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ABSTRACT

Quantile Partial Effect (QPE) is a statistic associated with conditional quantile re-
gression, measuring the effect of covariates at different levels. Our theory demon-
strates that when the QPE of cause on effect is assumed to lie in a finite linear span,
cause and effect are identifiable from their observational distribution. This gener-
alizes previous identifiability results based on Functional Causal Models (FCMs)
with additive, heteroscedastic noise, etc. Meanwhile, since QPE resides entirely at
the observational level, this parametric assumption does not require considering
mechanisms, noise, or even the Markov assumption, but rather directly utilizes
the asymmetry of shape characteristics in the observational distribution. By per-
forming basis function tests on the estimated QPE, causal directions can be dis-
tinguished, which is empirically shown to be effective in experiments on a large
number of bivariate causal discovery datasets. For multivariate causal discovery,
leveraging the close connection between QPE and score functions, we find that
Fisher Information is sufficient as a statistical measure to determine causal order
when assumptions are made about the second moment of QPE. We validate the
feasibility of using Fisher Information to identify causal order on multiple syn-
thetic and real-world multivariate causal discovery datasets.

1 INTRODUCTION

Multivariate causal discovery aims to elucidate inter-variable structures, yielding causal graphs or
causal orders crucial for non-parametric identification and effect estimation in causal inference
(Pearl, [2009). The sparsity of these graph structures aids downstream tasks such as feature se-
lection (Guyon et al.|[2007) and disentangled representation learning (Yang et al.,|2021). To identify
hidden Directed Acyclic Graphs (DAGs), various causal discovery methods have been developed,
including constraint-based (Spirtes & Glymour, |1991} |Spirtesl [1995) and score-based (Cooper &
Herskovits), [1992; |Chickering|, 2002) approaches. However, these methods typically identify only
up to an equivalence class, failing to distinguish causes from effects without additional assumptions.

Functional Causal Models (FCMs) are a class of Structural Causal Models (SCMs) that impose con-
straints on causal mechanisms. These include Additive Noise Models (ANM) (Hoyer et al., |2008)),
Heteroscedastic Noise Models (HNM) (Tagasovska et al., 2020), and Post-Nonlinear (PNL) models
(Zhang & Hyvirinen, 2009). The inherent asymmetries in FCMs ensure that models satisfying these
assumptions can distinguish cause from effect, except in some marginal cases. However, FCMs re-
quire strong assumptions about the underlying mechanism, noise, and Markov property, which may
not hold in real-world scenarios. Recently, causal velocity (Xi et al., |[2025) has generalized FCMs
without requiring assumptions on functional form and noise. Nevertheless, it relies on counterfactual
concepts, making it challenging to test the validity of the underlying counterfactual assumptions.

Inspired by causal velocity, this work discovers a more fundamental concept called Quantile Par-
tial Effect (QPE), which reflects the shape characteristics of the observational distribution. This is
a statistic purely at the observational level, defined by the conditional quantile function (Koenker,
2005) (Definition 3.1)). It includes two equivalent definitions and [3.3). We also
find cause-effect identifiability presents if QPE is assumed to lie in a finite linear span when basis
functions are given (Assumption 3.3)). This assumption generalizes past FCM assumptions (detailed
in[Table I). In contrast to previous methods, however, identifiability via QPE relies purely on the
observational distribution, independent of the underlying mechanism, noise, or Markov properties
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Figure 1: Distributions and their QPEs for ANM Y = sin(X) + U and HNM Y = X3 + (1 +
tanh((X — 1)?))U. (a) Joint distribution (heatmap) and samples (scatterplot); (b) Conditional
density of Y | X (heatmap), conditional quantiles (white curves), and their gradients (white arrows);
(c) QPE of Y| X (3D surface) and its intersection with the Y-Z plane (white curves); (d) Conditional
density and conditional quantiles of X | Y’; (e) QPE of X | Y (3D surface) and its intersection with
the X-Z plane. ANM guarantees that the intersection of the QPE of Y | X in the Y-Z plane is a
constant function, while HNM guarantees it is an affine function, due to restrictions on the QPE

form (see Table T)); the converse generally does not hold (Section 3.2).

(Corollary 3.8). Two algorithms for bivariate causal discovery based on QPE estimation and ba-

sis testing were subsequently developed and [£.3). Experiments on bivariate causal
discovery datasets demonstrate the effectiveness of these algorithms (Section 6.1)).

When discussing multivariate causal discovery, we turn to indirect statistical measures to determine
causal order, as estimating QPE becomes increasingly difficult in high dimensions. Given the close
relationship between QPE and the score function (Cemma 3.4), we find that the second moment of
QPE influences Fisher information (Theorem 5.2). Under certain assumptions regarding only QPE,
Fisher information can sufficiently distinguish between cause and effect (Corollary 5.3). Based on
this theory, we develop a simple and efficient non-parametric algorithm to identify causal orders,
provided that is satisfied. Finally, We validate the feasibility of this method on
multiple synthetic and real-world multivariate causal discovery datasets (Section 6.2).

2 PRELIMINARIES

Notation and General Assumptions Generally, this paper discusses random variables in R%. We
denote a one-dimensional random variable and its realization as X and z, respectively. For multi-
dimensional random variables, we use X = (Xi,...,Xy) and @ = (z1,...,24). In some cases,
lowercase boldfacing can also represent vector-valued functions, while uppercase boldfacing may
denote matrices. Set operations between random variables refer to operations on their index sets and
will also be used. For all probability density functions px appearing in this paper, we assume they
are always existent, strictly positive, and at least C*-functions when involving k-th derivatives.

Structural Causal Models For a set of variables X, an SCM is a triplet (f, X,U), where X
and U are endogenous and exogenous variables, respectively. For each X; € X, we have X; =
fi(P;, U;), where P; C X \{X;} are the parent variables and f; is the causal mechanism. An SCM
is recursive if the graph G with nodes X and directed edges (X, X;) forevery X, € P;isaDAG. A
causal order 7 is any total order consistent with the topological sort of G. A recursive SCM satisfies
the Markov assumption if the exogenous variables are jointly independent (i.e., causal sufficiency or
no latent confounders [2009)), which implies P; L U; for each X;;.

Score Function and Stein’s Identity This paper refers to the gradient of the logarithmic density,
V. logpx, as the score function. When a mild boundary condition, limg_,+, h(x) px(x) = 0,
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Figure 2: For clarity, we present a dependency graph of the assumptions and theorems in the main
text, where “A—B” indicates that B depends on A: (a) Theorems in [J correspond to[Section 3} (b)

Theorems in [ correspond to[Section 4} (¢) Theorems in [ correspond to

holds for a class of functions h, we have Stein’s Identity (Stein, [1972):
E[h(x)TVglogpx () + Vg - h(x)] = 0.

A direct consequence is that the score function has zero expectation. Its variance, which is equiva-
lent to its second moment, constitutes the Fisher Information. For a single variable X;, the Fisher
Information is the variance of the partial score 0., log px. Under the same regularity conditions,
it equals the negative expected second derivative: E[(8,, logpx)?] = —E [02 log px |, where the
second term is the negative expectation of a diagonal entry of the Hessian matrix of the log-density.

Causal Normalizing Flows |Javaloy et al.[(2023) summarized the connection between autoregres-
sive normalizing flows and SCMs, proposing to use flows to model SCMs and fit observational
distributions, and showing their capacity for counterfactual inference. Taking a single causal mech-
anism X; = f;(P;,U;) as an example, assuming it is strictly monotonic w.r.t. U; and the SCM
satisfies the Markov assumption, then according to the change-of-variable formula:

log px,|p, = log pu, + log |0:,ug/, (1)

where the causal flow is modeled as ug(p;, ; ), which maps the endogenous variable X to a latent
variable Uy, and py, is called the latent distribution. This formula also allows us to use Maximum
Likelihood Estimation (MLE) to estimate parameters 6 by maximizing E[log py, + log |0z, ugl]-
Javaloy et al.|(2023) also discussed how to use autoregressive flows to fit multivariate SCMs and
proved that under the above assumptions, such modeled causal flows ultimately lead to latent vari-
ables identifiable up to element-wise invertible transformations. (Chen & Dul (2025) then proved that
causal flows and the true SCM are counterfactually consistent under these assumptions.

3 QPE FOR CAUSAL DISCOVERY

3.1 DEFINITION OF QPE AND EQUIVALENT CONCEPTS

We use QPE, a statistical object induced from conditional quantile regression, for causal discovery.
QPE describes the sensitivity of quantiles to covariates, quantifying covariate effects at different
levels. Its visualization, as shown in reflects the shape characteristics of the observational
distribution. Let Fy-|x be the conditional cumulative distribution function (CDF) corresponding to
the conditional distribution py | x, and Qy|x be the conditional quantile function. Then:
Definition 3.1 (Quantile Partial Effect). The Quantile Partial Effect (QPE) of a random variable Y
given X is ¥y | x (y|x) = V4 Qy | x (7 |x), where the quantile 7 = Q;‘IX = Fy|x.

Based on the equality Fy | x = Q;IIX, we can immediately find an equivalent description of QPE:
Proposition 3.2 (QPE from CDF). ¥y |x = —VoFy|x/0,Fy|x = —VaFy|x/py|x-

X1 et al.| (2025) introduced the concept of causal velocity to generalize FCM-based bivariate causal
discovery. Consider a Markovian causal mechanism Y = f(X,U), where f is strictly monotonic
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Table 1: The functional forms of FCMs and their corresponding QPE forms. For HNM, b > 0, and
for PNL, g = ¢’(g!). The QPEs of these FCMs can all be expressed in finite-rank forms.

FCM Functional Form QPE Form QPE Basis Functions
LiINGAM Y=cxz+u c 1
ANM Y =a(xz)+u Va 1
HNM Y =a(z) + b(z)u (Va—2Vb)+ Sty Ly
PNL-ANM Y = g(a(z) + u) Vag 7
PNL-HNM Y = g(a(z) +b(z)u) (Va-—2Vb) g+ YLy 'y 7.97'9
Assumption 3.5 Perhaps no closed-form Z?:l ci(x) o;(y) o)

w.r.t. U. The term f (', u(a, y)) is referred to as the counterfactual outcome (or SCM flow), where
u = (f(zx,-))" 1. Causal velocity is then defined as V, f(x, u). According to (Nasr-Esfahany et al.|
2023)), under these assumptions, the counterfactual outcome is identifiable from the observational
distribution, meaning causal velocity is independent of the exogenous distribution. In fact, we find

Proposition 3.3 (Causal Velocity is QPE). ¥y |x = Vo f(x,u) = —Vzu/dyu, a.e.

According to the Causal Hierarchy Theory (Bareinboim et al), 2022)), this implies that causal ve-
locity, a counterfactual quantity, can “collapse” entirely into an observational quantity, despite its
definition through counterfactual concepts. In contrast to causal velocity, QPE does not require
monotonic mechanisms or the Markov assumption. Its definition and cause-effect
identifiability depend solely on the observational distribution.

X1 et al.|(2025)) also found a PDE relationship between causal velocity and the score function, based
on the SCM flow and the continuity equation. This PDE naturally applies to QPE due to their
equivalence. In fact, by directly taking the partial derivative of the implicit function defined in

Proposition 3.2 we can derive this equation:
Lemma 3.4. V. logpy|x + &0y logpy|x + 0, = 0 and lim, 1 Epy|x = 0iff & = Py |x.

Now consider each covariate X;, and denote the corresponding component in QPE as ¢y | x ; =
0z,Qy|x . Since J,, log px is independent of Y, according to log px y = logpx + log py|x, we
can obtain the equality 9, log py|x = 9, log px vy between the conditional log-density and the joint
log-density. Therefore, a second-order mixed PDE can be derived from|[Cemma 3.4}

0,0y log px .y + 0y (Vyx,: 0y logpx.y + Oyby|x.,i) =0, 2

which only involves the score function of the joint distribution and QPE.

3.2 CAUSE-EFFECT IDENTIFIABILITY BY QPE IN FINITE LINEAR SPAN

For a function f : R — R, if it can be represented as a linear combination of a set of basis functions
¢ = (¢1,...,¢k) such that there exist coefficients c;, ..., ¢y satisfying f(z) = Zle ¢; (),
then f is said to be in the finite linear space spanned by ¢, denoted as f € span(¢).

Assumption 3.5. For each cause variable X; and any x, ¥y x ;(- | ) € span(¢), where ¢ is a
known set of basis functions that depend only on the effect variable Y.

In other words, this assumption requires that each component ¥y x ;(- | ) can be represented in a
finite-rank form as a sum of finite ¢; ;(x) ¢;(y), where ¢; ; are coefficient functions w.r.t. .

