
Under review as submission to TMLR

MixTrain: Accelerating DNN Training via Input Mixing

Anonymous authors
Paper under double-blind review

Abstract

Training Deep Neural Networks (DNNs) places immense compute requirements on the un-
derlying hardware platforms, expending large amounts of time and energy. An important
factor contributing to the long training times is the increasing dataset complexity required
to reach state-of-the-art performance in real-world applications. To address this challenge,
we explore the use of input mixing, where multiple inputs are combined into a single com-
posite input with an associated composite label for training. The goal is for training on
the mixed input to achieve a similar effect as training separately on each the constituent
inputs that it represents. This results in a lower number of inputs (or mini-batches) to be
processed in each epoch, proportionally reducing training time.
We find that naive input mixing leads to a considerable drop in learning performance and
model accuracy due to interference between the forward/backward propagation of the mixed
inputs. We propose two strategies to address this challenge and realize training speedups
from input mixing with minimal impact on accuracy. First, we reduce the impact of inter-
input interference by exploiting the spatial separation between the features of the constituent
inputs in the network’s intermediate representations. We also adaptively vary the mixing
ratio of constituent inputs based on their loss in previous epochs. Second, we propose
heuristics to automatically identify the subset of the training dataset that is subject to
mixing in each epoch. Across ResNets of varying depth, MobileNetV2 and two Vision
Transformer networks, we obtain upto 1.6× and 1.8× speedups in training for the ImageNet
and Cifar10 datasets, respectively, on an Nvidia RTX 2080Ti GPU, with negligible loss in
classification accuracy.

1 Introduction

The success of deep neural networks has come at a cost of rapidly rising computational requirements for
training. This increase is due to a combination of rising dataset and model complexities. For example,
in the context of image classification, training dataset complexity increased significantly from MNIST and
CIFAR-10/100 (50,000 - 60,000 images) to ImageNet-1K (1.2 million) and ImageNet-21K (14.2 million). This
is supplemented by a growth in model complexity required to achieve state-of-the-art performance (Stojnic
et al., 2023). The impact of increased training computation is both monetary (cost to train) and environ-
mental (CO2 emissions) (Strubell et al., 2019). A study from OpenAI (Amodei et al., 2018) reports that
training costs of deep neural networks have been doubling every 3.5 months, greatly outpacing improvements
in hardware capabilities.

Prior Efforts on accelerating DNN Training: Several methods have been proposed to accelerate DNN
training. We divide them into a few broad categories, such as enabling the use of large-scale parallelism
(e.g., hundreds or thousands of servers) in DNN training (You et al., 2017; Goyal et al., 2017), training on
reduced-resolution inputs (Touvron et al., 2020; Tan & Le, 2021), training at reduced precision (Sun et al.,
2019), pruning to reduce the model size during training (Lym et al., 2019), input instance skipping (Jiang
et al., 2019; Zhang et al., 2019) and dataset condensation (Mirzasoleiman et al., 2020; Killamsetty et al.,
2021).

mixTrain: Accelerating DNN Training by mixing inputs: Complementary to the aforementioned
efforts, we propose the use of input mixing, a technique that has traditionally been used for data augmen-

1

Under review as submission to TMLR

tation (Zhang et al., 2017; Yun et al., 2019), to accelerate DNN training. Consider two training inputs x1
and x2. A mixing function F is applied to x1 and x2 to produce a mixed input X. The mixed input can
be thought of as a point in the input space that combines information from both the constituent inputs
that it represents. From the functional perspective, training on a mixed input must produce a similar effect
on the model as training on the individual constituent inputs. On the other hand, from a computational
viewpoint, mixing inputs reduces the number of input samples that need to be processed during training.
This reduction in the effective size of the training dataset leads to fewer mini-batches in each epoch, and
thereby lower training time. Due to the nature of input mixing, it is complementary to, and can be combined
with, the other approaches to accelerate training described above. In mixTrain, we adopt computationally
lightweight mixing operators CutMix and MixUp that have been proposed for a different purpose, viz. data
augmentation (Zhang et al., 2017; Yun et al., 2019). As illustrated in Fig. 1, MixUp performs a simple
weighted linear averaging of the pixels of two inputs, while CutMix randomly selects a patch of one input
and pastes it onto the other.

Realizing training speedups through input mixing raises interesting questions, such as how to train networks
on mixed samples, which samples to mix, etc. We observe that indiscriminate application of mixing leads
to a considerable drop in learning performance and model accuracy. On further investigation, we find that
this can be attributed to the interference between the processing of the constituent inputs within each
mixed input. To preserve accuracy, we therefore propose techniques to mitigate this interference. We find
that for the CutMix operator, the network’s internal features largely maintain spatial separation between
the constituent inputs in convolutional layers, but this separation is lost in the fully connected layers. We
thus propose split propagation, wherein the features corresponding to each constituent input are processed
separately by the fully connected layers. In contrast, with the MixUp operator, spatial separation between
the constituent inputs is not maintained. Here, we mitigate the impact of interference through adaptive
mixing, where the weights of the constituent inputs are varied based on their losses in previous epochs.

Additionally, we explore applying mixing selectively, i.e., only for a subset of training inputs in each epoch.
We design a loss-driven metric to identify the training samples that are amenable to mixing in each epoch.
We find that inputs at the two ends of the loss distribution, i.e., with very low and very high loss magnitudes,
are amenable to mixing. Low-loss inputs are mixed because their functional performance remains largely
unaffected by mixing. In contrast, we mix samples with high loss because a considerable percentage of
such samples are unlikely to be learned even when no mixing is applied. We show that mixTrain achieves
superior accuracy vs. efficiency tradeoffs compared to alternative approaches such as input skipping and
early termination. Finally, we note that mixTrain is designed in a completely hyper-parameter free manner.
This reduces the additional effort spent on hyper-parameter tuning for different models.

The key contributions of this work can be summarized as follows.

• To the best of our knowledge, mixTrain is the first effort to reduce the complexity of DNN training
by mixing inputs

• We propose two strategies to improve the learning performance of mixTrain. First, we propose split
propagation and adaptive mixing to reduce the impact of interference between the constituent inputs
in a composite sample. Second, we apply mixing selectively, i.e., only on a subset of the training
dataset every epoch.

• Across our benchmarks consisting of both image recognition CNNs (including ResNet18/34/50 and
MobileNet) and vision transformers, we demonstrate up to 1.6× and 1.8× improvement in training
time on the ImageNet and Cifar10 datasets respectively for ∼0.2% Top-1 accuracy loss on a Nvidia
RTX 2080Ti GPU, without the use of additional hyper-parameters.

2 Input Mixing: Preliminaries

Input mixing takes multiple inputs and combines them into a composite input, taking in information from
each of the constituent inputs. mixTrain uses two operators - MixUp (Zhang et al., 2017) and CutMix (Yun
et al., 2019), which are illustrated in Fig. 1.

2

Under review as submission to TMLR

Consider two inputs, x1 and x2. For MixUp, as seen in Equation 1, each pixel j of the composite
input X is obtained by linearly averaging the corresponding pixels of x1 and x2. The mixing ratio

Input 1 Input 2

MixUp

(a) (b)

CutMix

Figure 1: Mixing operators (a)
MixUp (b) CutMix

r is in the range [0, 1]. The CutMix operator selects a random patch of x1,
and pastes it onto x2. The weightage r of each input xi is decided by its
area in the composite sample.

