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Abstract

Sequence-only PLMs lack spatial context and
miss critical folding, interface, and environment-
dependent cues, while structure-prediction and
docking methods are too slow and underperform
on antibody complexes. NextGenPLM bridges
this gap with a modular, scalable design that fuses
pretrained PLMs with multimodal inputs—from
raw sequences and functional assays to high-
resolution structures—via spectral contact-map
embeddings. It natively models multi-chain anti-
gen structures and processes four complexes
per second, enabling real-time, repertoire-scale
insights such as epitope clustering. On a di-
verse benchmark of antibody—antigen complexes,
NextGenPLM matches Chai-1 and Boltz-1x on
contact-map and epitope accuracy at a fraction
of the compute cost. In an internal affinity-
maturation campaign, ranking mutants by pre-
dicted contact probabilities and masked-language-
modeling (MLM) log-likelihoods helped achieve
up to 17x affinity improvements—demonstrating
its potential for rapid, data-driven biologics dis-
covery.
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1. Introduction

Target engagement is the defining requirement for antibody
therapeutics, yet today’s leading protein language models
are either antibody specific (Burbach & Briney, 2024; To-
bias H. Olsen & Deane, 2022) or trained on single chain
proteins (Lin et al., 2023), so they cannot model an antibody
and its antigen together. While these PLMs excel at predict-
ing self-contained properties such as thermal stability (Chen
et al., 2025), they struggle with target dependent functions
like binding affinity and epitope specificity that drive early
discovery. Common workarounds—building downstream
predictors on costly, target-specific data or applying human-
like CDR mutations that occasionally stabilize loops (Ewert
et al., 2003)—either require expensive experiments or yield
unpredictable improvements.

Structure prediction tools that handle multiple chains, in-
cluding AlphaFold-Multimer (Evans et al., 2021), Chai-1
(Chai Discovery, 2024), and Boltz-1x (Wohlwend et al.,
2024), can in principle capture both partners, but they are
too slow and resource intensive for screening millions of
antibody variants, and their ranking scores often fail to cor-
relate with real binding measurements. NextGenPLM (Next
Generation Protein Language Model) is a truly multimodal
foundation model and overcomes these limitations. It seam-
lessly integrates diverse representations (sequence, structure,
surface) and varied data sources (functional assays, epitope
mapping, predicted or experimental 3D structure), without
retraining from scratch or redundant computation, to reliably
predict antibody—antigen interactions at scale.

Key Design Principles and Technical Contributions

* Multimodal transformer backbone. We ingest
and jointly embed raw sequences, functional as-
says, and high-resolution structural data (via spec-
tral embeddings and contact-maps) into a single trans-
former—avoiding costly Evoformer blocks.

* Leverage and extend pretrained PLMs. By building
on off-the-shelf PLMs covering 108+ protein/antibody
sequences, we maintain broad sequence coverage with-
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out retraining, while explicitly injecting antigen contact
maps so the model needn’t reconstruct 3D geometry.
Thus focusing compute on antibody—antigen recogni-
tion.

e Structure and surface priors. IMGT numbering
(Manso et al., 2022), solvent-accessibility bins, and
contact-map features are fused as input or as part of
training tasks, improving interpretability and reducing
learning overhead.

* Robustness for real-world applicability We handle
practical structural variability—multi-chain antigens,
missing residues, or incomplete coordinates—by in-
corporating low-resolution features like coarse contact
maps. This reduces sensitivity to fine-grained struc-
tural details, making the model more applicable in
scenarios where precise structural information is lim-
ited.

» Epitope & contact-strength heads. We introduce spe-
cialized heads for epitope prediction and per-residue
contact-map regression that match state-of-the-art
structure predictors (e.g. Chai-1, Boltz-1x) at ~100x
higher throughput.

* Rapid affinity maturation. By ranking mutants via
summed high-confidence contact probabilities and fil-
tering with MLM log-likelihood, we demonstrate im-
mediate, rapid, and high-throughput leads optimization
building on existing experimental data.

¢ Scalable, extensible design. The entire pipeline ac-
cepts antigen structure (experimental or predicted),
skips full-atom antibody folding, and remains flexi-
ble for future data modalities or assay types, while
preserving transformer-level efficiency for repertoire-
scale screening.

