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ABSTRACT

The goal of motion understanding is to establish a reliable mapping between mo-
tion and action semantics, while it is a challenging many-to-many problem. An
abstract action semantic (i.e., walk forwards) could be conveyed by perceptually
diverse motions (walk with arms up or swinging), while a motion could carry
different semantics w.r.t. its context and intention. This makes an elegant map-
ping between them difficult. Previous attempts adopted direct-mapping paradigms
with limited reliability. Also, current automatic metrics fail to provide reliable as-
sessments of the consistency between motions and action semantics. We identify
the source of these problems as the significant gap between the two modalities.
To alleviate this gap, we propose Kinematic Phrases (KP) that take the objective
kinematic facts of human motion with proper abstraction, interpretability, and
generality characteristics. Based on KP as a mediator, we can unify a motion
knowledge base and build a motion understanding system. Meanwhile, KP can be
automatically converted from motions and to text descriptions with no subjective
bias, inspiring Kinematic Prompt Generation (KPG) as a novel automatic motion
generation benchmark. In extensive experiments, our approach shows superiority
over other methods. Our code and data would be made publicly available.

1 INTRODUCTION

Human motion understanding has a wide range of applications, including autonomous driv-
ing (Paden et al., 2016), robotics (Koppula & Saxena, 2013), and automatic animation (Van Welber-
gen et al., 2010), making it increasingly attractive. The core of human motion understanding is to
establish a mapping between the motion space and the action semantics space. The motion space
indicates a space of sequential 3D human representations, e.g., 3D pose or SMPL (Loper et al.,
2015)/SMPL-X (Pavlakos et al., 2019) parameter sequence, while the action semantic space can be
represented as action categories or sentences described by natural language.

Recently, a growing focus has been on generative mapping from semantics to motion, including
action category-based generation (Petrovich et al., 2021) and text-based generation (Petrovich et al.,
2022; Guo et al., 2022a; Lucas et al., 2022; Zhang et al., 2022; Tevet et al., 2022b; Chen et al., 2023;
Zhang et al., 2023a). Most of them typically build a mapping that links motion and semantics either
directly or via motion latent, with understated concerns for intermediate motion-semantic structures.
However, these models suffer from inferior reliability. They cannot guarantee they generated correct
samples without human filtering. Additionally, the existing evaluation of motion generation is prob-
lematic. Widely adopted FID and R-Precision rely on the latent space from a black-box pre-trained
model, which might fail to out-of-distribution (OOD) and over-fitting cases. There is a long-standing
need for an evaluation method that can cheaply and reliably assess whether a generated motion is
consistent with particular action semantics. We identify the essence of these as the significant gap
between raw human motion and action semantics, which makes direct mapping hard to learn.

As in Fig. 1, an action semantics can correspond to diverse motions. For instance, a person could
walk in countless ways with diverse motions, either with arms up or swinging, while action seman-
tics tend to abstract these away from a walking motion. Additionally, they are robust against small
perturbations, while motion is more specific and complex, with representations changing vastly
when perturbed or mis-captured. Moreover, a motion sequence could have diverse semantics w.r.t.
contexts. Modeling this many-to-many mapping between motion and semantics is challenging.
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Figure 1: The huge gap between motion and action semantics results in the many-to-many problem.
We propose Kinematic Phrases (KP) as an intermediate to bridge the gap. KPs objectively capture
human kinematic cues. It properly abstracts diverse motions with interpretability. As shown, the
Phrases in the yellow box could capture key patterns of walk for diverse motions.

To bridge this gap between motion and action semantics, we propose Kinematic Phrases (KP),
an interpretable intermediate representation. KP focuses on the objective kinematic facts, which
are usually omitted by general action semantics, like left-hand moving forwards then
backward. KP is designed as qualitative categorical representations of these facts. For objectivity
and actuality, KP captures sign changes with minimal pre-defined standards. Inspired by previous
studies on kinematic human motion representation (von Laban & Lange, 1975; Bartlett, 1997), KP is
proposed as six types shown in Fig. 1, covering joint positions, joint pair positions and distances,
limb angles and directions, and global velocity. Note that, although KP can be described by natural
language, a major difference is that KP is strictly dedicated to objective kinematic facts instead of
coarse actions such as surrender or fine-grained actions like raise both hands.

We highlight three advantages of KP. First, KP offers proper abstraction, which disentangles mo-
tion perturbations and semantics changes, easing the learning process. Even though the motion
differs significantly, KP manages to capture walk patterns easily. Second, KP is interpretable, as it
can be viewed as instructions on executing the action, making it easily understandable to humans.
Finally, KP is general, as it can be automatically extracted from different modalities of human
motion, including skeleton and SMPL parameters. The conversion from KP to text is also effortless.

With KP as an intermediate representation, we first construct a unified large-scale motion knowl-
edge base. Then, to fully exploit KP and the knowledge base, we build a motion understanding
system with KP mediation. In detail, we learn a motion-KP joint latent space in a self-supervised
manner and then adopt it for multiple motion understanding applications, including motion interpo-
lation, modification, and generation. Moreover, leveraging the interpretability of KP, we propose a
benchmark called Kinematic Prompts Generation (KPG), which generates motion from text prompts
converted from KPs. Thanks to the consistency and convenience of the KP-to-text conversion, KPG
enables reliable and efficient motion generation evaluation.

Our contributions are: (1) We propose KP as an intermediate representation to bridge the gap be-
tween motion and action semantics. (2) We build a novel motion understanding system using KP
and the aggregated large-scale knowledge base. (3) We propose KPG as a benchmark for reliable
and efficient motion generation evaluation. Promising results are achieved on motion interpolation
and generation tasks. Moreover, extensive user studies are conducted, verifying the efficacy of our
methods, also the consistency between KPG evaluation and human perception.