Xj = r · x1,j + (1 − r) · x2,j (1)

Further, let us assume the target labels of the constituent inputs are y1 and
y2. In (Zhang et al., 2017; Yun et al., 2019), the loss of the composite input
X is defined as the weighted sum of the loss of X with respect to y1 and
y2, as shown in Equation 2 for the cross-entropy loss. Here, f is the DNN
model, and K the number of classes.

Input mixing has previously been applied for data augmentation, wherein
randomly selected training input samples are combined through operators
such as (Zhang et al., 2017; Yun et al., 2019) and added to the training set.
Training on the randomly combined input samples has the effect of virtually
augmenting the dataset, as the model is exposed to new training samples
in each epoch. These efforts are focused on improving generalization, often
achieved at the cost of increased training time. Specifically, the total number of input samples in each epoch
of training after mixing remains the same. Further, in order to realize improvements in accuracy, these
techniques often require 2-3× more training epochs than baseline SGD (Yun et al., 2019; Zhang et al., 2017).

Loss(X) = −(α · log(ef(X)y1∑K
l=1 ef(X)l

) + (1 − α) · log(ef(X)y2∑K
l=1 ef(X)l

)) (2)

3 mixTrain: Accelerating DNN Training via Input Mixing

The key idea in mixTrain is to improve the overall training time by dynamically applying the mixing operators,
MixUp and CutMix, on the training dataset D to reduce the number of samples in each epoch. However,
naive mixing, e.g., where random pairs of input samples are mixed in each training epoch to reduce the
number of training samples by half, negatively impacts classification accuracy. As observed in Fig. 2(a),
on the ImageNet-ResNet50 benchmark, the drop in accuracy incurred after training on the reduced (i.e.,
halved) dataset obtained after applying either operator is nearly 4-6%.

The following subsections discuss the two key strategies that are critical to the overall success of mixTrain,
namely, reducing the impact of interference between constituent inputs and selective mixing.

3.1 Reducing Impact of Interference

In this subsection, we discuss the primary cause affecting the accuracy of training with naive mixing, i.e.,
interference between constituent inputs, and propose techniques to address the same.

We begin by analyzing the ability of a network trained with mixed inputs to correctly classify the constituent
inputs of a composite sample. At different stages of training (different training epochs), we identify the set
of training samples that the network classifies correctly without mixing, say set S. Our goal is to understand
how the network fares in classifying the samples in set S after they have been mixed. Specifically, we
study the network’s performance in detecting the presence of both constituent inputs in the mixed sample.
Consider inputs x1 and x2 in S mixed with ratio α = 0.5 to form X, which is passed through the network.
The network detects constituent inputs x1 and x2 in X, when the softmax scores of their corresponding
class labels occupy the highest and second highest positions (order can be inter-changeable between x1 and
x2). Only a single input is detected when the class label of one of the constituent inputs has the highest
softmax score (say x1), while the second-highest score is achieved by a class not corresponding to the second
constituent input (i.e., other than x2).

3

Under review as submission to TMLR

66

68

70

72

74

76

50 60 70 80 90
Epoch Indexà

Va
l. A

cc
ur

ac
y

(%
)à

SGD
CutMix
MixUp

Epoch Indexà

A
cc

ur
ac

y
on

co

ns
tit

ue
nt

 in
pu

ts
 (

%
)àImprovement

after
interference
reduction

CutMix MixUp ZeroPatch

ResNet50-ImageNet

25

50

75

100

20 40 60 80

Improvement
after

interference
reduction

(a) (b)

Accuracy prior to mixing

Figure 2: Classification performance with mixed inputs

Samples in set S are thus mixed in pairs (r = 0.5), and the accuracy on the mixed inputs is recorded. Five
such runs are conducted to allow for different random input combinations and the results are averaged and
presented in Fig. 2. Surprisingly, after mixing is applied, the network is able to classify only less than half of
the inputs in S (green and blue dotted curves in Fig. 2(b)) even in the final epochs of training- note that these
were inputs that were classified correctly without mixing (black line). On further investigation, it is found
that for many mixed inputs, the network is able to correctly classify only one of the constituent inputs. The
class label of the other constituent input often does not appear even amongst the Top-5 predictions made by
the network. This leads to increased loss for one of the constituent samples, consequently impacting training
performance and the final validation accuracy. It is thus critical to develop techniques that effectively learn
on all constituent samples of a composite input. We next describe our approach to addressing this challenge.

Split Propagation: We identify two factors that contribute to the poor classification accuracy of a mixed
input’s constituent inputs in the case of the CutMix operator. Due to the random nature of the patch selected
from a constituent input, it is possible to miss the corresponding constituent inputs’ class object. Second,
there may be interference between the features of the constituent inputs when the network processes the
mixed sample. To design effective strategies that improve overall classification performance, it is important
to understand the individual effect of each factor. We study the impact of the first factor by passing random
patches from the inputs through the network; however, instead of mixing, random patches amounting to
half the input area are zeroed-out. As shown using the solid orange curve (ZeroPatch) in Fig. 2(b), the
drop in accuracy is only ∼16%, and is significantly lower compared to mixing. This indicates that it is the
interference between the constituent inputs that is the primary factor causing degradation in classification
performance.

Examining the intermediate representations of the network while processing mixed inputs sheds some light
on this interference. By virtue of the nature of convolutions, the spatial separation between constituent
inputs in the composite input is maintained through many layers of the network, with only mild interference
occurring at the boundaries of the inputs. For example, in Fig. 3, the right half of the features in the final
convolution layer’s output pertain to the right half of the mixed input. The spatial distinction between the
features is maintained until the last convolutional layer, but is lost after the averaging action of the final
pooling layer. As a result, the fully connected layer correctly classifies only one of the constituent inputs1.

To aid the network in classifying both constituent inputs correctly, we propose split propagation of constituent
features after the final convolution layer. As shown in Fig. 3, we identify the region in the final convolutional
layer’s output maps pertaining to each constituent input, and pass the features separately through the
remaining layers of the network. Both constituent inputs of mixed samples are now classified correctly,
leading to a significant improvement in classification performance (solid blue curve in Fig. 2(b)). During
back-propagation, the output errors of each constituent input are propagated separately until the average
pooling layer. The error tensors obtained at the input of the average pooling layer are then concatenated

1(Zhang et al., 2017; Yun et al., 2019) resolve this issue by exposing the constituent inputs twice in each epoch through two
different mixed inputs. While this improves accuracy, it defeats our objective of improving training runtime

4

Under review as submission to TMLR

Figure 3: Training Mixed Inputs

and propagated backwards across the rest of the network. The classification loss for the constituent inputs
improves, thereby improving overall validation accuracy (Fig. 2(a)). We note that the split propagation
of the constituent inputs can be performed in parallel. Thus, the runtime overheads of this scheme are
negligible, accounting for < 3% of overall training time.

Adaptive Mixing: Unlike CutMix, the MixUp operator averages each element of the constituent inputs
prior to processing the network. Therefore, the network’s internal representations do not exhibit any spatial
separation between the constituent inputs. We thus devise alternative strategies to mitigate the impact of
inter-input interference.

