

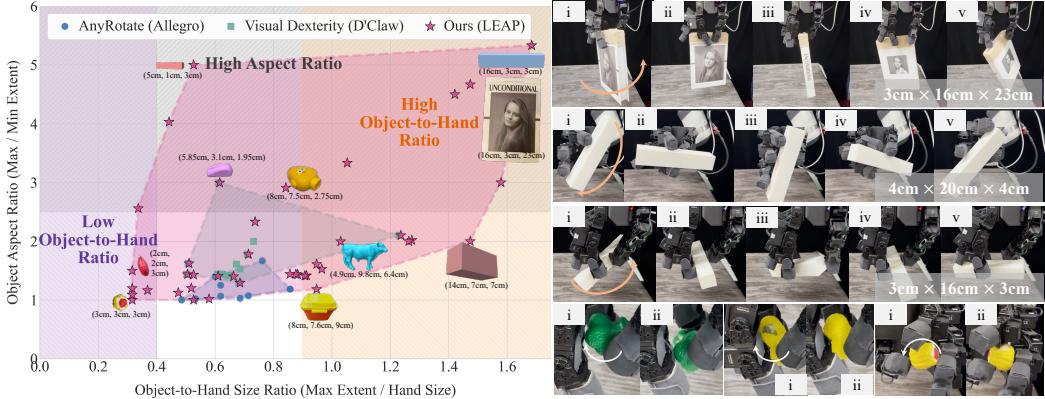
000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DEXNDM: CLOSING THE REALITY GAP FOR DEXTEROUS IN-HAND ROTATION VIA JOINT-WISE NEURAL DYNAMICS MODEL

Anonymous authors

Paper under double-blind review

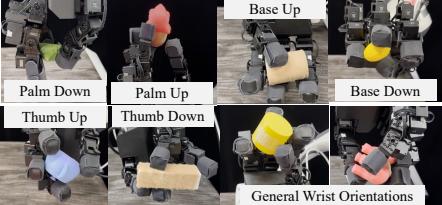
Anonymous website: projectwebsitex.github.io/neudyn-reorientation

(A) Challenging Geometries



(B) Complex Shapes

(C) Diverse Wrist Orientations



(D) Application: Teleoperating Complex Dexterous Tasks

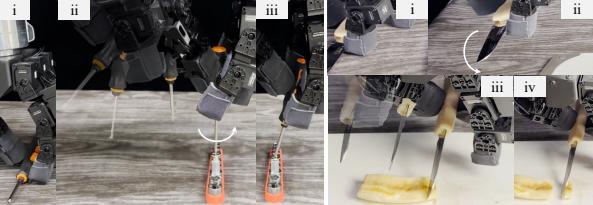


Figure 1: We introduce DexNDM, a sim-to-real approach that enables unprecedented in-hand rotation in the real world. We master a wide object distribution, including (A) challenging geometries and (B) complex shapes, across (C) rich wrist orientations. (D) A teleoperation application. Videos in [website](https://projectwebsitex.github.io/neudyn-reorientation).

ABSTRACT

Achieving generalized in-hand object rotation remains a significant challenge in robotics, largely due to the difficulty of transferring policies from simulation to the real world. The complex, contact-rich dynamics of dexterous manipulation create a “reality gap” that has limited prior work to constrained scenarios involving simple geometries, limited object sizes and aspect ratios, constrained wrist poses, or customized hands. We address this sim-to-real challenge with a novel framework that enables a single policy, trained in simulation, to generalize to a wide variety of objects and conditions in the real world. The core of our method is a joint-wise dynamics model that learns to bridge the reality gap by effectively fitting limited amount of real-world collected data and then adapting the sim policy’s actions accordingly. The model is highly data-efficient and generalizable across different whole-hand interaction distributions by factorizing dynamics across joints, compressing system-wide influences into low-dimensional variables, and learning each joint’s evolution from its own dynamic profile, implicitly capturing these net effects. We pair this with a fully autonomous data collection strategy that gathers diverse, real-world interaction data with minimal human intervention. Our com-

plete pipeline demonstrates unprecedented generality: a single policy successfully rotates challenging objects with complex shapes (*e.g.*, animals), high aspect ratios (up to 5.33), and small sizes, all while handling diverse wrist orientations and rotation axes. Comprehensive real-world evaluations and a teleoperation application for complex tasks validate the effectiveness and robustness of our approach.