2 RELATED WORKS

Motion Representation. An intuitive motion representation is a sequence of static pose repre-
sentations, like joint locations and limb rotations. Efforts are paid to address the discontinuity of
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rotation for deep-learning methods (Zhou et al., 2019; Brégier, 2021). Recent works on parametric
body models (Loper et al., 2015; Pavlakos et al., 2019) enable a more realistic body representation.
Meanwhile, Pons-Moll et al. (2014) proposed Posebits, representing pose with boolean geomet-
ric part relationships. Delmas et al. (2022; 2023) translates Posebits into text descriptions. These
abstract representations are flexible and insensitive to little perturbations, but their static nature ig-
nores motion dynamics. Tang et al. (2022) acquire similar fine-grained descriptions from human
annotation, while Xiang et al. (2022); Athanasiou et al. (2023) adopted large-scale language mod-
els. However, few recognize their potential in bridging the low-level motion and the high-level
action semantics. Phase functions (Holden et al., 2020), Labanotations (von Laban & Lange, 1975),
and learned Motion Words (Aristidou et al., 2018) were also explored, though limited to specific
actions like locomotion and dancing.

Motion Generation can be conditioned by its prefix/suffix (Hernandez et al., 2019; Athanasiou
et al., 2022; Guo et al., 2023), action categories (Petrovich et al., 2021; Guo et al., 2020; Xu et al.,
2023), or audio (Li et al., 2021a;b). Text-based motion generation has developed rapidly with the
proposal of text-motion datasets Punnakkal et al. (2021); Guo et al. (2022a). Petrovich et al. (2022);
Guo et al. (2022a); Qian et al. (2023) used VAEs, while Tevet et al. (2022a); Hong et al. (2022); Lin
et al. (2023b) extended the CLIP (Radford et al., 2021) space to motion. Recently, attention has been
paid to diffusion models (Zhang et al., 2022; Tevet et al., 2022b; Dabral et al., 2023; Wang et al.,
2023). Azadi et al. (2023) adopted a U-Net structure. Zhang et al. (2023b); Petrovich et al. (2023)
explored retrieval-based methods. Karunratanakul et al. (2023) aimed at controllable generation,
while Yuan et al. (2023) introduced physical constraints. However, most approaches still suffer from
the gap between motion and action semantics. Lucas et al. (2022); Guo et al. (2022b); Zhang et al.
(2023a); Chen et al. (2023); Zhou & Wang (2023); Zhong et al. (2023); Kong et al. (2023) adopted
(VQ-)VAE-compressed motion representation as mediation, while in the current data-limited situ-
ation, we identify that this single-modality compression might be sub-optimal. Instead, KP could
alleviate this by introducing explicit semantic-geometric correlation.

3 KINEMATIC PHRASE BASE

3.1 KINEMATIC PHRASES

Kinematic Phrases abstract motion into objective kinematic facts like left-hand moves up
qualitatively. We take inspiration from previous kinematic motion representations (von Laban &
Lange, 1975) and qualitative static pose representations (Delmas et al., 2022; Pons-Moll et al.,
2014), proposing six types of KP to comprehensively represent motion from different kinematic
hierarchies: For joint movements, there are 36 Position Phrases (PPs). For joint pair movements,
there are 242 Pairwise Relative Position Phrases (PRPPs) and 81 Pairwise Distance Phrases (PDPs).
For limb movements, there are 8 Limb Angle Phrases (LAPs) and 33 Limb Orientation Phrases
(LOPs). For whole-body movements, there are 3 Global Velocity Phrases (GVPs). KP extraction is
based on a skeleton sequence X = {xi|xi ∈ Rnk×3}ti=1, where nk is the number of joints (nk = 17
here), xi is the joint coordinates at i-th frame, and t is the sequence length. Note that x0

i indicates
the pelvis/root joint. For each Phrase, a scalar indicator sequence is calculated from the skeleton
sequence. Phrases are extracted as per-frame categorical representations w.r.t. indicator signs. Un-
like previous efforts (Pons-Moll et al., 2014; Delmas et al., 2022), we limit the criteria of KP as the
indicator signs to minimize the need for human-defined standards (e.g., numerical criteria on the
closeness of two joints) for objectivity and actuality. Fig. 2 illustrated the extraction procedure.

Reference Vectors are first constructed, indicating right, upward, and forward directions from a
human cognitive view. We aim at the egocentric reference frames that human tends to use when
performing actions. The negative direction of gravity is adopted as upward vector ru, the vector
from left hip to right hip is adopted as right vector rr, and the forward vector is calculated as
rf = ru × rr. These vectors of each frame are denoted as R· = {r·i}ti=1.

Position Phrase (PP) focuses on the movement direction of joint xj w.r.t. reference vector R·. The
indicator for PP at i-th frame is calculated as

s
(j,·)
i = ⟨(xj

i − x0
i ), r

·
i⟩ − ⟨(xj

i−1 − x0
i−1), r

·
i−1⟩. (1)

The sign of s(j,·)i categorizes PP into moving along/against R·, or relatively static
along R· for indicators with small amplitudes. After filtering, 36 different PPs are extracted.
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Figure 2: Six types of KP from four kinematic hierarchies are extracted from a motion sequence. A
scalar indicator si is calculated per Phrase per frame. Its sign categorizes the corresponding Phrase.

Pairwise Relative Position Phrase (PRPP) describes the relative position between a pair of joints
(xj , xk) w.r.t. reference vector R·. PRPP indicator at i-th frame is s(j,k,·)i = ⟨(xj

i − xk
i ), r

·
i⟩. For

(L-Hand, R-Hand) and forward vector Rf , PRPP could be L-Hand behind/in front
of R-Hand according to the sign of s(j,k,·)i . After filtering, 242 PRPPs are extracted.

Pairwise Distance Phrase (PDP) describes how the L2 distance between a pair of joints (xj , xk)
changes. The indicator for PDP is calculated as

s
(j,k)
i = ∥xj

i − xk
i ∥2 − ∥xj

i−1 − xk
i−1∥2. (2)

The sign of s(j,k)i categorizes PDP into moving closer/away, or relatively static. After
dropping joint pairs in the skeleton topology, such as the hand and elbow, 81 PDPs are extracted.