It appears from Fig. 2(a) that the validation accuracy with MixUp is even lower compared to CutMix , due to
a slower rate at which training loss improves for the mixed inputs. Naturally, a simple boost in performance
can be achieved by at least improving the loss for one of the constituent inputs of the mixed input. We
thus adapt the weight (r) of constituent inputs so as to favour the more difficult input, as identified by the
loss in the previous epoch. However, if the constituent samples were mixed in the previous epoch, it is not
trivial to obtain their individual losses prior to mixing. To that end, we utilize an approximation to evaluate
the losses of the constituent inputs in the previous epoch, described as follows. Consider two constituent
inputs x1 and x2 with target labels y1 and y2 respectively, that have been mixed with ratio rE in epoch E
(Equation 3), to form the composite sample X. As seen in Equation 4, we use the loss of the network on the
mixed input X to estimate its loss on the individual constituent inputs. Here, K stands for the number of
classes in the task. While estimating the loss of x1 and x2 in such a manner is indeed an approximation, this
allows us to avoid an additional forward propagation step to estimate the true loss of x1 and x2, thereby
alleviating any runtime overhead.

X = rE ∗ x1 + (1 − rE) ∗ x2 (3)

Loss(x1, E) = −log(ef(X)y1∑K
l=1 ef(X)l

) Loss(x2, E) = −log(ef(X)y2∑K
l=1 ef(X)l

) (4)

Once the losses of the constituent inputs have been obtained, we mix them in the next epoch E + 1 with the
ratio rE+1 as shown below. As seen in Fig. 2(a), this provides a boost in classification accuracy.

rE+1 = Loss(x1, E)
Loss(x2, E) (5)

Note that there is still some gap between the accuracy with and without mixing even after the use of split
propagation and adaptive mixing, which we address next.

5

Under review as submission to TMLR

3.2 Selective Mixing

We explore a second strategy, selective mixing, to further improve accuracy when training with mixed inputs.
Here, the general principle is to dynamically identify a subset of the training dataset in each epoch for which
mixing does not have a negative impact on overall classification performance. We achieve this through the
design of a loss-based amenability metric that determines, for each epoch, the subset of samples Smix that
can be mixed in subsequent epochs. Samples that are not amenable to mixing are added to set SnoMix. The
training dataset is thus formed using samples in SnoMix as is, and mixing pairs of samples in Smix.

Overview: The proposed selective mixing strategy consists of three steps as shown in Fig. 4. At every
epoch, the reduced dataset is divided into mini-batches and fed to the network. The network performs
the forward and backward passes on each mini-batch. Once the forward pass for a particular mini-batch is
complete, the loss of each constituent input is computed. This is used to determine the amenability of each
constituent input to mixing in the next epoch E+1, subsequent to which it is added appropriately to Smix or
SnoMix. Finally, the batch-sampler forms mini-batches for the epoch E+1 by randomly drawing samples
from either Smix or SnoMix.

The first and the third steps are straight-forward. In the following sub-section, we elaborate on the second
step, i.e., determining the amenability of a sample to mixing, in greater detail.

3.2.1 Evaluating amenability to mixing in Epoch E

A suitable loss-based metric must estimate the subsets Smix and SnoMix every epoch, such that no negative
impact on accuracy is suffered. We design such a metric by studying trends in the loss of a sample prior to
and after mixing, at different stages of the training process.

Consider models trained with MixUp and CutMix at three different training epochs as shown. At each selected
epoch, we compute the L1 difference of the loss of every sample x with and without mixing, i.e., lossmix(x)
and loss(x) respectively. We define lossmix(x) as the loss of the mixed sample x

′ with respect to the golden
label of x, as shown in Equation 6. Here, K is the number of classes, and y is the golden label of x. We
average lossmix(x) after 5 different random pairings to create x

′ .

Lossmix(x) = −log(ef(x
′
)y∑K

l=1 ef(x′)l

) (6)

We observe that lossmix(x) deviates and increases further away as loss(x) increases, consistently across the
benchmarks analyzed for both operators (Fig. 5(a) depicts the same for CutMix). In other words, the graph
indicates that as loss(x) increases, its amenability to mixing decreases. Furthermore, we find that prior to
mixing, a majority of the correctly classified samples occupy the low loss regime as shown in Figure 5(a).

In
p
u
ts

 o
f
M

in
i-B

a
tc

h

Figure 4: Overview of Selective Mixing

6

Under review as submission to TMLR

After applying mixing to these samples, we find that their classification accuracy is largely retained, especially
as epochs progress, as depicted in Fig. 5(b) for the CutMix operator.

A
vg

.

|L
os

s m
ix
(x

)
–

Lo
ss

(x
)|à

Loss à

90% of incorrect
samples at epoch 3095% of correct

samples at
epoch 30

ImageNet-ResNet18

50

60

70

80

90

100

20 40 60 80

%
 o

f m
ix

ed
 s

am
pl

es
 t

ha
t

ar
e

co
rr

ec
t*

 à

Loss àEpoch Index à

Epoch 30
Epoch 60
Epoch 90

(a) (b) (c)
*Accuracy reported over the set of samples that are correct prior to mixing

Figure 5: Analyzing amenability to mixing
Hence, for samples that are not mixed in epoch E, we determine their amenability to mixing in the next
epoch based on the particular region of the loss distribution it belongs to. As illustrated in Fig. 5(c), the
loss distribution is divided into three regions that utilize a different criteria for gauging amenability. We now
discuss the criteria for each region, and the conditions for continuing mixing in subsequent epochs.

Region 1 corresponds to the area in the loss distribution where a majority of the correctly classified samples
are located. From Fig. 5(b) we know that the loss, and to a certain extent the classification accuracy of
such samples remains largely unaffected by mixing and are hence mixed aggressively. Next, we consider the
portion of the loss distribution occupied by the incorrect samples and divide this space into two regions.
Region 2 comprises of incorrect samples with moderate loss. To avoid any negative impact on accuracy,
we avoid mixing these samples. Moving on to Region 3, these are samples the network finds very difficult
to classify as characterized by their high loss magnitudes. We find that the training effort can be reduced
on samples that consistently occur in Region 3 by mixing them, as they are unlikely to contribute to final
classification accuracy.

The separations in the loss distribution are realized using simple linear clustering techniques that correlate the
loss of a training sample in some epoch E to classification accuracy, based on trends in previous epochs. Let

%
 o

f
co

rr
e
ct

 s
am

p
le

s

th
at

ar
e

in
R

e
gi

o
n

1
 →

Epoch Index→

6

8

10

12

14

16

94

96

98

100

20 40 60 80

%
 o

f
in

co
rr

e
ct

 s
am

p
le

s

th
at

ar
e

in
R

e
gi

o
n

1
 →

Correct Samples Incorrect Samples

Figure 6: Efficacy of threshold Lmid

Lcorr and Lincorr represent the running average of the correct
and incorrect samples in SnoMix respectively (calculated from
epoch 0 to E-1), and let Lmid denote the average of the two
quantities, i.e.,

Lmid = 0.5 ∗ (Lcorr + Lincorr) (7)

Lmid acts as a boundary between the correct and incorrect
samples, effectively creating two clusters whose centroids are
given by Lcorr and Lincorr. Thus, samples with loss less than
Lmid in epoch E can be identified as Region 1 samples, as
they are likely to be correct. Fig. 6 plots the efficacy of Lmid

across different epochs (fraction of correct inputs under Lmid).
As desired, a majority of the correct samples (> 95%) fall in
Region 1, while only including a negligible fraction of incorrect samples (< 10%). Furthermore, samples
with loss greater than Lincorr in a particular epoch are in the upper percentile of the loss distribution of
the incorrect samples. Lincorr can hence used to create Region 2 and Region 3 as shown. We note that
loss thresholds of better quality can potentially be identified using other techniques, such as by introducing
hyper-parameters. However, tuning these hyper-parameters for each network separately is a costly process,
diminishing the runtime benefits achieved by reducing training complexity.