1.1. Related Works

Beyond classic sequence-only PLMs [e.g. ESM (Lin et al.,
2023), ProtTrans (Elnaggar et al., 2021), BALM (Burbach &
Briney, 2024), AbLang (Tobias H. Olsen & Deane, 2022)],
and dedicated structure-prediction or docking engines [Chai-
1 (Chai Discovery, 2024), Boltz-1x (Wohlwend et al., 2024),
GeoDock (Chu et al., 2023)], a variety of hybrid approaches
have emerged—weakly embedding structural or interaction
cues, or training epitope/paratope heads. Yet they fall short
on multiple fronts. For example, PPI-focused frameworks
like MINT (Ullanat et al., 2025) or D-SCRIPT (Sledzieski
et al., 2021) leverage abundant co-evolutionary data but
lack the specificity and structural detail required for anti-
body—antigen binding.

Graph- and CNN-based paratope/epitope predictors such
as AsEP (Liu et al., 2024) and ParaSurf (Papadopoulos

et al., 2025) require high-fidelity 3D structures, while purely
sequence-based methods (AntiBinder; Zhang et al. 2025) or
those using only limited pairwise antigen features (EpiScan;
Wang et al. 2024) suffer from reduced accuracy and the same
scalability challenges as Evoformer-style models. None
approach the binding-site precision of leading multimeric
predictors like AlphaFold-Multimer.

2. Methods
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Figure 1. Schematic of the NextGenPLM architecture. Residue
embeddings from frozen PLMs (VH-VL, Ag) are combined with
chain IDs and spectral contact-map embeddings (using SignNet),
projected onto a shared space, and processed by a transformer
that models interactions for the full complex. Downstream heads
predict masked tokens, RSA bins, and contacts; training uses
structural and entropy-based masking for robustness. A zoomed
replica of this schematic is provided in appendix Figure 8.

The overall architecture of NextGenPLM is illustrated in
Figure 1.

2.1. Model Overview

NextGenPLM is a modular transformer-based architecture
designed to model antibody—antigen complexes using a
combination of frozen pretrained protein language mod-
els (PLMs), contact-map-derived spectral embeddings, and
structural priors. Our design avoids full 3D antibody struc-
ture input while leveraging the antigen’s structure (experi-
mental or predicted), enabling high-throughput evaluation
of thousands of antibodies against a small set of antigens—a
typical regime in real-world discovery workflows.

Unlike Evoformer-based predictors (AlphaFold2; Jumper
et al. 2021) with O(L? + sL?) complexity, NextGenPLM
maintains O(L?) scaling by linearizing 3D context into
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compact spectral encodings (top-k eigenvectors of the nor-
malized Laplacian). Antibody geometry is captured by a
low-resolution contact stencil, inferred from PLM attention
heads via a lightweight classifier.

Residue representations are formed by concatenating PLM
embeddings, spectral encodings (via SignNet; Lim et al.
2022), and one-hot chain IDs, then projecting into a shared
latent space. A transformer encoder models cross-chain
interactions, with specialized heads for masked token recov-
ery, solvent accessible area classification, and contact-map
regression.

All  models referenced in this paper use
esm2_t33_650M_UR50D (Lin et al., 2023) as the
frozen pretrained PLM for both antibody and antigen
inputs. For the trainable complex PLM, we initialize its
architecture and weights from esm2_t30_150M_UR50D
(Lin et al., 2023). Although an antibody-specific PLM could
be justified, we did not perform that ablation—instead,
we reuse the same general model for both Ab and Ag to
reduce GPU-memory usage. However, the framework is
fully capable of swapping in distinct pretrained PLMs for
antibody versus antigen when desired.

2.2. Learning Objectives and Masking Strategies

NextGenPLM is trained using a multi-task objective that
encourages the model to integrate both sequence-level and
structure/surface-aware information. The training tasks in-
clude masked language modeling (MLM), contact map re-
gression, and solvent accessible area classification.

Entropy-aware MLM. Antigen tokens are masked at ran-
dom; for VH-VL we bias masking toward high-entropy
IMGT positions (Complementarity Determining Regions;
CDRs) to focus learning on key recognition regions.