We observe that previous FCMs with constrained functional forms can in fact be expressed in a
finite-rank form, as detailed in However, note that requires a known ¢;
thus, although it generalizes ANM and HNM, it does not directly apply to PNL where g is unknown.
Furthermore, this assumption is entirely independent of monotonicity or the Markov property, dis-
tinguishing our approach from the generalization path taken by Xi et al.| (2025)). Specific examples

that violate these properties yet still satisfy are provided in
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Next, we consider constructing equations solely dependent on the joint distribution using linear re-

lationships. For a set of multivariate functions f, ..., fx, where each f; : R? — R, the determinant
f fa .. Ix

Oxfi Ofa ... Oufi
Wx(fl,...,fk):det . . . .

8§71f1 8}571]“2 8’;71](]6

is called the Wronskian determinant w.r.t. the variable X. Let sx, y = 0,,0, logpx y and Ny|x =
9y (¢ 0ylogpx,y +¢'). Here, sx, y is an off-diagonal element in the Hessian matrix, while 1y x
is the partial derivative of ¢’s Stein operator w.r.t. y. Then, according to the second-order mixed
PDE (Equation [2), the following theorem holds:

Theorem 3.6 (Identifiability of QPE in Finite Linear Span). For each variable X; and any x,
Yy x,i(- | ) € span(@) implies Wy (sx,y,ny|x) = 0 for any y. If: (i) The components in
Ny |x are linearly independent; (it) There exists y such that Wy (77y| x) # 0; (iii) For each basis
function ¢, limy 1o ¢ py|x = O; then the converse is also true.

Theorem 3.6 constitutes a necessary (or sufficient, assuming well-behaved conditions) condition for
the validity of [Assumption 3.5} Crucially, [Theorem 3.6 relies solely on the Wronskian determinant,
which is a function only of the joint distribution and the basis set ¢ (as well as their higher-order
derivatives). By leveraging this Wronskian determinant, we can formally characterize the asymme-
try of shape characteristics in the observational distribution given ¢, and further achieve cause-effect
identifiability that relates only to the observational distribution:

Assumption 3.7. The set of basis functions ¢ is known, and for any Z € X \Y and any X; € X\ Z,
we have Wz (sx, z,mzx) # 0.

Corollary 3.8 (Cause-Effect Identifiability by QPE in Finite Linear Span). If] and
[Assumption 3.7 hold simultaneously, then'Y is the effect variable.

Proof |Theorem 3.6| establishes a necessary condition for [Assumption 3.5( (¢¥yx; € span(¢))
to hold is Wz (sx, y,my|x) = 0, so|Assumption 3.7 implies 1) x ; ¢ span(¢). Consequently,
does not hold for any Z € X \ Y, leaving Y as the only possible effect variable.

It is worth noting that both[Assumption 3.5]and [Assumption 3.7} as utilized in[Corollary 3.8} depend
solely on the observational distribution (assuming ¢ is pre-specified). The former is independent
of monotonic mechanisms and the Markov assumption, as illustrated in the latter
describes a PDE system over the observational distribution, reflecting its asymmetry. Consequently,
via QPE, we achieve cause-effect identifiability based strictly on the observational distribution.

4  QPE FOR BIVARIATE CAUSAL DISCOVERY

4.1 QUANTIFY CAUSE-EFFECT IDENTIFIABILITY THROUGH THE LENS OF FCM

While [Corollary 3.8] establishes cause-effect identifiability through [Assumption 3.3| and [Assump-
tion 3.7} weaknesses remain. Most notably, characterizing the probability that|/Assumption 3.7|holds
is challenging. To resolve this, we revert to the bivariate FCM framework, replacing|Assumption 3.7

with the assumptions of monotonic mechanisms and the Markov property. This enables a quantita-
tive description of cause-effect unidentifiability grounded in manifold theory.

Assumption 4.1. A bivariate SCM (f, X, U) such that Y = f(X, U), where the causal mechanism
f and exogenous distribution py; are given. Furthermore, f is strictly monotonic w.r.t. U, and the
Markov property or X L U holds.

describes a family of FCMs where only py of X is unspecified. All possible px
distributions form an infinite-dimensional manifold, ®, denoted as dim(®) = oo, representing the

scale of this FCM family. We then introduce forward and backward versions of on
QPE: “for any z, ¥y |x (- | z) € span(¢)” or “for any y, ¥ x|y (-|y) € span(¢)”. These conditions
induce two submanifolds, @ x_,y.¢ and © x .y, respectively. These submanifolds contain all px

that satisfy the corresponding assumption and must at least satisfy
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Corollary 4.2. Assume that there are k basis functions in ¢ and certain regularity conditions hold.
Then: (i) dim(® x_,y.¢) = 00; (i) dAM(Oxy.¢) < k + 2.

In other words, under the premise of an FCM satisfying if the forward version of
Assumption 3.5|also holds, the choice for px remains arbitrary. However, if the backward version of
Assumption 3.5|holds, px is constrained to lie within a submanifold of at most k£ + 2 dimensions. It
is obvious then that the unidentifiable scenario, where both the forward and backward versions of the
assumption hold simultaneously, also falls within such an at most k + 2-dimensional submanifold.
Since this manifold is finite-dimensional, it is typically of measure zero for non-degenerate mea-
sures on an infinite-dimensional space. Therefore, generally, except for extremely marginal cases,

universally provides identifiability of causal direction.

While [Corollary 4.2]retains the need for monotonic mechanisms and the Markov property, it offers
guarantees that serves as a generalization of quantifiable cause-effect identifiability under the classic
FCM framework. In particular, this corollary generalizes the conclusion by Hoyer et al.| (2008) that
unidentifiable ANMs lie in a three-dimensional affine space (since ANMs correspond to k = 1
where the Wronskian simplifies to a linear ODE) to any finite-linearly spanned QPE (k < 00).

4.2 KERNEL-BASED QPE WITH LEAST SQUARE BASIS TEST

With the identifiability guarantees established above, we can determine the causal direction by es-
timating the QPE and checking whether it lies within the assumed span. The original definition of
QPE suggests calculation via conditional quantile regression, but its accuracy and efficiency depend
on the underlying quantile regression. Below is an efficient and entirely non-parametric method for
bivariate causal discovery, independent of quantile estimation.

Kernel-based QPE By [Proposition 3.2} we can use non-parametric methods to estimate Vo Fy | x
and 0, F'y|x , thereby indirectly computing 1y x . Given N samples (x;, y;) drawn from px y, the
conditional CDF can be estimated using a kernel estimator as:

N
~ _ Zi:l K(wsz) S(ylvy)
Fyix(y|=x) = N
>ic1 K(xi, )
where K is a smoothed version of the indicator function 1(x; € d(x)) and S is a smoothed version

of the 1(y; < y). We choose K as a Gaussian kernel and S as a sigmoid function. Based on this
equation, since the kernel functions are known and smooth, we can derive closed-form expressions

for vmﬁ‘yp((y | :c) and 8yﬁy|X(y | iB)

Least Square Basis Test After obtaining the estimated QPE ’lZJy‘ x, we can test whether the es-
timate satisfies at fixed (x,y) pairs. Specifically, we can pre-select {y1,...,yn}
as test locations for y and construct a basis matrix B such that B,,, ; = ¢;(ym ). Concurrently, we
select {x1,..., @7} as test samples for . For the i-th component, based on these fixed locations,
we construct a response matrix W; such that ¥; ; ., = 1y |x ;(ym | x;) for each y,,, and ;. If the
true QPE vy |x ;(y | x) € span(¢), then for a coefficient matrix C; such that C;; ; = ¢; j(Tm),
it must hold that ¥; = C;BT. Since C; is unknown, this problem can be modeled as an Ordinary
Least Squares (OLS) problem where the noisy W, is treated as a linear response w.r.t. B. Then,

arg min H‘i,l — C’iBT" = C; = \iliB(BTB)_l7
C;

where, because the ¢; are not necessarily linearly independent across the M test locations, which
means that the inverse of BT B may not exist, we use the pseudoinverse (BT B)™ instead to ensure
numerical stability. Finally, we average the residuals for each component:

F

This value reflects the degree to which |Assumption 3.5|is satisfied: ex .y = 0 only if ¥y x ;(- |

x) € span(¢) holds for all covariates X;. In bivariate causal discovery, we can identify the causal
direction by comparing €x_,y and ey, x. We infer Y as the effectif ex_,y > €y _, x, and X as
the effect otherwise.

d
1 ~ ~
EX—-Y = _E Z H'I’Z - ‘I’ZB(BTB)+BT
=1



Published as a conference paper at ICLR 2026

True QPE of Y| X QPE-k Causal Velocity QPE-f

@ ® @ @
g 4 J ';\ y‘ ‘w_ /
¥ g P} % / o/3
Y Y Y , Y
X X X X

Figure 3: True and estimated QPEs of Y | X at samples from HNM Y = X3 + (1 + tanh((X —
1)2)) U. From left to right: (a) True QPE; (b) QPE-k (Section 4.2)); (¢) Causal velocity model (Xi
et al,[2023) (V-NN); (d) QPE-f (Section 4.3). The black lines represent the intersection of the QPE
surface with the Y-Z plane. Only QPE-f’s trend tends to match the true QPE in high-density areas.

4.3 FLOW-BASED QPE WITH NEURAL BASIS TEST

While kernel methods combined with the least squares basis test offer a fast and effective non-
parametric approach, their performance is limited by the choice of kernel bandwidth and sample
size. QPE estimation tends to be less accurate and prone to overly smooth predictions. We will
now introduce a neural network-based parametric method, which, despite requiring neural network
training, often yields more accurate QPE estimates, as shown in In experiments, this
method outperforms most state-of-the-art bivariate causal discovery methods.

Flow-based QPE By for any SCM that satisfies the assumption, we can calculate
the QPE using the function w that maps the observational distribution to an exogenous distribution.
According to [Section 2] any causal flow modeled by Equation [T]is an SCM satisfying
tion 3.3} and these SCMs are counterfactually identifiable. Thus, we can estimate the QPE through
any flow ug parameterized as in Equation [I] and optimized via MLE. We use the standard normal
distribution as the latent distribution and parameterize it with a neural network. After obtaining the
causal flow ug, we can compute Vg ug and 0yug using automatic differentiation techniques, thereby

calculating the QPE 1/3y| x = Vgug/0yug. Note that[Proposition 3.3|implicitly guarantees that the

QPE obtained this way is always consistent, even if a different latent distribution is chosen.

Neural Basis Test Although the previously described OLS-based test still applies to the estimated
1ﬁy| x here, it requires fixed y values and cannot directly test based on irregularly distributed sam-
ples. Furthermore, OLS corresponds to MLE under the assumption that errors follow a Gaussian
distribution. To address these issues, we consider using a parameterized neural network to directly
model the coefficient function ¢; ; (), which corresponds to optimizing the objective:

al"gmeiHEXaY,e + A|6]], whereex .y, =E {HQZJY\X - Cy (bTm )

where ) is a regularization hyperparameter, and Cy is the matrix formed by c¢; ; ¢. In contrast to the
OLS test, here the samples x, y,, can be irregularly distributed. The optimal € x _,y,¢ will serve as
a measure of how well [Assumption 3.3]is satisfied, and its use in determining the causal direction is
the same as described previously.

This testing method can be simplified, as proposed by (Xi et al., 2025), to directly fit 1y | x using
unconstrained neural networks, called V-NN models. Specifically, they consider directly optimizing
PDE in[Cemma 3.4] which is guaranteed to converge under the vanishing assumption. However,
Lemma 3.4| involves first-order gradients, and the performance heavily relies on the accuracy of
score function estimation algorithm.

5 FISHER INFORMATION FROM THE QPE PERSPECTIVE FOR MULTIVARIATE
CAUSAL DISCOVERY

5.1 THE CONNECTION BETWEEN FISHER INFORMATION AND QPE

Due to the curse of dimensionality, QPE estimation in high-dimensional settings performs poorly,
limiting its direct application in multivariate causal discovery. Since |[Lemma 3.4| describes a de-
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terministic relationship between the score function and QPE, we consider constructing an equation
between the Fisher information and QPE. We then indirectly infer the Fisher information by assum-
ing QPE, enabling its use for causal discovery. For variables X, Y, we denote the score functions
of the joint and marginal distributions, J,, log px v and 0., logpx, as sx, and rx, respectively.

Assumption 5.1. Both ¢y |x ; px,y and ¥y x ;(9y¥y|x,i) px,y vanish at +-00.
Theorem 5.2. For each covariate X, if[Assumption 5.1| holds then
E [(Wyx.:)? (sy)?] =E[(sx,)°] = E [(rx,)?] + E [(0y¥v|x.,1)* + 2¥y|x,s 3§¢Y\X,i] .
Corollary 5.3. For each covariate X, if] holds then
E [(0y¥yx.:)* + 2%y x.i 6§¢Y|X,i] <E[(($y)x,:)* = 1) (sy)’] + E[(rx,)?]
ifand only if E [(sx,)?] > E [(sy)?].

