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Abstract
Federated learning (FL) presents a promising strat-
egy for distributed and privacy-preserving learn-
ing, yet struggles with performance issues in the
presence of heterogeneous data distributions. Re-
cently, a series of works based on sharpness-aware
minimization (SAM) have emerged to improve
local learning generality, proving to be effective
in mitigating data heterogeneity effects. However,
most SAM-based methods do not directly con-
sider the global objective and require two back-
ward pass per iteration, resulting in diminished
effectiveness. To overcome these two bottlenecks,
we leverage the global model trajectory to directly
measure sharpness for the global objective, re-
quiring only a single backward pass. We further
propose a novel and general algorithm FedGMT
to overcome data heterogeneity and the pitfalls of
previous SAM-based methods. We analyze the
convergence of FedGMT and conduct extensive
experiments on visual and text datasets in a va-
riety of scenarios, demonstrating that FedGMT
achieves competitive accuracy with state-of-the-
art FL methods while minimizing computation
and communication overhead. Code is available
at https://github.com/harrylee999/FL-SAM.

1. Introduction
Federated Learning (FL) leverages distributed client (i.e.,
edge device) data to preserve privacy through an iterative
process: downloading models, training models locally, up-
loading the updated models by clients and aggregating mod-
els on the server (McMahan et al., 2017). Due to the limited
communication resources, only a subset of clients partici-
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pate in the FL process and train the local models in multiple
intervals with their own datasets within one communica-
tion round (Wahab et al., 2021). Due to data heterogeneity
(i.e., non-IID), partial client participation, and multiple local
training, a significant issue arises known as the “client drift”
problem (Karimireddy et al., 2020), which means clients’ lo-
cal objectives converging towards inconsistent local optima,
which leads to the aggregated global model may not be the
optimum of the global objective. Larger data heterogeneity
may enlarge the objective inconsistency, thereby not only
degrading generalization performance but also escalating
computation and communication overhead.

To tackle the client drift problem, most previous works (Li
et al., 2020; Karimireddy et al., 2020; Wang et al., 2020b;
Acar et al., 2021) involve enforcing regularization in lo-
cal optimization with Empirical Risk Minimization (ERM).
However, ERM-based training often falls into a sharp valley
in the loss landscape (Chaudhari et al., 2019), resulting in
a biased regularization term (e.g., the global model), espe-
cially in a highly heterogeneous dataset (Sun et al., 2023a).
This bias makes the trained local model more inclined to-
wards a similar tendency, rendering the entire training pro-
cess unstable and significantly undermining performance.
Instead, recent studies (Qu et al., 2022; Caldarola et al.,
2022; Sun et al., 2023b; An et al., 2023; Dai et al., 2023)
have focused on improving the local generality in FL to al-
leviate the objective inconsistency, which has achieved new
state-of-the-art performance among current FL algorithms.
These methods aim to seek flat minima during local learning
by employing the recently proposed Sharpness-Aware Mini-
mization (SAM) (Foret et al., 2020) as the local optimizer.
SAM is built on the findings that emphasize the advantages
of a smooth loss landscape for better generalization (Dinh
et al., 2017; Jiang et al., 2019). By enhancing local gen-
erality, these methods mitigate inconsistency among local
objectives, thereby contributing to the overall smoothness
of the aggregated global model.

Unfortunately, SAM-based methods have following short-
comings. 1⃝ The computational cost of SAM’s sharpness
measure is twice that of the base optimizer, typically stochas-
tic gradient descent (SGD). In the process of FL, most of the
computation is performed by client devices. This prohibits
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Figure 1. Due to partial participation in FL, client set A is active
in round t and set B in round t+ 1. In round t, ERM training falls
into a low and sharp area (cream), while SAM falls into a low and
flat area (green) for the active client set A. In round t + 1, both
ERM and SAM fall into a low area for the active client set B, but
they may forget the knowledge learned from set A in the previous
round. Our method, however, guides the global model toward a
joint low and flat area (green+grey) for both sets A and B.

SAM from being deployed extensively in practical scenar-
ios since most clients may have limited computing power
and tend to minimize computing energy consumption (Li
et al., 2023). 2⃝ Moreover, the sharpness measure of SAM
on each client can only compute local model’s sharpness
direction to minimize. Thus minimizing local sharpness
can not directly optimize the flatness of the global model,
which may deviate from the global objective and slow down
convergence, as shown in Figure 1.

To overcome data heterogeneity and the pitfalls of previous
SAM-based methods, we propose a novel and general al-
gorithm, FedGMT (Federated learning with Global Model
Trajectory), to guide each client search for a consistent
smooth loss landscape aligned with global objective, thereby
significantly improving overall performance. Specifically,
we introduce a novel global model trajectory loss to directly
measure and optimize the sharpness of the global model.
This loss replaces SAM’s sharpness measure loss by mea-
suring the Kullback–Leibler (KL) divergence between the
outputs of neural networks with the current local model and
those with the past global models, which can guarantee each
local update avoids falling into a sharp valley of the loss
landscape from a global perspective. Furthermore, to pre-
vent our global sharpness measure from being affected by
data heterogeneity, we introduce a constraint to the global
objective and use the alternating direction method of multi-
pliers (ADMM) (Boyd et al., 2011) to solve. This ensures
an accurate update direction to smooth the global model.

In the end, we summarize our main contributions as follows:

• We take a closer look at sharpness-aware minimization
in heterogeneous FL from a global view. We propose a
novel global model trajectory loss to directly measure
the sharpness of the global model without information
leakage of local data, supported by theoretical analysis.
Furthermore, our measure’s computation cost is nearly
about 0.67× of FedSAM’s (Qu et al., 2022; Caldarola

et al., 2022) in each local update.

• To directly reduce the global model’s sharpness and
effectively address data heterogeneity, we propose
FedGMT, which achieves a fast convergence speed
with less computation cost and maintains high general-
ization. Theoretically, we provide the convergence rate
upper bound under the non-convex and smooth cases
and prove that FedGMT could achieve a fast conver-
gence rate of O(1/T ).

• We empirically show the effectiveness of FedGMT,
which outperforms several SOTA baselines. FedGMT
is also robust to various data heterogeneity levels,
client participation levels and model architecture on
distributed visual and text datasets.

2. A Closer Look at SAM-based Algorithms
In this section, we first formally describe the problem setup
for FL, review SAM-based methods, and then outline our
motivation. A detailed related work is in Appendix B.

2.1. Preliminaries

Federated Learning (FL). In a classic FL setting with M
clients, where each client has a dataset Dm, the optimization
problem to solve can be formulated as follows:

min
w

{
L(w) = 1

M

∑
m∈M

Lm(w)

}
,

Lm(w) ≜ Eξm∼Dm
ℓ(f(w; ξm)),

(1)

where w is the model parameter, M is the set of all clients,
Lm(w) is the empirical risk minimization (ERM) for client
m, ℓ is a loss function (e.g. cross-entropy loss), f denotes
a neural network and ξm denotes the pair (inputs, targets)
of a randomly sampled instance from Dm. At each round t,
FedAvg (McMahan et al., 2017) formulates this minimiza-
tion problem as performing a weighted average of the local
model parameters wt

m updated by the subset of selected
clients Nt. Reddi et al. (2021) shows that the FedAvg
global update can be generally seen as one step of SGD with
a unitary learning rate:

wt+1 =
1

N

∑
m∈Nt

wt
m = wt − ηg

1

N

∑
m∈Nt

(wt − wt
m), (2)

where ηg is the server-side learning rate, equal to 1 in
FedAvg. The difference wt+1 − wt := ∆t defines the
global pseudo-gradient at round t.

Sharpness-Aware Minimization (SAM). SAM (Foret
et al., 2020) focuses on optimizing the sharp points from
parameter space so that the training model can produce a flat
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Table 1. Overview of several SAM-based algorithms in FL. The communication cost is defined as the parameters transmitted per round
(1.5× for FedGMT and 1× for FedGMTv2). The computational cost is defined as per-iteration training cost (1.33× is based on the
assumption that backward cost of is twice forward). In FedSMOO, µm and s are dual variable and correction to perturbations. In
FedLESAM, wold is the global model received at previous active round. Other symbols are detailed in Table A in Appendix.

Research work Global Flatness Sharpness Measure Communication Cost Computation Cost

FedSAM (ECCV22, ICML22) × Lm(wt
m + ρ

∇Lm(wt
m)

∥∇Lm(wt
m)∥ )− Lm(wt

m) 1× 2×

FedSpeed (ICLR23) × Similar to FedSAM 1× 2×

FedSMOO (ICML23) ✓ Lm(wt
m + ρ

∇Lm(wt
m)−µm−s

∥∇Lm(wt
m)−µm−s∥ )− Lm(wt

m) 2× 2×

FedLESAM (ICML24) ✓ Lm(wt
m + ρ wold−wt

∥wold−wt∥ )− Lm(wt
m) 1× 1×

FedGMT (Ours) ✓ ℓKL(f(e
t), f(wt

m)) 1× or 1.5× 1.33×

loss landscape. To achieve this, SAM applies a weight per-
turbation vector ϵ to the model parameters w and conducts
the following objective:

LSAM (w) ≜ L(w + ϵ),where ϵ ≜ ρ
∇L(w)
∥∇L(w)∥

. (3)

Here, ∥ · ∥ is l2-norm, ρ is the radius of the neighborhood
and ∇ is the abbreviation for ∇w on parameters w.