Structural masking. We randomly remove rows/columns
from input contact maps, recomputing spectral embeddings
on these corrupted maps and filling masked positions with
random vectors—training the model to handle incomplete
structures.

Solvent accessible area classification. We bin Relative Sol-
vent Accessibility (Tien et al., 2013) into five categories and
train a per-residue classifier, helping the model distinguish
buried versus exposed residues.

Weighted contact map loss. We predict binary contacts
(intra-Ab, intra-Ag, inter-chain) and apply separate loss
weights based on each category’s class imbalance to empha-
size true binding interactions.

Together, these objectives guide the model to align se-
quence, structure, surface, and interaction patterns effec-
tively. Moreover, the architecture is designed for extensibil-
ity—additional heads (e.g., for any experimentally measured

property, whether functional or structural) can be plugged
in and fused seamlessly into the foundational model.

2.3. Training Data and Hierarchical Training

To overcome the scarcity of high-quality antibody—antigen
complexes, we curate a multimodal dataset combining pub-
lic Protein Data Bank (Berman et al., 2000) structures (crys-
tallography, cryoEM released before March, 2024 (Gupta
et al., 2025)), internal proprietary complexes, and bind-
ing sequence pairs from patents and assays. This diverse
collection supplies sequence, functional, structural, and sur-
face annotations that together capture the complex, context-
dependent rules of Ab—Ag recognition.

We then train in successive rounds to build capability. First,
we learn to interpret spectral embeddings on general multi-
chain protein complexes with masked language modeling
(MLM) and contact-map prediction. Next, we fine-tune
on curated Ab—Ag structures to teach cross-chain interac-
tions. We follow with binding sequence rounds—MLM on
both chains plus antigen contact supervision—and finally
interleave sequence-only and structure-based stages with
an added solvent-accessibility classification task. Through-
out, we apply structure-similarity weighting and use a 12 A
contact threshold to broaden interaction neighborhoods and
ensure stable, progressive learning.

2.4. Epitope Prediction Head

To predict epitope residues with spatial precision (Figure
4), we add a graph-based head on top of the core NextGen-
PLM embeddings, keeping the trained foundational model
frozen. We first pool antibody information into each antigen
residue by combining contextual embeddings with learnable
IMGT positional and chain-type (VH/VL) encodings, then
concatenate and project this antibody-informed vector with
the antigen’s own embedding. We build an antigen residue
graph using an 8 A distance cutoff to capture fine struc-
tural neighborhoods and apply a lightweight GCN (Kipf &
Welling, 2016) over this graph to refine node representations.
A final per-node classifier then produces epitope probabil-
ities, yielding interpretable, residue-level predictions that
leverage both sequence context and local 3D structure. Fur-
ther architectural details are provided in Appendix A.

3. Experimental Results

This section presents preliminary results from ongoing work.
We are actively expanding our evaluation to include more
public benchmark datasets and fully disclosed experimental
assays and targets. The figures and metrics that follow
reflect performance on our current internal and proprietary
data.
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3.1. Contact and Epitope Prediction Benchmark

Although our model lacks the intricate architecture and
full-atom resolution of AlphaFold-style methods, we still
compared NextGenPLM to state-of-the-art multimers Chai-
1 and Boltz-1x by generating paired MSAs, sampling five
conformations each, and evaluating the top-ranked model.
On 112 diverse antibody—antigen complexes—selected for
both sequence and structural variety (some public PDB en-
tries released after May 30, 2024, plus proprietary structures
(Gupta et al., 2025))—we defined contacts and epitopes via
12 A and 8 A distance cutoffs and report balanced accuracy
on VH-VL versus antigen residues.

As shown in Figure 2, NextGenPLM matches Chai-1 and
Boltz-1x on both tasks and exhibits thicker violins at higher
accuracy—indicating a stronger tendency to partially cap-
ture true epitope residues. Because cross-attention is only
weakly constrained by the contact-map objective, missing a
few epitope positions still allows meaningful attention on
neighboring residues.
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Figure 2. Contact map and epitope prediction performance
comparison. The violin plots are based on the balance accuracy
of each sample in the benchmark dataset. NextGenPLM matches
the accuracy of state-of-the-art complex structure predictors and
displays noticeably thicker violins at higher balanced-accuracy
values—indicating a stronger tendency to partially capture true
epitope residues.