1 INTRODUCTION

Advancing dexterous manipulation is essential to achieving highly capable embodied intelligence. A fundamental yet challenging skill in this domain is in-hand object rotation. The long-standing goal, which we also pursue in this work, is to develop a general-purpose policy that can rotate a broad distribution of objects across diverse wrist orientations and rotation axes in the real world.

Despite recent progress, the community has yet to achieve this level of generality. Existing methods (Chen et al., 2022; Yang et al., 2024; Qi et al., 2023; Wang et al., 2024; Zhao et al., 2025; Yuan et al., 2023) are often constrained to specific scenarios: some assume a consistently up-facing hand, others handle only a limited set of simple, regular-sized objects, and many rely on expensive, customized hardware with sophisticated tactile sensing. While some approaches (Yang et al., 2024) show generality in one dimension, such as rotation axes, they are limited in others, like object complexity. To our knowledge, no prior work demonstrates robust, in-the-air rotation for a wide spectrum of objects—including complex shapes, high aspect ratios, and varied sizes—under diverse wrist orientations and rotation axes.

The primary barrier to this goal is the formidable “sim-to-real gap”, due to the difficulty in modeling the complex interaction dynamics marked by rich, rapidly varying, and load-dependent contacts. This undermines both model-based (Pang & Tedrake, 2021; Pang et al., 2023; Suh et al., 2025) and model-free (Qi et al., 2023; Chen et al., 2022; Yang et al., 2024) approaches. A promising idea for sim-to-real transfer is learning a neural dynamics model from real-world data (He et al., 2025; bin Shi et al., 2024). This approach has proven effective in locomotion, where relatively easier failure recovery and readily observable states permit efficient collection of distributionally relevant task data. This success, however, does not easily translate to general-purpose manipulation, where the requirements for data volume and distributional relevance create an inescapable conflict. The need for generality demands massive data to cover diverse objects. Yet, ensuring this data is distributionally relevant is sometimes impossible and operationally far more complex: suboptimal deployable policy cannot manipulate hard objects (*e.g.*, long); catastrophic failures (*i.e.*, dropping the object) necessitates frequent human intervention for resets; severe hand-induced occlusions complicate accurately tracking states of diverse objects. This conflict creates a critical bottleneck for the field.

To overcome these challenges, we introduce a framework that breaks this inescapable conflict by fundamentally rethinking both the model and the data. Our central insight is to factorize the learning problem through a more generalizable dynamics model, which in turn enables a more scalable data collection strategy. First, instead of modeling the high-dimensional hand-object system as a whole (bin Shi et al., 2024), we learn a joint-wise neural dynamics model. This model factorizes the system and predicts the evolution of each joint using only its own proprioceptive history, generalizing the idea of RMA (Kumar et al., 2021). This design directly confronts the challenges: it is inherently immune to object state estimation difficulty, and by distilling system-wide influences—self-actuation, inter-joint couplings and object loads—into low-dimensional and task-sufficient net effects with reduced nuisance variability, the model becomes highly sample-efficient and generalizable without sacrificing expressivity as evidenced by experiments. This enhanced generalizability is the key that unlocks our second innovation: a fully autonomous data collection strategy. By applying randomized loads to the hand in a task-agnostic manner, we gather data while eliminating catastrophic failures and the need for human resets. This allows us to learn a dynamics model generalizing well to our task of interest from cheap and scalable data, which we then use to train a residual policy that adapts a simulation-trained base policy to the real world, achieving broad generality. We attain the base policy via a specialist-to-generalist pipeline: train category-specific experts on data spanning aspect ratios and geometric complexities, then distill them into a unified policy.