Limb Angle Phrase (LAP) targets at the change of bend angle between two connected limbs
(xj , xk) and (xj , xl). The indicator for LAP is calculated as

s
(j,k,l)
i = arccos(⟨xk

i − xj
i , x

l
i − xj

i ⟩)− arccos(⟨xk
i−1 − xj

i−1, x
l
i−1 − xj

i−1⟩). (3)

LAP describes the limb chain (xj , xk)-(xj , xl) as bending or unbending. 8 LAPs are extracted.

Limb Orientation Phrase (LOP) describes the orientation of the limb (xj , xk) w.r.t. R·, note that
xk is the distal limb. The scalar indicator for LOP is calculated as s(j,k,·)i = ⟨xk

i − xj
i , r

·
i⟩. The sign

of s(j,k,·)i categorizes the LOP into limb (xj , xk) pointing along/against R·, or a placeholder
category for those with little magnitude. 33 LOPs are extracted.

Global Velocity Phrase (GVP) describes the direction of global velocity with respect to R·. The
indicator is calculated as s·i = ⟨x0

i+1 − x0
i , r

·
i⟩. The three categories are moving along/against

R·, or static along R· according to the sign of s·i.

These result in 403 Phrases in total, covering motion diversity and distribution from various levels.
While we clarify that these Phrases do not rule out the possibility of other possible useful potentials.

3.2 CONSTRUCTING KINEMATIC PHRASE BASE

KP enables us to unify motion data with different formats to construct a large-scale knowledge
base containing motion, text, and KP. Motion sequences of different representations are collected,
including 3D skeleton sequences and SMPL (Loper et al., 2015)/SMPL-X (Pavlakos et al., 2019)
parameter sequences. The sequences are first re-sampled to 30Hz and rotated so that the negative
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direction of the z-axis is the gravity direction. Then, the sequences are converted into 3D skeleton
sequences for KP extraction as in Sec. 3.1. Text annotations attached to the sequences are directly
saved. For sequences with action category annotation, the category name is saved. For those with
neither text nor action category, the text information is set from its attached additional information,
like objects for SAMP (Hassan et al., 2021). Finally, we collect 87k motion sequences from 11
datasets. Detailed statistics are shown in Tab. 1. More details are included in the appendix.

4 MOTION UNDERSTANDING VIA KP

Dataset Mot. Rep. #Seqs #Actions Text
AMASS (Mahmood et al., 2019) SMPL-X 26k 260 ✓
GRAB (Taheri et al., 2020) SMPL-X 1k 4 ✓
SAMP (Hassan et al., 2021) SMPL-X 0.2k N/A ✓*
Fit3D (Fieraru et al., 2021) SMPL-X 0.4k 29 ✓
CHI3D (Fieraru et al., 2020) SMPL-X 0.4k 8 ✓
UESTC (Ji et al., 2018) SMPL 26k 40 ✓
AIST++ (Li et al., 2021a) SMPL 1k N/A ✓*
BEHAVE (Bhatnagar et al., 2022) SMPL 0.3k N/A ✓*
HuMMan (Cai et al., 2022) SMPL 0.3k 339 ✓
GTAHuman (Cai et al., 2021) SMPL 20k N/A x
Motion-X(Lin et al., 2023a) SMPL-X 65k N/A ✓
Sum - 140k 680+ -

Table 1: Statistics of Kinematic Phrase Base. Mot. Rep. indicates
motion representation. “✓*” means texts are generated from the
attached additional information instead of human annotation.

By motion understanding, we
mean both low-level under-
standing like interpolation and
modification, and high-level un-
derstanding like generative map-
ping from text to motion. To
achieve this, we first learn
a motion-KP joint space with
less ambiguity and more inter-
pretability. Then, with this
space, we introduce its applica-
tion to both low-level and high-
level motion-semantics under-
standing.

4.1 PRELIMINARIES

We first introduce the representation for motion and KP. Motion is represented as a human pose
sequence with n frames as M = {mi}ni=1. In detail, SMPL (Loper et al., 2015) pose parameters are
transformed from axis-angle format to the 6D continuous representation (Zhou et al., 2019), then
concatenated with the velocity of the root joint, resulting in a 147-dimensional representation per
frame. KP is represented by signs of the indicators.

4.2 JOINT SPACE LEARNING

Model Structure. An overview of our model is illustrated in Fig. 3. Motion VAE is a transformer-
based VAE adapted from Petrovich et al. (2021). The encoder Em takes motion M and two distribu-
tion tokens mµ,mσ as input, and the outputs corresponding to the distribution tokens are taken as the
µm and σm of the Gaussian distribution. Then, the transformer decoder Dm takes zm ∼ G(µm, σm)
as K,V , and a sinusoidal positional encoding of the expected duration as Q. The output is fed into a
linear layer to obtain the reconstructed motion sequence M̂ . KP VAE with encoder Ep and decoder
Dp resembles Motion VAE. The sign of Dp output is adopted as the predicted KP Ĉ. Notice that the
decoders Dm,Dp could take arbitrary combinations of zm, zp as input, outputting M̂·, Ĉ·.

Self-supervised Training. With the VAEs, we propose a self-supervised training strategy to learn
motion-KP joint space. As a coherent representation, the overall representation should not change
drastically with a small portion of KP unknown. Even more, the missing Phrases should be recovered
from existing Phrases. In this view, we randomly corrupt samples during training by setting a small
portion of KP as 0. The training is thus executed in a self-supervised manner. This helps mine
the correlation among different Phrases while also effectively increasing the robustness of the joint
space. Similar to TEMOS (Petrovich et al., 2022), four losses are adopted: reconstruction loss, KL
divergence loss, distribution alignment loss, and embedding alignment loss.

4.3 KP-MEDIATED MOTION UNDERSTANDING

With the joint space, we can perform both low-level and high-level motion understanding with KP
mediation. We introduce three applications to show the capability of KP, as shown in Fig. 3.
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Figure 3: We train motion-KP joint latent space in a self-supervised training manner. KP is randomly
masked during training. Reconstruction and alignment losses are adopted. The joint space could be
applied for multiple tasks, including motion interpolation, modification, and generation.

