al., 2024). While some
recent works further sparsify visual tokens during the decod-
ing (Ye et al., 2025; Chen et al., 2024a; Shang et al., 2024),
they still ignore the guidance from the language tokens,
which contradicts the multimodality paradigm. We argue
that visual tokens should be sparsified adaptively based
on the question prompt, as the model might focus on dif-
ferent parts (e.g., foreground or background) when dealing
with various questions as shown in Figure 1. Furthermore,
current approaches generally train a network to prune redun-
dant visual tokens and require additional training data (Li
et al., 2024b; Ye et al., 2025; Cai et al., 2025).

In this paper, we introduce a text-guided training-free frame-
work dubbed SparseVLM for efficient vision language
model inference. We reuse the self-attention matrix of
visual-text tokens directly from the decoder layers with-
out extra training parameters for sparsification. We ascer-
tain that not all prompt tokens should be considered as
some could be less relevant, which leads to inaccurate cor-
relation results and downgrades the performance of sparse
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(a) Input Image

Q-1:  What is written on 
this blue sign?

Q-2: How many buses
are there in the image?

Q-3: What color is this 
roof?

(b) Ours. Text‐guided Visual Sparsification

(c) Existing Methods. Text‐agnostic Visual Sparsification

Figure 1. Comparison of visual token sparsification methods. Unlike previous methods with text-agnostic visual sparsification (c) e.g.,
VocoLLaMA (Ye et al., 2025), our SparseVLM (b) is guided by question prompts to select relevant visual patches from the image (a).

inference. Specifically, our SparseVLM first identifies text
tokens strongly correlated with visual signals via cross-
attention. Then, we measure the contribution of visual to-
kens to the selected visual-relevant text tokens (i.e., “raters”)
and adaptively prune the insignificant visual tokens. Instead
of directly discarding the pruned tokens, we further recy-
cle and cluster them to reconstruct more compact tokens to
minimize the loss of information. Due to the information
density varying for different image inputs, we employ the
rank of the attention matrix to indicate the redundancy level
and set an adaptive sparsification ratio accordingly.

The proposed method is simple yet practical. It can act
as a plug-and-play module to improve the efficiency of
VLMs without additional fine-tuning. Extensive experi-
ments demonstrate that our SparseVLM effectively reduces
computational overhead of various VLMs without sacrific-
ing their performance in a wide range of image and video
understanding tasks. For instance, LLaVA (Liu et al., 2024b)
when armed with SparseVLM achieves a 4.5× compression
rate while maintaining 97% of its original performance. Al-
ternatively, the CUDA latency can decrease by 37% with
only a 0.9% drop in accuracy. To investigate the effec-
tiveness of our method in video tasks, we further apply
SparseVLM to VideoLLaVA (Lin et al., 2024) to compress
frames with temporal dimension. Without complex design
changes, SparseVLM can sparsify video frames into an
adaptive number of visual tokens and outperform existing
methods in video question-answering benchmarks. Our ap-
proach consistently outperforms prior state-of-the-art FastV
method (Chen et al., 2024a) by 11.2 − 17.3% on LLaVA,
9.2− 20.4% on MiniGemini, and 14.7% on VideoLLaVA
when both have similar latencies.

Our main contributions are summarized as follows:

• We introduce a novel sparsification framework dubbed
SparseVLM. To the best of our knowledge, it is the
first training-free approach that explores text-aware
guidance for efficient VLM inference.

• Particularly, we propose a strategy to select relevant
text tokens as raters of visual tokens, a method to assess
the significance of visual tokens followed by pruning
of redundant visual tokens with a recycling mechanism
to minimize the loss of information.

• When applied to a number of VLMs, SparseVLM con-
sistently outperforms prior state-of-the-art methods in
various image and video understanding benchmarks.

2. Related Work
Vision-Language Models. Recent works on vision-
language models (Liu et al., 2024a; Chen et al., 2024b; Li
et al., 2024c) improve multimodal comprehension and gen-
eration by processing longer visual token sequences. More-
over, the usage of higher-resolution images inevitably entails
an exponential growth in the length of visual sequences. For
example, LLaVA typically encodes 336× 336 images into
576 tokens (Liu et al., 2024b) with up to 672 × 672 max-
imum resolution using 2880 token sequences (Liu et al.,
2024a). Similarly, mini-Gemini-HD (Li et al., 2024c) con-
verts 1536× 1536 high resolution and 672× 672 low reso-
lution images into 2880 visual tokens. Moreover, compre-
hending videos or multiple images leads to increased token
allocations for visual signals. For instance, the VideoLLaVA
(Lin et al., 2024) and VideoPoet (Kondratyuk et al., 2024)
use thousands of tokens to encode multiple image frames.
However, large number of visual tokens results in a com-
putational bottleneck. Further research on sparsification is
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urged to further unleash VLM capabilities.

Visual Compression for VLMs. Compression of visual
tokens is necessary because, on the one hand, their quantity
is usually tens to hundreds of times that of language to-
kens. On the other hand, visual signals are inherently more
sparse in information when compared to texts that have been
produced by humans (Marr, 2010). Past efforts to address
the above problem can be categorized into two directions.
The first one centers on the compression of a vision tower
or an efficient projection of vision modality. For instance,
LLaMA-VID (Li et al., 2024b) exploits the Q-Former with
the context token while DeCo (Yao et al., 2024) employs
an adaptive pooling to downsample the visual tokens at the
patch level. Methods that belong to the second direction (Ye
et al., 2025; Chen et al., 2024a; Wu et al., 2024) go deeper
into the text modality and sparsify visual tokens during the
LLM decoding stage, but they still lack guidance from the
text tokens. In this paper, SparseVLM takes note of this
limitation and improves performance upon it.