This implies that if the marginal Fisher Information is sufficiently large, or the second moment of
Yy |x i is sufficiently large and the moments of the higher-order partial derivatives of ¥y x ; W.r.t.
y are sufficiently small, we can directly distinguish the effect variable by the Fisher Information.

Qualitative analysis under the heteroscedastic Gaussian assumption By introducing additional
assumptions on the second-order partial derivative of 1y x ; (i.e., HNM), we can isolate its second

moment from the inequality in[Corollary 5.3}

E [(ry)?] N E [(0y¥yx,:)%] + \/Var [(Yyx,:)?] Var [(sy)?)]
E[(sy)?] E[(sy)?] '

Then, for to be as valid as possible, we need to make assumptions about QPE:
E[(1y|x;)*] must be sufficiently large, and one of the following must hold: (i) Var[(¢y|x ;)?]

is sufficiently small when 8,1y | x ; = 0 (e.g., ANM); (ii) Var[(¢y|x ;)?] is sufficiently small and
E[(ay¢y| Xyi)g] is sufficiently small when 851/13/‘ x,i = 0 (e.g., HNM). Qualitatively, when assum-
ing E[(0yvy|x )2 s relatively stable, this trend requires the coefficient of variation (CV) of the
squared QPE, ./ Var|[( ’l/)yl x.i)%)/E[( d)y‘ x,i)°], to be sufficiently small.

Furthermore, if we assume a heteroscedastic Gaussian conditional distribution, i.e., Y | X = z ~
N (u(z), (o(x))?), we can derive the exact value of the CV of the QPE under linear 1, o, or its upper

bound in the general case (see for the complete derivation):

E [(¢yx:)*] >1—

Var [(dyx)?] _ VAT Var [(¥y1x)*] _(VTF6u? + 3u \/E[( 1]
E((yx)?] 1+ 77 E[@Wyx)?] 1402

where k = ¢’ /p’ and I < |k| < w.

Based on the above analysis, qualitatively, under the heteroscedastic Gaussian assumption, the CV
of QPE is sufficiently small when: (i) |x| = |0’/y/] is sufficiently small, meaning p rather than o
dominates the shape of the distribution; and (ii) i and o are close to linear functions. To further con-
firm the correctness of this qualitative analysis, we conducted experiments on datasets with widely

varying average |«| and linearity. The results are presented in|Appendix D.4
5.2 FISHER INFORMATION CAUSAL ORDERING
Assumption 5.4. For each variable X;, any of its parents P; € P; satisfy and

E[(8y0x,1p.)% + 20x,p; Ootx, P i) <E[(x,p.; — 1) (sv)’] + E[(rx,)?] -
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According to [Corollary 5.3] if both [Assump{ Algorithm 1 Fisher Information Causal Ordering
[tion 5.1] and [Assumption 5.4] hold for a given
set of variables X, then the variable X; with
the minimal Fisher information E[(s x,)?] must
have no child variables, called the leaf variable.

Therefore, [Assumption 5.4|is a crucial simpli-

Input: a set of d random variables X .
Output: causal order 7

XM X, 7w« []

for j = 1toddo

. 2
fication, implying that once the score function [ < argmin; E {(31 logpx ) }
is estimated, there is a possibility of finding the (j+1) ()
leaf node. After selecting a leaf node X, a sub- X e Xy, m e[l

X . end for
problem on X _; is formed, which allows for return

recursion until all variables are removed. The
resulting sequence of variables is the reverse of the causal order. This process is called FICO
(Fisher Information Causal Ordering), and the detail is described in

Next, given the causal order, for d variables, we only need to perform at most d(d — 1) /2 conditional
independence tests to prune the full DAG induced by this topological order, thereby retaining only
the necessary edges. Under the assumptions of causal sufficiency and faithfulness, independence
tests ensure that the DAG lies within the Markov equivalence class, and the direction of each edge

is determined by Thus, the resulting DAG is fully identifiable.

Notably, CaPS (Xu et al.| 2024), another score function based causal discovery method, is algo-
rithmically fully equivalent to FICO. However, distinct differences exist between them: (i) CaPS is
specifically tailored for the ANM, and its theoretical derivation relies on the ANM assumption. In

contrast, FICO applies to any model, provided that the vanishing assumption (Assumption 5.1)) holds

and the QPE satisfies (ii) CaPS utilizes —E [821 logp X], whereas FICO employs

E [(871 logp X)Q]. Although both are equivalent, FICO involves lower-order derivatives, resulting
in higher computational efficiency (see for details).

It is important to emphasize that although FICO’s assumptions and theory have been extended to
general cases, and despite its simplicity and computational efficiency, it still faces challenges worth
addressing: (i) The assumption relied upon by FICO has only been analyzed
qualitatively under the heteroscedastic Gaussian setting. We still lack a precise understanding of
what the validity of implies in broader contexts. (ii) Calculating the QPE in high-
dimensional settings is difficult, which renders the testability of problematic. Given
these limitations, caution is still advised when applying FICO in practice.

6 EXPERIMENTS

6.1 BIVARIATE CAUSAL DISCOVERY EXPERIMENTS

Datasets We conducted experiments on 24 synthetic and real-world benchmarks, including: (i)
AN, AN-c, LS, LS-c, MNU from (Tagasovska et al.| 2020); (ii) SIM, SIM-c, SIM-g, SIM-In from
(Mooij et al.,|2016); (iii) Cha, Multi, Net from (Guyon et al.,[2019); (iv) Per, Sig, Vex generated by
random SCM flows from (X1 et al.}|2025); (v) Qd-V, Sig-V, Rbf-V, NN-V generated by constrained
QPEs (Appendix D.2)); (vi) Tiibingen cause-effect pairs challenge (Mooij et all 2016); (vii) Gene
network reverse engineering challenge from (Marbach et al.,[2009). Datasets (vi) and (vii) are real-
world datasets, while the underlying SCMs of (iv) and (v) are not necessarily ANM, HNM or PNL.

Baselines We consider the following open source methods as baselines: (i) ANM and PNL with
independence test, implemented by (Zheng et al., 2024); (ii) ANM-based RECI (Bloebaum et al.,
2018)) and CDS (Fonollosa, 2019)), with implementations from (Kalainathan et al., 2020); (iii) HNM-
based CDCI (Duong & Nguyen, [2022), HECI (Xu et al., |2022), and LOCI (Immer et al., [2023); (iv)
The causal velocity model CVEL (Xi et all, [2025). In we will cover additional
methods (21 baselines in total based on different theories).

Results shows the accuracy of QPE-k (Section 4.2) and QPE-f (Section 4.3)) on 12 datasets,
with more detailed and complete results available in [Appendix D.2| For QPE-f, we present the

results of causal flows under their best configurations, as detailed in As shown in
QPE-f performs best on these benchmarks due to its stronger expressive power and more
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Table 2: Accuracy of QPE-k, QPE-f, and baselines on 12 bivariate datasets. The best is bolded.

Method | AN LS | SIM SIM-c | Cha Net | Per Sig | Qd-V NN-V | Tue D4-sl | Time (s)

ANM 043 046 | 045 0.49 041 047 | 049 044 | 049 048 | 0.65 0.50 0.250
PNL 030 033 | 046 054 | 045 051 | 042 043 | 0.46 0.41 | 0.51  0.33 37.770
RECI 0.18 0.22 | 0.44  0.53 0.56 0.60 | 0.00 0.07 | 0.63 0.49 | 0.64 0.58 0.002
CDS 099 0.76 | 0.71 0.76 0.71 0.78 | 0.18 0.08 | 0.78 0.52 | 0.67 0.58 0.017
CDCI | 1.00 1.00 | 0.84 0.76 0.67 0.84 | 048 042 | 0.74 0.72 | 0.68  0.67 0.001
HECI 098 092 | 049 0.55 0.57 0.72 | 0.01 0.13 | 0.59 0.45 | 0.61 0.42 0.026
LOCI | 1.00 1.00 | 0.78 0.81 0.73 0.87 | 0.96 0.70 | 0.71 0.78 | 0.61  0.58 14.981
CVEL | 1.00 0.98 | 0.63 0.72 0.68 0.62 | 1.00 0.84 | 0.91 087 | 0.64 0.67 1.597

QPE-k | 0.99 1.00 | 0.83 0.79 0.60 0.89 | 0.77 0.89 | 0.42 0.53 | 0.54 0.58 0.009
QPE-f | 1.00 1.00 | 0.88 0.88 | 0.85 0.86 | 1.00 0.90 | 0.91 0.90 | 0.70 0.79 7.804

accurate fitting, but it is relatively time-consuming due to the need to train causal flows. QPE-k
performs similarly to QPE-f on various benchmarks and runs very fast, but its identification capacity
is limited. Additionally, methods based on ANM or HNM do not perform as well as CVEL and QPE-
f on causal flow and constrained QPE datasets. This suggests that our identifiability theories based
on QPE have a broader scope of applicability beyond just common FCMs.

6.2 MULTIVARIATE CAUSAL ORDERING EXPERIMENTS

Table 3: Runtime efficiency of FICO and CaPS, in seconds per sub-test.

Method d=35 d=10 d=20 d =150 d =100

CaPS 0.455+£0.037 1.074+0.056 2.761+0.285 10.822+1.037 33.794 £ 3.501
FICO 0.425+0.322 0.797+0.364 1.727+0.523 5.550£0.943 13.538 £1.248

Results Given that CaPS and FICO are algorithmically equivalent, their performance is nearly
identical, with minor differences attributable only to numerical computation errors. For simplicity,
we therefore report only their computational efficiency in the main text.

Performance comparisons between CaPS, FICO, and other causal ordering baselines are detailed in
the appendices: describes the datasets and baselines used; [Appendix D.3|reports the
relationship between performance and sample size; [Appendix D.5|details performance on real-world
datasets; and covers performance on synthetic datasets. In summary, we find that
all score function based causal ordering algorithms perform very similarly across various settings,
demonstrating the robustness reported by Montagna et al.|(2023). This empirically suggests that the
underlying assumptions or characteristics of these methods are implicitly satisfied.

[Table 3| reports the average time consumed by both methods across all tests under different dimen-
sionalities, showing that FICO significantly outperforms CaPS. For a comparison of computational
efficiency between FICO and all other causal ordering methods, see|Appendix D.7

7 CONCLUSION

In this work, building upon research into quantile partial effects, we propose a novel parametric
assumption that enables cause-effect identifiability solely from
the observational distribution. This assumption simultaneously generalizes and relaxes the Func-
tional Causal Model assumption. Consequently, we develop two algorithms, QPE-k
and QPE-f (Section 4.3), for effective bivariate causal discovery, and evaluate their performance in
numerous experiments (Section 6.T). For multivariate causal discovery, we investigate indirect sta-
tistical criteria related to QPE for efficient causal ordering. We propose FICO (Section 5.2)), which
performs causal ordering efficiently when holds, validated on both synthetic and
real datasets (Section 6.2). For causal discovery based on quantile partial effects, future work will
first investigate cause-effect identifiability under more general conditions, such as relaxing the fixed
basis function assumption. In multivariate causal discovery, high-dimensional quantile partial effect
estimation is challenging; while this paper explores an indirect alternative, its underlying assump-
tions lack interpretability and practical verifiability. Future work should develop more intuitive and
inherently suitable information measures for multivariate causal discovery.

10
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A DISCUSSION ON QPE AND IDENTIFIABILITY

A.1 PROOFS FOR[SECTION 3.2
PI‘OpOSitiOH 3.2 (QPE from CDF). ’l,by‘X = 7vwa‘X/ayFy‘X = 7vay|X/py|X.
Proof. For any function y = f(x,u), if f(a,-) is strictly monotonic for any x, then its inverse

isu = (", ~))71. Fixing y and taking the total derivative w.r.t. x of the implicit function
y = f(x,u(z,y)) yields

d
T = Do, f (@) + Ouf (@, u) Oy, ul@,y) = 0,
L
Thus, Vgzu = =V, f /0, f. Given the inverse relationship between the conditional quantile function

and the conditional CDF, Qy|x and Fy | x are inverses of each other. Therefore, V. Qy | x (z,y) =
—VaFy|x / ﬁyFy‘ x . Furthermore, from the relationship between the conditional CDF and condi-
tional PDF, 0, Fy|x = py|x, which implies VQy|x (%,y) = —VzFy|x /py|x- O

Proposition 3.3 (Causal Velocity is QPE). ¢y |x = Vg f(z,u) = —Vgau/dyu, ae.

Proof. From the previous derivation, we have Vyu = —V,f/0, f. Fixing « and taking the total
derivative w.r.t. y of the implicit function y = f(x, u(x, y)) yields
dy

= Ol @wou(@y) =1,

Thus, Oyu = 1/9, f. Therefore, V,u/0yu = —V 5 f, which proves the latter half of the identity.