While Eq. (3) improves performance, computing ϵ and
L(w+ϵ) adds an extra backward and forward pass, doubling
SAM’s runtime compared to SGD. Minimizing Eq. (3) can
also be interpreted as jointly minimizing the loss value and
the sharpness of the loss landscape defined by:

Sharpness: S(w) ≜ L(w + ϵ)− L(w). (4)

2.2. Rethinking SAM-based Algorithms

We first summarizes several SAM-based methods in FL at
Table 1. FedSAM (Qu et al., 2022; Caldarola et al., 2022)
directly applies the SAM objective to replace the local ERM
objective, which can be formulated as a change in Eq. (1):
Lm(w) → Lm(w + ϵm), where ϵm is the local weight per-
turbation allocated to Lm. Notably, the perturbation ϵm is
computed based on the local dataset Dm. Consequently,
the utilization of this local SAM optimizer yields effective
generalization only on datasets drawn independently and
identically as Dm. Intuitively, enhancing the generality of
local training individually on Dm would inherently improve
generalization on global dataset D = ∪mDm. However,
this indirect promotion may not be effective when dealing
with severely heterogeneous datasets. In Fig. 2, we em-
pirically demonstrate that FedSAM minimizes sharpness
slightly compared to FedAvg in severely heterogeneous
scenarios. This observation also explains why FedSAM
does not outperform FedAvg in this case. FedSpeed
(Sun et al., 2023b) incorporates a local SAM optimizer
with a dynamic regularizer to enhance its effectiveness.
This approach aims to improve local consistency to bridge
the smooth information on both local and global models.
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Figure 2. The sharpness change of the global model on CIFAR-10
in the high data heterogeneity scenario (Dir(0.01)).

Similar approaches like MoFedSAM (Qu et al., 2022) and
FedMRUR (An et al., 2023) inject momentum into the local
SAM optimizer and FedGAMMA (Dai et al., 2023) combines
the SCAFFOLD (Karimireddy et al., 2020) with SAM to im-
prove the performance. Although these methods contribute
to minimizing sharpness to some extent, the flatness of the
global landscape still can not be directly optimized. This is
due to the fact that the perturbation ϵm is not designed for
the global function L.

To directly smooth the global model, it is necessary to mod-
ify Lm(w) → Lm(w + ϵ), where ϵ is the global weight
perturbation allocated to L. However, ϵ needs to be cal-
culated on the global dataset D, which is not feasible in
FL. FedSMOO (Sun et al., 2023a) utilizes the ADMM to
estimate global perturbation ϵ and also adopts a dynamic
regularizer during the local training. FedLESAM (Fan et al.,
2024) estimates the global perturbation as the difference
between the global model from the previous round and
the global model received in the current round. However,
these estimations are not significantly effective compared to
FedSpeed which directly utilizes local SAM in Fig. 2.

Motivation: Given that SAM aims to yield a flat loss land-
scape by minimizing sharpness during training, we utilize
a first-order Taylor expansion to decompose the sharpness
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measure of SAM in Eq. (4) for the global function L in Eq.
(1) at round t as:

SNt(wt) = LNt(wt + ϵ)− LNt(wt)

≈ LNt(wt) + ϵ∆t
Nt − LNt(wt)

≈ ρ ·∆t
Nt

⊤
∆t

Nt/∥∆t
Nt∥

= ρ∥∆t
Nt∥. (5)

From Eq. (5), we observe that the l2-norm of the global
pseudo-gradient ∥∆t

Nt∥ could be approximated as the global
sharpness measure in FedLESAM according to the analysis
in (Zhao et al., 2022). However, in practical FL, due to
data heterogeneity and the high probability of varying active
clients Nt between consecutive rounds, the global pseudo-
gradients in two consecutive rounds differ. Thus a single
previous global pseudo-gradient may not guarantee the right
direction toward global flatness in the current round.

To address this, as a single global pseudo-gradient is inef-
fctive and unreliable, our approach use the global model
trajectory which includes the pseudo-gradients from all the
previous rounds. This significantly reduces sharpness com-
pared to other SAM-based algorithms, as shown in Fig. 2.

3. Proposed Method: FedGMT
In this section, we introduce FedGMT and FedGMT-v2, an
enhanced variant designed to save communication overhead.
The detailed algorithm is outlined in Algorithm 1.

3.1. Measure Sharpness via Global Model Trajectory

We denote the past trajectory of the global model as set
Ω = {w0, w1, . . . , wt−1}. To avoid excessive storage and
effectively utilize all the information in Ω, we adopt an
exponential moving average (EMA) weighting strategy on
the global model’s update trajectory. The EMA model et at
the t-round is updated as follows:

et = αet−1 + (1− α)wt, (6)

where α ∈ (0, 1) is the coefficient of EMA. On the other
hand, given that e0 = w0 and wt+1 = wt −∆t

Nt then the
relation between the EMA model et and the global model
wt as follows:

et = wt +

t−1∑
i=0

αt−i∆i
Ni . (7)

More details of this derivation can be found in Appendix C.
Therefore, the EMA model et includes the pseudo-gradients
from all the previous rounds and puts more emphasis on the
more recent pseudo-gradients.

To connect the EMA model et to sharpness minimiza-
tion, inspired by (Du et al., 2022) which uses loss differ-
ence, we consider the trajectory from et to wt as Θ =

{θ0, θ1, . . . , θt−1}, where θi = θi−1 − αt−i∆i
Ni , θ0 = et

and θt = wt. The sharpness measure SNt(wt) in Eq. (4) is
non-negative, and thus we have:

argmin
wt

SNt(wt) = argmin
θt

SNt(θt)

≈ argmin
θt

[LNt(θ0)− LNt(θt)]

= argmin
wt

[LNt(et)− LNt(wt)]. (8)

More details of this derivation can be found in Appendix C.2.
Therefore, minimizing LNt(et)− LNt(wt) is equivalent to
minimizing the SAM’s sharpness measure SNt(wt) for the
global function L.

Based on the above result, if we directly combine the global
trajectory loss term L(et) − L(wt) in Eq. (8) with FL
objective L(wt) in Eq. (1), the L(wt) will unfortunately
be canceled out. Without loss of generality, we replace the
cross entropy loss with the KL divergence loss to decouple
the vanilla loss. Then the loss function Lm of FedGMT for
the m-th client at t round as:

Lm(wt
m, et) :=

ERM︷ ︸︸ ︷
Lm(wt

m)+

measure global sharpness︷ ︸︸ ︷
Lglotra
m (wt

m, et)

Lglotra
m (wt

m, et) :=
γ

|Dm|
∑
Dm

ℓKL(f(e
t), f(wt

m)),
(9)

where the hyperparameter γ stands for the strength of mini-
mizing sharpness.
Remark 3.1. Unlike the SAM, Lglotra

m in Eq. (9) only
requires one more forward pass and no extra backward pass.

3.2. Promoting Global Consistency with ADMM

Note that an unbiased procedure to minimize global sharp-
ness should use the global model wt and the EMA model
et, i.e., to minimize Lglotra(wt, et) on the global dataset
D. However, in FL framework, the global model wt is
sent to each client m and split into wt

m for independent
updates as Eq. (9). This process introduces non-vanishing
biases wt

m−wt to the global sharpness measure, potentially
diminishing algorithm performance.

To bridge this gap, the local update should align with the
global update. Therefore, we takes the form of an ADMM-
like method in order to align client and server and effectively
minimize the global objective L. ADMM makes use of the
augmented Lagrangian function via penalizing the constrain
wt

m = wt. We first scale the KL function to a non-negative
and convex function as:

Lglotra
m (wt

m) ≤ 1

2β

∥∥∥∥∥wt − wt
m +

t−1∑
i=0

αt−i∆i

∥∥∥∥∥
2

, (10)

where β is a penalty coefficient. More details of this deriva-
tion can be found in Appendix D.
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By using the first-order derivative of Eq. (10), we define the
global augmented Lagrangian function as:

1

M

∑
m

Fm(wm)+um(w−wm)+
1

2β
∥w − wm∥2 , (11)

where Fm(wt
m) := Lm(wt

m)−⟨ 1β
∑t−1

i=0 α
t−i∆i, wt

m⟩ and
um is the dual variable. We denote 〈·,·〉 as the inner product
for two vectors.

To solve the minimization, we decompose the problem in
Eq. (11) for each client to solve as :

wt
m,K = argmin

wt
m

Fm(wt
m)− ⟨ut

m, wt
m⟩+ 1

2β

∥∥wt − wt
m

∥∥2
= argmin

wt
m

Lm(wt
m)− ⟨ut

m, wt
m⟩, (12)

where wt
m,K is the local model after K local interval updates.