3. Method
In this section, we present our SparseVLM for efficient
VLM inference. We first review the attention mechanism
in VLMs and then introduce the detailed strategies for our
visual sparsification including visual significance estima-
tion, relevant text token selection, and sparsification level
adaptation. We further propose token recycling to reduce
information loss and provide a theoretical analysis of com-
putation savings. The pipeline is shown in Figure 2.

3.1. Preliminary: Attention in VLM Decoders

VLM decoders typically rely on the causal self-attention
from the original transformer architecture (Vaswani et al.,
2017) for token interactions. Without loss of generality, we
describe the single-head attention below. Formally, the self-
attention matrix with logits A ∈ RL×L, where L denotes
the length of a sequence with all kinds of tokens e.g. text
and visual, is computed by

A = Attention(Q,K) = Softmax
(
QKT

√
D

)
, (1)

where the scalar D represents the matrix dimension, and the
Q ∈ RL×D and K ∈ RL×D are the query and key matrices,
respectively. The keys and queries in a self-attention layer
are computed in parallel by using multi-layer perceptrons to
transform the input hidden states H into a common space,
where aligned interactions between modalities occur.

Often, the matrix A cannot be directly accessed due to
FlashAttention-type (Dao et al., 2022) optimizations. There-
fore, we develop an approach to extract A while maintaining
compatibility with the FlashAttention when applying our

sparsification. Please refer to the Appendix B.

3.2. Sparsification Guidance from Text to Vision

Estimation of Visual Token Significance. For a multi-
modal model, we aim to estimate an impact of deleting a
single token from one modality to other modalities. In the
VLM case, we need to quantify how relevant a visual to-
ken is to text tokens in order to determine whether it can
be pruned. Therefore, we naturally reuse the self-attention
logits from VLM’s transformer layers as a reference since
they already contain language-to-vision query results.

In particular, we take the interaction between the query-
dimensional part of the language modality and the key-
dimensional part of the vision modality as the basis for
sparsification priority matrix P ∈ RLt×Lv , where Lt and
Lv are the lengths of text and visual tokens, defined by

P = Ai,j , and (i, j) ∈ {L, I}, (2)

where L and I denote the language instruction and image
token sets, respectively.

Next, we obtain a vector p̃ that estimates the significance of
all visual tokens w.r.t. the text dimension as

p̃ = [p̃1, p̃2, . . . p̃Lv ] =
1

Lt

∑Lt

i=1
Pi, (3)

where we use p̃ as an indicator for sparsification and a larger
value in p̃ means higher significance of the corresponding
visual token. Calculation of (3) costs Lt × Lv FLOPs only
while the access to already computed A is considered as
free, which is highlights low complexity of the SparseVLM.

Relevant Text Token Selection. It is not appropriate to
use all text tokens as a reference for visual sparsification.
Figure 3 shows four representative cases where we compute
the correlation between the prompt and the image. Case
3 highlights Tylenol, Advil, ibuprofen, while
sticker, fridge in case 4 are significant, where a
large proportion of question tokens in light red include little
visual relevance. Therefore, it is unreasonable to make in-
significant text tokens to rate visual tokens, and we need to
select relevant text tokens (i.e., “raters”) for guidance.

Specifically, for an input image xv, the vision embedding
tokens Hv can be computed as

Hv = WZv, (4)

where Zv is the visual feature provided by visual encoder
Zv = g(xv), and W is the projection matrix to convert
Zv into vision embedding tokens Hv. For the language
instruction xq , it is transformed into text embedding tokens
Hq through the tokenizer. The above tokens both have the
same dimensionality as the word embedding space. Then,
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Figure 2. The architecture of SparseVLM. In stage (a), text raters are pre-selected before entering the sparsification LLM. In stage (b),
adaptive sparsification is performed on LLM layers, involving computing redundancy and the recycling of reconstructed tokens.

we start to recognize which characters in the prompt are
visually relevant and assign them the role of raters, which
can be formulated as

s = { i | ri ≥ m}, i ∈ {1, 2, . . . , Lt}, (5)

r =
1

Lv

Lv∑
j=1

(
Softmax

(
HvHq

T
))

j
, (6)

where m = mean(r) and only candidates that exceed the m
threshold become raters. The strategy s contains the indices
of selected raters from the candidate list of Lt tokens. The
(6) costs Lt × Lv × 2D FLOPs that is only computed once
before the decoder layer processing.

Sparsification Level Adaptation. Having obtained the to-
ken significance, we further propose a rank-based strategy
to adaptively determine the level of vision sparsification at
each decoder layer. Considering that a full-rank matrix im-
plies that all its rows or columns are linearly independent,
we use the rank of P to demonstrate the redundancy of the
visual tokens. We argue that the difference between the
dimension and rank of P reflects its redundancy and utilize
a scaling factor λ to determine the number of deletions as

N = λ× (Lv − rank(P )). (7)

We then remove N visual tokens with the smallest values
in P . Notably, if the result of N in a decoder layer is 0,
we skip the layer without sparsification. This stage requires
Lt × Lv × min(Lt, Lv) FLOPs for rank computation.

3.3. Visual Token Recycling

We progressively sparsify visual tokens in each layer in the
decoder, which results in more discarded tokens at later
stages. Despite being less significant, the pruned visual
tokens with relatively large values in P still contain certain

information. To efficiently preserve more visual details
with fewer tokens, we propose a token recycling strategy to
aggregate and reconstruct tokens to be pruned.

Token Aggregation. We first recycle the pruned visual
tokens h̄v with the top-τ (%) highest values in P from the
deleted pool. Then, we group h̄v tokens with k-nearest
neighbor density peak aggregation algorithm (Rodriguez,
2014) for adaptive token aggregation.