We will now discuss the amenability criteria designed for samples belonging to Regions 1 and 3.

7

Under review as submission to TMLR

ImageNet-ResNet18

F
ra

c.
 o

f
D

 m
ix

e
d
, a

n
d

fr
o
m

 R
1
 →

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 21 41 61 81

#samples increases,

closely matches accuracy

#samples deflecting to

SnoMix in next epoch

Epoch Index→

Figure 7: Amenability of Region 1

Amenability Criteria for Region 1: Consider a sample A
belonging to Region 1 in epoch E, i.e., LossA < Lmid. From
Figure 5(b) it is known that samples in Region 1 are likely to
be correctly classified prior to mixing. We mix such samples
as long as their loss does not exceed Lmid at some later epoch
E

′ , i.e., likely to be classified incorrectly. After epoch E
′ , they

are shifted to SnoMix. Fig. 7 illustrates the temporal variation
in the number of samples that are in Smix, and from Region
1 of the loss distribution. As can be seen, the number of such
samples increases across epochs. This is because as epochs
progress classification accuracy improves, thereby resulting in
more samples having loss below Lmid, i.e., belonging to Region
1. We note that using a loss-based threshold to determine
amenability to mixing is more robust instead of directly using
classification performance (Sec. 7), as we find that mixing outlier samples, i.e., samples with high loss yet
correct classification affects overall accuracy.

The graph also depicts the fraction of samples that deflect to SnoMix every epoch, which is a very small
fraction of the samples that are mixed. This justifies the design of the amenability rule for Region 1.

Amenability Criteria for Region 3: Samples in Region 3 have high loss (loss > Lincorr), and are
generally very difficult to classify by the network even if they are trained without mixing. In fact, we observe
that a considerable fraction of samples that consistently occur in Region 3 across epochs remain incorrect
at the end of the training process. Let I denote the set of such samples that are incorrect when training
concludes. We plot a histogram of the number of epochs samples in I occupy Region 3 across training in
Fig. 8(a). Clearly, it is observed that over half the samples in I consistently occur in Region 3 for over 70%

F
ra

c.
 o

f
sa

m
p
le

s
in

 I
 w

it
h

lo
ss

 >
 L

in
co

rr
 →

Analyzing loss statistics of set I

~50% of I has loss >

Lincorr for ~half the

epochs

#Epochs → #Epochs →

F
ra

c.
 o

f
sa

m
p
le

s
in

 C
 w

it
h

lo
ss

 >
 L

in
co

rr
 →

Analyzing loss statistics of set C

~4% correct samples

have loss > Lincorr for

more than 60 epochs

ImageNet-ResNet18

(a) (b)

Figure 8: Loss dynamics of samples in set I and set C

of the training process. It can thus be argued from a practical runtime efficiency perspective that training
effort on such samples can be reduced using mixing.

Some challenges however persist. As classification statistics evolve during training, it is difficult to determine
which samples to mix at earlier epochs, without negatively affecting final classification accuracy. Consider
set C, which comprises of samples that are correctly classified at the end of training. In Fig. 8(b), it is
seen that around 4% of the samples in C occur in Region 3 for over 60% of the training process, with their
classification accuracy improving only in the later stages of training. We must thus stipulate criteria to
identify the desired subset of Region 3 samples that can be mixed.

To that end, we therefore target samples that the network finds difficult to classify at the moment, i.e.,
in the current epoch. In addition to belonging to Region 3, if a sample’s loss increases over consecutive
epochs (i.e., become increasingly difficult) it is mixed for the next epoch, ensuing which it is brought back to

8

Under review as submission to TMLR

SnoMix. In Fig. 9(b), we find that increasing the period of time k for which the difficult samples must exhibit
increasing loss and subsequently be mixed, only marginally improves the accuracy and runtime benefits. We

Epochs →

F
ra

c.
 o

f
D

 m
ix

e
d
,

an
d

fr
o
m

 R
3

→

6

7

8

9

10

75.45

75.55

75.65

75.75

1 2 3 4 5

Val. Acc %

Runtime Benefits

V
al

.
A

cc
 %

 →

R
u
n
ti
m

e
 S

av
in

gs
 %

 →

k →
(b)(a)

0

0.1

0.2

0.3

1 11 21 31 41 51 61 71 81

#samples decreases, as

accuracy increases

ImageNet-ResNet50

Figure 9: Amenability for samples in Region 3

hence use k = 1 for all our experiments
thereby eliminating our dependence on
any hyper-parameters. The temporal
variation in the fraction of Region 3
samples mixed every epoch is depicted
in Fig. 9(a). This fraction decreases
across epochs, since several samples in
Region 3 shift to Region 1 as accuracy
improves. Interestingly, mixing difficult
samples provides ∼ 0.2% boost in classi-
fication performance over the overall val-
idation set across all our benchmarks, as
opposed to training them without mix-
ing. We believe this has the effect of allowing the network to focus on samples with moderate loss, that
are more likely to contribute to final accuracy. Finally, we highlight the advantage of mixing such difficult
samples instead of skipping them in Sec 4.

Determining sample amenability every epoch adds not more than 2% overhead in runtime on average, and
4% additional storage costs. The proposed amenability criteria thus help us successfully realize selective
mixing, i.e., achieve a competitive runtime efficiency versus accuracy trade-off.

4 Experimental Results
We showcase the runtime benefits achieved by mixTrain across different classes of image recognition DNNs,
namely convolutional neural networks (i.e., CNNs) and vision transformers Dosovitskiy et al. (2020). We
consider two datasets, namely ImageNet (Deng et al., 2009) and Cifar10 (Krizhevsky et al.). The benchmarks
for the ImageNet dataset consist of four image-recognition CNNs, viz. ResNet18, ResNet34, ResNet50 (He
et al., 2015) and MobileNetV2 (Sandler et al., 2018), trained using the same training hyper-parameters
such as learning rate, epochs etc., as in (He et al., 2015; Sandler et al., 2018). With regards to the Cifar10
dataset, we consider the ResNet18 and Resnet34 image-recognition CNNs (He et al., 2015). We also consider
three vision transformer architectures, ViT-small, ViT-SWIN and ViT-pretrained. Details on the vision
transformer architectures, and training hyper-parameters for all benchmarks can be found in Sec. 7.1.

Across all benchmarks, we report the speed-up achieved by mixTrain over the same number of epochs as the
baseline, by comparing wall-clock times.

4.1 Execution Time Benefits
ImageNet: Table 1 presents the training performance of baseline SGD and mixTrain on different ImageNet
benchmarks in terms of the Top-1 classification error and speed-up. On average, across all benchmarks,
mixTrain mixes nearly 48% and 68% of the training dataset per epoch with MixUp and CutMix respectively.
As can be seen, CutMix achieves a slightly superior trade-off than MixUp across all benchmarks, achieving
upto around 1.6× reduction in runtime compared to to the baseline, while sacrificing only ∼0.2% loss in Top-
1 accuracy. This is primarily because interference between constituent samples is better mitigated through
split propagation, thereby resulting in more inputs being mixed.