KP-mediated Motion Interpolation Given a corrupted motion sequence M̃ , we extract its cor-
responding KP sequence C̃, then feed them to encoders Em, Ep and decoder Dp, resulting in the
estimated KP sequence Ĉ. Ĉ and M̃ are fed into Em, Ep and Dm, resulting in interpolated M̂ .

Motion Modification Motion modification functions similarly. Motion M is first extracted into KP
sequence C. Modifications could be made on C resulting in C̃. Modified motion frames are then
masked, getting M̃ . M̃, C̃ are fed into Em, Ep and Dm, getting the interpolated M̂ .

KP-mediated Motion Generation. Given text t, to generate a motion sequence from it, we first
encode it into latent zt with CLIP text encoder Et. Direct mapping could be achieved by training
the motion decoder Dm for M̂ = Dm(zt). We show that the direct mapping could be impressively
improved with our joint space in Sec. 6.4. With KP, we could perform a novel KP-mediated motion
generation. We adopt a vanilla latent diffusion paradigm for KP-mediated text-to-motion tasks. An
extra denoiser is trained to denoise a random noise zTp to KP latent zp = z0p with T diffusion steps.
We then decode KP sequence Ĉ from zp with Dp. Then, Ĉ is encoded by Ep, getting distribution
G(µp, σp). zp is sampled and sent to Dm to generate a motion sequence. Experiments show that KP
could be a promising stepping stone to mitigate the huge gap from action semantics to motion.

5 KINEMATIC PROMPT GENERATION

With the interpretability and objectivity of KP, we propose a new motion generation benchmark.

Before that, we first analyze current benchmarks. A crucial aspect of motion generation evaluation
is motion-semantic consistency. The gold standard is user study. However, it is expensive and
inefficient to scale. Early metrics like MPJPE (Mean Per Joint Position Error) and MAE (Mean
Angle Error) mechanically calculate the error between the generated and GT samples. These metrics
fail to reveal the real ability of generative models: What if the models memorize GT samples? Or
what if the samples are diverse from GT but also true? FID (Frechet Inception Distance) is adopted to
mitigate this issue. However, it provides a macro view of the quality of all generated samples without
guarantees for individual samples. Guo et al. (2022a) proposed R-Precision, using a pre-trained
text-motion matching model to examine whether the generated samples carry true semantics. They
both rely on the latent space from a black-box pre-trained model, which is not credible. Besides,
models might learn short paths to over-fit the pre-trained model. Moreover, since automatic mapping
from motion to semantics across their huge gap is still an unsettled problem, adopting it to evaluate
motion generation is not a decent choice. Moreover, most current motion generation evaluations are
performed on datasets (Guo et al., 2022a; Plappert et al., 2016; Ji et al., 2018) with considerable
complex everyday actions, further increasing the difficulty.
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To this end, we propose a novel benchmark: Kinematic Prompts Generation (KPG). Instead of
previous benchmarks focusing on everyday activities or sports, we take a step back in the complexity
of the target action semantics. Based on KP, KPG focuses on evaluating whether the models could
generate motion sequences consistent with specific kinematic facts given text prompts.

KP Text prompt samples
PP Left hand moves forwards.
PRPP Left hand is below head then above head.
PDP Left hand moves away from head.
LAP Left arm bends.
LOP Left forearm points forwards then backward.
GVP The person moves forwards.

Table 2: Text prompts converted from KP.
Joint/limb names, prepositions, verbs, and ad-
verbials could be replaced w.r.t. specific Phrases.

In detail, we convert KP into text prompts with
templates as in Tab. 2, resulting in 840 text
prompts. Given prompt Ti ∈ T from Phrase
ci, the model generates motion M̂i, along with
extracted KP Ĉi. We calculate Accuracy as
Acc = 1

|T |
∑

Ti∈T 1[ci ∈ Ĉi], where 1[·] = 1 if
the expression in [·] is True, otherwise 0. Note
that, for ci ∈ Ĉi, ci should keep for more than
5 consecutive frames to avoid trivial perturba-
tions. Accuracy examines whether the Phrase corresponding to the given prompt appears in the KP
sequence converted from generated motion. The calculation involves no black-box model thanks to
KP, presenting a fully reliable evaluation pipeline. Also, with the effortless motion-to-KP conver-
sion, the computation could be conducted automatically. More details are in the appendix.

6 EXPERIMENT

Implementation Details. HumanML3D (Guo et al., 2022a) test split is held out for evaluation,
with the rest of KPB for training. During training, the motion sequences are canonicalized by
eliminating the rotation along the z-axis in the first frame, and the same counter-rotation is applied
to the following frames. Sequences are sampled to 15 FPS and randomly clipped into short clips
with lengths between 30 frames and 150 frames. The batch size is set as 288, and an AdamW
optimizer with a learning rate of 1e-4 is adopted. We randomly corrupt less than 20% of the Phrases
for a sample. The Motion-KP joint space is trained for 6,000 epochs. While the text-to-motion
latent diffusion model is trained for 3,000 epochs, with the joint space frozen. All experiments are
conducted in 4 NVIDIA RTX 3090 GPUs. More details are provided in the appendix.

6.1 MOTION INTERPOLATION

Following Jiang et al. (2023), 50% frames are randomly masked for interpolation evaluation. FID
and Diversity are also evaluated. We adopt MDM (Tevet et al., 2022b) as the baseline. In Tab. 3, our
method provides better FID. While with additional KPB, the Diversity is increased.

6.2 MOTION GENERATION

Settings. We adopt the HumanML3D test set (Guo et al., 2022a) for conventional text-to-motion
evaluation. The evaluation model from Guo et al. (2022a) is adopted to calculate R-Precision, FID,
Diversity, and Multimodality. KPG is also adopted, with the proposed Accuracy. Also, Diversity
is computed as a reference. We run the evaluation 20 times and report the average metric value.
Details are given in the appendix.

Results on conventional text to motion are shown in Tab. 3. Our method is competitive without
KPB. However, KPB brings a counter-intuitive performance drop. To evaluate this, we further
conduct a user study to make human volunteers judge the motions instead of a proxy neural network.