Then we update the dual variable as ut+1
m = ut

m − 1
β (w

t
m −

wt). Lastly, by using the first-order derivative of Eq. (11),
the global model w with partial participation is updated as:

wt+1 = argmin
wt

1

N

∑
m∈Nt

∥wt
m,K − wt − βut+1

m ∥2

=
1

N

∑
m∈Nt

(wt
m,K − βut+1

m ). (13)

To avoid each client sending ut+1
m to the server in each

round, we define the global dual variable ut+1 := ut −
1

βM

∑
m∈Nt(wt

m,K − wt). Then, we reformat Eq. (13) as
wt+1 = 1

N

∑
m∈Nt wt

m,K − βut+1.

With these update rules, we can calculate the local mod-
els of approximately satisfying the constraints. Intuitively,
with the consistent local updates, minimizing the global
trajectory loss Lglotra

m among clients would mitigate the
impact of significant changes in training sample loss within
the global loss function. This helps prevent overfitting to
local datasets by enforcing their predictions to be close to
the ones from the EMA model. Therefore, each client can
search for a consistent smooth loss landscape aligned with
the global objective, thereby significantly improving overall
performance.

3.3. Enhanced Variant for Communication-Efficient

The whole workflow of FedGMT is shown in Algorithm
1. At the beginning of each round t, we randomly select a
subset of active clients Nt from the total clients set M. The
global server will communicate the parameters wt and et

to the active clients for local training. Since the communi-
cation with the server for et increases communication cost
by doubling the message size in each round, inspired by
SCAFFOLD and FedLESAM, clients can utilize the EMA

Algorithm 1 FedGMT and FedGMT-v2 Algorithm
Input: Model parameters w, EMA model parameters e,

communication round T , local interval K, dual variable
u, EMA coefficient α, penalty coefficient β, learning
rate η.

Output: Global model parameters wT .
1: Initialization : w = e = w0, um = u = 0;
2: for t = 0, 1, 2, · · · , T − 1 do
3: randomly select the active clients set Nt from M;
4: send the wt and et to the active clients;
5: for client m ∈ Nt in parallel do
6: Initialize local model as wt

m,0 = wt;

7: et = αet + (1− α)wt;
8: for k = 0, 1, · · · ,K − 1 do
9: sample a minibatch and do

10: gtm,k = ∇Lm(wt
m,k, e

t); ▷ Using Eq. (9)
11: wt

m,k+1 = wt
m,k − η(gtm,k − ut

m);
12: end for
13: ut+1

m = ut
m − 1

β (w
t
m,K − wt);

14: send the wt
m = wt

m,K to the global server;
15: end for
16: ut+1 = ut − 1

βM

∑
m∈Nt(wt

m − wt);
17: wt+1 = 1

N

∑
m∈Nt wt

m − βut+1;

18: et+1 = αet + (1− α)wt+1;
19: end for

model in the previous active round. Thus we propose the
variant FedGMT-v2. The calculation of et in FedGMT-v2
is an approximation of that in FedGMT, which inevitably
introduces a slight performance degradation but reduces the
communication cost by half for real-world practicality.

3.4. Convergence Analysis

In this section, we will demonstrate the theoretical analysis
of our proposed FedGMT and illustrate the convergence
guarantees under the specific hyperparameters. Firstly, some
common assumptions are stated as follows.

Assumption 3.2. (L-smooth). Function Lm(w) is L-
smooth and neural network fm(w) is Lf -smooth for all
m ∈ M and w ∈ Rd.

Assumption 3.3. (Unbiased and bounded gradient). The
stochastic gradients on a batch of client m’s data εm is an
unbiased estimator of ∇Lm(w) with an upper bound G, i.e.,
E[∇Lm(w, εm)] = ∇Lm(w) and |[∇Lm(w)]j | ≤ G for
all m ∈ M, w ∈ Rd and j ∈ [d].

Assumption 3.4. Neural network fm outputs a non-negative
probabilistic vector, e.g. the last layer is softmax, then there
exists δ > 0 such that minc∈[C][fm(w, x)]c ≥ δ > 0 for all
m ∈ M, x ∈ Rd′

and w ∈ Rd. Here, c is the class index.
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Assumption 3.2 assumes the gradient Lipschitz continuity
for the objective function and neural network. Assumption
3.3 assumes the bounded stochastic properties of the gra-
dients. The above two assumptions are commonly used in
the analysis of the FL framework (Luo et al., 2022; Chen
et al., 2023). Assumption 3.4 assumes a lower bound for the
neural network’s output, which is utilized to scale the KL
function. This assumption is also employed in (Yao et al.,
2023; Yang et al., 2023) for convergence analysis.

Our theoretical analysis depends on the above assumptions
to study the properties of the proposed method. Proof details
could be referred to the Appendix D.
Theorem 3.5. Let the above assumptions hold, when
α ≤ 1√

6NT
, β ≤

√
2N√

135+5
√
5ML

and γ ≥
√

135+5
√
5MLδ

2
√
2NLf

, the mean averaged parameters sequence{
wt+1 ≜ 1

N

∑
m∈Nt wt

m

}
t∈[T−1]

generated by the Algo-

rithm 1 under the non-convex case satisfy:

1

T

T∑
t=1

E∥∇L(wt)∥2

≤ 1

κT

(
L(w1)− L∗ +

20Mβ2L2

N
Φ0 +

18βG

N

)
, (14)

where Φ0 = 1
M

∑
m∈M E∥w0

m − w1∥2 is the inconsistent
term at the first round for w1 ≜ 1

N

∑
m∈Nt w0

m, κ is a
positive constant, L∗ is the optima of L.
Remark 3.6. Under a constant number of clients uniformly
selected at random in each round, and suitable values of α, β,
and γ are chosen, Algorithm 1 attains a fast convergence rate
of O(1/T ) with non-convex local losses, which matches
the conclusion of existing works (Acar et al., 2021; Gong
et al., 2022; Sun et al., 2023a;b). Moreover, the last two
terms in Eq. (14) achieve N× linear speedup.

4. Experiments
4.1. Experimental Setup

Datasets and Models. We conduct extensive experiments
containing computer vision (CV) and natural language pro-
cessing (NLP) domains. For the CV domain, we con-
sider the image classification tasks with three widely used
datasets including CIFAR-10/100 (Krizhevsky Alex, 2009)
and CINIC-10 (Darlow et al., 2018) using the CNN from
(McMahan et al., 2017), ResNet-8 (He et al., 2016) and
ViT (Dosovitskiy et al., 2021), respectively. For the NLP
domain, we study the text classification tasks with AG News
(Zhang et al., 2015) using FastText (Joulin et al., 2017).

Heterogeneous Partition Strategy. We consider two com-
mon data heterogeneity scenarios: Pathological (McMahan
et al., 2017) and Dirichlet (Wang et al., 2020a) settings.

(c) Long-tail Distribution(a) Path(2) (b) Dir(0.1)
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Figure 3. (a) & (b): Partition examples across 10 clients. (c): Long-
tail distribution across category on CIFAR-10.

We represent the parameter r as Path(r) and Dir(r) to
control data heterogeneity, with smaller values of r indi-
cating increased data heterogeneity. Moreover, real-world
data often exhibits a long-tail distribution characterized by
significant class imbalance, and many SOTA FL methods
have poor performance (Shang et al., 2022b) in such case.
Therefore, to further enhance the data heterogeneity and
simulate real-world scenarios, we follow (Cao et al., 2019;
Shang et al., 2022b) to shape the original balanced dataset
into a long-tail distribution for the Dirichlet setting. We
set the imbalance factor (i.e., the ratio of instances in the
most represented class to those in the least represented class)
to 2 for all datasets. Figure 3 illustrates the differences in
partition strategies and long-tail distribution.

Baselines. We take two lines of state-of-the-art methods
as baselines. 1⃝ heterogeneity-oriented methods including
FedAvg (McMahan et al., 2017), FedDyn (Acar et al.,
2021) and FedNTD (Lee et al., 2022). 2⃝ SAM-based
methods including FedSAM (Qu et al., 2022; Caldarola
et al., 2022), FedSpeed (Sun et al., 2023b), FedSMOO
(Sun et al., 2023a) and FedLESAM-D (Fan et al., 2024)
(FedLESAM with dynamic regularizer). The introductions
and hyperparameters for each method in the Appendix E.

Common Training Details. We set the batch size to 50
for CIFAR-10 and AG News, 20 for CIFAR-100, and 100
for CINIC-10. The number of local epochs is set to 5, ex-
cept for CIFAR-100, in which we use 2 to mitigate extreme
overfitting. We employ SGD with a learning rate of 0.01,
momentum of 0.9, and weight decay of 1e-5, except for
AG News, in which we use a learning rate of 0.1. The total
number of communication rounds is set to 500, except for
CINIC-10 and AG News, in which we conduct 1000 rounds,
ensuring sufficient rounds for performance saturation. Fol-
lowing (Caldarola et al., 2022; 2023), we report the final
averaged test accuracy and standard deviation over the last
50 rounds for increased robustness and reliability.

FedGMT Setting. The hyperparameters of FedGMT remain
consistent across datasets, model architectures, and scenar-
ios. We set the KL temperature to 3 and γ = 1 in Lglotra,
with the EMA coefficient α of 0.95 in FedGMT and 0.5
in FedGMT-v2 and the penalty coefficient β chosen from
{10, 100} for all experiments. The detailed hyperparame-
ters selection and sensitivity analysis in Section 4.4.
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Table 2. Average (standard deviation) test accuracy@1(%) comparison. p: the participation ratio (%). R&T(%): communication round
and computation time (minutes) to achieve a target accuracy in brackets. ×: the target accuracy is not available.