We validate our method in both the simulation and the real world. In simulation, our base policy generalizes to novel, complex shapes, outperforming strong baselines by 37%–81%. In real world, our sim-to-real method significantly and consistently improves rotation performance, enabling versatile rotation across diverse wrist orientations and rotation axes on a broad object distribution—including

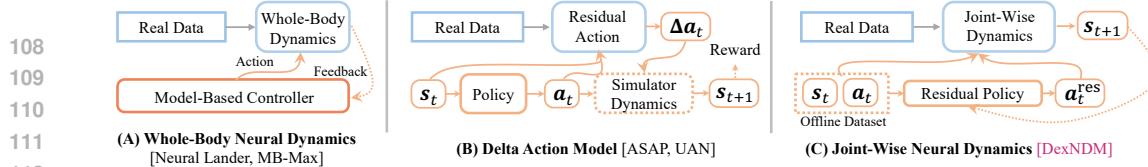


Figure 2: **Learning from Real-World Data for Control.** (A) Learn a whole-body dynamics model from real-world data for policy tuning or model-based control. (B) Learn a residual action model to finetune a base policy. (C) Learn joint-wise dynamics and a residual policy to adapt the base policy.

complex geometries (e.g., animal models), aspect ratios up to 5.33, and object-to-hand ratios of 0.31–1.68 (Fig. 1; videos on our [website](#)). Notably, in a challenging downward-facing hand configuration, we are, to our knowledge, the first to rotate long objects (10–16 cm) around their long axis for about one full circle in the air. Compared to Visual Dexterity (Chen et al., 2022) on a large, customized D’Claw, our smaller LEAP hand matches or surpasses performance and succeeds on shapes it struggles with (e.g., elephant, bunny, teapot). We also generalize to a much broader, more challenging object distribution than the prior multi-wrist SOTA (Yang et al., 2024). Moreover, we showcase an application enabled by our general rotation policy: building a teleoperation system to perform complex dexterous tasks, such as tool-using (e.g., screwdriver, knife) and assembly (Heo et al., 2023). A systematic ablation study validates the crucial role of our key design choices in both the dynamics model and the data collection strategy. Our main contributions are four-fold:

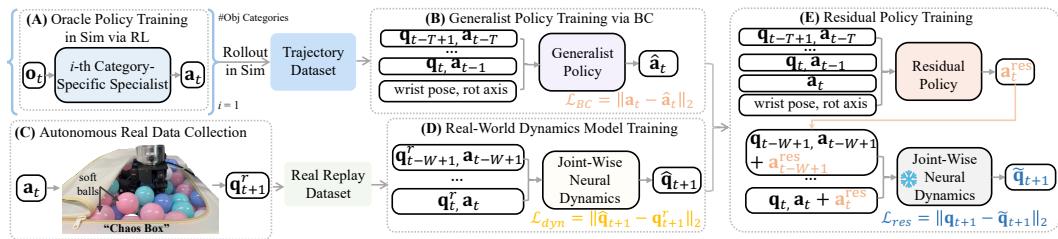
- A novel sim-to-real framework for dexterous in-hand rotation, built on a joint-wise neural dynamics model and autonomous data collection to tackle the core challenges of learning complex interaction dynamics and acquiring real-world interaction data.
- An in-hand object rotation policy that achieves unprecedented generality in rotating challenging objects (high-aspect-ratio, complex shapes, small sizes) under difficult wrist orientations.
- An in-depth analysis of the rationale, advantages, and scope of effectiveness of the joint-wise neural dynamics model from both theoretical and empirical perspectives.
- A demonstration of a practical application in teleoperation for complex dexterous tasks.