Cifar10: We present our runtime and accuracy trade-off achieved on the Cifar10 vision transformer bench-
marks in Table 2. As can be seen, mixTrain achieves 1.3×-1.6× training speed-up for nearly no loss in
accuracy. This clearly underscores that mixTrain is directly applicable to any image classification DNN,
regardless of the architecture or backbone deployed. Further, our results in Table 2 also indicate that mix-
Train is not only applicable to training vision transformers from scratch, but to the fine-tuning stage as well.
In Section 7.2 we discuss the speed-ups achieved by mixTrain on the CNN benchmarks trained on Cifar10.

Runtime overhead analysis: Across all our benchmarks, we observe that mixTrain adds no more than 2%
overhead in runtime. These marginal overheads arise due to (i) calculating amenability of inputs to interpo-

9

Under review as submission to TMLR

Table 1: Training CNNs on ImageNet

Network Training Strategy Top-1 Error Speed-Up
Baseline SGD 30.2% 1×

ResNet18 mixTrain-CutMix 30.44% 1.51×
mixTrain-MixUp 30.6% 1.32×
Baseline SGD 26% 1×

ResNet34 mixTrain-CutMix 26.25% 1.54×
mixTrain-MixUp 26.4% 1.37×
Baseline SGD 24.3% 1×

ResNet50 mixTrain-CutMix 24.45% 1.56×
mixTrain-MixUp 24.6% 1.41×
Baseline SGD 28.5% 1×

MobileNetV2 mixTrain-CutMix 28.76% 1.52×
mixTrain-MixUp 29% 1.3×

Table 2: Training vision transformers on Cifar10

Network Training Strategy Top-1 Error Speed-Up
Baseline SGD 19% 1×

ViT-small mixTrain-MixUp 19.11% 1.37×
(Training from scratch) mixTrain-CutMix 1.35% 1.32×

Baseline SGD 9% 1×
ViT-SWIN mixTrain-MixUp 8.9% 1.44×
(Training from scratch) mixTrain-CutMix 9.2% 1.4×

Baseline SGD 2.5% 1×
ViT-pretrained mixTrain-MixUp 2.46% 1.6×
(Fine-tuning) mixTrain-CutMix 2.55% 1.58×

lation and (ii) split propagation (for Cut-Mix). In (i) we compare the sample’s loss against some thresholds,
and update thresholds every epoch. However, these simple scalar operations have negligible runtime (<1.5%
overhead) compared to the multiple GEMM operations performed during training. For (ii), during split
propagation, the FC layers process the constituent inputs separately. However, the FC layers now operate
on inputs of smaller size (i.e., corresponding to the size occupied by the features of the constituent input,
which is nearly half the size of the original input). Thus, split propagation also adds less than <1% runtime
overhead compared to the baseline.

4.2 Ablation Study

Sp
e
e
d
-U

p
 →

Epoch Index →

1

1.2

1.4

1.6

1.8

2

2.2

70 72 74 76

%
 R

u
n
ti
m

e
 s

av
in

gs
 →

Val. Acc →

After

selective

interpolation

After

interference

reduction

ResNet50 ResNet34 ResNet50-ImageNet

(a) (b)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 11 21 31 41 51 61 71 81

R1

R3

Figure 10: Ablation analysis

In this subsection we conduct an ablation analysis of
mixTrain.

Contribution of interference reduction and se-
lective mixing: mixTrain uses two strategies to
achieve an optimal accuracy versus runtime trade-off,
i.e., reducing impact of interference and selective mix-
ing. Fig. 10(a) depicts the contribution of each strat-
egy towards runtime savings, for the CutMix opera-
tor. The light blue markings indicate naive mixing.
Selective mixing automatically identifies a subset of
training samples that can be mixed every epoch such
that classification accuracy is not impacted. However,
if interference between the constituent inputs is not
mitigated, training performance on mixed samples is poor (green markings). Consequently, the selective
mixing strategy is forced to become conservative, identifying fewer samples that can be mixed every epoch

10

Under review as submission to TMLR

without affecting accuracy severely. Reducing interference between the constituent inputs improves accuracy
by more than 1%, and speed-up by 10% (red markings).

Breakdown of selective interpolation: We breakdown selective interpolation by examining the region of
the loss distribution that provides the most benefits. From Fig. 10(b) (generated using CutMix) it is evident
that Region 1 samples provide the bulk of our benefits on the ResNet18-ImageNet benchmark, accounting
for nearly 25% of the savings. This is because as training progresses, a majority of training samples fall in
Region 1. Interpolating Region 3 samples, accounts for additional 8% runtime savings.

4.3 Quantitative Comparison Study

We compare the performance of mixTrain against competing methods that accelerate DNN training.

0.4

0.5

0.6

0.7

0.8 Instance skipping (Error >1%)
Our Effort (Error < 0.2%)

A
vg

. n
or

m
. r

un
ti

m
eà

0-10 30-40 70-80
Epochs à

To
p-

1
E

rr
or

 r
el

at
iv

e
to

ba

se
lin

e
%
à

Speed-Up à

73.5

74

74.5

75

75.5

76

1 2 3

Baseline SGD

mixTrain

A
cc

ur
ac

y
%
à

k à

0

0.4

0.8

1.2

1 1.2 1.4 1.6

AutoAssist
mixTrain-Cut-Mix
mixTrain-MixUp

Baseline SGD
Scaling input size
Mini-batch skipping
Early Termination

(a) (b) (c)

Figure 11: Quantitative Comparison Study
Instance Skipping: As a representative of instance skipping, we specifically consider the performance
of (Zhang et al., 2019) (Fig. 11(a)) and (Jiang et al., 2019) (Fig. 11(b)) on the ResNet50 benchmark. In
these techniques samples that the network finds easy to classify, as identified by low classification loss, are
skipped thereby resulting in fewer mini-batches as training proceeds. Two issues are typically encountered
by such techniques. First, as no training is conducted on the samples that are skipped, this subset is often a
small, conservative fraction of the training dataset. Second, additional overhead is incurred in each epoch to
determine this subset, as it is non-trivial to estimate the most recent loss of samples that had been discarded
in previous epochs. In Fig. 11(b), we implement (Jiang et al., 2019) and overlook the overheads associated
in determining the subset of samples that must be skipped, and report the resulting runtime across epochs.

Clearly, mixTrain achieves better model accuracy and runtime benefits against both efforts, even when over-
heads are overlooked. As the network is ultimately trained on every input in each epoch, we reduce the
number of minibatches more aggressively, while incurring negligible overheads incurred to form Smix and
SnoMix. Finally, we analyze the accuracy if Region 3 samples were to be skipped instead of mixed, using
the same policy discussed in Sec. 3.2 for different values of k. Clearly, mixTrain achieves better convergence,
allowing it to leverage runtime benefits from this region.

Coreset selection techniques: In the table below, we compare the performance of MixTrain-CutMix
against three popular coreset selection techniques: Glister (Killamsetty et al., 2020), Grand (Paul et al.,
2021) and Facility-location based methods (Iyer et al., 2020). Similar to mixTrain, coreset selection techniques
aim to reduce training runtime by reducing the number of mini-batches to train every epoch, by identifying
a subset of training data-points that are critical to accuracy. Such techniques perform better than random
sampling (i.e., better accuracy), when the fraction of the training dataset retained is low (Guo et al., 2022).
However, as can be seen in Table 3, these techniques require a large fraction of the training dataset in order to
remain iso-accurate with the baseline. mixTrain clearly achieves a better accuracy versus speed-up trade-off.