Consider another SCM Y = ¢(X, W) where W is uniformly distributed on [0, 1], such that g is
strictly monotonic w.r.t. W and X 1l W. Now, let any « be given. According to the proba-
bility integral transform, the conditional CDF Fy | x transforms the conditional distribution py|x
into py. The inverse function w = (g(z,-))~* also transforms the conditional distribution py-|x
into py. Since both Fy | x and w are strictly monotonic for continuous variables, they are both
Knothe transports from py|x to py . Due to the a.e. uniqueness of Knothe transport, Fy | x = w
a.e. Furthermore, as in (Nasr-Esfahany et al [2023)), under strict monotonicity and the Markov
assumption, for any SCM that generates the observation distribution Px y, the exogenous vari-
ables are identifiable up to an invertible transformation. Let this invertible transformation be-
tween exogenous variables U and W be h such that U = h(W). Then Vizu = A’V w and
dyu = h' d,w, which implies Vyu/0yu = Vyw/dyw. Since Fy|x = w a.., by [Proposition 3.2]

Veu/0yu =V Fy|x /0y Fy|x = —ty|x a.e., which proves the first half of the identity. O
Lemma 3.4. V,logpy|x + &0, logpy|x +9,€ = 0andlimy 1+ Epy|x = 0iff &€ = Py |x.

Proof. According to[Proposition 3.2, Vi Fy|x + 1y x py|x = 0. Under assumptions of smooth-

ness and strict positivity, taking the partial derivative w.r.t. y gives

VaDy | x L Prix IyYy|x + Py x Oypy|x
Py|x Py x
= Vg logpy|x + ¢y x Oylogpy|x + 9y x =0, (3)

which means the equation holds when £ = 1y x . Additionally, according to [Proposition 3.2|again,
Yy |x Py|x = ValFy|x, 50

Vapy|x + 0y (Yy|x pyx) =

li = i = F =Vg lim F = lim 1=0. 4
yifllw¢y‘xpy|x yHHJPoov vix v yﬁlgloo Yix yﬁlrlloo 0 “)

The case for y — —oo is analogous. From Equation [3|and Equation [ the necessity of the lemma
is established.

Now, for any £ satisfying the conditions, subtract the equation it satisfies from the equation that
Py | x satisfies to obtain

(& — Yy |x) Oy log py|x + 0y (€ — Yy x) = 0.
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Then, multiply both sides of the equation by py | x and expand J, log py|x, which yields

(&€ — Py x) Oypy|x + Py x Oy(€ — Yy x) = 0, ((€ — ¥y x) Py|x) = 0.
Integrating this w.r.t. y from some yq gives
(& — Yy x)pyix +C =0,
where C'(x) is a function independent of y. Taking y — oo for this equation on both sides, since
1imy%+oo £ple = (0 and hmyg)+oo ’lﬁle ple = 0, it follows that hmyg)a‘,oo c=C=0. Thus,

(€ — 1y x)py|x = 0 holds for all ,y. Due to the strict positivity assumption, py|x > 0, so it
must be that § — 1y x = 0, which establishes the sufficiency of the lemma.

Theorem 3.6 (Identifiability of QPE in Finite Linear Span). For each variable X; and any x,
Yy|x,i(- | ©) € span(p) implies Wy (sx, y,my|x) = 0 for any y. If: (i) The components in
Ny|x are linearly independent; (ii) There exists y such that Wy (ny|x) # 0; (iii) For each basis
function ¢, limy,_, + o ;5 py|x = 0, then the converse is also true.

Proof. Let an arbitrary a be given in this proof. Substituting 1y |x ;(y | ) = Zle cij(x) d;(y)
into the second-order cross PDE (Equation [2)) and rearranging terms yields
k k

6 8 longY +Zcz,] ¢]8 long Y +¢ ) =38X,;,Y +Zcz]nY|X,3 - 07 (5)
j=1 j=1

where 1y | x ; denotes the j-th component of 77y x. This implies that sx, y and 1y | x are linearly
dependent. Taking the m-th partial derivative w.r.t. y form = 0,..., k gives

o —
Oy'sx, vy + E ¢ij 0y'ny x5 =0,

Jj=1
forallm = 0, ..., k. Note that these k + 1 equations (including the zero-th order) share the same
coefficients. Therefore,
SX,Y My|x,1 - Y| X,k 1
8'HSX717Y 8y77Y|X,1 cee aan\X,k Ci1
. . . . .| =WeT =0,
855Xi7y 0{jny|x71 aqu’r]yp(,k Cik

for any y. Since c is not identically zero, det W = 0, which means Wy (sx, y,ny|x) = 0.

Assume Wy (sx, v, ny|X) = 0 for any y. By the Peano-Bocher Theorem (Bocher, [1901), the two
additional conditions (i) and (ii) guarantee that sx, y and 1y |x are linearly dependent. Thus, there
exist 1,¢;,1, . . ., cix, such that Equation |2 l holds. We only consider the zero-th order equation, i.e.,
Equatlon E]holds Integrating it w.r.t. y from some yq yields

k
0x logpx vy + Y cij(¢;0ylogpx,y +¢}) +C =0, 6)
j=1
where C(x) is a function independent of 3. Now, taking the expectation of both sides w.r.t. py|x,
notice that

E [0y, logpx v | X =x] = /Bmpxydy—azllogpx

Furthermore, ¢; 0, log pxy +¢/; is the Stein operator acting on ¢; w.r.t. py | x (since 9, log py|x =
Oylogpx v). Thus by Stein’s 1dent1ty (under the vanishing condition (iii)),

E [¢; 8, logpx y + ¢;| X = x] =0,

for each j. Also, E [C(x)| X = x] = C(x). For Equation 2|to hold, C' = —4,, log px . Rearrang-
ing Equation [6] further, we get

k
Zci’j QbJ) =0.

j=1

k
Oz, logpy | x + (Z Cij (bj) Oy logpy|x + 8y<

j=1
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Given the boundary condition lim, . ¢;py;x = 0, let each component of £ be & =
k
Zj:l Cij ¢j' Then
k
yglfoo §ipy|x = Zcz',j yﬂ{poo ¢jpy|x = 0.

Therefore, by the equivalence stated in|Lemma 3.4} &; = ¥y |x i, i.e., Yy x i(-|T) € span(¢). O

A.2 PROOFS FOR[SECTION 4.1]

J=1

Corollary 4.2. Assume that there are k basis functions in ¢ and certain regularity conditions hold.
Then: (i) dim(@X_)Y;¢) = 00, (i) dim(@)g_y;d,) <k-+2

Proof. Here, we can consider the log-likelihood log px, given the assumption of absolute positiv-
ity. First, by Markovianity and strict monotonicity, there exists an equation by change-of-variable
formula:
log py|x = logpy —log 0y f =log py + log dyu,

where U can be expressed by XY, and f. Thus, logpy|x only depends on f and py, which are
assumed to be given. So log py|x is a known function. Since the joint log-density is log px y =
log px + log py|x, for any given g0, any PDE on log px y can be simplified to an ODE solely on
log px . Furthermore, any partial or mixed derivative w.r.t. y will only involve the given log py|x.

Next, when the forward version of holds, the Wronskian determinant described in
is an identity involving only partial or mixed derivatives w.r.t. y. This is completely

independent of log px . In other words, the forward version of does not impose new
constraints, which implies @ x_,y.¢ = O, and thus dim(@x_,y,4) = 00.

Conversely, when the backward version of holds, the Wronskian determinant in
Theorem 3.6|requires an ODE for log px to be satisfied. This ODE can be rewritten in the form

)(k+2) (k+1))7

(log px = G(a,logpx, (logpx)’, . .., (log px)
whose highest order is k + 2. This high-order nonlinear ODE can be reduced to a k£ + 2-dimensional
first-order ODE system. According to the Picard-Lindelof theorem, under certain regularity condi-
tions (e.g., global Lipschitz continuity), the solution to this ODE exists and is unique, determined by
k + 2 initial conditions (log px (o), (logpx ) (20), . . ., (log px)**+1) (x)). Therefore, log px can
be described by these k + 2 parameters. If degenerate cases exist, fewer parameters may be required.
Hence, dim(@x. y.¢) < k+ 2.

Discussion on [Corollary 4.2] As stated in the main text, this corollary generalizes the conclusion
by (Hoyer et al.|, 2008) that unidentifiable ANMs lie in a three-dimensional affine space (since ANMs
correspond to £ = 1 and the Wronskian simplifies to a linear ODE). It also fills the gap left by
previous identifiability works (Immer et al., 2023 [Strobl & Lasko, 2023) regarding quantifying
unidentifiable HNMs (HNMs correspond to £ = 2). Similar to our work, Xi et al.| (2025)) also
derived identifiability ODEs for ANMs and HNMs using causal velocity, but they did not further
quantify the solutions for HNMs. In contrast to these works, provides quantified
identifiability for HNMs and extends this conclusion to any finite-linearly spanned QPE (k < o0).

A.3 QPE IS IRRELEVANT TO MONOTONIC MECHANISM AND MARKOV PROPERTY

(Xi et al.} [2025) demonstrated that causal velocity, specifically QPE as in [Proposition 3.3] is inde-
pendent of the precise form of noise and latent mechanisms. This relaxes the strength of parametric
assumptions on FCMs. Given that QPE is an observational quantity, inferable solely from obser-
vational distributions, we have relaxed the counterfactual assumptions typically required for causal
velocity, including strict monotonic mechanisms and the Markov assumption, which are crucial for
counterfactual identification (Nasr-Esfahany et al., 2023 (Chen & Du, [2025). Therefore, as claimed
in the main text, QPE fully relaxes assumptions regarding the latent causal mechanisms, shifting fo-
cus entirely to the observational distribution’s shape. This implies that “observational causal discov-
ery,” even requiring identifiability of causal direction, can operate entirely within the observational
layer of the causal hierarchy.
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Next, we provide two simple examples demonstrating that even if the underlying causal mechanisms
do not satisfy strict monotonicity or the Markov property, their observational distributions’ QPEs are

identical and still satisfy [Assumption 3.5}

Example A.1 (Strictly Monotonic Mechanism but Semi-Markovian). Let X = Z + W and
Y = exp(X? + Z + U), where the confounding variable Z and the exogenous variables U, W
are independent standard normal. Then the QPE vy x (y|z) = —(2x + 0.5)y.

Proof. Utilizing the property of linear Gaussians, consider Z = X — W. Then (Z | X = z) ~
N(0.5z,0.5), and simultaneously (Z + U | X = z) ~ N (0.5x,1.5). Let T ~ N(0,1.5), so
Z +U|X = zis equivalent to T+ 0.5z. Thus, the conditional event Y < y | X = « holds if and
only if 22 + T + 0.5z < log(y). Therefore, Fy|x(ylz) = P(Y <y | X =) = P(T <log(y) —

2?2 —0.52) = Fr(log(y) —2%—0.5x) = h(z,y). We can calculate 9, Fr = h(x,y)(—2x—0.5) and
Oy Fr = h(x,y)(1/y), which are 9, Fy| x (y|x) and 0, Fy | x (y|z) respectively. By [Proposition 3.2,
we obtain 1y | x (y|z) = —(22 + 0.5)y. O

Example A.2 (Non-Monotonic Mechanism and Semi-Markovian). Let X = Z + W and Y =
exp(X + Z + U?), where the confounding variable Z and the exogenous variables U, W are inde-
pendent standard normal. Then the QPE vy x (y|z) = —1.5y.

Proof. Utilizing the property of linear Gaussians, consider Z = X — W. Then (Z | X = z) ~
N(0.5z,0.5). Since U? ~ x? and is independent of Z and X, (Z +U?| X = z) ~ N(0.5z,0.5) +
X3. Let T ~ N(0,0.5) + x3, then Z + U?| X = z is equivalent to 7" + 0.5z. Thus, the conditional
eventY <y | X = x holds if and only if z + 7"+ 0.5z < log(y). Therefore, Fy | x (y|z) = P(Y <
y| X =xz)=P(T <log(y) — 1.52) = Fr(log(y) — 1.52) = h(x,y). We can calculate 0, Fp =
—1.5h(x,y) and O, F'r = h(x,y)(1/y), which are 0, Fy | x (y|z) and 0, Fy | x (y|z) respectively. By

Proposition 3.2} we obtain ¢y | x (y|z) = —1.5y. O
In [Example A.l, Z + U | X = x correlates with =, implying that the non-endogenous term

exp(Z + U) and the endogenous term exp(X) are not independent, thus violating the Markov
property. However, since it can be equivalently written as some random variable T" + 0.5z, where T’

is conveniently eliminated when computing QPE, it “coincidentally” still satisfies
This means its observational distribution can even be equivalent to an HNM (the basis is y). In

the principle for violating the Markov property is similar to with the
difference being that the non-endogenous term exp(Z + U?) is non-monotonic w.r.t the exogenous
variable. Yet, it can still be equivalently written as some random variable 7" + 0.5x. The existence
of these two examples reveals a series of special cases where, even if the underlying SCM does not
satisfy strict monotonicity or the Markov property, its observational distribution still exhibits par-
ticular characteristics in QPE. In such cases, assumptions on FCMs fail, but assumptions on QPE
remain valid.