Non-IID Partition Strategy : Pathological (Path)
Heterogeneity Partial Participation Communication and Computation

Method
CIFAR-10 (CNN) CIFAR-100-Path(10) (ResNet) CINIC-10 (ViT) AG News (FastText)

Path(10) Path(4) Path(2) p = 20% p = 10% p = 5% Path(2) R&T(41%) Path(2) R&T(82%)

FedAvg 78.91(0.68) 75.24(2.18) 65.28(5.39) 41.33(0.91) 37.47(1.25) 29.60(2.18) 34.38(4.55) × 71.81(11.31) ×
FedDyn 80.69(0.36) 78.99(1.55) 74.13(3.63) 46.94(1.10) 45.04(1.03) 41.68(1.33) 41.63(5.30) 929 88.87 82.16( 8.37) 710 66.74
FedNTD 79.65(0.25) 78.25(0.63) 73.36(1.75) 42.53(0.48) 40.72(0.51) 36.59(0.88) 49.27(2.17) 491 53.19 77.60( 8.22) ×
FedSAM 80.60(0.69) 75.34(2.23) 66.07(4.81) 41.03(0.71) 36.93(1.27) 28.97(2.26) 36.34(4.19) × 71.26(10.69) ×
FedSpeed 83.49(0.47) 80.40(1.50) 76.74(1.49) 47.10(0.70) 45.44(1.03) 40.06(1.61) 42.98(3.50) 688 149.30 85.19( 3.51) 487 73.86
FedSMOO 82.92(0.34) 80.51(1.19) 76.59(2.08) 47.48(0.87) 45.76(1.12) 40.81(1.61) 44.15(3.53) 692 167.69 84.84( 3.12) 548 83.80
FedLESAM-D 81.48(0.22) 79.79(0.57) 74.99(2.55) 47.09(0.79) 44.96(0.92) 40.95(1.88) 40.96(5.37) × 85.37( 2.57) 690 77.86

FedGMT 83.64(0.11) 82.79(0.22) 78.04(1.03) 49.76(0.33) 48.19(0.56) 46.11(0.67) 52.67(1.13) 392 40.38 89.39( 0.62) 329 33.72
FedGMT-V2 83.25(0.13) 82.44(0.28) 78.01(1.06) 49.54(0.37) 47.95(0.39) 45.83(0.73) 51.97(1.75) 393 40.61 88.93( 0.81) 351 35.10

Non-IID Partition Strategy : Long-tail Dirichlet (Dir)

Method
CIFAR-10 (CNN) CIFAR-100-Dir(0.1) (ResNet) CINIC-10 (ViT) AG News (FastText)

Dir(1.0) Dir(0.1) Dir(0.01) p = 20% p = 10% p = 5% Dir(0.1) R&T(44%) Dir(0.1) R&T(85%)

FedAvg 75.73(0.85) 70.61(3.51) 61.94(4.93) 41.96(0.53) 39.34(1.00) 35.13(1.69) 39.77(4.13) × 77.48(6.87) ×
FedDyn 78.15(0.33) 75.71(0.95) 70.52(2.32) 46.93(0.52) 44.81(0.64) 43.04(0.84) 44.01(2.05) 985 80.11 85.72(1.58) 745 54.39
FedNTD 76.60(0.39) 72.62(1.73) 66.96(2.45) 41.39(0.45) 39.74(0.46) 37.52(0.65) 48.65(2.28) 654 53.41 83.55(2.55) ×
FedSAM 78.31(0.95) 70.96(3.97) 61.05(4.85) 41.78(0.63) 38.95(0.89) 34.63(1.61) 39.27(3.84) × 80.25(4.93) ×
FedSpeed 80.38(0.38) 77.51(0.97) 71.96(1.67) 48.13(0.53) 45.73(0.52) 43.38(0.78) 47.57(2.34) 760 137.05 85.88(2.05) 687 80.61
FedSMOO 80.22(0.39) 77.08(0.97) 72.11(1.79) 48.26(0.42) 45.69(0.75) 43.06(0.79) 49.07(2.29) 712 160.20 85.74(2.15) 767 100.22
FedLESAM-D 78.02(0.27) 76.11(0.83) 71.10(2.82) 46.97(0.63) 45.21(0.67) 42.39(1.04) 43.00(2.51) × 85.68(1.62) 745 67.30

FedGMT 80.48(0.18) 79.17(0.49) 74.67(0.77) 48.65(0.22) 47.42(0.28) 45.46(0.37) 57.84(0.77) 404 33.40 88.39(0.67) 484 37.51
FedGMT-V2 80.00(0.18) 78.73(0.47) 74.11(1.32) 48.64(0.19) 46.95(0.25) 44.66(0.33) 57.61(1.00) 413 35.45 88.31(0.82) 485 38.07

4.2. Performance Evaluation

Datesets and Model Architecture. FedGMT consistently
exhibits efficacy across diverse datasets and model architec-
tures. In Table 2, the performance of many baselines varies
significantly with different datasets and model architectures.
Moreover, FedGMT-v2 incurs only a slight performance
reduction compared to FedGMT across all settings.

Heterogeneity. FedGMT is less affected by the degree of
data heterogeneity. In Table 2, most baselines exhibit better
performance in less heterogeneous settings (i.e., path(10)
and Dir(1.0)). However, as data heterogeneity increases
(i.e., path(2) and Dir(0.01)), they perform worse than
FedGMT and FedGMT-v2.

Partial Participation. FedGMT demonstrates robustness to
various levels of partial participation. As the participation
ratio decreases, the data amount for training in one round
decreases, exacerbating the degree of data heterogeneity.
In Table 2, FedGMT experiences a smaller drop in accu-
racy when the participation ratio changes from 20% to 5%
compared to others.
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Figure 4. Communication cost vs. computation time of FedGMT,
FedAvg and other SAM-based methods that achieve a target ac-
curacy in brackets (%). Every connected line represents a method
that trains under different Dirichlet settings on CIFAR-10.

Communication and Computation. Table 2 presents the
communication rounds and computation time needed to
achieve a target accuracy. Clearly, FedGMT achieves fewer
communication rounds and requires less computation time.
SOTA SAM-based methods, FedSpeed and FedSMOO,
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Figure 5. Learning curves of FL methods on Dir(0.1).
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Figure 6. 2D visualization of local learning trajectory on CIFAR-10 (Dir(0.01)). (a): The loss contour is based on one client’s local dataset.
(b): The loss contour is based on the global dataset. (c): The loss contour is based on the merge of normalized (a) and (b).

both require more than 3.5× in CINIC-10 and 2× in AG
News computation time compared to FedGMT. Moreover,
we compare the communication cost (i.e., communication
round * cost in Table 1) for SAM-based methods in Fig-
ure 4. Although FedGMT and FedSMOO achieve better
accuracy, they incur higher communication costs. We show
that FedGMT-v2 can achieve fewer communication cost,
while being less affected by the degree of data heterogeneity,
making it more suitable for real-world practicality.

Learning Curves. To offer deeper insights into the learn-
ing process, we depict the learning curves of various FL
methods in Figure 5. For clear visualization,we smooth
these curves. Despite employing different communication
rounds for each dataset, the model’s performance reaches
saturation at the end of communication rounds. Across all
datasets, both FedGMT and FedGMT-v2 not only attains a
superior final model by the end of the communication round
but also exhibits much faster convergence compared to the
other baselines.

4.3. Further Analysis

Impact of Each Component. In Table 3, We conduct an ab-
lation study to evaluate the contribution of each component
in FedGMT. The results show that both ADMM and Lglotra

contribute to performance improvement. It is worth noting
that when under high data heterogeneity (e.g. Dir(0.01)), uti-
lizing only Lglotra is ineffective, but when combined with
ADMM, the performance significantly improves by 13.39%.
The results validate the correctness and effectiveness of our
algorithm design and theoretical analysis.

Table 3. Ablation study on CIFAR-10.

ADMM Lglotra
m Dir(1) Dir(0.1) Dir(0.01)

- - 75.73(0.85) 70.61(3.51) 61.94(4.93)

- √ 78.18(0.43) 72.68(2.19) 61.28(3.11)√ - 78.13(0.34) 75.97(1.09) 68.99(3.23)√ √ 80.48(0.18) 79.17(0.49) 74.67(0.77)

Local Update Direction. In this part, we provide an in-
depth analysis of “How does FedGMT guide local learning
and why effective?” To achieve this, we visualize the learn-
ing trajectory of the local model on one client utilizing the
visualization method (Garipov et al., 2018). Specifically, we
train the global model with FedGMT for 100 rounds. Subse-
quently, we choose one client to perform the loss functions
of FedAvg, FedSAM, FedGMT without the ADMM, and
FedGMT for 5 local epochs, respectively. Their trajectories
are then plotted on the 2D loss landscape with different loss
views in Figure 6.