Other approximations: We consider three approximation strategies, i.e., early termination, mini-batch
skipping and input size scaling (Fig.Fig. 11(a)). For early-termination, we stop baseline SGD training at

11

Under review as submission to TMLR

Table 3: Comparison against coreset selection techniques

Training Method
Average fraction of the
dataset used for train-
ing across epochs

Top-1 Error Speed-Up

Baseline 1 4.4% 1×
mixTrain-MixUp 0.69 4.33% 1.4×
mixTrain-CutMix 0.66 4.2% 1.45×

0.8 4.65 1.18×
Glister 0.7 4.76% 1.32×

0.8 4.6% 1.15×
Grand 0.7 4.7% 1.2×

0.8 4.55% 1.19×
Facility Location 0.7 4.79% 1.25×

an earlier epoch when it achieves the same accuracy as mixTrain, and report the resulting runtime benefits.
Next, for mini-batch skipping we stochastically skip s% of the mini-batches every epoch, and for input size
scaling, we train on inputs scaled down by some factor s. In both cases, the parameter s is selected such
that it is iso-runtime with mixTrain. Clearly, in all three cases, mixTrain achieves a superior accuracy versus
runtime trade-off as seen for the ResNet50 benchmark.

5 Related Work
We now discuss related research efforts to accelerate DNN training.

Hyper-parameter tuning: Many notable efforts are directed towards achieving training efficiency by
controlling the hyper-parameters involved in gradient-descent, notably the learning rate and momentum.
(You et al., 2017; Akiba et al., 2017; Goyal et al., 2017) propose learning rate tuning algorithms that achieve
training in less than an hour with no loss in accuracy, when distributed to over hundreds of CPU/GPU cores.

Optimizers with fast convergence: This class of efforts includes optimizers that achieve improved gener-
alization performance within a certain training budget. These techniques target the evaluation of the weight
gradient every iteration- for example, optimizers such as AvaGrad (Savarese et al., 2019) and Adam (Kingma
& Ba, 2015) adaptively compute the learning rate across training epochs, resulting in faster convergence than
SGD in a similar number of epochs for certain tasks. Similarly, techniques such as (Sutskever et al., 2013)
utilize a momentum parameter during training to achieve faster convergence.

Model size reduction during training: Model size reduction investigates dynamically pruning (Yuan
et al., 2020) or quantizing (Sun et al., 2019) a model during training itself. Training a reduced-capacity
model, or with lower-precision results in training speed-ups.

Coreset selection strategies: Such techniques select a subset of the training samples that are most in-
formative, i.e., critical to accuracy. These techniques differ in the identification of such critical training
samples. Commonly used methods to determine a sample’s importance include analyzing sample loss (Jiang
et al., 2019; Zhang et al., 2019), gradient-matching techniques (Killamsetty et al., 2021), bi-level optimiza-
tion methods (Killamsetty et al., 2020), sub-modularity based approaches (Iyer et al., 2020), and decision
boundary based methods (Margatina et al., 2021).

6 Conclusion
We introduce a new approach to improve the training efficiency of state-of-the-art DNNs by utilizing input
mixing. We propose mixTrain that comprises of two strategies to achieve an acceptable accuracy versus speed-
up trade-off. First, we propose split propagation and adaptive mixing to reduce the impact of interference
between the constituent inputs in a composite sample. Second, we apply mixing selectively, i.e., only on a
subset of the training dataset every epoch. Across DNNs on the ImageNet dataset, we achieve upto a 1.6×
improvement in runtime for ∼0.2% loss in accuracy.

12

Under review as submission to TMLR

References
Takuya Akiba, Shuji Suzuki, and Keisuke Fukuda. Extremely large minibatch SGD: training resnet-50 on

imagenet in 15 minutes. CoRR, abs/1711.04325, 2017. URL http://arxiv.org/abs/1711.04325.

Dario Amodei, Danny Hernandez, Girish Sastry, Jack Clark, Greg Brockman, and Ilya Sutskever. Training
costs, 2018. URL https://openai.com/blog/ai-and-compute/.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image
Database. In CVPR09, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. CoRR,
abs/2010.11929, 2020. URL https://arxiv.org/abs/2010.11929.

Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew
Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: training imagenet in 1 hour.
CoRR, abs/1706.02677, 2017. URL http://arxiv.org/abs/1706.02677.

Chengcheng Guo, Bo Zhao, and Yanbing Bai. Deepcore: A comprehensive library for coreset selection in
deep learning, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.

Rishabh K. Iyer, Ninad Khargoankar, Jeff A. Bilmes, and Himanshu Asanani. Submodular combinato-
rial information measures with applications in machine learning. CoRR, abs/2006.15412, 2020. URL
https://arxiv.org/abs/2006.15412.

Angela H. Jiang, Daniel L. K. Wong, Giulio Zhou, David G. Andersen, Jeffrey Dean, Gregory R. Ganger,
Gauri Joshi, Michael Kaminksy, Michael Kozuch, Zachary C. Lipton, and Padmanabhan Pillai. Acceler-
ating deep learning by focusing on the biggest losers, 2019.

KrishnaTeja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, and Rishabh K. Iyer. GLISTER:
generalization based data subset selection for efficient and robust learning. CoRR, abs/2012.10630, 2020.
URL https://arxiv.org/abs/2012.10630.

KrishnaTeja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, Abir De, and Rishabh K. Iyer.
GRAD-MATCH: gradient matching based data subset selection for efficient deep model training. In Marina
Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning,
ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research,
pp. 5464–5474. PMLR, 2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio and
Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced research).
URL http://www.cs.toronto.edu/ kriz/cifar.html.

Duo Li, Aojun Zhou, and Anbang Yao. Hbonet: Harmonious bottleneck on two orthogonal dimensions. In
The IEEE International Conference on Computer Vision (ICCV), Oct 2019.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using shifted windows. CoRR, abs/2103.14030, 2021. URL
https://arxiv.org/abs/2103.14030.

13

Under review as submission to TMLR

Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with restarts. CoRR, abs/1608.03983,
2016. URL http://arxiv.org/abs/1608.03983.

Sangkug Lym, Esha Choukse, Siavash Zangeneh, Wei Wen, Mattan Erez, and Sujay Shanghavi. Prunetrain:
Gradual structured pruning from scratch for faster neural network training. CoRR, abs/1901.09290, 2019.
URL http://arxiv.org/abs/1901.09290.

Katerina Margatina, Giorgos Vernikos, Loïc Barrault, and Nikolaos Aletras. Active learning by acquiring
contrastive examples. CoRR, abs/2109.03764, 2021. URL https://arxiv.org/abs/2109.03764.

Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training of machine
learning models. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 6950–6960. PMLR,
13–18 Jul 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural
Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., 2019.

Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data
diet: Finding important examples early in training. In M. Ranzato, A. Beygelzimer,
Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Informa-
tion Processing Systems, volume 34, pp. 20596–20607. Curran Associates, Inc., 2021. URL
https://proceedings.neurips.cc/paperf iles/paper/2021/file/ac56f8fe9eea3e4a365f29f0f1957c55−
Paper.pdf.

Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Inverted
residuals and linear bottlenecks: Mobile networks for classification, detection and segmentation. CoRR,
abs/1801.04381, 2018. URL http://arxiv.org/abs/1801.04381.

Pedro Savarese, David McAllester, Sudarshan Babu, and Michael Maire. Domain-independent dominance
of adaptive methods. CoRR, abs/1912.01823, 2019. URL http://arxiv.org/abs/1912.01823.