In particular, we first compute the local density ρi of the
ith token of total τ × N recycled tokens according to its
k-nearest neighbors K(h̄i

v) as

ρi = exp

(
−1

k

∑i,j

h̄j
v∈K(h̄i

v)

∥∥h̄i
v − h̄j

v

∥∥2
2

)
. (8)

Then, we compute the minimum distance between the re-
cycled token h̄i

v and any other token with higher density
(denoted as the distance indicator δi) that is defined by

δi =

{
min

∥∥h̄i
v − h̄j

v

∥∥
2
, if ∃j s.t. ρj > ρi,

max
∥∥h̄i

v − h̄j
v

∥∥
2
, otherwise .

(9)

We use ρi × δi to indicate the score of each token, where
the tokens with higher scores are likely to be cluster centers.
Other tokens are then assigned to the nearest cluster center
via cosine similarity. The FLOPs cost in this stage is Lr ×
(3Lr − 1) × 2D + Lr, where Lr = τ × N is the length
of recycled tokens, C = θ × Lr is the number of cluster
centers, and τ and θ are hyperparameters.

Token Reconstruction. Having performed token aggrega-
tion, the recycled tokens with similar semantics are classi-
fied into the same group. Then, the tokens T ∈ RNk×D

in the kth group are reconstructed into a new compressed
token Tk ∈ R1×D via the element-wise sum operation as

Tk =
∑Nk

i=1
T[i], k ∈ {1, 2, . . . , C}, (10)
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Question Prompt (from MME)

picture
Landmarks Mateo

.

Question Prompt (from VQAv2)

same pattern?

Question Prompt (from Vizwiz)

Tylenol Advil ibuprofen

Question Prompt (from Textvqa)

fridge

1 2

3 4

The level of text related to the image.

Figure 3. Sample prompts from four representative multimodal benchmarks. The darker the word, the greater its relationship to
the image and the more valuable it is for reference. We see that some words are irrelevant to the vision domain (e.g., prepositions and
pronouns) and should not be considered for visual sparsification. It is best viewed in color.

where Nk is the token number of the kth group and the
operation costs D × (Lr − C) FLOPs.

3.4. Theoretical Analysis of Computational Complexity

We consider the computation of multi-head attention and
feed-forward network (FFN) modules in the FLOPs estima-
tion. Assuming N is the number of pruned tokens, D is
the hidden state size, which is the same as the intermediate
size in FFN, the FLOPs for one Transformer layer can be
reduced by 6(N − C)D2 + 2(N − C)2D. Besides, our
partial step introduces minimal computation with the de-
tails provided in Appendix C. Thus, we estimate the FLOPs
savings as the reduction part minus the additional overhead:∑

i6(Ni−Ci)D
2+2(Ni−Ci)

2D︸ ︷︷ ︸
reduction part

−

2LtLvD−
∑

iL
i
tL

i
v(1+min(Li

t,L
i
v))−(6Li

r
2
+2Li

r)D−Li
r︸ ︷︷ ︸

overhead part

≈−2LtLvD+
∑

i D(6DNi(1−x)+N2
i (2+2x2−4x−6(τ)2))−Li

t
2
Li

v

≈−2LtLvD+
∑

i DNi(6D+2Ni)−Li
t
2
Li

v,

(11)
where i ∈ {1, 2, . . . ,Ω} and Ω is the number of total layers,
and x = τ × θ is a very small decimal that can be ignored.

4. Experiments
In this section, we validate our method within various vision-
language architectures on comprehensive multimodal bench-
marks, including image and video understanding tasks, to
assess its generality, effectiveness, and efficiency.

4.1. Image Understanding Tasks

Datasets. For image-based multimodal evaluation, we con-
duct experiments on eight widely adopted benchmarks,

including GQA (Hudson & Manning, 2019), MMBench
(MMB) (Liu et al., 2024c), MME (Fu et al., 2023), POPE
(Li et al., 2023b), SQA (Lu et al., 2022), SEED-Bench
(SEED) (Li et al., 2024a), VQAText (TextVQA) (Singh et al.,
2019), and MMVet (Yu et al., 2024).

Implementation Details. We verify SparseVLM on three
VLM frameworks: LLaVA (Liu et al., 2024b), Mini-Gemini
(MGM) (Li et al., 2024c), and Qwen2-VL (Bai et al.,
2023). LLaVA-1.5 employs CLIP-pretrained ViT-L as the
visual tower, MGM further introduces a LAION-pretrained
ConvNeXt-L (Liu et al., 2022) for high-resolution refine-
ment, while Qwen2-VL owns dynamic resolution encoder.

Main Results. In Table 1, we present the performance of
SparseLLaVA (LLaVA equipped with SparseVLM) on im-
age understanding benchmarks. To intuitively assess the
performance, we provide the results by percentage format
for comparative analysis, and the accuracy of the vanilla
model with the 100% upper limit. We set 3 vision token
count configurations (192, 128, and 64) to check the ad-
vantages of SparseVLM comprehensively. When pruning
from 576 to 192 tokens, the SparseLLaVA only decreases
the average accuracy by 0.9% without additional training
and exceeds ToMe (Bolya et al., 2023) 10.2%. When only
64 tokens are kept, our method outperforms FastV (Chen
et al., 2024a) by a significant margin of 17.3%, while ToMe
performs worst due to its direct merging. Furthermore, we
also compare the recent method PDrop (Xing et al., 2025)
training-free version, which has lower FLOPs computation.
However, our method outperforms it in accuracy and latency,
which are the most crucial metrics for practical deployment.

Figure 4 visualizes the performance of SparseMGM on
POPE, TextVQA, and GQA. We find that our framework
has an obvious advantage over FastV and ToMe. With the
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Table 1. Performance of SparseLLaVA under different vision token configurations. The vanilla number of vision tokens is 576. The
first line of each method is the raw accuracy of benchmarks, and the second line is the proportion relative to the upper limit.