Our user study is different from previous efforts in two aspects. First, instead of testing a small set of
text prompts (less than 50 in previous works (Tevet et al., 2022b; Chen et al., 2023)), we randomly
select 600 sentences from the HumanML3D test set. By scaling up, the result is convincing in
reflecting the ability to generate motion for diverse text inputs. Second, neither asking the volunteers
to give a general rating for each sample nor to choose between different samples, we ask them two
questions: 1) Do the motion and the text match? and 2) Is the motion natural? For Q1, three
choices are given as “No, Partially, Yes”. For Q2, two choices are given as “Yes, No”. In this way,
we explicitly decouple the evaluation of text-to-motion into semantic consistency and naturalness,
corresponding to R-Precision and FID. For each prompt, we generate one sample considering the
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Motion Interpolation Motion Generation
Methods FID↓ Diversity→ R-P@1↑ FID↓ Diversity→ Multimodality
GT 0.002 9.503 0.511 0.002 9.503 -
TEMOS (Petrovich et al., 2022) - - 0.424 3.734 8.973 0.368
T2M (Guo et al., 2022a)* - - 0.455 1.067 9.188 2.090
MDM (Tevet et al., 2022b)* 2.698 8.42 0.320 0.544 9.559 2.799
TM2T (Guo et al., 2022b)* - - 0.424 1.501 8.589 2.424
MLD (Chen et al., 2023)* - - 0.481 0.473 9.724 2.413
T2M-GPT (Zhang et al., 2023a)* - - 0.492 0.141 9.722 1.831
MotionGPT (Jiang et al., 2023)* 0.214 9.560 0.492 0.232 9.528 2.008
Ours* 0.197 9.772 0.475 0.412 10.161 2.065
Ours 0.226 10.022 0.434 0.631 10.372 2.584

Table 3: Result Comparison of motion interpolation and generation on HumanML3D. R-P@1 is
short for R-Precision@1. * indicates the model is trained on the HumanML3D train set only.
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Figure 4: User study on HumanML3D, with “Y”
for Yes and “P” for partially.
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Figure 5: User study on KPG, with “Y” for Yes
and “P” for partially.

annotation cost. We claim that the models should generate natural text-matching motion most of
the time so that the one-sample setting would not hurt the fidelity of our user study. 36 volunteers
are invited, each reviewing 200 sequences. Thus each sequence receives 3 user reviews. Also,
we compute R-precision@1 of the generated sequences for reference. MDM (Tevet et al., 2022b),
T2M-GPT (Zhang et al., 2023a), MLD (Chen et al., 2023), and our method are evaluated.

User study results are shown in Fig. 4. Though our method is not superior in R-Precision, we re-
ceive better user reviews, showcasing the efficacy of our KP-mediated generation strategy. Recent
T2M-GPT and MLD present similar R-Precision, but only T2M-GPT manages to keep a good per-
formance with user reviews. Moreover, the discrepancy between R-Precision and user reviews is
revealed in both absolute value and trends. More results and analysis are given in the appendix.

Results on KPG are shown in Tab. 4. KPG is considered an easier task than conventional text-based
motion generation since it is targeted at action semantics with much less complexity. However, pre-
vious methods are not performing as well as expected. Though we managed to deliver substantial
improvements, the accuracy remains below 60%, which is far from satisfying. There is a consider-
able gap between existing methods and ideal motion generation models.

Furthermore, given the discrepancy between automatic metrics and user study as shown in Fig. 4,
we conducted a similar user study with 100 randomly selected prompts from KPG involving T2M-
GPT and our model. Fig. 5 demonstrates that KP-inferred Accuracy and user reviews share similar
trends. We also calculate their consistency, showing KP and user study give the same reviews for
84% of the samples. We believe KPG could thus be a first step towards reliable automatic motion
generation evaluation. More analyses are given in the appendix.

6.3 VISUALIZATION

We first present a modification sample in Fig. 6. By modifying KP, we could edit arbitrary motion at
a fine-grained level. Also, We compare generated samples of T2M-GPT and our methods in Fig. 7.
Our method properly responds to text prompts with constraints on specific body parts. This could be
attributed to KP mediation, which explicitly decomposes the action semantics into kinematics cues
of body parts. Note that T2M-GPT might generate redundant motion for simple prompts, while our
method provides more concise and precise results. More visualizations are in the appendix.
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Methods Acc.%↑ Diversity
HMDM (Tevet et al., 2022b) 44.40 5.725
MLD (Chen et al., 2023) 44.76 5.901
T2M-GPT (Zhang et al., 2023a) 47.86 6.593
Ours 52.14 6.017

Table 4: Results on Kinematic Prompt Generation.

Methods Acc.%↑ Diversity
Ours 52.14 6.017
w/o KP mediation 50.43 5.616
Direct mapping 42.28 5.379
w/o Joint KP 51.03 5.765
w/o Joint Pair KP 48.24 5.596
w/o Limb KP 51.92 5.804
w/o Body KP 52.04 5.903

Table 5: Ablation results on KPG.
Left 🖐 above👨‍🦲
Left💪 points upwards

Modify on KP

Figure 6: Our model supports
fine-grained modification on mo-
tion via modification on KP.

T2M-GPT

Ours

“holding on to the leg and 
flexing it out”

“standing, raising right foot”

Figure 7: Visualization of generated samples. Compared to T2M-
GPT, our method provides a better response to prompts with ex-
plicit constraints on specific body parts.

6.4 ABLATION STUDIES

Ablation study results on KPG are shown in Tab. 5.

KP mediation. By using our joint space without KP mediation, we still present a competitive result,
showing the efficacy of motion-KP joint space.

Direct mapping. By directly mapping with no KP involved, we present a similar performance com-
pared to previous methods. It demonstrates the significance of KP in conveying action semantics.