We observe that both FedAvg and FedSAM update towards
the local minimum, and FedSAM can explore a flatter region
than FedAvg from the local loss view. However, in Figure
6 (b), their directions result in a significant increase in global
loss, explaining their unstable performance under high data
heterogeneity. In contrast, FedGMT steers each local update
towards minimizing the change in global loss. From Figure
6 (c), FedGMT can find a region of joint minimum for both
local and global objectives, ensuring that local updates align
with the global update. Moreover, the ADMM in FedGMT
corrects the update direction towards reducing the joint
loss, which can guarantee the effectiveness of the global
sharpness measure.
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Table 4. The test accuracy (%) of FedGMT with different hyperparameters on CIFAR10.

Items
α=0.95 γ=1.0

γ = 0 γ = 0.5 γ = 1.0 γ = 1.5 γ = 2.0 γ = 2.5 α = 0 α = 0.5 α = 0.9 α = 0.95 α = 0.995 α = 0.9995

Dir(1.0) 78.13 79.46 80.48 80.37 80.82 80.93 78.73 79.10 79.42 80.48 81.12 81.25
Dir(0.1) 75.97 78.97 79.17 79.45 79.24 79.30 77.24 78.28 78.18 79.17 77.68 77.06
Path(4) 80.38 82.07 82.79 82.38 82.67 82.57 81.42 81.76 82.47 82.79 81.76 80.09
Path(2) 75.21 78.11 78.04 77.79 78.13 77.94 78.21 78.23 78.42 78.04 75.71 73.06

(a) FedSpeed (acc = 79.28%) (b) FedSMOO (acc = 79.10%) (c) FedLESAM-D(acc = 77.50%) (d) FedGMT (acc = 79.90%)

Figure 7. Visualization of the loss landscapes of the global model trained on CIFAR10-Dir(0.1).

Loss Landscape. In Figure 7, we visualize the loss
landscapes of global models obtained from FedSMOO,
FedSpeed, FedLESAM-D and FedGMT after 500 com-
munication rounds. The smoother of the loss landscape
contribute to better generalization and higher accuracy, as
seen with FedGMT, while less optimal landscapes could
result in lower accuracy, as in the case of FedLESAM-D.
These landscapes demonstrate FedGMT’s effectiveness in
smoothing the loss landscape among SAM-based methods.

4.4. Hyperparameters Sensitivity

Sharpness strength γ. In Table 4, we compare the perfor-
mance of the proposed FedGMT with different hyperparam-
eters on the CIFAR-10 dataset with different heterogeneous
settings. From the results, FedGMT exhibits insensitivity
to the sharpness strength γ. Notably, without Lglotra (i.e.,
γ = 0) in local learning, there is a significant accuracy drop
of 3.2% and 2.83% compared to γ = 1.0 on Dir(0.1) and
Path(2), respectively. Since the improvement from γ = 1.0
to γ = 2.5 is negligible, we set γ = 1 for FedGMT and
it works well across all datasets. We recommend that the
selection of γ from {0.5, 1.0, 2.0}.

EMA coefficient α. The α cannot be selected too large, as
it results in significant information loss on the recent update
trajectory, particularly under high data heterogeneity (e.g.,
Dir(0.1), Path(2)). We set α = 0.95 for FedGMT and it also
performs well across all datasets. We recommend that the
selection of α from {0.95, 0.995, 0.998}. Since the global
model’s performance in FL is unstable during initial epochs,
deploying a larger α may impede convergence. In our fu-
ture work, we plan to implement an adaptive mechanism to
further improve performances and reduce sensitivity of α.

5. Conclusion
In this work, we take a closer look at sharpness-aware min-
imization in heterogeneous FL from a global view. We
propose a novel method FedGMT to directly reduce the
sharpness of the global model in the FL framework. Theo-
retical analysis guarantees that FedGMT achieves the fast
convergence rate of O(1/T ). The extensive experiments
demonstrate FedGMT achieves high generalization with
fewer communication rounds and less computation cost.
This work inspires the design of FL frameworks to prioritize
reducing the sharpness of the global model.
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Appendix
We provide details omitted in the main paper.

• Appendix A: Table of Notations throughout the paper.

• Appendix B: Related work.

• Appendix C: Derivation of Equation (7) and (8).

• Appendix D: Proof of Theorem 3.5 (cf. Section 3.4 of the main paper).

• Appendix E: Details of experimental setups.

A. Table of Notations

Table 5. Table of Notations throughout the paper.

FL:
M,N, and m total number, sampled number, and index of clients
M,Nt whole client set, sampled client set at round t
D,Dm whole dataset, local dataset
T, t total number and index of communication rounds
wt, wt

m global model parameters, local model parameters at round t
C, c total number and index of classes
ηg, η global learning rate, local learning rate
f neural network
K local interval

SAM:
ϵ, ϵm weight perturbation allocated to global function L, local funcion Lm

ρ ascent step learning rate in SAM’s objective
∇ abbreviation for ∇w on parameters w
S(w) sharpness measure of SAM (equal to L(w + ϵ∗)− L(w))
∆t approximated global gradient at round t ( ∆t = wt − wt+1)

Algorithm:
α decay coefficient of EMA
β penalty coefficient
γ strength of minimizing sharpness
τ temperature in KL function
et EMA model
ut
m, ut dual variable on local, global

Functions:
Lm local ERM for client m
Lglotra
m global trajectory loss for client m

Lm loss function of FedGMT for client m
Fm function for convergence analysis
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B. Related Work
The widely known classical FL method FedAvg (McMahan et al., 2017) learns a single global model for all clients by
aggregating their local models. Although FedAvg provides a practical solution, it still suffers from the heterogeneity of
data across clients (Li et al., 2022). With further studies in FL, this is summarized as client drifts (Karimireddy et al., 2020)
and inconsistency objectives among clients (Wang et al., 2020b; Shi et al., 2023).

To alleviate the limitations of FedAvg, many methods utilize the parameter (or gradient) difference between the local and
global model to assist the local training. By incorporating the global model information into local training, the bias between
the local and global objectives can be diminished at some level. These approaches can be divided into the following three
directions: 1⃝ Many algorithmic solutions in (Li et al., 2020; Karimireddy et al., 2020; Acar et al., 2021; Gong et al., 2022;
Wang et al., 2023) mainly focus on mitigating the inconsistency across clients via giving a variety of proximal terms to
control the local model updates close to the global model. 2⃝ Momentum based methods (Xu et al., 2021; Qu et al., 2022;
An et al., 2023) introduce the global momentum information into the local training directly, which can force local updates to
be similar. 3⃝ Techniques based on knowledge distillation (Lee et al., 2022; Yao et al., 2023; Chen et al., 2023) utilize the
global model to guide local models, preventing them from forgetting knowledge from the server. While these algorithms
accelerate convergence, they often encounter challenges in sharp global landscapes under high data heterogeneity, leading to
unreliable minima and poor stability (Qu et al., 2022; Sun et al., 2023a). Therefore, the global model may not be efficient
for all clients, leading to a significant deviation.

Recently, a new research direction in FL has explored the generalization of the global model by analyzing the loss landscape,
establishing connections with convergence to flat minima (Mendieta et al., 2022; Qu et al., 2022; Caldarola et al., 2022; Hu
et al., 2024a;b;c). Most studies in this direction aim to seek flat minima of the global model with higher generality, utilizing
the recently proposed Sharpness-Aware Minimization (SAM) (Foret et al., 2020) optimizer as the local optimizer. Existing
works (Foret et al., 2020; Kwon et al., 2021; Du et al., 2021) demonstrate that the flat loss landscape approached by the
SAM optimizer exhibits higher stability and generality. In FL, (Qu et al., 2022) first incorporate the SAM optimizer to
inherently enhance consistency. Subsequently, various works such as (Caldarola et al., 2022; Sun et al., 2023a;b; An et al.,
2023; Lee et al., 2023; Fan et al., 2024) propose different variants to adopt the SAM optimizer.
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C. Derivation of Equation (7) and (8)

In this section, we refer the analysis in previous research (Ganchev et al., 2007; Du et al., 2022) to derivate the equation.

C.1. Derivation of Equation (7)

et = αet−1 + (1− α)wt

= α(αet−2 + (1− α)wt−1) + (1− α)wt

=
...