Method GQA MMB MME POPE SQA SEED VQAText MMVet Acc. (%) FLOPs (T) Latency (ms)
Upper Bound, 576 Tokens (100%)

Vanilla
61.9 64.6 1864 85.9 69.5 60.3 58.3 30.9 100 4.62 57.82

100% 100% 100% 100% 100% 100% 100% 100%

Retain 192 Tokens (↓ 66.7%)

ToMe (ICLR23)
54.3 60.5 1563 72.4 65.2 53.1 52.1 27.9 88.9 (↓ 11.1) 2.05 34.06

87.7% 93.5% 83.9% 84.3% 93.8% 88.1% 89.5% 90.3%

FastV (ECCV24)
52.6 61.0 1605 64.8 69.1 52.1 52.5 26.7 87.9 (↓ 12.1) 2.11 34.87

85.0% 94.4% 86.1% 75.4% 99.4% 86.4% 90.1% 86.4%

PDrop (CVPR25)
57.1 63.2 1766 82.3 70.2 54.7 56.1 30.5 95.9 (↓ 4.1) 2.03 36.74

92.2% 97.8% 94.7% 95.8% 101.0% 90.7% 96.2% 98.7%

SparseVLM
59.5 64.1 1787 85.3 68.7 58.7 57.8 33.1 99.1 (↓ 0.9) 2.14 36.50

96.1% 99.2% 95.9% 99.3% 98.8% 97.3% 99.1% 107.1%

Retain 128 Tokens (↓ 77.8%)

ToMe (ICLR23)
52.4 53.3 1343 62.8 59.6 50.9 49.1 27.2 81.9 (↓ 18.1) 1.62 30.00

84.7% 82.4% 72.1% 73.1% 85.8% 84.4% 84.4% 88.0%

FastV (ECCV24)
49.6 56.1 1490 53.4 68.6 48.1 50.5 26.3 82.4 (↓ 17.6) 1.70 30.70

80.1% 86.8% 79.9% 62.2% 98.7% 79.8% 86.6% 85.1%

PDrop (CVPR25)
56.0 61.1 1664 82.3 69.9 53.3 55.1 30.8 94.3 (↓ 5.7) 1.62 37.77

90.5% 95.4% 89.3% 95.8% 100.6% 88.4% 94.5% 99.7%

SparseVLM
58.4 64.5 1746 85.0 68.6 58.2 56.7 29.0 96.7 (↓ 3.3) 1.72 33.28

94.3% 99.8% 93.7% 99.0% 98.7% 96.5% 97.3% 93.9%

Retain 64 Tokens (↓ 88.9%)

ToMe (ICLR23)
48.6 43.7 1138 52.5 50.0 44.0 45.3 24.1 71.1 (↓ 28.9) 1.19 26.52

78.5% 67.5% 61.1% 61.1% 71.9% 73.0% 77.8% 78.0%

FastV (ECCV24)
46.1 47.2 1255 38.2 68.7 43.7 47.8 19.6 72.0 (↓ 28.0) 1.29 27.30

74.5% 73.1% 67.3% 44.5% 98.8% 72.5% 82.0% 63.4%

PDrop (CVPR25)
41.9 33.3 1092 55.9 69.2 40.0 45.9 30.7 73.4 (↓ 26.6) 1.18 43.41

67.7% 51.6% 58.6% 65.1% 99.6% 66.3% 78.7% 99.4%

SparseVLM
53.8 60.1 1589 77.5 69.8 52.2 53.4 24.9 89.3 (↓ 10.7) 1.30 29.89

86.9% 93.0% 85.2% 90.2% 100.4% 86.6% 91.6% 80.6%

Table 2. Performance of SparseVLM on Qwen2-VL.

Tokens MMB POPE VQAText Avg.

Dynamic 80.5 (1323) 86.4 (1311) 84.3 (1326) 83.7

600 79.6 86.5 80.3 82.1

500 78.8 86.3 79.0 81.4

400 79.0 85.8 77.1 80.7

reduction of tokens, the gap between FastV and SparseVLM
is increasing sharply. The reason is that, compared to FastV
and ToMe, the text-aware strategy enables us to accurately
locate visual tokens with more details, while the recycling
of pruned tokens further reduces information loss.

We further investigate our efficacy on Qwen2-VL. In Table
2, when 54.5% of vision tokens are removed, Qwen2-VL
maintains an accuracy of 98.0%. Furthermore, for every 100
tokens pruned, the accuracy only drops by approximately
0.8%. This validates the effectiveness of our method at high
resolutions and its compatibility with variable resolutions.

4.2. Video Understanding Tasks

Datasets. We test on four common video question answer-
ing benchmarks, TGIF-QA (Jang et al., 2017), MSVD-QA
(Xu et al., 2017), MSRVTT-QA (Xu et al., 2017), and
ActivityNet-QA (Yu et al., 2019). Specifically, following
FastV’s (Chen et al., 2024a) setup, we use the first 1000
samples per benchmark and score them using the Video-
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Figure 4. Performance of MGM w/ SparseVLM on three multimodal benchmarks. The horizontal axis represents the remaining
number of vision tokens, while the vertical axis means the accuracy after percentage normalization.

Table 3. The results of Video-LLaVA with SparseVLM on video
question answering task. The original number of video tokens
is 2048, while our experiment collectively prunes it down to 194
tokens. FastV (Chen et al., 2024a) is included for comparison.

Method
TGIF MSVD MSRVTT ActivityNet Avg.