In addition to accuracy gains, our model offers substantial
efficiency improvements. On a single NVIDIA A10G GPU,
our throughput reaches 4 complexes per second, compared
to O(1 min) per complex for Boltz-1x and Chai-1.

3.2. Antibody Affinity Maturation

Affinity maturation by structure-based design seeks muta-
tions that increase both the number and strength of anti-

body-antigen contacts. Although NextGenPLM is trained
on proxy objectives, we hypothesize its predicted contact
maps—and other output features—encode real affinity in-
formation. Rather than building a separate regression or
classification model on binding data, we tested ranking
multi-point mutant libraries of a wild-type antibody against
its antigen using only (a) summed high-confidence contact
probabilities and (b) MLM log-likelihoods conditioned on
the wild-type antibody and antigen. Details can be found in
Appendix B.2.

To validate this approach, we applied it in an internal
affinity-maturation campaign against an undisclosed target.
NextGenPLM was trained on proprietary complex structures
specific to this antigen. After two experimental rounds us-
ing a high-throughput screening of ~ 1,140 variants, the
team identified a top variant with three mutations and 3-
fold improved binding over wild-type. Using that variant
as the new parent, we generated about 350 mutants via
our contact-map and likelihood ranking strategy (Figure
5) and benchmarked them against alternative, mutation-
informed approaches. Top candidates—triaged again by
high-throughput screening—were confirmed by the surface
plasmon resonance (SPR) technique: NextGenPLM’s de-
signs, each bearing three to four non-intuitive additional
mutations, achieved up to 17x affinity gains (several show-
ing 10-15x) over wild-type (Figure 3). Future cycles can
leverage the model’s dynamic feedback loop to further refine
rankings, pinpoint binding sites, and guide rational design.

3.3. Ablation Study

We performed an ablation study to isolate the contributions
of key NextGenPLM components: spectral embeddings
for 3D structure, the MLM objective on VH-VL/antigen
pairs, and inclusion of proprietary internal data. Figure 7
reports AUC-PR and balanced accuracy for predicted con-
tact probabilities between antibody and antigen residues.
Spectral embeddings drive the largest gains in AUC-PR,
while training on binding pairs most improves balanced ac-
curacy—demonstrating that both structural encoding and
interaction-specific data are essential to our model’s success.

4. Conclusion and Future Works

In summary, NextGenPLM represents a new paradigm in
multimodal foundational models for antibody—antigen mod-
eling by integrating sequence, experimental 3D structure,
and interaction data in a single, efficient transformer. Lever-
aging pretrained language models, explicit structural pri-
ors, and supervision across diverse modalities, it matches
state-of-the-art multimer predictors on contact-map and epi-
tope benchmarks while training at a small fraction of the
cost and delivering orders-of-magnitude faster inference.
Our affinity-maturation workflow further proves its practi-
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Affinity Fold Change vs. Contact Strength
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Figure 3. Correlation of predicted contact strength with SPR-
measured affinity gains. Each point represents a mutant variant
from the affinity-maturation campaign, plotted by its summed
high-confidence contact probability and its fold-change in bind-
ing measured by surface plasmon resonance (SPR). The original
three-mutation parent (green) shows a 3x improvement, while
structure-infused NextGenPLM'’s top candidates—with three to
four additional, non-intuitive mutations—achieve up to 17x gains
over wild-type.

cal impact—achieving up to 17x gains measured by SPR
in an internal campaign without any binding-data supervi-
sion. Looking ahead, this flexible framework can absorb
additional data types—epitope binning, functional assays,
even NANOBODY® VHH-antigen or RNA—protein inter-
actions—and evolve through dynamic feedback loops to
enable truly high-throughput, data-driven biologics discov-
ery.
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A. Epitope Prediction Head

Final antigen residue embeddings from the frozen NextGenPLM are enriched with antibody context. Specifically, for each
antibody—antigen residue pair, we concatenate attention features with IMGT positional embeddings and one-hot VH/VL
chain-type indicators corresponding to the antibody residue. These concatenated vectors are projected onto a latent space
and pooled across antibody residues to obtain a contextualized representation for each antigen residue.