It is crucial to emphasize that despite QPE being independent of the underlying causal mechanisms,
it still represents a parametric assumption. This parametric assumption is empirically verifiable
when the analytical form of the observational distribution is fully known. For instance, we can
compute the Wronskian determinant given in to empirically determine if this assump-
tion holds. However, in reality, one typically only has samples from the observational distribution.
Therefore, whether the QPE parametric assumption holds still requires careful consideration in real-
world problems, similar to FCMs, to mitigate potential risks arising from assumption violations.
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B DiscussIioN ON FICO

B.1 PROOFS FOR[SECTION 5.1]

Theorem 5.2. For each covariate X, if[Assumption 5.1| holds then
E [(¥yx.4)* (sv)?] =E [(sx,)?] —E[(rx,)’] + E [(0y¥y|x.,1)* + 20y |x,i Oty x,i] -

Proof. Rewrite the equation described in as:
Sx, =TXx, — ’(/}SY - ayl/%

where 1y x ; is abbreviated as ¢). Squaring both sides and taking the expectation, the following
equation still holds:

E [(5x,)*] =E [(rx.)?] +E [(¥ sy +0y9)*] = 2E[rx, (v sy + 9y¥)], )

where E [rx, (¢ sy +0yt))] = Elrx, E[Ysy +0y¢ | X = x]]. AndE [¢sy + 0,0 | X = x] =
0 due to Stein’s identity, assuming lim,_, ¥ px.y = 0. Thus, the entire equation simplifies to:

E[(sx,)°] =E[(rx.)’] +E [ sy +,0)°].

Now consider E [(1 sy + 0,0)?] = E [¢? (sy)?] +E [(0y¢)?] +2E [sy ¢ 8,¢]. Also, according
to Stein’s identity, if lim,,~ ¥ 0,% px,y = 0, then

E[sy ¢ Oy + ay(d’ ay¢)] =0.

Therefore, E [sy ¢ 0y¢] = —E [(8y¢)2 + 351/)]- Substituting these simplified terms back into
Equation [7]yields the theorem. O

Corollary 5.3. For each covariate X;, if| holds then
E [(8y¥yix.i)? + 2%y x i 3§¢Y|X,i] <E[(Wyx.)* = 1) (sv)?] + E [(rx,)?]
ifand only if E [(sx,)?] > E [(sy)?].

Proof. According to[Theorem 5.2 E [(sx,)?] — E [(sy)?] equals
E[(rx,)’] + E[(¥yx,)° = 1) (sv)?] = E [(Oytyx.,1)* + 2y x,i Ooty|x i) -
Therefore, this inequality holds iff E [(sx,)?] — E [(sy)?] > 0, which proves the corollary. O

B.2 FICO UNDER HETEROSCEDASTIC GAUSSIAN ASSUMPTION

First, we provide the formal statement and proof of the corollary to regarding the
HNM assumption, as discussed in the main text:

Corollary B.1. For each covariate X;, givenholds. If 8§wy| x,i=0and
B[rv)2] | Bl@vix?) +y/Var [(vix.0?] Varl(ov )
E{(sy)?] E[(sy)?] ’
then E [(sx,)?] > E [(sy)?].

E [(Yy)x:)*] >1—

Proof. When 82t = 0, E [(sx,)?] — E [(sy)?] equals
E[(rx,)’] +E[(¥* = 1) (sv)’] —E [(8,%)?],

where
E [4? (sy)?] = E[¢*] E [(sy)?] + Cov (¢*, (sv)?) .

And according to the Cauchy-Schwarz inequality,

Cov (¢, (sy)?) > —+/Var [¢)2] Var[(sy)2)].
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Assuming E [(sy)?] > 0, then follow the condition in this corollary,
E[(rx,)’] + E [¢*] E [(sy)?] = E[(9y1)?] — v/ Var [¢2] Var[(sy)?)] > E[(sy)?].
Since the inequality for Cov (¢, (sy)?) holds, it implies

E [(rx,)?] + E [¥*] E [(sv)2] —E [(9,1)?] + Cov (¢, (sv)?) > E[(sy)?].

Rearranging this gives

E[(rx.)?] +E[(@* = 1) (sv)°] ~E[(@0y%)°] =E [(sx,)°] —E[(sv)°] >0,

which completes the proof. O

qualitatively requires the squared coefficient of variation (CV) of the QPE to be as
small as possible. Next, we show how to derive the simplified explanation presented in the main text
under the linear heteroscedastic Gaussian assumption, and how to extend this to the nonlinear case
to obtain a qualitative explanation. Without loss of generality, for simplicity, we only consider the
bivariate case below. The multivariate case only requires replacing the univariate functions or their
derivatives in this section with multivariate functions or their partial derivatives.

Assumption B.2. The conditional distribution PY|X is Gaussian for any z, ie., Y | X = 2 ~

N (u(x), (o(x))?).

Using the expression for the Gaussian distribution and [Proposition 3.2] it is straightforward to derive
the QPE vy|x = —p' — (y — p)(0’/0). Forany z, Z = (Y — p)/o ~ N(0,1), so y|x =
—u' — Zo'. Thus, it can be derived that

E[(¥yix)*| X =] =E[(4 + Zo")*] = (W')* + (o),

E[(¢yix)' X =] =E[(4 + Zo')'] = (W) +6(1')*(0")* + 3(c")",
where x is given, so 1’ and ¢ are treated as constants. For a standard normal variable Z, its moments
are E[Z] =0,E [ZQ] =1,E [Z3] =0,E [Zﬂ = 3. This further leads to the mean and variance of
the squared QPE as:

E [(¢y)x)*] =

E [B [(y)x)*| X =2]] =B[(x)+ (o',
Var [(¢yx)?] = |

Var |( wY‘X | X = ]| + Var [E [(¢yx)*| X = z]]
I z/mx |X = z] —E? [(¢Yyx)?| X = a]] + Var [(1)* + (o)?]
(1) 2(0")? +3(0")) = ((1)? + (07)%)?] + Var [(1)? + (0")?]
E [2(4) (o—’)2+(o’)4] + Var [(1)? + (o)?]

|—||—|l—1r—v

E
E|E
E
2

by the law of total expectation and law of total variance. Let k = o’/1’. Then the mean and variance
can be written as:

E [(0y1x)’] = E[()*(1+#%)],
Var [($yx)?] = 2E [(u')" 52 (2 + £2)] + Var [(u)?(1 + 52)]

When p and o are linear functions, p’ and ¢’ are constants w.r.t. X, and thus  is also a constant. In
this case, the CV simplifies to

Var [(Vy(x)?] AT 22
E[(dyx)?] — 1++2

Note that this function strictly increases as || — oo and its limit is v/2. Therefore, to minimize
the CV under the linear heteroscedastic Gaussian assumption,
as possible. This means either ¢’ is as small as possible (e.g., degenerating to ANM when ¢’ = 0)
or ' is sufficiently large relative to o’ such that 1 dominates the distribution shape.

|5 ®)
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When 4 and o are general, assuming [ < |x| < u. We can still extract || from the moments of
QPE, yielding
E[(yx)?] > A+ E [(1)?],
Var [(y(x)?] < 2E [(1)" 62 2+ 87)] + E [((1)* (1 + £2))?]
< (1+6u+3uh)E [(1)"]

Substituting this into the CV expression, we obtain an upper bound for the CV:

Var [(¢yx)?] _ (ViF6+3uT VE[W)Y
E[(0yx)?] 1412 E[(u)?]

To minimize the CV, the upper bound must be minimized. This requires two conditions: (i) The
upper bound of |«| should be as small as possible, and the lower bound as large as possible. This
means |«| should not vary significantly (it is constant under the linear assumption). Additionally,
because the growth rate of the numerator’s upper bound is greater than that of the denominator’s
lower bound, || should generally be as small as possible. (i) \/E [(1/)*]/E [(1/)?] should be
sufficiently small. According to the Cauchy-Schwarz inequality, its lower bound is 1 (with equality
when p’ is constant, i.e., under the linear assumption).

(€))
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C EXPERIMENT DETAILS AND RELATED WORKS

C.1 BIVARIATE CAUSAL DISCOVERY

Datasets enumerates the bivariate causal discovery datasets used in our experiments,
along with their sources. Most of these datasets follow conventions from previous work (Immer
et al.} 2023 |Xi et al. 2025) and are standardized. For the Tiibingen cause-effect pairs challenge,
we manually removed discrete pairs with IDs “47, 52, 53, 54, 55, 70, 71, 105, 107”. These pairs
visibly and severely violate the continuity assumption of distributions, which most bivariate causal
discovery algorithms rely on. This selection may differ from previous literature, potentially leading
to lower baseline results reported in this paper.

Additionally, we created a set of constrained QPE synthetic datasets, including Qd-V, Sig-V, Rbf-V,
and NN-V. These datasets are generated from the random optimization of the following objective:

aw Uug
8yUQ

¢y\X’¢ + + AVar ['l/}Y\X,qb] )

arg min
& ?,0

where ug is a randomly initialized causal flow (see Equation [I)), and we choose a random Gaus-
sian mixture (3 components, with variance 0.25 < ¢ < 2.0 for each component) as the exoge-
nous distribution py; for the causal flow. 1y |x 4 is a constrained QPE satisfying
(i.e., given basis functions), randomly initialized with parameters ¢ (which control the coefficient
functions). Qd-V, Sig-V, Rbf-V, and NN-V correspond to quadratic basis (1, y,%?), sigmoid basis
(1, sigmoid(y), sigmoid(2y)), RBF basis (1, exp(—y?), exp(—(y + 0.5)%), exp(—(y — 0.5)?)), and
neural network basis (with tanh activation function), respectively. A is a regularization parameter,
set to A = 0.1, to prevent the random optimization from making the QPE too extreme, which could
lead to excessively irregular observational distributions.

Baselines In the main text, we primarily use 8 baseline methods as examples. In|Appendix D.2}
we provide a comprehensive evaluation using 21 open-source baselines based on various theories to
fully and transparently demonstrate the superiority of our method. These baselines include:

* Linear Non-Gaussian Acyclic Model: ICA-LiNGAM (Shimizu et al., 2006), VAR-LiINGAM
(Hyvirinen et al., [2010), Direct-LiINGAM (Shimizu et al., 2011).

* Additive Noise Model: ANM (Hoyer et al., 2008)), CAM (Biihlmann et al., 2014}, RESIT (Peters
et al.[[2014), RECI (Bloebaum et al.| 2018)), CGNN (Goudet et al.,[2018]), CDS (Fonollosal,|2019)).

* Post Non-Linear Model: PNL (Zhang & Hyvirinen, [2009).

* Heteroscedastic Noise Model: QCCD (Tagasovska et al., 2020), CAREFL (Khemakhem et al.,
2021), HECI (Xu et al., [2022), GRCI (Strobl & Laskol |2023), CDCI (Duong & Nguyen, 2022),
LOCI (Immer et al.,[2023).

* Minimum Description Length: IGCI (Daniusis et al.,|2010), SLOPE (Marx & Vreeken, [2019al),
SLOPPY (Marx & Vreeken, 2019b)).

e Optimal Transport: DIVOT (Tu et al., 2022).
 Causal Velocity Model: CVEL (Xi et al., 2025).

Among these methods, SLOPPY includes variants using different information criteria (AIC and
BIC). CAREFL and LOCI include variants using likelihood and HSIC (Hilbert-Schmidt Indepen-
dence Criterion) (Immer et al., 2023} |Sun & Schulte, 2023). CDCI and CVEL involve multiple
configurations or combinations. For all these methods, we tuned their hyperparameters to select the
best configuration for a fair comparison with our method. However, we only tested the ANM variant
of DIVOT due to its deprecated dependencies for PNL implementation.

While several methods share our goal of generalizing the functional forms of LINGAM, ANM,
or HNM, they achieve identifiability via assumptions that differ from our setting, such as require-
ments on the data generation process (Guo et al.,[2023)), contrastive learning frameworks (Reizinger,
et al., 2023)), or access to multi-domain data (Jalaldoust et al.| 2025)). In contrast, our method, QPE,
identifies the causal direction using only the observational distribution. Accordingly, our main com-
parisons are with methods designed for this purely observational context.
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Runtime Regarding hardware, PNL, CGNN, CAREFL, LOCI, CVEL, and QPE-f utilize GPU
acceleration for neural networks, while others run on CPU. As for environments, implementations
of SLOPE, SLOPPY, QCCD, and RECI are based on R, while others are based on Python. Each
experiment is conducted using the same hardware, system, and default runtime configurations. The
average time taken for one cause-effect pair under these conditions has been reported in

Complexity analysis For QPE-k, we can analyze its complexity. Let /V be the number of samples,
M be the number of test locations, and 7" be the number of test samples used in the OLS test. The
most computationally intensive part is the estimation of the response matrix in OLS, which has a
complexity of O(NMT). In our experiments, we set M = T = 20, and test locations are uniformly
distributed within [—2.5, 2.5] since the datasets are standardized.