2 RELATED WORK

Our work is broadly related to two research topics: in-hand object rotation and sim-to-real strategies. **In-hand rotation** is an important yet challenging robotic task. Despite advances, prior methods still (i) assume an up-facing hand (Qi et al., 2022; Wang et al., 2024; Yuan et al., 2023; Zhao et al., 2025), (ii) handle only normal-sized objects with limited geometric diversity (Qi et al., 2023; Röstel et al., 2025; Pitz et al., 2024a;b; Yang et al., 2024), or (iii) rely on expensive hardware and sophisticated tactile sensing (Yang et al., 2024; Wang et al., 2024; Qi et al., 2023). AnyRotate (Yang et al., 2024) achieves axis and wrist generality, but only on normal-sized regular objects in the real world. Visual Dexterity (Chen et al., 2022) rotates complex shapes in the air, yet performance on small or high-aspect-ratio objects is unverified. **DexterityGen** (Yin et al., 2025) **showcases a meaningful application of in-hand reorientation policies in teleoperation, but its rotation capability does not exceed the upper bound of prior work.** We aim to achieve generality in rotating challenging (e.g., long, small) and complex objects across diverse wrist orientations and rotation axes. A central obstacle to realizing this is the **sim-to-real gap**: mismatched parameters, model discrepancies, and unmodeled effects derail transfer of simulation-trained policies. Existing approaches include: (1) Domain Randomization (DR), which broadens training distributions (Loquercio et al., 2019; Peng et al., 2017; Tan et al., 2018; Yu et al., 2019; Mozifian et al., 2019; Siekmann et al., 2020); (2) System Identification (SysID), which fits simulator parameters from real data (An et al., 1985; Mayeda et al., 1988; Lee et al., 2023; Sobanbabu et al., 2025); (3) online adaptive policies (Kumar et al., 2021; Qi et al., 2022); and (4) neural modeling of real dynamics to guide transfer (He et al., 2025; Fey et al., 2025; Hwangbo et al., 2019). DR relies on heuristic ranges; SysID is bounded by its parameterization; and online adaptation typically depends on dynamics coverage in training. Learning real dynamics offers the highest ceiling: A classical line in neural control learns residual or full models for the whole system for model-based control (Fig. 2 (A), e.g., Neural Lander (Shi et al., 2018), MB-Max (bin Shi et al., 2024)). As the task complexity increases, learning globally accurate, physically plausible dynamics that is super robust to support policy tuning or controller development is difficult (Shi, 2025). Therefore, another trend of methods proposed in sim-to-real RL (e.g., UAN (Fey et al., 2025) and ASAP (He et al., 2025)) learn sim-real delta actions and fine-tune policies based on that to bridge the dynamics gap (Fig. 2 (B)). Success hinges on collecting enough real-world data that is distributionally relevant to the task or can offer a comprehensive coverage—a minor issue in locomotion and static-contact tasks, but a major bottleneck in dexterous manipulation. We address

162 this with a generalizable joint-wise neural dynamics model that relaxes the training data distribution
 163 requirement, followed by a residual policy to bridge the reality gap (Fig. 2 (C)).
 164

165 3 METHODOLOGY



174 **Figure 3: Method Overview.** (A) RL-train object category-specific rotation specialists. (B) Distill them into a
 175 single generalist via BC. (C-E) Neural sim-to-real: autonomously collect real-world transitions with **stochastic**
 176 **contact conditions** (C), learn a joint-wise neural dynamics model (D), and train a residual to bridge the reality
 177 gap (E). Deploy the base generalist (B) augmented with the residual (E).

178 Our goal is a generalist policy that can rotate a wide variety of objects under various conditions in the
 179 real world. We adopt a model-free RL approach. Key challenges are the pronounced sim-to-real dynamics
 180 gap in contact-rich dexterous manipulation and the need for broad object generalization. To
 181 achieve broad generalization, we adopt a specialist-to-generalist approach: we first train category-
 182 specific oracle policies across curated object categories (Sec. 3.1), and then distill them into a single
 183 generalist policy (Sec. 3.2). We address the sim-to-real challenge via a neural sim-to-real strategy
 184 centered on an expressive, data-efficient, and generalizable joint-wise dynamics model (Sec. 3.3).
 185 This model can generalize to the target rotation task by training on imperfectly aligned data, en-
 186 abling a fully autonomous data-collection system in which real-world interaction data is gathered
 187 by applying stochastic contacts to the robotic hand. With the neural dynamics model learned from
 188 this autonomously collected data, we train a residual policy that compensates for the base generalist
 189 policy’s actions to close the sim-to-real dynamics gap. Workflow illustrated in Figure 3.

190 3.1 MULTI-WRIST-ORIENTATION IN-HAND OBJECT ROTATION ACROSS MULTI-AXIS

191 We formulate in-hand rotation as a finite-horizon Partially Observable Markov Decision Process
 192 (POMDP), $M = (\mathcal{S}, \mathcal{A}, \mathcal{O}, \mathcal{P}, \mathcal{R})$, with state, action, and observation spaces $(\mathcal{S}, \mathcal{A}, \mathcal{O})$, transition
 193 dynamics \mathcal{P} , and reward \mathcal{R} . We train a neural policy $\pi : \mathcal{O} \rightarrow \mathcal{A}$ with RL to maximize expected
 194 cumulative return over horizon N : $\pi^* = \arg \max_{\pi} \mathbb{E}_{\tau \sim p_{\pi}(\tau)} [\sum_{t=1}^N r(\mathbf{s}_t, \mathbf{a}_t)]$.