= αte0 + (1− α)(wt + αwt−1 + α2wt−2 + · · ·+ αt−1w1). (15)

We recall that:

wt = wt−1 −∆t−1 = wt−2 −∆t−2 −∆t−1 = . . . = w0 −
t−1∑
i=0

∆i. (16)

Substituting Equation (15) into Equation (16), we obtain

et = αte0 + (1− α)

(
w0 −

t−1∑
i=0

∆i + α

(
w0 −

t−2∑
i=0

∆i

)
+ . . .+ αt−1(w0 −∆0)

)

= αte0 + (1− α)

(
1− αt

1− α
w0 −

t−1∑
i=0

1− αt−i

1− α
∆i

)

= αte0 + (1− αt)w0 −
t−1∑
i=0

(1− αt−i)∆i

= w0 −
t−1∑
i=0

(1− αt−i)∆i

= wt +

t−1∑
i=0

αt−i∆i. (17)
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C.2. Derivation of Equation (8)

argmin
wt

SNt(wt) = argmin
θt

SNt(θt)
(a)
= argmin

θt

cos(Γt)∥∆Nt(θt)∥∥∆Nt(θt)∥

(b)
= argmin

θt

[
cos(Γt)∥∆Nt(θt)∥∥∆Nt(θt)∥+

∑
i<t

αt−icos(Γi)∥∆Nt(θi)∥∥∆Ni(θi)∥

]

= argmin
θt

t∑
i=0

αt−icos(Γi)∥∆Nt(θi)∥∥∆Ni(θi)∥

= argmin
θt

E
θi∼U(Θ)

[
αt−icos(Γi)∥∆Nt(θi)∥∥∆Ni(θi)∥

]
= argmin

θt

E
θi∼U(Θ)

[
αt−i∆Nt(θi)⊤∆Ni(θi)

]
(c)
≈ argmin

θt

E
θi∼U(Θ)

[
LNt(θi)− LNt(θi − αt−i∆Ni(θi))

]
= argmin

θt

E
θi∼U(Θ)

[
LNt(θi)− LNt(θi+1)

]
= argmin

θt

[
LNt(θ0)− LNt(θ1) + · · ·+ LNt(θt−1)− LNt(θt)

]
= argmin

θt

[
LNt(θ0)− LNt(θt)

]
= argmin

wt

[
LNt(et)− LNt(wt)

]
, (18)

where Γi is the angle between the global gradients that are computed based on active client sets Ni and Nt, θi ∼ U(Θ)
means that θi is uniformly distributed in the set Θ. (a) is from Equation (5). (b) is due to the fact that for i < t,
αt−icos(Γi)∥∆Nt(θi)∥∥∆Ni(θi)∥ is a constant with respect to the variable θt. (c) utilizes a first-order Taylor expansion.
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D. Proof of Theorem 3.5
D.1. Preliminary

Before proving the theorem, we first introduce some preliminary conclusions used in our proofs.

Definition D.1. Lm is L smooth if

∥∇Lm(x)−∇Lm(y)∥ ≤ L∥x− y∥ ∀x, y. (19)

Smoothness implies the following quadratic bound,

Lm(y) ≤ Lm(x) + ⟨∇Lm(x), y − x⟩+ L

2
∥y − x∥2 ∀x, y. (20)

Lemma D.2. For random variables x1, . . . , xn, we have

E
[
∥x1 + ...+ xn∥2

]
≤ nE[∥x1∥2 + ...+ ∥xn∥2]. (21)

Lemma D.3. For two random variables x, y, we have:

∥x+ y∥2 ≤
(
1 +

1

c

)
∥x∥2 + (1 + c) ∥y∥2, (22)

where c > 0 is a constant.

Lemma D.4. For two random variables x, y, we have:

⟨x, y⟩ ≤ 1

2
∥x∥2 − 1

2
∥x− y∥2. (23)

D.2. Proof of Equation (10)

.

Lglotra
m (wt

m) =
γ

|Dm|
∑

ξi∈Dm

ℓKL(f(w
t
m; ξi), f(e

t; ξi))

(a)

≤ γ

|Dm|
∑

ξi∈Dm

∥f(et; ξi)− f(wt
m, ξi)∥

2

minj∈{1,··· ,C} f(wt
m, ξi)

(b)

≤ γLf

δ

∥∥et − wt
m

∥∥2
(c)

≤ γLf

δ

∥∥∥∥∥wt +

t−1∑
i=0

αt−i∆i − wt
m

∥∥∥∥∥
2

(d)
=

1

2β

∥∥∥∥∥wt − wt
m +

t−1∑
i=0

αt−i∆i

∥∥∥∥∥
2

, (24)

where (a) use the technique that used in (Yao et al. (2023), Lemma 3), (b) is based on Assumption 3.2 and 3.4, (c) is based
on the relation of et and wt in Equation (7). (d): let γ = δ

2βLf
. Thus we complete the proof.
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D.3. Proof of Theorem 3.5

For convenience, we rewrite our FedGMT local objective as

L
′

m(wt
m) = Lm(wt

m) +
1

2β

∥∥∥∥∥wt +

t−1∑
i=0

αt−i∆i − wt
m

∥∥∥∥∥
2

− ⟨ut
m, wt

m⟩, (25)

based on Equation (9) and (10).

We define

Fm(wt
m) = Lm(wt

m)− ⟨ 1
β

t−1∑
i=0

αt−i∆i, wt
m⟩. (26)

Then the local objective becomes:

Fm(wt
m)− ⟨ut

m, wt
m⟩+ 1

2β
∥wt

m − wt∥2. (27)

Throughout the proof, we utilize similar techniques as in (Karimireddy et al., 2020; Acar et al., 2021; Sun et al., 2023a). We
define a set of variables which are useful in the analysis. With the partial participation training, Algorithm 1 freezes wt

m if
the client m is not active at round t. Thus, we define virtual variables w̃ as:

w̃t
m = argmin

w

{
Fm(w)− ⟨ut

m, w⟩+ 1

2β
∥w − wt∥2

}
, m ∈ M. (28)

The virtual variable w̃ is based on partial participation. Considering the first-order gradient condition of the objective in
Equation (28) as follows:

∇Fm(w̃t
m)− ut

m +
1

β
(w̃t

m − wt) = 0,m ∈ M; ∇Fm(wt
m)− ut

m +
1

β
(wt

m − wt) = 0,m ∈ Nt. (29)

We see that w̃t
m = wt

m if m ∈ Nt and w̃t
m does not depend on Nt, which means that wt

m equals to w̃t
m with probability N

M
and maintains w̃t−1

m otherwise.Then we consider the update of ut+1
m = ut

m − 1
β (w

t
m − wt), we infer ut+1

m = ∇Fm(wt
m) at

round t.

In order to distinguish the parameters before and after updating with the penalty term, we define:

wt+1 ≜
1

N

∑
m∈Nt

wt
m = wt+1 + βut+1. (30)

Next, we introduce the following Lemma to assist in the proof.

Lemma D.5. Algorithm 1 satisfies

E
[
wt+1 − wt

]
= − β

M

∑
m∈M

E
[
∇Fm(w̃t

m)
]
. (31)

Proof.

E
[
wt+1 − wt

] (a)
= E

[
1

N

∑
m∈Nt

(
wt

m − wt − βλt
)] (b)

= E

[
1

M

∑
m∈M

(
w̃t

m − wt − βλt
)]

(c)
=

β

M

∑
m∈M

E
[
ut
m − ut −∇Fm(w̃t

m)
] (d)
= − β

M

∑
m∈M

E
[
∇Fm(w̃t

m)
]
,

where (a) is from definition in Equation (30), (b) is due to each client is selected with probability N
M , (c) is from Equation

(29) and (d) is due to the relation ut = 1
M

∑
m∈M ut

m.
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Lemma D.6. Algorithm 1 satisfies

E∥wt+1 − wt∥2 ≤ 1

M

∑
m∈M

E
∥∥w̃t

m − wt
∥∥2 . (32)

Proof.

E∥wt+1 − wt∥2 (a)
= E∥ 1

N

∑
m∈Nt

(wt
m − wt)∥2

(b)

≤ 1

N
E

[ ∑
m∈Nt

∥wt
m − wt∥2

]
(c)
=

1

M

∑
m∈M

E
∥∥w̃t

m − wt
∥∥2 , (33)

where (a) is from Equation (30), (b) is from Lemma D.2 and (c) is due to each client is selected with probability N
M .

Note that we use ∥∇L(wt)∥ the global gradient norm as the metric of the convergence analysis of FedGMT. To achieve this,
starting from the assumption of smoothness with Equation (20), taking the full expectation on both sides, we have:

E
[
L(wt+1)

]
≤ E

[
L(wt)

]
+

L

2
E∥wt+1 − wt∥2 + E⟨∇L(wt), wt+1 − wt⟩

(a)
= E

[
L(wt)

]
+

L

2
E∥wt+1 − wt∥2 + βE

[〈
∇L(wt),− 1

m

∑
m∈M

∇Fm(w̃t
m)

〉]
(b)

≤ E
[
L(wt)

]
+

L

2
E∥wt+1 − wt∥2︸ ︷︷ ︸

A1

+
β

2
E

∥∥∥∥∥ 1

m

∑
m∈M

(
∇Fm(w̃t

m)−∇L(wt)
)∥∥∥∥∥

2

︸ ︷︷ ︸
A2

−β

2
E∥∇L(wt)∥2, (34)

where (a) is from Lemma D.5 and (b) is from Lemma D.4.

From Equation (34), we obtain the global gradient norm ∥∇L(wt)∥ which we want to bound. Next we need to bound A1
and A2 to complete the proof.

For convenience of expression, we define some quantities that we aim to control.

Ψt =
1

M

∑
m∈M

E
∥∥w̃t

m − wt
∥∥2 , Φt =

1

M

∑
m∈M

E
∥∥wt

m − wt+1
∥∥2 , Zt =

t∑
i=0

αt+1−i∆i.

Here, Ψt keeps track of how much local models change compared to the average of client models from the previous round,
representing the average local updates, Φ tracks how well local models approximate the current active client average,
representing the inconsistency among clients, Zt tracks the historical global update, representing the cumulative global
update with α decay. Note that if models converge, Ψt and Φ will be 0 and Zt approaches 0 since α ∈ (0, 1).