For QPE-f, which is based on neural networks and random optimization, its training process is
simpler compared to CVEL involving higher order terms. QPE-f only needs to be trained according
to Equation[1] Although calculating log |0, ug| also involves gradients, it can be expressed in closed
form using pre-defined discrete transformations of the causal flow, as detailed in[Appendix D.1]

C.2 MULTIVARIATE CAUSAL ORDERING

Datasets The configurations for the synthetic datasets are detailed as follows:

* ANM-GP and HNM-GP are generated by the following processes, respectively:
X; = GP(P;;6;) + GMM(u;,0), X; = GP(P;;0;,1) + GP(P;; 0;2) - GMM(p;, 05),

where P; denotes the parent variables in the DAG, GP is the random fourier features Gaussian
process, and GMM is a Gaussian mixture model. All parameters, including 6;,0; 1, 0; 2, it;, 0;,
are randomly selected according to a prior.

» The gCastle (Zhang et al., 2021) synthetic process can be represented as X; = NN(P;;6;) +
N(0,1), where NN is a neural network mechanism, A (0, 1) is the standard normal distribution,
and the neural network parameters are randomly chosen.

* The LINGAM (Shimizu et al., |2006) synthetic process can be represented as X; = aiT P, +b; +
Gumbel (0, 1), where Gumbel(0, 1) is the standard Gumbel distribution, and the coefficients and
the bias of the linear equation are randomly selected.

* To demonstrate robustness under FCM assumption violations, we also include confounded ver-
sions of ANM-GP and HNM-GP, denoted as ANM-GP-c and HNM-GP-c, respectively:

X; =GP(Z, P;;6;) + GMM(p;,0;), X; = GP(P;;0,:1) +GP(Z, P;;0,2) - GMM(p;, 0;),

where Z ~ GMM(pg, o) is a common confounding variable.

Except for gCastle, other datasets are internally standardized to iSCM (Ormaniec et al., 2025) to
eliminate potential sortability. Specifically, during data synthesis, we are required to add an extra

step such that X; «+ (X; — E[X,])/+/ Var[X;] before processing its children.

Baselines In the main text, we list the open-source baselines involved in our experiments. Below
are the assumptions underlying these methods, providing context for interpreting the experimental
results:

* Sortability: Var-Sort (Reisach et al.,|2021) and R2-Sort (Reisach et al.|[2023), as synthetic SCMs
may contain unintentional “fingerprint” information. |(Ormaniec et al.| (2025) proposed a simple
method to eliminate such artifacts.

* Linear Non-Gaussian Acyclic Model: ICA-LINGAM (Shimizu et al. [2006) and Direct-
LiNGAM (Shimizu et al.,[2011) for linear mechanism and non-Gaussian noise.

¢ Additive Noise Model: SCORE (Rolland et al., 2022}, based on score function with Gaussian
noise. CaPS (Xu et al., 2024), based on score function with strong parent influence (and its
criterion is equivalent to FICO according to Stein’s identity). RESIT (Peters et al., [2014)), based
on HSIC test of residuals. NoGAM (Montagna et al.,2023)), based on score function of residuals,
supporting arbitrary noise.
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* Heteroscedastic Noise Model: HOST (Duong & Nguyen, 2023)), based on Shapiro-Wilk test for
gaussian residuals. SKEW (Lin et al., [2025), based on score function with symmetric noise.

* Minimum Description Length: Topic (Xu et al.}[2025), based on information-geometric theory.

Compared to the above baselines, FICO is characterized by fewer assumptions, being solely related
to QPE rather than based on a specific FCM. This broadens its theoretical applicability. How-
ever, while FICO has a wider theoretical scope, it does not guarantee superior performance over
these models. This is because, even when their specific theoretical assumptions are violated, inher-
ent characteristics within the baselines may still enable them to perform effectively. For instance,
Montagna et al.| (2023) showed that score function based methods exhibit robustness to assumption
violations in a wide range of experiments.

We do not include other algorithms that primarily identify causal graphs, such as NOTEARS (Zheng
et al.l 2018)), Grad-GNN (Yu et al.| 2019), and DAGMA [Bello et al| (2022), despite their ability
to identify unique causal graphs (due to an implicit ANM assumption). These methods mainly
output causal graphs, not causal orderings, which preclude accurate calculation of the OD and ODR
metrics. Furthermore, this paper focuses exclusively on the causal ordering task. The graph pruning
process is omitted because, under consistent pruning strategies, OD and ODR sufficiently reflect the
discrepancy between the final DAG and the ground truth.

Metrics For causal ordering tasks, we primarily use Order Divergence (Rolland et al.| [2022) to
measure how well the output causal order aligns with the underlying true DAG. Specifically, for an
output causal order 7 and an adjacency matrix A of the underlying true DAG, we define

d d

d
OD(m,A) =Y > A;;, ODR(m,A)=0D(m,A)/> > A;;.

i=1m>m; i=1 j=1

In other words, OD reflects how many edges in the DAG violate the causal order 7, and ODR scales
OD to the unit interval. When they are both zero, 7 is exactly a topological order of the true DAG.

Runtime Regarding hardware, all methods can be run on CPU. Additionally, all score functions
are estimated using a kernel-based score matching algorithm from (Rolland et al.| 2022)). This
eliminates the need for extensive GPU training, providing a fast and fair baseline, albeit with some
sacrifice in accuracy. For the environment, all methods are based on Python. We run each experiment
using the default configurations of these methods. The average time taken for causal ordering is

detailed in [Table 111

Complexity analysis In our implementation, the primary bottleneck for FICO comes from the
score function estimation in each iteration. According to the implementation by (Rolland et al.
2022), assuming N is the sample size and d is the dimension, each estimation step requires
O(N?3 + NZ2d). Since FICO requires d — 1 estimations in total, the overall complexity is
O(N?3d + N?2d?). This implies that when NV >> d, the sample size becomes the bottleneck, leading
to severe inefficiency. For large samples, denoising score matching (Sanchez et al., [2023)) can be
applied, which amortize the complexity over multiple steps, resulting in a single-step optimization
complexity of only O(N max(d, ¢)), where c is the number of model parameters.
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D ADDITIONAL RESULTS

D.1 HYPER-PARAMETER TUNING FOR QPE-F

Hyperparameters for QPE-f A primary source of hyperparameters for QPE-f arises from the
necessity to initially fit a causal flow (Equation[I). Specifically, we employ a discrete causal flow,
where the causal flow wug is parameterized as a composition of several invertible transformations:

TigoTsgo---0Typ,

where each invertible transformation 7} ¢(, y) is a monotonic function w.r.t. y. Candidate choices
for these transformations include affine transformations (Dinh et al.l 2017), Rational-Quadratic
Spline (RQS) transformations (Durkan et al., 2019), Monotonic Neural Networks (MNN) (Huang
et al.l 2018), and Unconstrained Monotonic Neural Networks (UMNN) (Wehenkel & Louppe,
2019). These methods exhibit progressively increasing representational capacity. In our experi-
mental setup, affine transformations were excluded as they restrict the model to representing only
HNM (Khemakhem et al., [2021), thereby failing to generalize to broader model classes.

The second source of hyperparameters for QPE-f pertains to the selection of the hypothesized QPE
model employed for the linear span test. We consider the following choices for the hypothesized
model: (i) Hypernetwork: an unconstrained neural network that implicitly satisfies the hypothesis;
(ii) Low-rank network: ZZK:1 a;(x; 0;) b;i(y; ¢;), where both a; and b; are unconstrained neural net-
works, explicitly representing a finite number of basis functions in the hypothesis; (iii) Polynomial

network: ZiK:o a;(x; 0;) y¥, explicitly assuming polynomial basis functions.

For training both the flow and the hypothesized QPE models, the Adam optimizer was employed
with a learning rate of 0.01 and a weight decay of 0.001. To ensure continuity, networks utilized
the SiLU activation function and comprised two hidden layers, each with a width of 100. Training
proceeded for a total of 1000 epochs, and the model corresponding to the epoch with the minimum
loss function value was selected for basis test. The training and validation sets were not partitioned.

Hyperparameter tuning We conducted hyperparameter tuning across several dimensions: the
choice of transformation type (RQS, MNN, UMNN), the number of composite transformations
(t € {1,2,5}), the hypothesized QPE model (Hypernetwork, Low-rank network, Polynomial net-
work), and the specific hyperparameters for the hypothesized QPE models (e.g., rank for Low-rank
networks, degree for Polynomial networks). Due to space constraints, the hyperparameter tuning
results for the SIM and Tue datasets are presented in and 5] respectively.

Table 4: Hyperparameter tuning on the SIM dataset. Best per flow configuration is bolded.

RQS MNN UMNN
Test K t=1 t= t=5 t=1 t=2 t=5 t=1 t=2 t=>5
Hyper - 0.75(0.76) 0.67 (0.60) 0.57 (0.52) 0.83(0.83) 0.75(0.77) 0.78(0.82) 0.79 (0.78)  0.76 (0.75)  0.67 (0.68)
2 076(0.77)  068(0.60) 0.57(0.53) 0.87 (0.87) 0.75(0.75) 0.75(0.76) 0.79(0.80) 079 (081)  0.73(0.73)
Lowrank 5  0.76 (0.77)  0.64 (0.58) 0.54 (0.47) 0.80 (0.81) 0.78 (0.78) 0.73(0.74) 0.74 (0.72)  0.83(0.82)  0.73 (0.74)
10 075(076) 0.64(056) 054(0.48) 081(081) 079(079) 073(0.75) 077(073) 0.76(0.76) 072 (0.72)
0 0.87(0.83) 0.82(0.76) 0.76 (0.74) 0.83(0.83) 0.85(0.85) 0.85(0.85) 0.88 (0.86) 0.87 (0.87) 0.73 (0.77)
Poly 1 0.84(0.83) 0.78(0.75) 0.69 (0.68) 0.83(0.82) 0.79(0.80) 0.79 (0.84) 0.85(0.83) 0.86(0.85) 0.75 (0.77)
2 081(0.79) 0.73(0.70) 0.69 (0.69) 0.81(0.81) 0.74 (0.76)  0.78 (0.83) 0.84 (0.83) 0.81 (0.82) 0.74 (0.73)
Table 5: Hyperparameter tuning on the Tue dataset. Best per flow configuration is bolded.
RQS MNN UMNN
Test K t= t=2 t=5 t=1 t= t=25 t=1 t=2 t=5
Hyper - 0.46(0.41) 0.47(0.49) 0.56 (0.48) 0.59 (0.61) 0.59 (0.53) 0.49 (0.51) 0.58 (0.55) 0.48 (0.45) 0.51 (0.45)
2 043(0.36) 0.52(0.52) 0.52(0.47) 0.61(0.61) 0.56(0.54) 0.51(0.46) 0.53(0.48) 0.43(0.46) 0.52 (0.45)
Lowrank 5 0.47(0.37) 0.53(0.55) 0.57(0.45) 0.66 (0.67) 0.53 (0.52) 0.49 (0.47) 0.56 (0.57) 0.42 (0.45) 0.51 (0.45)
10 0.47(0.37) 051 (0.52) 0.56 (0.46)  0.67 (0.66) 0.63 (0.65) 0.48 (0.44) 0.56 (0.56) 0.42 (0.46)  0.48 (0.43)
0 0.52(0.45) 0.56(0.51) 0.60(0.49) 0.56(0.57) 0.56 (0.55) 0.58(0.62) 0.46 (0.41) 0.45(0.35) 0.47 (0.46)
Poly 1 048(0.40) 0.56(0.53) 0.60 ( 3)  0.62(0.60) 0.59(0.57) 0.53(0.49) 0.57(0.52) 0.56 (0.49) 0.54 (0.42)
2 0.55(0.52) 0.53(0.51) 0.58(0.52) 0.70(0.78) 0.61(0.61) 0.49 (0.49) 0.64(0.57) 0.58 (0.60) 0.58 (0.52)
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Optimal hyperparameter configurations provides the empirically determined optimal
hyperparameter configurations for each dataset, thereby ensuring experimental reproducibility.

Table 6: Empirically optimal hyperparameter configurations for each dataset.