Different KP sets. We examine the contribution of different KP sets: joint KP (PP), joint pair KP
(PRPP, PDP), limb KP (LAP, LOP), and body KP (GVP). A leave-one-out style evaluation shows
the elimination of joint KP and joint pair KP results in notable performance degradation, while the
influence of the rest is relatively subtle.

7 DISCUSSION

Here, we discuss the limitations and prospects of KP and KP-based applications. First, KP could
be extended beyond its current criteria of sign. These criteria guarantee objectivity but overlook
important kinematic information like movement amplitude and speed. Also, due to the granularity
of the adopted skeleton, fine-grained kinematic information on fingers is not well-preserved. The
exploration of amplitude/speed/finger-based KP would be a promising goal to pursue. Second, KPB
could be extended to datasets with other modalities, like 2D pose and egocentric action datasets.
Though these modalities provide incomplete 3D information, we could extract KP that is credibly
accessible across modalities. Third, with the convenient conversion from KP to text, auxiliary text
descriptions could be automatically generated for motions via KP. Fourth, KPG could be extended
by paraphrasing existing prompts and combining different Phrases.

8 CONCLUSION

In this paper, we proposed an intermediate representation to bridge human motion and action se-
mantics as the Kinematic Phrase. By focusing on objective kinematic facts of human motion, KP
achieved proper abstraction, interpretability, and generality. A motion understanding system based
on KP was proposed and proven effective in motion interpolation, modification, and generation.
Moreover, a novel motion generation benchmark Kinematic Prompt Generation is proposed. We
believe that KP has great potential for advancing motion understanding.
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APPENDIX

A OVERVIEW

This supplementary material presents more details and additional results not included in the main
paper due to page limitation. The list of items included are:

• More details about kinematic phrase in Sec. B.

• More details about kinematic phrase base in Sec. C.

• Our method details in Sec. D.

• More details about kinematic prompt generation in Sec. E.

• Additional experimental details in Sec. F.

• Video demo (separate file: 125.mp4 and kpg samples.mp4).

B KINEMATIC PHRASE DETAILS

This section lists the details of the six defined types of KP. During extraction, the indicator is set as
zero if it is smaller than 1e-4.

B.1 POSITION PHRASE

There are 36 phrases, corresponding to 36 interested ⟨joint, reference vector⟩ pairs like
⟨left hand, forward vector⟩. It is composed of 14 joints (except the pelvis and both eyes) and 3
reference vectors with originally 42 Phrases. Since there are joints that define the reference vectors
(e.g. hips for the leftward vector). Specifically, shoulders and hips are excluded for the leftward
vector, and hips are excluded for the upward vector, resulting in 42-6=36 PPs. The pairs are listed
in the file KP/pp.txt.

B.2 PAIRWISE RELATIVE POSITION PHRASE

There are 242 phrases corresponding to 242 interested ⟨joint, joint, reference vector⟩ triplets
like ⟨left hand, right hand, forward vector⟩, listed in the file KP/prpp.txt. It is composed
of 136 joint pairs and 3 reference vectors with originally 408 Phrases. 24 joint pairs that are linked
by limbs are filtered out. 30 Eye-related pairs are filtered out except (the left eye, and right eye) due
to the others are covered by head-related pairs. 4 triplets that the relationship barely changes along
the reference vector (e.g., right knee, left hip, and leftward vector) are filtered out. These result in
408-24*3-30*3-4=242 PRPPs.

B.3 PAIRWISE DISTANCE PHRASE

Joint pairs that are connected by human body topology are filtered out, like hand-elbow and
shoulder-hip. There are 81 phrases corresponding to 81 interested ⟨joint, joint⟩ pairs like
⟨left hand, right hand⟩, listed in the file KP/pdp.txt. It is composed of 105 joint pairs (except
both eyes). 24 pairs that are linked by the human body are filtered out, resulting in 81 PDPs.

B.4 LIMB ANGLE PHRASE

There are 8 phrases corresponding to 8 interested limbs, listed in the file KP/lap.txt. The arms,
legs, and their link with the upper body are included as 8 LAPs.

B.5 LIMB ORIENTATION PHRASE

There are 33 phrases corresponding to 33 interested ⟨limb, reference vector⟩ pairs like
⟨left shank, right vector⟩, listed in the file KP/lop.txt. The 8 arm and leg limbs, head,
collarbones, hips, torsos, and upper-body, paired with the 3 reference vectors, result in 45 LOPs in
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Figure 8: Motion, KP, and text distribution of Kinematic Phrase Base.

Figure 9: Word cloud visualization of the texts in Kinematic Phrase Base.

total. 12 pairs that barely change along the reference vector (e.g., left-right hip, leftward vector) are
filtered out, resulting in 45-12=33 LOPs.

B.6 GLOBAL VELOCITY PHRASE

There are 3 phrases corresponding to the velocity direction with respect to the three reference vec-
tors.

C KINEMATIC PHRASE BASE DETAILS

Over 140 K motion sequences are collected to construct the Kinematic Phrase Base, including 9
M frames (in 30 FPS) with 48 K different sentences, covering a vocabulary size of 7,418. Here,
we illustrate the distribution of the collected database represented in motion, KP, and text in Fig. 8.
Besides, a word cloud visualization of the texts in the database is illustrated in Fig. 9.

D METHOD DETAILS

D.1 LOSSES FOR JOINT SPACE LEARNING

Reconstruction loss Lrec compares the GT with the outputs of the VAEs. L1 losses are calculated
for the motion representation M,M̂ , KP C, Ĉ, the skeleton joints J, Ĵ , the down-sampled mesh
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vertices V, V̂ , and the joint accelerations A, Â.