Lemma D.7. Based on the assumptions, the A1 and Ψt term could be bounded as:

E∥wt+1 − wt∥2
(a)

≤ Ψt ≤ 10β2L2Φt−1 + 5β2L2Ψt + 5β2E∥∇L(wt)∥2 + 5E∥Zt−1∥2. (35)
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Proof.

E∥wt+1 − wt∥2
(a)

≤ Ψt =
1

M

∑
m∈M

E
∥∥w̃t

m − wt
∥∥2 (b)

=
1

M

∑
m∈M

E∥w̃t
m − wt − βut∥2

(c)
=

β2

M

∑
m∈M

E∥ut
m −∇Fm(w̃t

m)− ut∥2 (d)
=

β2

M

∑
m∈M

E∥∇Fm(wt−1
m )−∇Fm(w̃t

m)− ut∥2

(e)
=

β2

M

∑
m∈M

E∥∇Lm(wt−1
m )− 1

β

t−2∑
i=0

αt−1−i∆i −∇Fm(w̃t
m)−∇L(wt−1

m ) +
1

β

t−2∑
i=0

αt−1−i∆i∥2

=
β2

M

∑
m∈M

E∥∇Lm(wt−1
m )−∇L(wt−1

m )−∇Fi(w̃
t
m) +∇L(wt)−∇L(wt)∥2

=
β2

M

∑
m∈M

E∥∇Lm(wt−1
m )−∇Lm(wt) +∇Lm(wt)−∇L(wt−1

m ) +∇L(wt)−∇Lm(w̃t
m)

+
1

β

t−1∑
i=0

αt−i∆i −∇L(wt)∥2

(f)

≤ 5β2

M

∑
m∈M

E∥∇Lm(wt−1
m )−∇Lm(wt)∥2 + 5β2

M

∑
m∈M

E∥∇Lm(wt)−∇Lm(w̃t
m)∥2

+
5β2

M

∑
m∈M

E∥∇Lm(wt)−∇Lm(wt−1
m )∥2 + 5β2E∥∇L(wt)∥2 + 5E∥

t−1∑
i=0

αt−i∆i∥2

(g)

≤ 10β2L2

M

∑
m∈M

E∥wt−1
m − wt∥2 + 5β2L2

M

∑
m∈M

E∥wt − w̃t
m∥2 + 5β2E∥∇L(wt)∥2 + 5E∥

t−1∑
j=0

αt−j∆j∥2

= 10β2L2Φt−1 + 5β2L2Ψt + 5β2E∥∇L(wt)∥2 + 5E∥Zt−1∥2,

where (a) is from Lemma D.6, (b) is from Equation (30), (c) is from Equation (29), (d) and (e) is due to the relation
ut = 1

M

∑
m∈M ut

m, ut+1
m = ∇Fm(wt

m), the definition of Fm in Equation (26) and the definition of L in Equation 1, (f) is
from Lemma D.2 and (g) is from L-smooth.

Lemma D.8. Based on the assumptions, the A2 term could be bounded as:

E

∥∥∥∥∥ 1

M

∑
m∈M

(
∇Fm(w̃t

m)−∇L(wt)
)∥∥∥∥∥

2

≤ 2L2Ψt +
2

β2
E∥Zt−1∥2. (36)

Proof.

E

∥∥∥∥∥ 1

M

∑
m∈M

(
∇Fm(w̃t

m)−∇L(wt)
)∥∥∥∥∥

2
(a)

≤ 1

M

∑
m∈M

E
∥∥∇Fm(w̃t

m)−∇L(wt)
∥∥2

(b)

≤ 1

M

∑
m∈M

E

∥∥∥∥∥∇Lm(w̃t
m)−∇L(wt)− 1

β

t−1∑
i=0

αt−i∆i

∥∥∥∥∥
2

(c)

≤ 2

M

∑
m∈M

E
∥∥∇Lm(w̃t

m)−∇L(wt)
∥∥2 + 2

β2
E

∥∥∥∥∥
t−1∑
i=0

αt−i∆i

∥∥∥∥∥
2

(d)

≤ 2L2

M

∑
m∈M

E
∥∥w̃t

m − wt
∥∥2 + 2

β2
E∥

t−1∑
i=0

αt−i∆i∥2

= 2L2Ψt +
2

β2
E∥Zt−1∥2,

where (a) and (c) are from Lemma D.2, (b) is from the definition of Fm in Equation (26) and (d) is from L-smooth.
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We see that the result of Equation (35) and (36) have the terms Φt−1 and E∥Zt−1∥2. Next, we aim to bound this two terms.

Lemma D.9. Based on the assumptions, the E∥Zt∥2 term could be bounded as:

E∥Zt∥2 ≤ 3α2E∥Zt−1∥2 + 3α2E∥Zt−2∥2 + 27α2β2G2 (37)

Proof. Let Zt =
∑t

i=0 α
t+1−i∆i, then we have

Zt = αZt−1 + α∆t = αZt−1 + α(wt − wt+1) (38)

Therefore, we have

E∥Zt∥2 = E∥αZt−1 + α(wt − wt+1)∥2

(a)
= E∥αZt−1 + α(wt − βut − wt+1 + βut+1)∥2

(b)
= E∥αZt−1 + α(wt − β∇L(wt−1

m ) + Zt−2 − wt+1 + β∇L(wt
m)− Zt−1)∥2

(c)

≤ α2E∥wt − wt+1 + Zt−2 + 2βG∥2

(d)
= α2E∥ β

m

∑
m∈M

∇Fm(w̃t
m) + Zt−2 + 2βG∥2

(e)
= α2E∥β∇Lm(w̃t

m)− Zt−1 + Zt−2 + 2βG∥2

(f)

≤ α2E∥ − Zt−1 + Zt−2 + 3βG∥2

(g)

≤ 3α2E∥Zt−1∥2 + 3α2E∥Zt−2∥2 + 27α2β2G2,

where (a) is from Equation (30), (b) and (e) due to the relation ut = 1
M

∑
m∈M ut

m, ut+1
m = ∇Fm(wt

m), the definition of
Fm in Equation (26) and the definition of L in Equation 1, (c) and (f) is from Assumption 3.3, (d) employs the same proof
procedure used in Lemma D.5 and (g) is from Lemma D.2.

Following Equation (37), we can obtain that E∥Z0∥2 ≤ 4α2β2G2 and E∥Z1∥2 ≤ 2α2β2G2(9 + 4α2). Then we can get
for t ≥ 2:

E∥Zt∥2
(a)

≤ 27α2β2G2

(
t∑

t=2

(
√
6α)t−2 + 1

)
+ ζ

(b)

≤ 27α2β2G2

(
1

1−
√
6α

+ 1

)
+ ζ

= σG + ζ ≈ σG, (39)

where (a) utilizes the result of Equation (37) with E∥Z0∥2 and E∥Z1∥2 to obtain the solution of this inequality. Here, ζ is a
small constant with exponential decay (omitted for brevity). (b) applies the sum of geometric series with α < 1√

6
. We use

σG to denote the result of Equation (39) for convenience.

Lemma D.10. Based on the assumptions, the Φt term could be bounded as:

Φt ≤
(

2N

2M −N
+

2M

N

)
Ψt +

2M − 2N

2M −N
Φt−1 (40)
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Proof.

Φt =
1

M

∑
m∈M

E∥wt
m − wt+1∥2 =

1

M

∑
m∈M

E∥wt
m − wt + wt − wt+1∥2

(a)

≤
(
1 +

N

2M −N

)
1

m

∑
m∈M

E∥wt
m − wt∥2 + (1 +

2M −N

N
)E∥wt − wt+1∥2

(b)
=

N

M

(
1 +

N

2M −N

)
1

M

∑
m∈M

E∥w̃t
m − wt∥2 +

(
1− N

M

)
(1 +

N

2M −N
)
1

M

∑
m∈M

E∥wt−1
m − wt∥2

+ (1 +
2M −N

N
)E∥wt − wt+1∥2

(c)

≤
[
N

M

(
1 +

N

2M −N

)
+ (1 +

2M −N

N
)

]
Ψt +

(
1− N

M

)
(1 +

N

2M −N
)Φt−1

=

(
2N

2M −N
+

2M

N

)
Ψt +

2M − 2N

2M −N
Φt−1,

where (a) is from Lemma D.3, (b) is due to each client is selected with probability N
M and (c) is from Lemma D.6.