Acc. Score Acc. Score Acc. Score Acc. Score Acc. Score

Video-LLaVA
18.9 2.54 72.0 3.95 57.1 3.45 43.6 3.81

47.9 3.44
100% +0.00 100% +0.00 100% +0.00 100% +0.00

FastV (ECCV24)
10.2 2.29 58.3 3.62 52.3 3.42 41.3 3.76

40.5 3.27
54.0% -0.34 81.0% -0.33 91.6% -0.03 94.7% -0.12

Ours
14.9 2.41 71.7 3.94 56.1 3.43 45.1 3.81

47.0 3.40
78.8% -0.13 99.6% -0.01 98.3% -0.02 103.4% -0.00

ChatGPT (Maaz et al., 2024) evaluation tool, acknowledg-
ing the characteristic length imbalances in these datasets.

Implementation Details. We directly apply our Sparse-
VLM for Video-LLaVA (Lin et al., 2024), which is com-
posed of several key components, including language bind
encoder fv

M (Zhu et al., 2024a) for extracting features from
raw visual inputs (e.g., images or videos), a language de-
coder model fL such as Vicuna (Touvron et al., 2023), a
visual projection layer fP , and a word embedding layer fT .

Main Results. In Table 3, we set the Video-LLaVA with
2048 video tokens as our upper bound for an overall average
accuracy of 100.0% and a score of +0.00. To make a fair
comparison, we both preserve 194 vision tokens (90.5%
pruning ratio) for FastV (Chen et al., 2024a) and Sparse-
VLM. It is clear that our approach consistently outperforms
FastV across all benchmarks, both in accuracy (Acc.) and
GPT evaluation score. SparseVideoLLaVA achieves a total
average accuracy of 95.0%, a significant 14.7% higher than
80.3% of FastV. (From the GPT score perspective, Spar-
seVLM only loses 0.04 points compared to 0.17 points of
FastV.) These improvements suggest that when handling
video modality containing temporal features, SparseVLM
continues to deliver strong performance, generating accurate
responses to diverse questions while utilizing significantly
fewer tokens. This achieves an effective trade-off between
inference efficiency and model performance.
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All Tokens All Text Text Raters All Tokens All Text Text Raters

Figure 5. The ablation study of text raters on LLaVA 7B.

5. Analysis
5.1. Relevant Text Token Selection

We propose a selection mechanism to localize visually irrel-
evant text tokens to limit their negative effects in rating the
significance of vision tokens. Here we conduct experiments
to analyze the effects of the mechanism in Figure 5. Under
the same number of vision tokens (64), we have 3 settings
(using all tokens, only text tokens, and only text raters we
select) with LLaVA (Liu et al., 2024a) to judge vision token
candidates. In TextVQA (Singh et al., 2019), by building
upon the text-aware manner, our mechanism improves the
baseline (all tokens) by 0.8%, which validates that our extra
selection is effective. Besides, we further outperform the
vanilla text-aware method (only text tokens) by 2.7% on
POPE (Li et al., 2023b). The huge margin means POPE
sparsification is quite sensitive to question prompts, and text
guidance is necessary. In summary, text rater selection is
general and improves the performance across scenarios.

5.2. Recycling of Pruned Tokens

To validate the effectiveness of our token recycling strategy,
we perform ablation experiments on the LLaVA model (Liu
et al., 2024a). The results are presented in Table 4. Across
multiple sparsity ratios (64, 96, 128, 192), our algorithm
achieves a significant average performance improvement of
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What does the small
white text spell?

22.

What number is on 
the playerʹs jersey?

Yes.

Is this denny’s?

Copenhagen.

Figure 6. Visualization of SparseVLM on different VQA prompts. From left to right, the visual representation becomes increasingly
sparse, leaving fewer vision tokens. Best viewed in color.

Table 4. Ablation study on token reconstruction (TR). Experi-
ments are conducted on GQA and POPE on LLaVA 7B.

Benchmark
Tokens

Avg.
64 96 128 192

GQA 52.2 55.2 58.1 59.4 56.2

+ TR 53.8 56.4 58.4 59.5 57.0

POPE 72.8 77.5 83.7 85.2 79.8

+ TR 77.5 81.9 85.0 85.3 82.4

1.2% and 7.2% on TextVQA (Singh et al., 2019) and POPE
(Li et al., 2023b), respectively. Notably, as the number of
pruned vision tokens increases, the benefit brought by our
recycling method increases. For instance, when pruning
from 192 to 64 tokens, the pruned token recycling signifi-
cantly boosts the accuracy from 1.5% to 17.7% on POPE.
We argue that when the size of the deleted pool grows, the
amount of lost information increases. Our method effec-
tively recycles the lost information and compresses it into
few slots using the proposed reconstruction mechanism.

5.3. Computational Efficiency

SparseVLM affords significant efficiency and storage gains
for the inference process. We conduct a comparative analy-
sis of CUDA time, and FLOPs on LLaVA-7B, and compare
our method with the baseline method and FastV (Chen et al.,
2024a). As displayed in Table 1, we conduct an inference
efficiency analysis on a single NVIDIA A100-80GB with
identical lengths of text prompts and single-image inputs.
Compared to the baseline model, SparseVLM achieves a
significant reduction of 43.1% in CUDA time and 62.8% in
FLOPs while keeping 96.7% accuracy. Despite SparseVLM
has a minimal overhead to calculate text raters and cluster-
pruned vision tokens, it leads to fewer than FastV tokens
with comparable accuracy. Additionally, SparseVLM saves

67% cache memory compared to vanilla LLaVA (where
302.4MB is reduced to 100.8MB), while keeping 99.1%
accuracy. More efficiency visualization (e.g., efficiency on
VideoLLaVA) can be found in the Appendix G.

5.4. Qualitative Visualization

As shown in Figure 6, we visualize SparseVLM on various
VQA questions. From left to right, we visualize the results
after we apply token pruning to different layers. As the
number of layers increases, more tokens are pruned and the
Region of Interest (ROI) is gradually refined. The model sys-
tematically reduces less relevant image information while
retaining key tokens closely tied to the question. The visual-
ization reveals that SparseVLM, although discarding some
overall image details, effectively retains essential visual
tokens. These preserved tokens encapsulate the features
necessary for answering the question, focusing on more
relevant visual regions through their interaction with the
question. More cases are in the Appendix H.