Lrec =
∑

·∈{m,p,mp}

||M· − M̂·||1 + ||C· − Ĉ·||1 + ||J· − Ĵ·||1 + ||V· − V̂·||1 + ||A· − Â·||1. (4)

KL divergence loss LKL encourages each distribution to be similar to a normal distribution π =
G(0, I) by minimizing the Kullback-Leibler(KL) divergence between the normal distribution and
the learned motion and KP distributions. The loss is calculated as

LKL = KL(ϕm, π) +KL(ϕp, π). (5)

Distribution alignment loss Lda encourages the distributions of motion and KP to resemble each
other by minimizing the KL divergence between them. The loss is calculated as

Lda = KL(ϕm, ϕp) +KL(ϕp, ϕm). (6)

Embedding alignment loss Lemb encourages the sampled latent vectors to be aligned by minimizing
their L1 distance. The loss is calculated as

Lemb = ||zm − zp||1. (7)

The overall loss is calculated as

L = λ1Lrec + λ2LKL + λ3Lda + λ4Lemb, (8)

where {λi}4i=1 are weighting coefficients.

E KINEMATIC PROMPT GENERATION DETAILS

E.1 PROMPTS

We provide the 840 text prompts converted from KP in the file kpg.txt.

E.2 DETAILS OF ACCURACY COMPUTATION

Given the generated motion X with t frames and the target KP ci ∈ {−1, 0, 1}, we first extract KP
sequence corresponding to ci as Ci ∈ {−1, 0, 1}t. Then, ci ∈ Ci is recognized when there is the
sequence ci, ci, ci, ci, ci is a consecutive subsequence of Ci. For PRPP and LOP evaluation, the
sequence c0i , c

0
i , c

0
i , c

0
i , c

0
i , c

1
i , c

1
i , c

1
i , c

1
i , c

1
i is the expected subsequence.

F EXPERIMENT DETAILS

F.1 IMPLEMENTATION DETAILS

The Motion VAE and KP VAE share the same structure: a 4-layer transformer encoder, a 4-layer
transformer decoder, and a fully connected layer for final outputs. The denoiser adopted for text-to-
motion is designed as a 4-layer transformer decoder. The latent size is set to 256. {λi}4i=1 are set
as 1. The learning rate is decayed at 4,000 epochs for joint space training and at 2,000 epochs for
text-to-motion latent diffusion model training.

F.2 MOTION GENERATION SETTINGS

For HumanML3D (Guo et al., 2022a), motion sequences are generated for 10 seconds given a text
prompt. For KPG, the models are required to generate 120 frames given a text prompt.

R-Precision is calculated in a similar way to Guo et al. (2022a). For each generated motion, its
text description is mixed with 31 randomly selected mismatched descriptions from the test set. The
cosine distances between the motion feature and text features are computed. The average accuracy
at the top-1 place is reported.

FID is adopted to measure the divergence between the GT motion distribution and the generated
motion distribution in the latent space.
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Methods Top-1 Acc.%↑ Top-5 Acc.%↑
MotionCLIP Tevet et al. (2022a)* 40.90 57.71
2s-AGCN Shi et al. (2019); Punnakkal et al. (2021)* 41.14 73.18
Ours* 45.73↑4.6(11.2%) 76.92↑3.7(5.1%)

Ours 47.36↑6.2(15.1%) 78.44↑5.3(7.2%)

Table 6: Motion classification results on BABEL-60. * indicates the model is trained with the
BABEL train set only.

Method MDM (Tevet et al., 2022b) MLD (Chen et al., 2023) T2M-GPT (Zhang et al., 2023a) Ours
#params 23M 42.7M 228M 45.1M

Table 7: Model Size Comparison.

Diversity measures the variance of the generated motion sequences. It is calculated as the average
latent distance between two randomly sampled generated motion sets. The set size is set as 300 in
this paper.

Multimodality measures the variance of the generated motion sequences within each text prompt.
For each description, two subsets of motion sequences with the same size are generated, and then
the Multimodality is calculated as the average distance between the two sets of motions in the latent
space. The size of each subset is set as 10 in this paper.

F.3 KP FOR ACTION RECOGNITION

We follow the BABEL 60-classes benchmark Punnakkal et al. (2021) and report the Top-1 accu-
racy and Top-5 accuracy on the BABEL validation set. A simple MLP is adopted to compute the
prediction scores from the encoded KP embeddings. As shown in Tab. 6, we achieve superior per-
formance on BABEL-60 compared to previous SOTAs on Top-1 accuracy, proving the efficacy of
our KP-mediated motion classification.

F.4 MODEL SIZE COMPARISON.

We compare the number of parameters in our model and previous SOTAs in Tab. 7. As shown, with
a model size comparable to MLD (Chen et al., 2023) and significantly lower than T2M-GPT (Zhang
et al., 2023a), we achieve competitive performance on conventional benchmarks and even better
performance with the newly proposed KPG.

F.5 USER STUDY DETAILS

F.5.1 USER STUDY DESIGN

As stated in the main text, we adopt a direct Q&A-style user study instead of a popular preference
test or ratings. Here we clarify the reason for this design choice. First, this design is more suitable
in evaluating semantic consistency, which we identify as categorical instead of continuous at the
sample level. That is, it is hard to tell whether a motion is more raising left-hand up than
another. Instead, there is only whether a motion is raising left-hand up or not. Therefore,
we chose to present a direct question on semantic consistency. Second, this design explicitly decou-
ples the evaluation of text-to-motion into semantic consistency and naturalness, corresponding to
R-Precision and FID. When rating motions or choosing between two motions, it is hard to guarantee
the users make choices according to the expected standard. Therefore, we explicitly ask decoupled
binary questions for decomposition. Third, it helps reduce annotation costs. For preference testing,
the complexity is O(N2), while with our user-study protocol, the complexity is only O(N). In
consideration of our primary focus on semantic consistency, we adopt this protocol. We also admit
this protocol is sub-optimal in naturalness evaluation, which is a continuous factor. We present the
results on naturalness as a reference in the following sections.
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FID = 0.544
R-P@1 = 0.266

Semantic consistency SumYes Partially No

Naturalness Yes 0.40 0.18 0.10 0.68
No 0.03 0.11 0.18 0.32

Sum 0.43 0.29 0.28 1

(a) MDM (Tevet et al., 2022b).