Robert Stojnic, Ross Taylor, and Marcin Kardas. Imagenet leaderboard, 2023. URL
https://paperswithcode.com/sota/image-classification-on-imagenet.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep learning
in nlp, 2019.

Xiao Sun, Jungwook Choi, Chia-Yu Chen, Naigang Wang, Swagath Venkataramani, Vijayalakshmi Srini-
vasan, Xiaodong Cui, Wei Zhang, and Kailash Gopalakrishnan. Hybrid 8-bit floating point (hfp8) training
and inference for deep neural networks. In NeurIPS, 2019.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initializa-
tion and momentum in deep learning. In Sanjoy Dasgupta and David McAllester (eds.), Proceed-
ings of the 30th International Conference on Machine Learning, volume 28 of Proceedings of Ma-
chine Learning Research, pp. 1139–1147, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR. URL
https://proceedings.mlr.press/v28/sutskever13.html.

Mingxing Tan and Quoc V. Le. Efficientnetv2: Smaller models and faster training. CoRR, abs/2104.00298,
2021. URL https://arxiv.org/abs/2104.00298.

Hugo Touvron, Andrea Vedaldi, Matthijs Douze, and Hervé Jégou. Fixing the train-test resolution discrep-
ancy, 2020.

14

Under review as submission to TMLR

Yang You, Igor Gitman, and Boris Ginsburg. Scaling SGD batch size to 32k for imagenet training. CoRR,
abs/1708.03888, 2017. URL http://arxiv.org/abs/1708.03888.

Xin Yuan, Pedro Savarese, and Michael Maire. Growing efficient deep networks by structured continuous
sparsification. CoRR, abs/2007.15353, 2020. URL https://arxiv.org/abs/2007.15353.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix:
Regularization strategy to train strong classifiers with localizable features. CoRR, abs/1905.04899, 2019.
URL http://arxiv.org/abs/1905.04899.

Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk
minimization. CoRR, abs/1710.09412, 2017. URL http://arxiv.org/abs/1710.09412.

Jiong Zhang, Hsiang-Fu Yu, and Inderjit S. Dhillon. Autoassist: A framework to accelerate training of deep
neural networks. CoRR, abs/1905.03381, 2019. URL http://arxiv.org/abs/1905.03381.

7 Appendix

7.1 Experimental Setup

This subsection describes the experimental setup used for realizing the baseline and proposed training
schemes, on the benchmarks specified in Section 4 of the main paper. We conduct our experiments on
the complete training and test datasets of each benchmark, using the PyTorch (Paszke et al., 2019) frame-
work.

Baseline: We consider SGD training as the baseline in our experiments. The hyper-parameters used in
SGD training of each of the benchmarks are described below.

ImageNet: For experiments in Section 4.1 we utilize a batch-size of 64 per GPU, for all benchmarks. For the
ResNet18, ResNet34 and ResNet50 benchmarks the initial learning rate set to 0.025. The learning rate is
decreased by 0.1 every 30 epochs, for a total training duration of 90 epochs, and the weight decay is 4e − 5.
The MobileNetV2 benchmark utilizes an initial learning rate of 0.0125. We use a cosine learning rate decay
schedule, as in (Li et al., 2019) for 150 epochs. The weight decay is set to 4e − 5. All benchmarks use an
input size of 224*224*3.

Cifar10-CNNs: All experiments on the convolutional neural networks (i.e., ResNet18 and ResNet34) utilize a
batch-size of 128, trained on a single GPU. We consider two different hyper-parameter settings that differ in
the learning rate schedule used. When using a linear learning rate schedule, all benchmarks are trained with
an initial learning rate of 0.05 that is decayed by 0.1 every 10 epochs, across 90 epochs. The cosine annealing
learning rate schedule uses an initial learning rate of 0.1, that is gradually decayed over 200 epochs. Across
all experiments, the weight decay is set to 5e − 4. All benchmarks utilize an input size of 32*32*3.

Cifar10-Transformers: We consider three vision transformer architectures, ViT-small, ViT-SWIN and ViT-
pretrained. The ViT-small architecture has a patch-size of (4*4), with the hidden dimension size equal to
512. The network consists of 8 attention heads, and a depth of 6. The ViT-SWIN architecture is identical
to the Swin-T architecture in (Liu et al., 2021). When training from scratch, both networks operate on
inputs of size (32*32*3), and are trained for 100 epochs using a cosine annealing learning rate schedule,
with the initial learning rate of 1e-4. For the fine-tuning experiment, the ViT-pretrained network uses the
ViT-B/16 architecture described in (Dosovitskiy et al., 2020). Here the pretrained weights are obtained by
training on the ImageNet-21k dataset (Deng et al., 2009), and the network hence accepts an input of size
(384*384*3). Fine-tuning is conducted for 3 epochs. For all models, training is conducted across 4 GPUs,
with the batch-size set to 128.

mixTrain: mixTrain uses the same learning rate, weight decay, and number of epochs as baseline SGD,
requiring no additional hyper-parameters. We use the same random seed for both our baseline and mix-
Train experiments. Results in Sec. 4.1 are reported by averaging over 3 different training runs.

15

Under review as submission to TMLR

Table 4: Training CNNs on Cifar10 using mixTrain

Network Training Strategy Top-1
Error Speed-Up

Baseline SGD (linear learning rate schedule) 6.5% 1×
ResNet18 mixTrain-CutMix 5.4% 1.74×

mixTrain-MixUp 5.7% 1.69×
Baseline SGD (cosine annealing learning rate schedule) 4.4% 1×

ResNet18 mixTrain-CutMix 4.2% 1.45×
mixTrain-MixUp 4.33% 1.41×
Baseline SGD (linear learning rate schedule) 5.2% 1×

ResNet34 mixTrain-CutMix 4.2% 1.78×
mixTrain-MixUp 4.6% 1.71×

Table 5: mixTrain with different optimizers

Network Training Strategy Top-1
Error Speed-Up

Baseline Adam 6% 1×
ResNet18 mixTrain-CutMix 5.8% 1.59×

mixTrain-MixUp 5.92% 1.51×
Baseline AvaGrad 5.7% 1×

ResNet18 mixTrain-CutMix 5.2% 1.42×
mixTrain-MixUp 5.4% 1.4×
Baseline AvaGrad-W 5.8% 1×

ResNet18 mixTrain-CutMix 5.28% 1.44×
mixTrain-MixUp 5.3% 1.39×

7.2 Experimental Results on Cifar10

To underscore the wide applicability of mixTrain, we present our runtime and accuracy trade-off achieved
on the Cifar10 benchmarks in Table 4. Across our benchmarks, MixUp achieves upto 1.7 × improvement
in runtime, while CutMix achieves a 1.8× runtime improvement. Clearly, both mixing strategies provide a
boost in accuracy, due to the improved regularization provided via mixing samples.

As can be seen in Table 5, we also highlight the applicability of mixTrain to optimizers such as Adam (Kingma
& Ba, 2017) and AvaGrad (Savarese et al., 2019), and different learning rate schedules (Loshchilov & Hutter,
2016). Typically, such optimizers propose techniques to evaluate the weight gradients in a manner that
results in faster convergence. MixTrain does not interfere with the evaluation of such weight gradients-
regardless of the optimizer used, MixTrain achieves training acceleration by reducing the effective size of the
dataset to iterate over each epoch. As can be seen, MixTrain can be successfully applied in conjunction with
such optimizers.