The resulting antibody-aware representations are further processed by a graph convolutional network (GCN) constructed
over the antigen structure. In this graph, each node represents an antigen residue, and edges are defined based on an 8 A
threshold applied to the Ca—Ca distance matrix. The refined node embeddings are then passed to a residue-level classifier
that produces epitope probability scores. This architecture enables interpretable and spatially localized epitope predictions,
conditioned on both the antigen structure and the surrounding antibody context.

One-hot VH/VL/Ag chain type Ag Residue
. Node
IMGT Embedding Layer Embeddings Trainable graph
Trainable Convolution
Projection Layer Network

+
______ Mean along VH-VL
! residues direction

~

Ag Residues

VH-VL Residues
//
£
’
’

i

—

Frozen Pre-trained NextGenPLM

RO
SRR
[Antigen (Aq) ] ”}57 S :

N

Figure 4. Architecture of the epitope prediction head. For details see Appendix A.

B. Affinity Maturation

To propose mutations for affinity maturation, we first use NextGenPLM to generate single-point mutation probabilities for
each position in the VH and VL chains of parent antibody. For each position, candidate mutations are selected by applying a
probability threshold to identify likely alternatives. These single-point mutations are then randomly combined to generate a
pool of 100,000 mutant sequences.

To prioritize the proposed mutations, we compute two ranking metrics: joint mutation probability and contact strength. The
overall workflow is illustrated in Figure 5.

B.1. Joint Mutation Probability Approximation

To score each multi-point mutant’s plausibility given both the parent antibody and the antigen, one could approximate the

joint probability of its k£ mutations in two ways as described below.
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Figure 5. Schematic a general affinity maturation workflow. For details see Appendix B. If target-specific experimental 3D structures
are available, they can be leveraged by adding it to the training data and performing a short fine-tuning round. Here, PDB 7F0X (Zhang
et al., 2021) is shown as a representative complex.

First, the common “parent-masking” heuristic conditions on the antigen while masking each mutation in the parent sequence:

k
P(my,...,my | parent, Ag) ~ H P(m; | (parent \ m;), Ag),

i=1
which requires at most L forward passes (with L the sequence length).

Second, the more accurate “variant-masking” approximation also conditions on the antigen but masks each mutation in the
full mutant (“‘variant”) sequence:

k
P(mq,...,my | parent, Ag) ~ H P(m; | (variant \ m;), Ag),
i=1

capturing inter-mutation dependencies at the cost of: number of variants x k forward passes.

In our workflow we adopt the variant-masking approximation to filter out implausible sequences, trading additional compute
for more faithful likelihood estimates.

B.2. Contact Strength

We predict the binary contact map between the antibody and antigen, and compute a corresponding contact strength metric:

contact_strength = Z {pi; > 7} pij,
i€ADb, jEAE

where p;; denotes the model-predicted contact probability between antibody residue ¢ and antigen residue j, and 7 (e.g.,
0.9) is a high-confidence threshold. This summation captures both the quantity and intensity of predicted high-confidence
contacts, reflecting the biophysical intuition that stronger and more numerous interactions typically correlate with higher
binding affinity.

Figure 6 illustrates the relationship between observed fold changes and the approximated contact strengths for mutants from

8
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a previous wave of affinity maturation. The results suggest a clear trend: higher contact strength is associated with a greater
upper bound on binding affinity.

Affinity Fold Change vs. Contact S5trength
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Figure 6. Relationship between predicted contact strength and fold-change over wild-type measured by high-throughput screening.
Each point corresponds to a variant from earlier affinity-maturation rounds, with contact strength computed as the sum of high-confidence
predicted inter-chain contacts and fold-change representing binding improvement relative to wild-type. Continuous enrichment of higher
fold-change variants at greater contact strengths demonstrates the predictive value of our contact-map based metric.
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Figure 7. Ablation study on NextGenPLM components. Box-plots corresponds to AUC-PR and balanced accuracy for predicted
inter-chain contact probabilities measured on benchmarking data used in Section 3.1. Results are plotted bottom to top for the full model
and then after removing, in order: (1) the MLM task on VH-VL/antigen pairs, (2) proprietary internal training data, and (3) spectral

embeddings.
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