195 **Observations and Actions.** At timestep t , the policy receives \mathbf{o}_t : a short history of proprioception,
 196 fingertip and object states, per-joint/per-finger force measurements, binary contact signals, wrist
 197 orientation, and the target rotation axis (Sec. A.1). The policy outputs a distribution over relative
 198 target position. We sample $\Delta \mathbf{a}_t \sim \pi(\mathbf{o}_t)$ and update the joint target $\mathbf{a}_t = \mathbf{a}_{t-1} + \alpha \Delta \mathbf{a}_t$ with
 199 $\alpha = 1/24$. \mathbf{a}_t is converted to torques via a PD controller and executed on the robot.

200 **Reward Function.** The reward consists of three weighted components $r = \alpha_{\text{rot}} r_{\text{rot}} + \alpha_{\text{goal}} r_{\text{goal}} +$
 201 $\alpha_{\text{penalty}} r_{\text{penalty}}$, with r_{rot} and r_{penalty} following RotateIt (Qi et al., 2023). The rotation term r_{rot} en-
 202 courages rotation about the target axis. The penalty r_{penalty} discourages off-axis angular velocity,
 203 deviation from a canonical hand pose, object linear velocity, and joint work/torque. Since these
 204 rewards alone struggle on hard cases (e.g., rotating long objects), we add an intermediate goal-pose
 205 reward, r_{goal} , that guides the object to a waypoint on the target rotation axis. Details in Sec. A.1

206 3.2 GENERALIST POLICY TRAINING VIA BEHAVIOUR CLONING

207 Having obtained the oracle policy with rich privileged observations for each object category, we
 208 use Behavior Cloning (BC) to train the unified, real-world deployable, multi-geometry generalist
 209 policy. Although DAgger-style distillation has been effective in prior work, in our early experiments
 210 on deploying single-object-category, downward-facing hand rotation policies, we observe that they
 211 either fail to optimize in simulation or collapse in the real world. We attribute this to high task diffi-
 212 culty. We therefore switched to BC and discovered that the resulting proprioception-only specialist
 213 policy behaves more stably than the DAgger policy and can rotate simple cylinder objects. We
 214 continue to use BC to train the generalist, real-world deployable policy: roll out all oracle policies,
 215 aggregate only successful trajectories, and train a generalist via supervised learning. This approach
 works well on hardware. We hypothesize that its success stems from imitating only high-quality

oracle behavior. The observation $\mathbf{o}_t^{\text{gene}}$ of the generalist policy contains a history of proprioception $\{(\mathbf{q}_k, \mathbf{a}_{k-1})\}_{k=t-T+1}^t$, wrist orientation and rotation axis. We use $T = 10$ and implement the policy as a residual MLP (He et al., 2015).

220 3.3 CLOSING THE REALITY GAP VIA JOINT-WISE NEURAL DYNAMICS

221 While the generalist policy is already real-world deployable, a persistent sim-to-real gap—caused
 222 by mismatched physical dynamics and unmodeled effects—prevents it from mastering challenging
 223 object interactions. We bridge this gap with a novel neural sim-to-real strategy that effectively learns
 224 complex, real-world dynamics model.

225 The central challenge is to acquire useful and sufficient volume of real data so that the learned
 226 dynamics model can help sim-to-real transfer. For dexterous manipulation, prior data acquisition
 227 methods (Hwangbo et al., 2019; He et al., 2025; Fey et al., 2025; bin Shi et al., 2024) are often
 228 impractical. Rolling out a base policy (He et al., 2025; bin Shi et al., 2024) or executing wave
 229 actions (Fey et al., 2025) frequently fails on diverse and complex objects, requiring constant human
 230 intervention, while imperfect state estimators introduce heavy noise. This leads to real datasets
 231 that are small, biased, and insufficient in coverage and quality. We address these challenges by
 232 rethinking both model and data. We propose a joint-wise neural dynamics model that dramatically
 233 improves sample efficiency and generalizability while preserving expressivity by learning from a
 234 low-dimensional, information-contractive, task-sufficient representation of the system dynamics.
 235 This allows for an autonomous data collection strategy that gathers diverse, large-scale real-world
 236 data by applying *stochastic contact*, eliminating the need for task-specific rollouts and human resets.