Collecting and organizing the Equation (34), (35), (36), (39) and (40), we have

E
[
L(wt+1)

]
≤ E

[
L(wt)

]
+ (

L

2
+ βL2)Ψt +

1

β
σG − β

2
E∥∇L(wt)∥2 (41)

(1− 5β2L2)Ψt ≤ 10β2L2Φt−1 + 5β2E∥∇L(wt)∥2 + 5σG (42)

Φt ≤
(

2N

2M −N
+

2M

N

)
Ψt +

2M − 2N

2M −N
Φt−1 (43)

Let Equation (42) multiplied by constant X and formula (43) multiplied by constant Y , we take the sum of Equation (41),
(42) and (43)

E
[
L(wt+1)

]
+ X (1− 5β2L2)Ψt + Y Φt ≤ E

[
L(wt)

]
+ (

L

2
+ βL2)Ψt +

1

β
σG − β

2
E∥∇L(wt)∥2

+ 10X β2L2Φt−1 + 5X β2E∥∇L(wt)∥2 + 5X σG

+ Y

(
2N

2M −N
+

2M

N

)
Ψt + Y

2M − 2N

2M −N
Φt−1 (44)

Collecting the like term of Ψt and let the constants X and Y satisfy:

X (1− 5β2L2) =
L

2
+ βL2 + Y

(
2N

2M −N
+

2M

N

)
(45)

When Equation (45) holds, Equation (44) will be simplified to:

E
[
L(wt+1)

]
+ Y Φt ≤ E

[
L(wt)

]
+ (

1

β
+ 5X )σG + (5X β2 − β

2
)E∥∇L(wt)∥2

+ (10X β2L2 + Y
2M − 2N

2M −N
)Φt−1 (46)

Furthermore, considering the coefficient of Φ term, we let the constant X and Y satisfy:

Y = 10X β2L2 + Y
2M − 2N

2M −N
(47)

According to the Equation (45) and (47), we can get the solution of X and Y as:

X =
L(N2 + 2βLS2)

2(N2 − 40β2L2M2 − 25β2L2N2 + 20β2L2MN)
(48)
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Y =
5β2L2N(L+ 2βL2)(2M −N)

N2 − 40β2L2M2 − 25β2L2N2 + 20β2L2MN
(49)

This proof requires the constants X and Y both to be positive. Moreover, the coefficient of the global gradient term must
maintain a positive value.Thus the β satifies:

N2 − 40β2L2M2 − 25β2L2N2 + 20β2L2MN > 0 (50)

β

2
− 5X β2 > 0 (51)

We can get the solution of β as: β ≤
√
2N√

135+5
√
5ML

.

We can rewrite Equation (46) as:

(
β

2
− 5X β2)︸ ︷︷ ︸

κ

E∥∇L(wt)∥2 ≤ (E
[
L(wt)

]
+ Y Φt−1)− (E

[
L(wt+1)

]
+ Y Φt) + (

1

β
+ 5X )σG (52)

Let applying X ≤ 1
10β and Y ≤ 20Mβ2L2

N the above formula can be telescoped as

1

T

T∑
t=1

E∥∇L(wt)∥2 ≤ 1

κT

(
L(w1)− L∗ +

20Mβ2L2

N
Φ0

)
+

1

κ
(
1

β
+ 5X )27α2β2G2

(
1

1−
√
6α

+ 1

)
(53)

Similar to Qu et al. (2022); Sun et al. (2023a), we select the α = O( 1√
T
) that the final convergence rate approaches O( 1

T ),
which completes the proofs. For simplicity and convenience, We choose α ≤ 1√

6NT
, the above formula can be simplified as:

1

T

T∑
t=1

E∥∇L(wt)∥2 ≤ 1

κT

(
L(w1)− L∗ +

20Mβ2L2

N
Φ0 +

18βG

N

)
= O

(
1

T

)
(54)

This makes Theorem 3.5 hold.
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E. Experimental Setups
E.1. Environments

The code is implemented by PyTorch-1.13.1 (Paszke et al., 2019) and the overall code structure is based on PFLlib (Zhang
et al., 2023c) library with some modifications. All experiments are conducted on a Linux (Ubuntu-20.04.6 LTS) server with
one NVIDIA GeForce RTX 4090 GPU.

E.2. Datasets

To validate our approach, we consider image and text classification task and adopt four widely used datasets, i.e., CIFAR-
10/100 (Krizhevsky Alex, 2009), CINIC-10 (Darlow et al., 2018) and AG News (Zhang et al., 2015). Note that CINIC-10 is
constructed from ImageNet (Deng et al., 2009) and CIFAR-10, whose samples are very similar but not drawn from identical
distributions. Therefore, it naturally introduces distribution shifts which is suited to the heterogeneous nature of federated
learning. The details about each datasets and setups are described in Table 6.

Table 6. Details datasets setups used in the experiment.

Datasets CIFAR-10 CIFAR-100 CINIC-10 AG News
Datasets Classes 10 100 10 4

Datasets Size (train/test) 50,000/10,000 50,000/10,000 90,000/90,000 120,000/7,600
Number of Clients 100 100 100 100

Client Sampling Ratio 0.1 0.1 0.1 0.1
Local Epochs 5 2 5 5

Batch Size 50 20 100 50
Learning Rate 0.01 0.01 0.01 0.1

Base Optimizer SGD SGD SGD SGD
Momentum 0.9 0.9 0.9 0.9

Weight Decay 1e-5 1e-5 1e-5 1e-5
Rounds 500 500 1000 1,000

We use standard pre-processing, where CIFAR-10/100 and CINIC-10 images are normalized. The 32 × 32 CIFAR-10/100
and CINIC-10 images are padded 2 pixels each side, randomly flipped horizontally, and then randomly cropped back to 32 ×
32. For AG News, the maximum length of the sentence vector is set to 200.

E.3. Model Architecture

We conduct further experiments on different model architectures: CNN (LeCun et al., 1998) for CIFAR-10, ResNet-8 (He
et al., 2016) for CIFAR-100 and ViT (Dosovitskiy et al., 2021) for CINIC-10 and FastText (Joulin et al., 2017) for AG News.

• The CNN used in our experiment is from FedAvg (McMahan et al., 2017), a similar architecture is used in (Luo et al.,
2021; Lee et al., 2022).

• The ResNet-8 in our experiment is from PFLlib (Zhang et al., 2023c) library, a similar architecture is used in (Shang
et al., 2022a;b). We follow the suggestion of Hsieh et al. (2020) to replace the Batch Normalization (Ioffe & Szegedy,
2015) with the Group Normalization (Wu & He, 2018) to avoid the non-differentiable parameters.

• The ViT is adopted from ViT-CIFAR1, which is a smaller version compared to the original ViT.

• The FastText is from PFLlib (Zhang et al., 2023c) library, a similar architecture is used in (Zhang et al., 2023b;a).

1https://github.com/omihub777/ViT-CIFAR
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E.4. Baselines Implementation Details

We consider the following six state-of-the-art FL methods:

• FedAvg (McMahan et al., 2017) is proposed as the basic framework in the federated learning, which aggregates the
locally trained model parameters by weighted averaging proportional to the amount of local data that each client had.

• FedDyn (Acar et al., 2021) dynamically updates its regularizer so that the optimal model for the regularized loss is in
conformity with the global empirical loss.

• FedNTD (Lee et al., 2022) conducts local-side distillation only for the not-true classes to prevent forgetting.

• FedSAM (Qu et al., 2022) directly applies the SAM objective in local learning.

• FedSpeed (Sun et al., 2023b) incorporates a local SAM optimizer with a dynamic regularizer.

• FedSMOO (Sun et al., 2023a) utilizes the Alternating Direction Method of Multipliers (ADMM) to estimate global
perturbation and adopts a dynamic regularizer during the local training.

• FedLESAM (Fan et al., 2024) estimates the global perturbation as the difference between the locally stored historical
model from the activation round and the global model received in the current round.

For the above algorithms, we search hyperparameters and choose the best among the candidates. All methods hyperpa-
rameters is refered from their official implementations or papers. The hyperparameters for each algorithm is in Table
7.

Table 7. Algorithm-specific hyperparameters used in the experiment.

Method Searched Candidates Best Selection
FedAvg None None
FedDyn β ∈ {1, 10, 100, 1000} β = 10 except β = 100 in AG News
FedNTD None γ=1.0, τ = 1.0

FedSAM ρ ∈ {0.5η, η, 2η, 5η, 10η} ρ = 5η except ρ = η in CIFAR-100

FedSpeed
ρ ∈ {0.5η, η, 2η, 5η, 10η} ρ = 5η except ρ = η in CIFAR-100
β ∈ {1, 10, 100, 1000} β = 10 except β = 100 in AG News

FedSMOO
ρ ∈ {0.5η, η, 2η, 5η, 10η} ρ = 5η except ρ = η in CIFAR-100
β ∈ {1, 10, 100, 1000} β = 10 except β = 100 in AG News

FedLESAM-D
ρ ∈ {0.5η, η, 2η, 5η, 10η} ρ = 5η except ρ = η in CIFAR-100
β ∈ {1, 10, 100, 1000} β = 10 except β = 100 in AG News

FedGMT
γ ∈ {0.5, 1.0, 2.0} γ = 1.0, τ = 3.0

β ∈ {1, 10, 100, 1000} β = 10 except β = 100 in AG News
α ∈ {0.5, 0.95, 0.995, 0.998} α = 0.95 for FedGMT, α = 0.5 for FedGMT-v2

In Table 7, β is the coefficient for the penalty term. The selection of this hyperparameter has been studied in many previous
works which verify its efficiency. Usually the selection of β are in {10, 100}. The selection of ρ is usually related to the
local learning rate η (Sun et al., 2023b). γ and τ is the strength and temperature in the KL function.
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