Dataset Transform ¢ Test K | Dataset Transform ¢ Test K | Dataset Transform ¢ Test K
AN UMNN 1 Poly 0 | SIM-In MNN 2 Poly 0 | D4-s2c MNN 1 Lowrank 10
AN-s MNN 1 Poly O Cha MNN 1  Lowrank 10 Per RQS 1 Hyper
LS UMNN 2 Poly 0 Net RQS 2 Poly 0 Sig RQS 1 Poly 1
LS-s UMNN 1 Poly 1 Multi UMNN 2 Poly 1 Vex UMNN 1 Lowrank 10
MNU RQS 1 Poly 1 Tue MNN 1 Poly 2 Qd-v MNN 1 Poly 1
SIM UMNN 1 Poly 0 D4-s1 UMNN 5 Lowrank 5 Sig-V UMNN 2 Poly 2
SIM-c MNN 1 Poly 0 | D4-s2a MNN 2 Poly 2 | Rbf-V UMNN 2 Poly 0
SIM-g MNN 2 Poly 0 | D4-s2b MNN 1 Poly 2 NN-V MNN 1 Lowrank 10

D.2 COMPARATIVE EVALUATION OF QPE-K, QPE-F, AND BASELINES

to [9] present the comprehensive results of 20 distinct methods across 24 datasets. In this
extensive comparison, QPE-f consistently achieves state-of-the-art performance across the vast ma-
jority of datasets, with only minor exceptions where it is marginally outperformed by certain meth-
ods. A direct comparison between QPE-f and CVEL, as well as QPE-k, empirically validates the
assertion made in [Section 4.3| regarding the superior accuracy of flow-based methods in QPE esti-
mation. Furthermore, CVEL and QPE-f consistently outperform other methods in both non-ANM
and non-HNM datasets (specifically, flow synthesized Per, Sig, Vex; and constraint QPE synthesized
Qd-V, Sig-V, Rbf-V, NN-V). This empirically corroborates the theoretical insight that the identifia-
bility conditions for causal velocity or QPE are more broadly applicable than those only for ANM
and HNM.

D.3 CONVERGENCE OF FICO

[Figure 4]illustrates the convergence behavior of 3 score-based methods (SKEW, SCORE, and FICO)
w.r.t. sample size on HNM-GP datasets. All methods utilize the same score function estimation
algorithm, which is known to asymptotically approach the true score function with increasing sample
size. specifically demonstrates how the accuracy of these methods in the causal ordering
evolves as the score function estimates become increasingly precise.

HNM-GP (SF, d = 100) HNM-GP (ER, d = 100)

n =100 n =200 n=>500 n=800 n=1000n = 2000 n = 3000 n =100 n =200 n =500 n=2800 n=1000n = 2000 n = 3000

Multivariate Causal Ordering Methods
BN SKEW SCORE B FICO

Figure 4: Convergence behavior of SKEW, SCORE, and FICO on HNM-GP datasets.

Notably, the SKEW method exhibits a degradation in performance as the score function estimate
improves, primarily because its underlying assumptions (e.g., symmetric noise) are violated in this
context. In contrast, SCORE and FICO maintain consistent convergence profiles, likely attributable
to the satisfaction of their intrinsic assumptions or properties. Furthermore, FICO consistently out-
performs SCORE as the sample size gradually increases.
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Table 7: Accuracy (and AUDRC) of QPE-k, QPE-f, and 21 baselines on 9 bivariate datasets.

Method ‘ AN AN-s LS LS-s MNU ‘ SIM SIM-c SIM-g SIM-In

ICA-LINGAM | 0.63 (0.61) 0.63 (0.61) 0.63 (0.61) 0.63 (0.61) 0.63 (0.61) | 0.63 (0.61) 0.63 (0.61) 0.63 (0.61) 0.63 (0.61)
VAR-LINGAM | 0.06 (0.07)  0.00 (0.00) 0.11(0.11) ~ 0.00 (0.00)  0.00 (0.00) | 0.42 (0.36) 0.47 (0.48) 0.27 (0.25)  0.23 (0.14)
Direct-LINGAM | 0.06 (0.07)  0.00 (0.00)  0.11(0.11)  0.00 (0.00)  0.00 (0.00) | 0.42(0.36) 0.47 (0.48)  0.26 (0.25)  0.23 (0.14)
ANM 043 (0.35)  0.47(0.42)  0.46 (0.50)  0.45(0.47)  0.40 (0.37) | 0.45 (0.55) 0.49 (0.48) 0.41 (0.42)  0.46 (0.48)
CAM 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 0.51 (0.50) 0.91(0.93) | 0.59 (0.58) 0.59 (0.53) 0.80 (0.79)  0.88 (0.90)

( )

)

)

)

)

(
(
{
RESIT 0.99(1.00) 1.00 (1.00) 0.72(0.76)  0.09 (0.07) 0.01(0.00) | 0.78 (0.78) 0.82(0.85) 0.76 (0.72)  0.67 (0.60)
0.39 (0.30) 0.4 (0.40)
0.72 (0.60)  0.75 (0.67)
0.73 (0.76)  0.65 (0.63)
0.43 (0.46)  0.42 (0.37)
0.67 (0.63)  0.87 (0.87)

(

(

(

(

(

(

(

(

(

)
)
)
)
3
RECI 0.18(0.27)  0.35(0.34) 0.22(0.16)  0.44 (0.48 )
)
)
( 3
1.00 (1.00) | 0.79 (0.81) oss (0.87)  0.78 (0.72)  0.82 (0.85)
)
)
)
)
)
)
)
)
)
)

)

) 0.13(0.16) | 0.4 (0.40) ~ 0.53 (0.63
CGNN 0.96 (0.94) 057 (0.57)  0.92 (0.88)  0.64 (0.64

)

)

0.94 (0.95) | 0.75(0.76)  0.76 (0.78
CDS 0.99 (0.98 0.99 (1.00)  0.76 (0.79)  0.05 (0.06

(

( 0.70 (0.74) | 0.71(0.65)  0.76 (0.82
PNL 0.30 (0.31)  0.49 (0.48)  0.33(0.35)  0.49 (0.53

(

0.58 (0.58) | 0.46 (0.46)  0.54 (0.50

QCCD 1.00 (1.00) 0.83(0.75) 1.00(1.00) 1.00 (1.00) 1.00 (1.00) | 0.68 (0.69) 0.7 (0.75
CAREFL 1.00 (1.00) 1 00 (1.00) 1.00 (1.00) 1.0 (1.00)
HECI 0.98 (0.97) 055 (0.60) 0.92(0.86) 0.55(0.60) 0.33 (0.36) | 0.49 (0.42) 0.55(0.64) 0.56 (0.52)  0.65 (0.60)
GRCI 0.67 (0.64) 0 o8 (0.60) 0.64(0.65) 0.44 (0.45) 0.47 (0.49) | 0.55 (0.59) 0 65(0.67)  0.41(0.45) 0.52 (0.42)
LOCI 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) | 0.78 (0.80) 0.81 (0.87) 0.78 (0.77)  0.80 (0.76)
cDCl 1.00 (1.00)  0.96 (0.98) 1.00 (1.00) 0.97 (0.97) 0.99 (0.99) | 0.84(0.83) 0.76 (0.83) 0.73 (0.63) 0.79 (0.82)
1GCI 0.89(0.83)  0.97 (0.99) 0.95(0.95) 0.94(0.91) 0.86 (0.85) | 0.36 (0.36) 0.42(0.37)  0.86 (0.88)  0.59 (0.54)
SLOPE 0.14(0.23) 026 (0.21) 0.16 (0.11)  0.15(0.20)  0.03 (0.06) | 0.43 (0.40)  0.52(0.63)  0.45(0.36)  0.44 (0.34)
SLOPPY 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 0.56 (0.50) 0.96 (0.97) | 0.64(0.70) 0.62 (0.61) 0.82 (0.80) 0.86 (0.90)
DIVOT 0.62 (0.58)  0.69 0 (0.73)  0.45(0.47)  0.69 (0.68) 1.00 (1.00) | 0.68 (0.72) 0.47 (0.41) 0.60 (0.61)  0.63 (0.68)
CVEL 1.00 (1.00)  0.98 (1.00) 0.98(0.97) 0.93(0.91) 0.94(0.93) | 0.63(0.66) 0.72(0.73) 0.90 (0.87) 0.76 (0.73)
QPE-k 0.99 (0.96) 0.88(0.75) 1.00 (1.00) 0.78 (0.80) 1.00 (1.00) | 0.83 (0.85) 0.79 (0.83) 0.83 (0.81) 0.68 (0.69)
QPE-f ‘ 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 0.9 (1.00) 1.00 (1.00) ‘ 0.88 (0.86) 0.88 (0.92) 0.86(0.84) 0.92 (0.91)

Table 8: Accuracy (and AUDRC) of QPE-k, QPE-f, and 21 baselines on 8 bivariate datasets.

Method | Cha Net Multi | Tue D4-s1 D4-s2a D4-s2b D4-s2c
ICA-LINGAM | 0.52 (0.57) 0.52(0.57) 052 (0.57) | 0.64 (0.61) 0.67 (0.61) 0.50 (0.56) 0.52 (0.55) 0.51 (0.56)
VAR-LINGAM | 0.55 (0.54) 031(032 0.34 (0.40) | 0.56 (0.48) 0.58(0.63) 0.53 (0.51)  0.55 (0.54) 057(062)
0.59) 059 (0.52)  0.62 (0.55)

)
)

)
0 5100 50) 0.58 (0.53) 0 58 (0.57)

054 (0.47)  0.58 (0.75)  0.67 (0.69) 0.61(0.64) 0.64 (0.61)
0.70 (0.78) 0.79(0.78) 0.71(0.72) 0.62 (0.66)  0.60 (0.48)

CVEL 0.68 (0.73)  0.62 (0.60

QPE-k
QPE-f

0.97 (0.96) | 0.64 (0.59) 067(070

0.60 (0.63) 0.89 (0.90) 0.88 (0.89)
0.85 (0.87)  0.86 (0.87)  0.96 (0.96)

505 ( )
Direct-LINGAM | 0.54 (0.54)  0.31(0.32)  0.35(0.41) | 0.51 (0.46) 0.67 (0.72)  0.61
ANM 041 (0.37)  0.47 (0.46)  0.48 (0.42) | 0.65 (0.67) 0.50 (0.70)  0.48 (0.52)  0.46 (0.46)  0.48 (0.47
CAM 0.48 (0.48)  0.78 (0.81)  0.35(0.36) | 0.55(0.54) 0.42 (0.57) 0.35(0.31) 0.4 (0.39) 0.4 (0.49
RESIT 0.74 (0.79)  0.76 (0.80)  0.37 (0.43) | 0.63 (0.61) 0.58 (0.72)  0.63 (0.65) 0.55 (0.53)  0.54 (0.49)
RECI 0.56 (0.59)  0.60 (0.62)  0.85(0.85) | 0.64 (0.55) 0.58 (0.64) 0.58 (0.69) 0.50 (0.64) 0.52 (0.55)
CGNN 0.61 (0.66) 0.75 (0.76)  0.84(0.83) | 0.69 (0.68) 0.50 (0.63) 0.59 (0.59)  0.47 (0.57)  0.50 (0.54)
CDS 0.71 (0.77)  0.78 (0.80) 0.4 (0.46) | 0.67 (0.69) 0.58 (0.70)  0.59 (0.60)  0.54 (0.53)  0.58 (0.57)
PNL 0.45(0.36) 051 (0.47) 0.45(0.41) | 0.51 (0.54) 0.33(0.39) 0.45(0.32)  0.59 (0.63)  0.39 (0.40)
QCCD 055 (0.54)  0.81(0.85)  0.49 (0.49) | 0.68 (0.73) 0.33(0.52) 0.55 (0.53) 0.53 (0.41)  0.53 (0.53)
CAREFL 0.72 (0.76)  0.85 (0.83)  0.76 (0.79) | 0.63 (0.60) 0.58 (0.64) 0 69(0.69)  0.63 (0.68) 056 (0.50)
HECI 0.57 (0.59)  0.72(0.71)  0.91(0.90) | 0.61(0.57) 0.42(0.62) 0.56 (0.66)  0.50 (0.63)  0.47 (0.50)
GRCI 0.53 (0.55)  0.58 (0.53)  0.61(0.58) | 0.55(0.56) 0.67 (0.79) 0 51 (0.57)  0.61(0.70)  0.50 (0.54)
LOCI 0.73(0.77)  0.87(0.88)  0.79 (0.80) | 0.61 (0.67) 0.58 (0.55) 0.69 (0.74)  0.61(0.66)  0.54 (0.47)
cpCI 0.67 (0.71)  0.84 (0.80)  0.92(0.93) | 0.68(0.78) 0.67 (0.69) 0.68 (0.65)  0.60 (0.59) 0.61 (0.55)
IGCI 0.55 (0.54) 057 (0.58)  0.68(0.66) | 0.62 (0.65) 0.42(0.25) 0.44 (0.44) 0.43(0.42) 0.0 (0.44)
SLOPE 0.56 (0.59)  0.61(0.60)  0.88 (0.88) | 0.57 (0.55) (0.52)  0.51(0.59) 0.40 (0.52)  0.39 (0.43)
SLOPPY 0.48 (0.49)  0.80 (0.82)  0.46 (0.47) | 0.64 (0.63) 0.33 (0.48) o 33(028) 0.4 (0.40) 0 44 (0.49)
DIVOT 044 (0.38)  0.49 (0.51)  0.34(0.38) | 0.38(0.42) 0.50 (0.54) 057 (0.52)  0.55(0.49)  0.55 (0.51
) ) (
)

Table 9: Accuracy (and AUDRC) of QPE-k, QPE-f, and 21 baselines on 7 bivariate datasets.