6. Conclusion
This paper introduced a text-aware training-free token opti-
mization approach called SparseVLM which significantly
decreased the test-time computations of various VLMs. Un-
like prior methods, SparseVLM optimized VLMs without
introducing extra parameters and fine-tuning costs. We
achieved a more compact visual representation by employ-
ing the rank of attention matrices to determine pruning ratios
and by recycling the pruned tokens via the reconstruction
mechanism to reduce the information loss. Experiments
demonstrated that e.g. the LLaVA when equipped with Spar-
seVLM achieved 37.0% reduction in latency with a compres-
sion ratio of 77.8% while maintaining 97% of the original
accuracy. Moreover, our method exceeded FastV accuracy
by 14.7% in video understanding tasks. Our SparseVLM
can provide practical benefits for deploying off-the-shelf
VLMs on edge devices and in the cloud setting.
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Appendix

A. The Redundancy of Visual Tokens in VLMs
In non-textual tasks, such as classification or detection, downsampling is commonly used to reduce visual redundancy
and enhance model training efficiency (Zhang et al., 2024b). Figure 7 illustrates this process, showing the reduction of
tokens from 1166 to 576 in a downsampled image, resulting in a 50% efficiency boost but a 15% information loss (entropy
decreased from 7.44 to 6.13). This trade-off is acceptable for such tasks. Conversely, for text-related tasks like visual
question answering (VQA), which involve both text and vision modalities, a distinct approach is required. Highlighting the
most information-dense text (88% of total text) alongside the region pertinent to the query in the image (38% of total image),
we observe that image information is typically sparser than textual data. Hence, our SparseVLM method incrementally
prunes visual token redundancy, maintaining crucial information for task accuracy. This strategy enhances model efficiency.

Visual Redundancy Challenges in VLMs

Original Image

Down sampled
Image

Token Number: 1166 to 576
Efficiency:～50%

Entropy: 7.44 to 6.13
Information:～15%

Text Unrelated Tasks (e.g., Classification)

Trade‐off Acceptable
Text Related Tasks (e.g., VQA)

Q: What is written on the top of
the yellow sticker on the fridge?

written on the top
yellow sticker

fridge

38% 88%
<<

Down sampled
Image

30%

10%

2%

Prune Redundancy Progressively

Stage 1 Pruning

Stage 2 Pruning

Stage 3 Pruning

Output: Warning.

Our Method

Figure 7. Analysis of visual redundancy in different vision tasks.

B. Compatibility with FlashAttention
To ensure compatibility between SparseVLM and FlashAttention (Dao et al., 2022) when extracting the matrix A or P ,
we devise the dual-flash attention operation to directly obtain the average attention scores relative to the text raters. This
operation is lightweight and enjoys the efficiency of FlashAttention. Specifically, the first forward pass operates identically
to the original FlashAttention, generating the necessary hidden states. In the second forward pass, we introduce a specially
designed V matrix. In this matrix, for the rows corresponding to the text raters we wish to analyze, we set the values to the
reciprocal of the number of text raters. This configuration allows the inner product between the attention map and the V
matrix to return the mean value of the attention scores for the selected text raters directly in FlashAttention. With the mean
value, we perform a top-k selection to identify the visual tokens to retain. Tokens that are excluded during this process are
converted into masks, which are then applied to the hidden states produced by the first FlashAttention pass to complete the
pruning operation. This method enables efficient integration of pruning with FlashAttention while preserving compatibility
and computational efficiency. The specific principles and calculation of SparseVLM FlashAttention are as follows:

1. Attention Score Calculation. For each block B, compute the scaled dot-product attention scores as

SB =
QBK

T
B√

dk
,

where SB is the attention score matrix computed within the block.

2. Block-wise Softmax. To ensure numerical stability, the Softmax is computed using the log-sum-exp trick as

12



SparseVLM: Visual Token Sparsification for Efficient Vision-Language Model Inference

(a) Subtract the maximum value for numerical stability:

S′
B = SB −max(SB , axis = 1)

(b) Normalize:

PB =
exp(S′

B)∑
exp(S′

B , axis = 1)

3. Special V Matrix. In order to return the mean value of the attention scores for the selected text raters directly with the
FlashAttention, we need to design a special V matrix.

Vij =


1/n, if i ∈ {i1, i2, . . . , ik},

0, otherwise.

Here, V is an n× d matrix, n is the total number of rows in the matrix, i is the row index, 1 ≤ i ≤ n, s = {i | ri ≥
m}, i ∈ {1, 2, . . . , Lt} define the text raters which we selected in Section 3.2.

4. Incremental Accumulation. Rather than storing P explicitly, the result is directly accumulated into the output using:

OB = PB · VB

The final result is obtained by concatenating all blocks:

O = Concat(O1,O2, . . . ,OB)

5. Streaming Softmax. When combining multiple blocks, an incremental softmax computation ensures that normalization
is maintained across the entire sequence:

Softmax(S) = exp(S)/
∑

exp(S)

This avoids global dependencies and enables efficient block-wise computation.

6. Top-k Selection for Visual Tokens. The top-k selection can be expressed as:

Ok = {xi ∈ Ov | rank(xi,Ov) ≤ k},

Ov = {yj ∈ mean(O) | visual tokens start ≤ j ≤ visual tokens end}.

where O = Concat(O1,O2, . . . ,OB) is the output array of the second FlashAttention, Ov is the visual tokens part of
O, rank(xi,Ov) represents the position of xi in Ov when sorted in descending order.