237 **Joint-Wise Neural Dynamics.** To model the system’s dynamics without relying on noisy and lim-
 238 ited object-state estimation, one way is to learn a “whole-hand” neural model. This model pre-
 239 dicted the hand’s next state from its length- W state-action history, $\mathbf{q}^{t+1} = f_\theta(H_t)$ with $H_t =$
 240 $\{\mathbf{q}_j, \mathbf{a}_j\}_{j=t-W+1}^t$, thereby implicitly capturing the whole system dynamics, including external
 241 forces from the object (Qi et al., 2022). However, this approach remains data-hungry, inheriting
 the other data acquisition challenges described above.

242 Our solution is to factorize the problem. We introduce joint-wise neural dynamics where the dynam-
 243 ics of each joint i are modeled as $\mathbf{H}_t^{\text{eff}} \ddot{\mathbf{q}}_t^i + \mathbf{G}_t^{\text{eff}} = \tau_t^i$, where $\mathbf{H}_t^{\text{eff}}, \mathbf{G}_t^{\text{eff}} \in \mathbb{R}$ are low-dimensional
 244 effective terms that distill high-dimensional, system-wide influences such as inter-joint coupling,
 245 actuation, and object-induced effects. The neural model then predicts the next state of each joint i
 246 from its own W -step state-action history: $\mathbf{q}_{t+1}^i = f_{\psi_i}(h_t^i)$ with $h_t^i = \{\mathbf{q}_j^i, \mathbf{a}_j^i\}_{j=t-W+1}^t$. This fac-
 247 torization is effective as it acts as an information bottleneck, forcing the model to discard spurious
 248 correlations and learn only the essential dynamics of each joint. This projected history is sufficiently
 249 informative with enough information to accurately predict the joint’s next state (Sec. 4.2, A.3). At
 250 the same time, it is also robustly simple as it is too low-dimensional to permit the reconstruction
 251 of the original high-dimensional system-wide influences, thus avoiding the need to model irrelevant
 252 complexity (Sec. A.4). The direct consequence is a model that is highly sample-efficient and gen-
 253 eralizes broadly across interactions, yet retains expressivity (Sec. 4.2). We now provide a theoretical
 254 analysis to formalize why this simplification leads to better generalization.

255 **Theoretical Rationale: Generalization via Information Contraction.** We write the whole-hand
 256 model as $f_\theta = \{f_\theta^i\}$ with $\mathbf{q}_{t+1}^i = f_\theta^i(H_t)$, and the joint-wise model as $\mathbf{q}_{t+1}^i = f_{\psi_i}^i(h_t^i)$. Let \mathcal{P}
 257 be the target distribution for $(H_t, \mathbf{q}_{t+1}^i)$ (e.g., formed by task of our interest); consider a different
 258 distribution \mathcal{Q} and the projection $g : (H_t, \mathbf{q}_{t+1}^i) \mapsto (h_t^i, \mathbf{q}_{t+1}^i)$, i.e., $g : \mathbb{R}^{2Wd} \times \mathbb{R} \rightarrow \mathbb{R}^{2W} \times \mathbb{R}$.
 259 We compare the prediction error of joint i on the target distribution \mathcal{P} achieved by these two types
 260 of model, i.e., f_θ^i and $f_{\psi_i}^i$, to support the generalization benefit:

261 **Claim 3.1** *Under assumptions typical of our setting, $\forall 1 \leq i \leq d$, the joint-wise model $f_{\psi_i}^i$ trained
 262 on $g(\mathcal{Q})$ generalizes to $g(\mathcal{P})$ better than the whole-hand model f_θ^i trained on \mathcal{Q} generalizes to \mathcal{P} .*

263 We first show that, under mild assumptions typically satisfied in our setting, the projection g con-
 264 tracts distribution shift: $\text{KL}(g(\mathcal{P}) \| g(\mathcal{Q})) < \text{KL}(\mathcal{P} \| \mathcal{Q})$ (Theorem 3.1, proof deferred to Sec. A.2).