FID = 0.212
R-P@1 = 0.473

Semantic consistency SumYes Partially No

Naturalness Yes 0.34 0.13 0.04 0.51
No 0.10 0.14 0.25 0.49

Sum 0.44 0.27 0.29 1

(b) MLD (Chen et al., 2023).
FID = 0.141

R-P@1 = 0.292
Semantic consistency SumYes Partially No

Naturalness Yes 0.50 0.16 0.05 0.71
No 0.06 0.08 0.15 0.29

Sum 0.56 0.24 0.20 1

(c) T2M-GPT (Zhang et al., 2023a).

FID = 0.631
R-P@1 = 0.274

Semantic consistency SumYes Partially No

Naturalness Yes 0.52 0.21 0.02 0.75
No 0.05 0.06 0.14 0.25

Sum 0.57 0.27 0.16 1

(d) Ours.

Table 8: Detailed user study results on HumanML3D.

Accuracy = 50% Semantic consistency SumYes Partially No

Naturalness Yes 0.29 0.09 0.53 0.91
No 0.04 0.01 0.04 0.09

Sum 0.33 0.10 0.57 1

(a) T2M-GPT Zhang et al. (2023a).

Accuracy = 54% Semantic consistency SumYes Partially No

Naturalness Yes 0.33 0.07 0.51 0.92
No 0.04 0.01 0.04 0.08

Sum 0.37 0.08 0.55 1

(b) Ours.

Table 9: Detailed user study results on KPG.

F.5.2 USER STUDY ON CONVENTIONAL TEXT-TO-MOTION

Detailed user study results on HumanML3D are demonstrated in Tab. 8. As shown, both FID and R-
P@1 are not totally consistent with the user reviews, indicating these black-box-based metrics might
be sub-optimal for motion generation evaluation. Meanwhile, the four evaluated methods present a
similar positive correlation between semantic consistency and naturalness. Moreover, it shows that
generating natural motions is a little harder than generating partially semantic-consistent motions,
which might be a potential direction to advance motion generation.

F.5.3 USER STUDY ON KPG

Detailed user study results on KPG are demonstrated in Tab. 9. Our proposed Accuracy shares a
similar trend with user-reviewed semantic consistency between the two methods. Both methods
receive good naturalness reviews, which could result from the simple prompt structure of KPG.

Furthermore, we provide detailed consistency statistics between KP-inferred Accuracy and user-
reviewed semantic consistency in Tab. 10. Samples generated from T2M-GPT and our method
are included. KP and users provide similar reviews for over 80% of the samples, showing good
consistency. With respect to user reviews, KP-inferred Accuracy has a higher false positive rate
(0.12 / 0.52 = 0.2308) than a false negative rate (0.04 / 0.48 = 0.0833). We find there are two typical
false positive scenarios. First, the generated motion results in rather small indicators, close to the
1e-4 threshold. KP captures this, however, it is hard for humans to notice such subtle movements.
Second, as shown in Fig. 10, the generated motions sometimes tend to be redundant compared to
the given prompts. Users might be distracted, overlooking the targeted semantics. We find this
happens more for T2M-GPT generated samples (in Fig. 7, extra walking motion; in Fig. 10, extra
right-hand waving motion), while our method manages to provide more concise responses. We think
this could partially explain the higher Diversity of T2M-GPT in Tab. 4. For the first scenario, we
think an adaptive threshold w.r.t. the overall motion intensity would be helpful, since to human
perception, the relative amplitude is usually more important than the absolute amplitude. Also, as
stated in Sec. 7, extending KP to amplitude might also help. The second scenario urges us to rethink
the current text-to-motion task setting. For a “matched” motion-text pair, should the text semantics
be a subset of motion semantics, or strictly match? Also, is it expected to increase diversity by
introducing redundant motions? We identify these questions as interesting points of attack and leave
them for future exploration.
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User Reviewed SumYes Partially No

KP-Inferred Yes 0.32 0.08 0.12 0.52
No 0.03 0.01 0.44 0.48

Sum 0.35 0.09 0.56 1

Table 10: Detailed consistency statistics between KP-inferred Accuracy and user-reviewed semantic
consistency.

Left-hand moves closer to left-foot

T2M-GPT

Ours

KP-inferred: √
User review: ×

KP-inferred: √
User review: √

Figure 10: For KPG, we generate more concise motion than T2M-GPT (Zhang et al., 2023a).

Method PP % PRPP % PDP % LAP % LOP % GVP % Overall
MDM Tevet et al. (2022b) 100.00 21.24 100.00 100.00 12.12 100.00 44.40
MLD Chen et al. (2023) 100.00 21.43 100.00 100.00 15.15 100.00 44.76
T2M-GPT Zhang et al. (2023a) 100.00 26.45 98.77 87.50 19.70 83.33 47.86
Ours 100.00 32.05 100.00 100.00 24.24 100.00 52.14

Table 11: Detailed results of KPG with respect to different KPs.

F.6 FAILURE ANALYSIS ON KPG

Detailed results of KPG with respect to different types of KPs are demonstrated in Tab. 11. As
shown, most methods provide accurate motions for the relatively simpler PP, PDP, LAP, and GVP.
However, T2M-GPT Zhang et al. (2023a) occasionally failed on some rather simple cases. In con-
trast, the major challenge is the PRPP and LOP-related prompts. We identify two reasons. First, the
temporal composition of KPs increases the difficulty. Second, some prompts are easy for humans
but hard for current models, as would be shown in the following.

With the attached video rebuttal.mp4, we further demonstrate more failure cases on KPG.
For accuracy, a major failure mode is due to the cases like ”right shoulder is in front of left foot,
then behind left foot”. These are simple body joint relations like exercising instructions, however,
not usually explicitly described in general datasets. This reveals that current models tend to be sub-
optimal in real understanding of the human body structure. Also, previous efforts might even corrupt
these. For user study, there are two major failure modes. First, our model could sometimes generate
a motion with limited amplitude for target KPs, which could be captured by KP-based accuracy
but humans could lose track of them. Second, previous models like T2M-GPT generate redundant
motions for simple prompts, which could confuse users.
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F.6.1 MORE VISUALIZATIONS

Some qualitative results of KPG are included in the video kpg samples.mp4. More visualiza-
tions are included in the video 125.mp4.
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