7.3 Analysis of Top-5 accuracy without interference reduction

In Sec. 3.1 we mention that the network appears to be unable to detect both constituent inputs when
interference is not reduced. At most, the network detects only one of the constituent inputs, with the second
constituent rarely appearing in the Top-5 predictions made. We provide the Top-5 classification accuracy of
the second constituent, prior to reducing interference.

This necessitates the need for devising strategies to reduce interference between the constituent inputs of a
composite sample.

16

Under review as submission to TMLR

0

2

4

6

8

10

12

20 40 60 80

ResNet50

ResNet34

Epochs →

To
p
-5

 A
cc

u
ra

cy
 %

 →

Figure 12: Top-5 classification accuracy of second constituent input

7.4 Training runtime

We present our training runtime results in Table 6. Note that the Cifar10 experiments are conducted on a
single Nvidia RTX 2080Ti machine, while the ImageNet experiments are conducted across 4 RTX gpus.

Table 6: Training runtime

Network Training Strategy Runtime
Baseline-SGD 3.6 hours

ResNet18-Cifar10 mixTrain-CutMix 1.95 hours
Baseline-SGD 30 hours

ResNet18-ImageNet mixTrain-CutMix 20.1 hours
Baseline-SGD 51 hours

ResNet50-ImageNet mixTrain-CutMix 32.7 hours

7.5 Analyzing mixTrain when mixing more than 2 inputs

mixTrain can be extended to beyond 2 samples. However, we observe that the effect of mixing more than two
samples is different for different benchmarks. Table 7 below shows the performance of mixTrain when 2 and
3 samples are mixed using the Cut-Mix operator, on the Cifar10 and ImageNet datasets for the ResNet18
network. For the Cifar10-ResNet18 benchmark, mixing N=3 samples clearly provides better runtime savings
than N=2, and at comparable accuracy to baseline. However, we observe a noticeable drop in accuracy for
the ImageNet benchmark. In the context of Cut-Mix, this is because the class object of interest occupies a
smaller fraction of the input area for ImageNet, and is likely to be missed in the random Cut-Mix patch.
We note that we observe similar trends in accuracy when using the Mix-Up operator. Here, the interference
between constituent inputs is higher due to averaging pixel information across more samples.

7.6 Analysis of loss across consecutive epochs

As mentioned in Sec. 3.2, we utilize the loss of a sample in epoch E to determine it’s amenability to mixing
in epoch E+1. However, several mini-batches pass before a sample is trained again in the next epoch. As
the model undergoes many changes to its weights, it is possible that the loss of a sample in epoch E might
be quite substantially different from that in epoch E+1.

Fig. 13 plots the loss curve averaged across all training examples when trained with SGD. The loss appears
to change rapidly only for the first few epochs, and later when the learning rate changes. In other periods,
changes in loss happen more gradually. We find that the same analysis is generally applicable when samples
are mixed as well. This thus justifies using the loss in epoch E to justify amenability in epoch E+1.

17

Under review as submission to TMLR

Table 7: Mixing more than 2 inputs using mixTrain

Network Training Strategy Top-1 Acc Speed-Up
Baseline SGD (N=0) 95.6% 1×

ResNet18-Cifar10 mixTrain-CutMix (N=2) 95.8% 1.45×
mixTrain-CutMix (N=3) 94.4% 2.32×
Baseline SGD (N=0) 69.8% 1×

ResNet18-ImageNet mixTrain-CutMix (N=2) 69.56% 1.5×
mixTrain-CutMix (N=3) 68.7% 1.9×

1.5

2.5

3.5

4.5

5.5

6.5

1 11 21 31 41 51 61 71 81

SGD Training Loss curve for

ResNet34-ImageNet

Epochs →

Lo
ss

 →

Figure 13: Change in average loss across epochs

7.7 Analyzing efficacy of amenability metric

As part of our key strategies to achieve a good accuracy versus runtime efficiency trade-off, we propose
selectively mixing samples in Section 3.2. We take into consideration the region of the loss distribution
where the sample occurs in epoch E to appropriately decide whether the sample should be mixed in the
next epoch. Each region differs based on the estimated impact mixing a sample may have on accuracy.
Consequently, each region has its own criteria for gauging amenability for the next epoch.

In Table 8, we compare our proposed selective mixing strategy against the following set of rules to gauge
amenability.

Table 8: Analyzing efficacy of our amenability metric

Benchmark Amenability Metric Top-1 err Speed-Up
Our Effort (Region 1 only) 24.56% 1.38
Our Effort (Regions 1 and 3) 24.45% 1.56

ResNet50 Threshold = Accuracy 24.80% 1.36
Threshold = Average Loss 24.50% 1.33
Region 1 and threshold = Lincorr for Region 3 25.14% 1.74

• First, we analyze the trade-off achieved when we mix inputs that were correctly classified in previous
epoch, instead of using Lmid as in Sec. 3.2. Essentially, only those samples that are correct in epoch
E are mixed in the next epoch. We find that the Lmid threshold (Row 1) achieves slightly better
classification accuracy, as outlier inputs with correct classification are avoided.

• Next, we compare against an average loss threshold, i.e., we calculate the running average of the loss
across all the samples in SnoMix. If a sample in epoch E has loss lower than the running average,
it is mixed in the next epoch and vice-versa. As can be seen, our Lmid threshold (Row 1) achieves
better speed-ups for nearly the same classification accuracy. Across epochs, classification accuracy
improves and average loss reduces, often with several correctly classified samples with loss above the
average loss. This metric thus loses the opportunity to approximate training effort on these these
correctly classified samples that are amenable to interpolation.

18

Under review as submission to TMLR

• Finally, we compare the efficacy of our Region 3 criterion. We observe the trade-off achieved when
all samples above Lincorr are mixed, in addition to Region 1 approximations. Clearly, our proposed
criterion attains better accuracy (Row 2).

7.8 Discussion on applicability of mixTrainto other tasks

We now discuss the applicability of mixTrain to different kinds of tasks other than image classification, such
as natural language processing and semantic segmentation.

In image classification problems, mixing inputs does not hinder the DNN’s ability to recognize the features of
the constituent inputs [1,2], as the DNN’s input space is continuous. Thus, the mixed input can be considered
to be a new data point in the input space. However, on tasks such as NLP, each word in a sentence is from
a discrete dictionary, represented using a token generated using an embedding table. Thus, the new token
generated by, for example, linearly averaging the tokens of N constituent sentences, may not exist in the
dictionary the network is trained on. Furthermore, networks designed for such tasks factor into consideration
the position of each word in a sentence, and their relation to other words. The impact of mixing tokens of
different sentences is thus unclear. Consequently, MixTrain may not be applicable to such tasks.

Moving on to semantic segmentation tasks, each pixel in the input image is assigned a target label that
indicates the class to which the pixel belongs to. In the context of the MixUp operator, after mixing has
been applied, each pixel belongs to two classes, pertaining to each of the constituent inputs. The final target
label of the pixel in the composite sample can thus be obtained by averaging the one-hot encoded labels of
the corresponding pixel in the constituent inputs. In the context of the CutMix operator, the composite
sample contains patches from each of the constituent inputs. Thus, the labels of pixels in a patch of the
composite sample can be easily inferred by their value in the original constituent input. However, while such
CutMix and MixUp based training for segmentation tasks have been demonstrated in a semi-supervised
context, their usage in fully supervised settings has not been widely adopted. Thus, extending MixTrain to
such tasks is unclear, and beyond the scope of this work.

19