265 **Theorem 3.1 (Data Processing Inequality for KL (strict form))** *Let \mathcal{P} and \mathcal{Q} be probability dis-
 266 tributions on $\mathbb{R}^n \times \mathbb{R}$ with densities P and Q with respect to a common base measure. Let
 267 $g : X \in \mathbb{R}^n \times \mathbb{R} \rightarrow Y \in \mathbb{R}^m \times \mathbb{R}$ be measurable, $m \leq n$, and denote the pushforwards by
 268 $g(\mathcal{P})$ and $g(\mathcal{Q})$. Then $\text{KL}(\mathcal{P} \| \mathcal{Q}) \geq \text{KL}(g(\mathcal{P}) \| g(\mathcal{Q}))$. Moreover, the inequality is strict if g is
 269 non-injective in a way that merges points where \mathcal{P} and \mathcal{Q} have a different relative structure. More*

concretely, it indicates that if there $\exists y_0 \in \mathbb{R}^m$, $P(Y = y_0) > 0$, $P(X|Y = y_0) \neq Q(X|Y = y_0)$, then $\text{KL}(\mathcal{P} \parallel \mathcal{Q}) > \text{KL}(g(\mathcal{P}) \parallel g(\mathcal{Q}))$.

The contraction of divergence implies tighter generalization guarantees (Theorem 3.2, proof in A.2):

Theorem 3.2 (Generalization Gap Contraction) *Let $(X, Y) \in \mathbb{R}^n \times \mathbb{R}$ and $g(X, Y) = (g_X(X), Y)$ with $g_X : \mathbb{R}^n \rightarrow \mathbb{R}^m$, $m < n$. Let \mathcal{P}, \mathcal{Q} be distributions on (X, Y) satisfying covariate shift, i.e., $\mathcal{P}(Y | X) = \mathcal{Q}(Y | X)$. Let L be a loss bounded by B , and define $R_{\mathcal{P}}(h) = \mathbb{E}_{(X, Y) \sim \mathcal{P}}[L(h(X), Y)]$. If $\text{KL}(g(\mathcal{P}) \| g(\mathcal{Q})) < \text{KL}(\mathcal{P} \| \mathcal{Q})$, then for function $f_1 : X \rightarrow Y$ and $f_2 : g_X(X) \rightarrow Y$: $\sup|R_{\mathcal{P}}(f_2 \circ g_X) - R_{\mathcal{Q}}(f_2 \circ g_X)| < \sup|R_{\mathcal{P}}(f_1) - R_{\mathcal{Q}}(f_1)|$.*

Assuming $f_2 \circ g_X$ is sufficiently expressive and a relatively large domain shift from \mathcal{Q} to \mathcal{P} (typical of our setting), $f_2 \circ g_X$ has lower prediction error than f_1 on target domain \mathcal{P} , establishing [Claim 3.1](#). See [Sec. A.2](#) for details. In practice, we pretrain the model on simulation data for initialization.

Autonomous Data Collection. Our model’s ability to generalize from distributionally different data motivates our second innovation: a low-cost, autonomous data collection strategy. This approach, which we call the “Chaos Box” (Fig. 3(C)), embodies four principles: (i) policy-awareness (to roughly align the distribution), (ii) object-loaded interaction, (iii) broad is simple: the robotic hand is placed in a container from the simulated base policy, which provides interaction with the balls imposes rich, stochastic noise ($\sigma=0.01$) to each action to broaden coverage, hardware-safe, and requires no human resets (iv) histories of a joint cover the task-relevant distribution.

Bridging the Dynamics Gap via a Residual Policy. Using the learned dynamics f_ψ , we train a residual policy π^{res} that compensates the base policy’s actions to bridge the dynamics gap (Fig. 3(E)). By adding a corrective term to the base action, it wishes that the resulting state transition of the interaction system in the real world closely matches what would occur in simulation. Concretely, given the base policy’s observation $\mathbf{o}_t^{\text{gene}}$ and base action \mathbf{a}_t , π^{res} outputs a correction $\mathbf{a}_t^{\text{res}}$, and to match the simulator’s next state \mathbf{q}_{t+1} , we solve $\pi^{\text{res}*} = \arg \min_{\pi^{\text{res}}} \mathbb{E}_{\tau \sim p_{\pi^*}(\tau)} \sum_{t=1}^{N-1} \|\mathbf{q}_{t+1} - f_\psi(\{\mathbf{q}_j, \mathbf{a}_j + \pi^{\text{res}}(\mathbf{o}_j^{\text{gene}}, \mathbf{a}_j)\}_{j=t-W+1}^t)\|$. We solve it by training π^{res} in a supervised manner on the trajectory dataset used to train the base policy. At deployment, we execute $\mathbf{a}_t + \mathbf{a}_t^{\text{res}}$. We opt not to use f_ψ for policy training or finetuning the policy directly, which would require globally accurate, penetration-free, contact-rich dynamics (including the object) and super robustness to out-of-distribution exploration (Shi, 2025). See Sec. B.4 for a discussion on residual policy vs. direct finetuning.