The corresponding indices of the top-k elements are:

Ik = {i | xi ∈ Ok}.

7. Summary of SparseVLM with FlashAttention using Top-k Selection. The complete process of SparseVLM
FlashAttention can be summarized as

Ik = {i | xi ∈ {yj ∈ Ov |rank(yj ,mean(Concat

(⋃
B

Softmax
(
QBK

T
B√

dk
−max(SB)

)
· VB

)
[visual tokens start : visual tokens end]))}}.

Here, each block B is processed independently, and the results are combined using incremental normalization.
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C. Computing Budget Detailed Estimation
Estimation of Visual Token Significance. In this stage, only the equation 3 averaging process requires computation. Each
visual token undergoes Lt − 1 additions and one division. With Lv visual tokens in total, the number of FLOPs for this
stage is (Lt − 1 + 1)× Lv = Lt × Lv .

Relevant Text Selection. In this process, given that official PyTorch implementation for Softmax and Averaging operations,
the FLOPs for equation 6 can be approximately simplified to the matrix multiplication between Hv and Hq . The result has
a shape of Lv × Lt, where each element undergoes D multiplications and additions. Therefore, the FLOP count can be
expressed as Lt × Lv × 2D.

Sparsification Level Adaptation. The rank of a matrix is typically computed using singular value decomposition (SVD)
(Stewart, 1993). With the selected appropriate threshold, the number of above the threshold singular values determines the
rank of the matrix. The FLOPs involved in this process can be approximated as Lt × Lv × min(Lt, Lv).

Token Aggregation. At this stage, the first part is to perform a nearest neighbor search for each element in the matrix.
With the Lr ×D matrix, this task can be simplified to calculate the distances between Lr elements, resulting in a total of
Lr × (Lr − 1)/2 distance calculations. Each distance computation requires sequentially executing subtraction, squaring,
addition, and square root operations on D elements. Consequently, the number of FLOPs in the nearest neighbor search is
Lr × (Lr − 1)/2× 4D = Lr × (Lr − 1)× 2D.

The second part is density calculation. Since the operations of averaging and applying the exponential function are
implemented by the official PyTorch, this part can be simplified by the matrix squaring. Therefore, the FLOPs for this part
are Lr × Lr × 2D.

The third part is distance indicator calculation. The computation can be approximately simplified to compute ρi × δi.
Therefore, the FLOPs for this part can be approximated as Lr × Lr × 2D.

The last part is clustering. In this part, we need to select C tokens with the highest scores from a total of Lr tokens to serve
as cluster centers, and the FLOPs can be approximated as L.

In summary, the total FLOPs for this stage are given by

FLOPs = Lr × (Lr − 1)× 2D︸ ︷︷ ︸
Nearest Neighbors Search

+Lr × Lr × 2D︸ ︷︷ ︸
Density Calculation

+ Lr × Lr × 2D︸ ︷︷ ︸
Distance Indicator Calculation

+ L︸︷︷︸
Select Cluster Center

= Lr × (3Lr − 1)× 2D + L.

Token Reconstruction. Token reconstruction involves performing a weighted sum for each group, excluding the cluster
center. Thus, there are Lr −C elements to sum where each one has 1×D dimensions. Consequently, the number of FLOPs
for this operation is D × (Lr − C).

D. Dataset
We conducted experiments on several widely used visual understanding benchmarks.

GQA. (Hudson & Manning, 2019) The GQA is composed of three parts: scene graphs, questions, and images. The image
part contains images, as well as the spatial features of images and the features of all objects in images. The questions in
GQA are designed to test the understanding of visual scenes and the ability to reason about different aspects of an image.

MMBench. (Liu et al., 2024c) The MMBench benchmark comprehensively evaluates the model’s overall performance
across multiple dimensions. It includes three levels of ability dimensions. The first level (L-1) consists of two main abilities,
perception and reasoning. The second level (L-2) expands based on the first level, including six sub-abilities. The third level
(L-3) further refines the second level, encompassing 20 specific ability dimensions. This hierarchical structure enables a
granular and comprehensive evaluation of the model’s various capabilities.

MME. (Fu et al., 2023) The MME benchmark is also a comprehensive benchmark meticulously designed to thoroughly
evaluate various aspects of a model’s performance. It consists of 14 subtasks that specifically aim to evaluate both the
model’s perceptual and cognitive abilities. By utilizing manually constructed instruction-answer pairs and concise instruction
design, it effectively mitigates issues such as data leakage and unfair evaluation of model performance.
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POPE. (Li et al., 2023b) The POPE benchmark is primarily used to evaluate the degree of Object Hallucination in models.
It reformulates hallucination evaluation by requiring the model to answer a series of specific binary questions regarding the
presence of objects in images. Accuracy, Recall, Precision, and F1 Score are effectively employed as reliable evaluation
metrics to precisely measure the model’s hallucination level under three different sampling strategies.

ScienceQA. (Lu et al., 2022) The ScienceQA benchmark covers a rich diversity of domains, including natural science,
language science, and social science. Within each subject, questions are categorized first by the topic, then by the category,
and finally by the skill. This hierarchical categorization results in 26 topics, 127 categories, and 379 skills, providing a
comprehensive and diverse range of scientific questions. It provides a comprehensive evaluation of a model’s capabilities in
multimodal understanding, multi-step reasoning, and interpretability.

VQA-v2. (Goyal et al., 2017) The VQA-v2 benchmark evaluates the model’s visual perception capabilities through open-
ended questions. It consists of 265,016 images, covering a wide variety of real-world scenes and objects, providing rich
visual contexts for the questions. For each question, there are 10 ground truth answers provided by human annotators, which
allows for a comprehensive evaluation of the performance of different models in answering the questions accurately.