Method | Per Sig Vex | Qd-v Sig-V Rbf-V NN-V
ICA-LINGAM | 0.63 (0.61) 0.63 (0.61) 0.63 (0.61) | 0.63 (0.61) 0.63 (0.61) 0.63 (0.61) 0.63 (0.61)
VAR-LINGAM | 0.67 (0.63) 0.36 (0.36)  0.48 (0.49) | 0.87 (0.85) 0.59 (0.66) 0.61(0.55)  0.65 (0.69)

Direct-LINGAM | 0.67 (0.63)  0.37 (0.36)  0.47 (0.47) | 0.88 (0.89) 0.59 (0.66)  0.60 (0.54)  0.66 (0.69)
ANM 049 (0.51)  0.44 (0.50)  0.39 (0.39) | 0.49 (0.57) 0.50 (0.50) 0.43 (0.51)  0.48 (0.50)
CAM 0.00 (0.00)  0.09 (0.05)  0.24(0.21) | 0.12(0.16) 0.47 (0.48)  0.30 (0.22)  0.23 (0.22)
RESIT 0.70 (0.72)  0.20 (0.22)  0.03 (0.03) | 0.80 (0.82) 0.75(0.75) 0.54 (0.49)  0.61 (0.72)
RECI 0.00 (0.00)  0.07 (0.06) 0.94 (0.94) | 0.63(0.59) 0.53 (0.52) 0.19(0.20)  0.49 (0.52)
CGNN 0.82(0.80)  0.68(0.66) 0.7 (0.77) | 0.71(0.79)  0.76 (0.77)  0.68 (0.67)  0.64 (0.73)
cDS 0.18(0.17)  0.08 (0.09)  0.04 (0.07) | 0.78 (0.76)  0.66 (0.66)  0.45 (0.43)  0.52 (0.54)
PNL 042 (0.40)  0.43 (0.48)  0.38 (0.37) | 0.46 (0.44) 0.43 (0.45) 051 (0.53)  0.41 (0.37)
QCcD 0.02(0.01) 0.14(0.12)  0.04(0.03) | 0.34 (0.29) 055 (0.56) 0.32 (0.26)  0.33 (0.35)

CAREFL 0.95(0.97)  0.64 (0.65) 0.91(0.92) | 0.72(0.73) 0.91(0.89) 0.61 (0.53) 0.84 (0.82)
HECI 0.01(0.00) 0.13(0.15) 0.94(0.94) | 0.59 (0.53) 0.53 (0.48) 0.19 (0.20)  0.45 (0.51)
GRCI 0.56 (0.48)  0.54 (0.54) 054 (0.55) | 0.47 (0.40) 051 (0.52)  0.47 (0.45)  0.60 (0.55)
LOCI 0.96 (0.97)  0.70 (0.69)  0.87 (0.86) | 0.71(0.72) 0.87 (0.88) 0.61(0.55)  0.78 (0.79)
cpcl 048 (0.47)  0.42 (0.45)  0.49 (0.52) | 0.74 (0.75)  0.80 (0.77)  0.57 (0.58)  0.72 (0.72)
1GCI 1.00 (1.00) 0.77 (0.81)  0.87 (0.89) | 0.47 (0.54) 0.49 (0.52) 0.58 (0.65)  0.48 (0.53)

SLOPE 0.00 (0.00)  0.06 (0.06) 0.93(0.93) | 0.61 (0.57) 0.52 (0.46) 0.18 (0.19)  0.44 (0.45)

SLOPPY 0.02(0.02) 0.11(0.08) 0.10(0.07) | 0.17 (0.14)  0.48 (0.49) 0.32 (0.26)  0.33 (0.34)

DIVOT 0.97 (0.96)  0.82(0.84)  0.05(0.04) | 0.32(0.33) 044 (0.49) 0.63 (0.58)  0.47 (0.44)

CVEL 1.00 (1.00) 0.84(0.81) 0.96 (0.97) | 0.91 (0.92) 0.94 (0.93) 0.92(0.94) 0.87 (0.92)

QPEk 0.77(0.79)  0.89 (0.84) 0.63 (0.60) | 0.42 (0.44) 0.67 (0.73) 0.68 (0.66) 0.53 (0.49)

QPE-f 1.00 (1.00) 0.90 (0.93) 0.91 (0.92) | 0.91 (0.91) 0.91 (0.90) 0.94 (0.94) 0 90 (0.93)
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D.4 FICO’S PERFORMANCE UNDER HETEROSCEDASTIC GAUSSIAN ASSUMPTION

We analyze the interpretability of FICO under the heteroscedastic Gaussian assumption concerning
the mean and variance functions in [Appendix B.2| [Figure 5|details this relationship. The synthetic
dataset with heteroscedastic Gaussian noise is generated by X; = u;(P;) + o;(P;) N'(0,1), where
Hi = h‘(7 Qa;, bia a, 1) and 0; = log(exp(h(, Ci, di7 «, ﬁ)) + 1) Here’ h(7 a;, bi7 «, ﬂ) is an affine
function with sin perturbations:

5( > ai Pj“’z‘) +C¥< > Sin(Pi,j))a

P;eP; P;cP;

where coefficients a; j,¢; ; ~ N(0,1) and biases b;,d; ~ N(0,2). Hyperparameters @ and /3
control the magnitude of the sin perturbation and the gradient of the affine function, respectively.
Indirectly, 3 controls the magnitude of |x| = |o}/u;| (since B for p; is always 1), while « controls
how closely u; and o; approximate linear functions. Each cell in shows the average over
100 sub-tests, where corresponding sub-tests share the same coefficients and biases, varying only
hyperparameters o and f3.

056 055 0.54 0.52.

0.44 | 0.43 | 0.
0.475
0.4 5

0.400

0.375

00 03 06 09 12 15 1.8 21 24 27 30 00 03 06 09 12 15 1.8 21 24 27 30
« «

(@) ER,d =10 (b) ER, d = 20

Figure 5: Relationship between FICO’s ODR and hyperparameters o and 8 under the heteroscedas-
tic Gaussian assumption. (a) 10-variable ER graph; (b) 20-variable ER graph. The expected num-
bers of edges in these graphs is 4 times their dimensions.

The results indicate that FICO’s performance gradually degrades as « and /3 increase. This reflects

that the magnitude of || and the linearity of u; and o; indeed affect the validity of
FICO performs best when |«| is sufficiently small and both pi; and o; are linear. As the assumption is

progressively violated, the performance weakens, which is empirically consistent with our analysis.

D.5 FICO ON REAL-WORLD DATASETS Table 10: ODR on real-world datasets for
different methods. The best is bolded.

As shown in on real-world datasets, score

function based methods generally perform poorly on Method | Sachs Syntren
Sachs, likely due to the assumption not holding. R2-Sort 029  0.89+0.07
However, CaPS and FICO achieve the best perfor- Var-Sort 0.82 0.50 £ 0.17
mance on Syntren. ICA-LINGAM | 059  0.4240.19
Direct-LINGAM | 0.47 0.62£0.10
HOST 0.18 0.42£0.10
D.6 FICO ON SYNTHETIC DATASETS RESIT 047  0.7440.14
TOPIC 0.59 0.38 £0.13
presents the experimental results across 8 NoGAM 0.65  0.39£0.08
- SKEW 0.71 0.49 £0.15
synthetic dat.asgts under 2 types of random grapl.ls'(SF SCORE 071 0.38+ 0.10
and ER). It is important to note that ODR exhibits a CaPS 071 0.33 £0.08
hidden baseline at 0.5, which corresponds to random FICO 071 0.33 £ 0.08

ordering (since the probability of 7; > m; is 0.5in a
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Figure 6: ODRs of FICO and baselines on 12 multivariate causal discovery datasets. Lower is better.

random ordering). An ODR value less than 0.5 indicates that the method effectively retains more
than half of the edges, implying that the underlying assumptions or characteristics are met within
the dataset. Conversely, an ODR greater than 0.5 suggests that these assumptions or characteristics
are likely to be violated. When ODR approaches 0.5, the method essentially performs at a level

equivalent to random ordering.

The results presented in[Figure 6|reveal several key observations:
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* The elimination of “fingerprints” by iSCM leads to ODR values exceeding 0.5 for both Var-Sort
and R2-Sort, indicating performance worse than random ordering. This suggests low sortability
in these datasets, thereby mitigating the possibility of “hacking” through these specific metrics.

* ICA-LiNGAM and Direct-LiINGAM perform well exclusively in LINGAM datasets, approximat-
ing random ordering in other contexts.

» RESIT exhibits unexpectedly strong performance on GP datasets. This could be due to GMM
noise, particularly in high-dimensional settings. This phenomenon warrants further investigation.
Conversely, its performance in gCastle and LINGAM datasets is moderate, nearing random order-
ing, potentially due to the Gaussian and Gumbel distributions.

* HOST demonstrates significantly superior performance in low-dimensional gCastle scenarios,
which may also explain its best performance on Sachs. However, in other contexts, its ODR
consistently remains above 0.5, violating assumptions, largely because its normality check on
noise becomes progressively challenging in higher dimensions.

* TOPIC exhibits variability. It outperforms other methods in gCastle. Yet, its performance is
suboptimal elsewhere. For instance, it is notably above 0.5 in LINGAM and approximates random
ordering in other datasets.

* SKEW’s performance is generally slightly lower than other score function based methods due to
the violation of its symmetry noise assumption in most datasets, with the exception of the Gaussian
noise in gCastle.

* The remaining score function based methods exhibit comparable performance. In high-
dimensional settings, CaPS and FICO are marginally superior to SCORE and NoGAM (with a
potential difference of < 0.05). Given their formal equivalence, any performance disparities be-
tween CaPS and FICO are solely attributable to precision differences.

Overall, score function based methods demonstrate the robustness reported in Montagna et al.
(2023). Despite potentially being slightly outperformed by other methods on specific datasets, their

ODR values consistently remain below 0.5 across all experimental settings. This empirically sug-
gests that the underlying assumptions or characteristics of these methods are implicitly satisfied.

D.7 FICO’sS RUNTIME EFFICIENCY

presents FICO’s runtime performance in comparison to other baseline methods.

Table 11: Runtime efficiency of FICO and baselines, in seconds per sub-test.

Method d=5 d=10 d=20 d =50 d =100
R2-Sort 0.000 £ 0.000  0.000 £ 0.000  0.000 £ 0.000 0.000 == 0.000 0.005 + 0.007
Var-Sort 0.000 £ 0.000  0.000 £ 0.000  0.000 £ 0.000 0.000 % 0.000 0.000 % 0.000
ICA-LINGAM  0.010 £0.012 0.043 £0.035 0.128 £0.073 0.638 £ 0.158 2.200 £ 0.636
Direct-LINGAM  0.010 £ 0.000  0.050 +0.000  0.338 £ 0.000 5.076 & 0.065 39.942 £ 0.507
HOST 0.625 £ 0.097 1.967+0.106  4.159 £+ 0.207 7.177 £ 0.330 17.332 £ 0.640
TOPIC 0.318 £0.066 1.984+0.541 9.381 £2.604 60.869 +13.916 250.343 £ 45.157
RESIT 0.268 £0.011  1.091+£0.051  4.7724+0.268  40.010 £2.026  227.662 £9.178
NoGAM 1.243+£0.299 4.251 £0.593 14.864 +£1.028  92.578 £6.251  370.316 + 16.281
SKEW 0.543 £0.362 1.2024+0.624  2.548 & 0.876 8.022 £+ 1.248 20.043 £ 1.136
SCORE 0.831 £0.462 1.883+0.737 4.306+:0.982  14.180 £1.914 37.609 £ 2.007
CaPS 0.455 +£0.037 1.074+£0.056 2.761+0.285  10.822 +1.037 33.794 £+ 3.501
FICO 0.425£0.322 0.797+£0.364  1.727 £ 0.523 5.550 £ 0.943 13.538 £1.248

Among the methods evaluated, excluding those based on sortability and LINGAM, FICO demon-
strates the fastest execution, particularly in high-dimensional settings.
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THE USE OF LARGE LANGUAGE MODELS

Paper Writing: LLM was used to polish the text of this paper. We ensure that all modifications
were manually verified to be accurate and consistent with the authors’ intended meaning.
Programming Assistance: LLM assisted in implementing the QPE-k algorithm (Section 4.2))
and generating code for some figures [Bland[6). All code developed with LLM assis-
tance underwent unit testing and manual debugging. All other experimental procedures and data
processing were performed manually.

Runtime Environment Fixes: LLM provided suggestions for resolving issues with older baseline
runtime environments in newer versions and assisted in connecting R and Python, allowing all
experiments to be conducted within Python.
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