TextVQA. (Singh et al., 2019) The TextVQA benchmark focuses on the comprehensive integration of diverse text information
within images. It meticulously evaluates the model’s text understanding and reasoning abilities through a series of visual
question-answering tasks with rich textual information. Models need to not only understand the visual content of the images
but also be able to read and reason about the text within the images to answer the questions accurately.

MMVet. (Yu et al., 2024) The MMVet benchmark is designed based on the insight that the intriguing ability to solve
complicated tasks is often achieved by a generalist model being able to integrate different core vision-language capabilities.
MM-Vet defines 6 core VL capabilities and examines the 16 integrations of interest derived from the capability combination.

TGIF-QA. (Jang et al., 2017) The TGIF-QA benchmark is an extension of the image question answering (ImageQA) task to
the video domain, aiming to promote the development of video question answering techniques. It contains 165,000 question
answer pairs in total and requires the model to comprehend the details of GIF videos. Specifically, it introduces three new
tasks for VideoQA (repetition count, repeating action, and state transition), which require spatio-temporal reasoning from
videos, and frame QA tasks that can be answered from one of the frames.

MSVD-QA. (Xu et al., 2017) The MSVD-QA benchmark is based on the existing Microsoft Research Video Description
(MSVD) dataset and contains 1970 video clips and approximately 50.5K QA pairs. The questions and answers are diverse
in nature, covering a wide range of topics and aspects related to the video content. Due to its relatively large data size and
the diversity of questions, it is widely used for video question answering tasks and video caption tasks. The tasks formed in
it are open-ended questions, consisting of five types of questions: what, who, how, when, and where.

MSRVTT-QA. (Xu et al., 2017) The MSRVTT-QA benchmark consists of 10K video clips and 243k question answer pairs.
One of the main challenges addressed by the MSRVTT-QA benchmark is the complexity of understanding and reasoning
about video content. Videos contain both visual and temporal information, and models need to be able to effectively process
and integrate these aspects to answer the questions accurately. The tasks formed in it also consist of five types of questions,
similar to the MSVD-QA benchmark.

ActivityNet-QA (Yu et al., 2019) The ActivityNet-QA benchmark contains 58,000 human-annotated QA pairs on 5,800
videos derived from the ActivityNet dataset. The questions are designed to cover a range of types, including motion, spatial
relationship, and temporal relationship, which challenge the model to understand and reason about the video content at
different levels and evaluate the performance of VideoQA models in long-term spatio-temporal reasoning.

E. Implementation Details
All of our experiments are conducted on a single NVIDIA A100-80G GPU. The implementation is carried out in Python
3.10, utilizing PyTorch 2.1.2, CUDA 11.8, and transformers 4.31.0. The inference follows the evaluation settings established
by LLaVA (Liu et al., 2024b). For LLaVA-1.5-7/13B, Mini-Gemini (MGM), and Qwen-VL, we follow the same inference
setting as the original paper as it is publicly available1 2 3. For video understanding tasks, we adopt the same inference setup

1github.com/haotian-liu/LLaVA
2github.com/dvlab-research/MGM
3https://github.com/QwenLM/Qwen-VL
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as the original Video-LLaVA code base4, as it is publicly available.

F. Efficiency Details
We present a comparative efficiency analysis of SparseVLM, the baseline, and FastV during the inference phase in Table 1.
In this section, we provide additional details on the CUDA time during the inference phase. Following VoCo-LLaMA (Ye
et al., 2025), we primarily consider the following components that contribute to the reported CUDA time: image encoding
time (if applicable), KV cache load time (if applicable), and transformers forward time. We exclude other computational
times that are not dependent on the model itself and the caching strategy, such as model loading time, from the CUDA time
measurement. Specifically, the attention operation is implemented by FlashAttention (Dao et al., 2022).

G. More Detailed Efficiency Analysis
To better validate the efficiency of our method, we provide the latency-vs.-accuracy and FLOPs-vs.-Accuracy trade-offs
for SparseVLM applied to LLaVA and MGM across three benchmarks: POPE, TextVQA, and MME, which are shown in
Figure 8 and Figure 9. Besides, we also analyze Video-LLaVA matched with SparseVLM in Figure 10 on TGIF and MSVD.
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Figure 8. Trade-offs for SparseVLM on LLaVA: (a) Latency vs. Accuracy, and (b) FLOPs vs. Accuracy. Both studies demonstrate
comparisons among random sparse, our SparseVLM, and baseline models.

H. More Sparsification Visualization
Figure 11 showcases a diverse array of visualization examples that demonstrate the application of SparseVLM across a
spectrum of visual question-answering (VQA) prompts. These visualizations offer a deeper insight into how our SparseVLM
processes and responds to different types of queries posed in a visual context.

4github.com/PKU-YuanGroup/Video-LLaVA.
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Figure 9. Trade-offs performance for SparseVLM on MGM: (a) Latency vs. Accuracy, and (b) FLOPs vs. Accuracy. Both studies
demonstrate comparisons among random sparse, our SparseVLM, and baseline models.
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Figure 10. Trade-offs for SparseVLM on Video-LLaVA: (a) Latency vs. Accuracy, and (b) Token budget vs. Accuracy. Both studies
demonstrate comparisons among random sparse, our SparseVLM, and baseline models.
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Yes.

Is there a backpack
in the image?

Yes.

Do the balls to the
left of the other ball
look right?

No.

Are there both
toothbrushes and
mats in this picture?

No.

Are the shorts large
and blue?

Yes.

Is there a cake in
the image?

No.

Does the sweater
look open and blue?

Red.

What color are the
pants?

Stove.

What appliance is
the refrigerator
larger than?

Woman.

Zebra.

What kind of
animal is beautiful?

Who is wearing the
dress?

Figure 11. More visualization examples of SparseVLM on different prompts. Best viewed in color.
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