4 EXPERIMENTS

We extensively evaluate our method in simulation and real world against strong baselines (Sec. 4.1). In simulation, our generalist policy generalizes to unseen geometries for multi-wrist poses, multi-axis rotation. On hardware, it achieves unprecedented in-air rotation with a LEAP hand (Shaw et al., 2023) under challenging wrist poses on difficult objects, including long (13.5-20cm), small (2-3cm) objects, and complex animal shapes (Sec. 4.2). We also show a teleoperation setup that pairs the policy with VR to perform complex dexterous tasks (Sec. 4.2), such as tool-using and assembly.

4.1 EXPERIMENTAL SETTINGS

Training and Evaluation Protocols. We create an object dataset spanning aspect ratios, sizes, and complexity with randomized physical properties for training. We split objects into five categories and train an oracle policy for each with PPO (Schulman et al., 2017) in Isaac Gym (Makoviychuk et al., 2021). We use objects from ContactDB (Brahmbhatt et al., 2019) as the test set in simulation to evaluate the generalization ability to shape variations. We evaluate rotation across randomized wrist orientations and four rotation-axis groups: $\pm x$, $\pm y$, $\pm z$, and a general axis set with 26 axes. We evaluate on three object sets in the real world (Fig. 5): (1) regular objects (including a high-aspect-ratio cuboid); (2) small objects; and (3) normal-sized irregular objects. Objects shown in purple

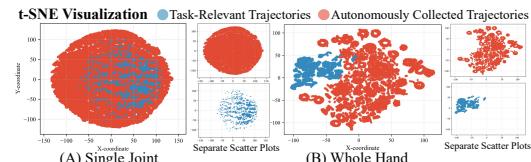


Figure 4: State-Action History Distribution.

324 and all small objects are unseen. We evaluate on three principle axis sets and a cubic-diagonal set:
325 $(1,1,1)$, $(1,0,1)$, $(1,1,0)$, $(0,1,1)$. Results are averaged over objects and reported as mean \pm standard
326 deviation across three independent evaluations. Details in Sec. C.

327 **Baselines.** We compare against in-hand rotation/reorientation baselines—AnyRotate (Yang et al.,
328 2024) and Visual Dexterity (VD) (Chen et al.,
329 2022)—and sim-to-real methods UAN (Fey et al.,
330 2025) and ASAP (He et al., 2025). AnyRotate’s code is
331 unavailable and relies on specialized tactile sensing, so we use our re-implementation in simulation;
332 on hardware, we evaluate on their replicable objects and compare to their reported performance.
333 A direct comparison to VD is impractical: adapting their D’Claw code to LEAP failed to behave
334 well in simulation, so we compare to their qualitatively results (link). UAN and ASAP, designed for
335 arms/legged robots and not modeling objects, are adapted by training compensators on object-free
336 transitions; making them object-aware is nontrivial (see Sec. D).

337 **Metrics.** We evaluate using RotateIt metrics (Qi et al., 2023), plus a goal-oriented success: *Time-
338 to-Fall (TTF)*—duration until termination; in simulation, episodes are capped at 400 steps (20s)
339 and TTF is normalized by 20s, while in the real world we report raw time; *Rotation Reward
340 (RotR)*—episode sum of $\omega \cdot k$ (simulation only); *Rotation Penalty (RotP)*—per-step average $\omega \times k$
341 (simulation only); *Radians Rotated (Rot)*—total radians rotated in the real world; *Goal-Oriented
342 Success (GO Succ.)* following Visual Dexterity: sample a goal pose; set the target axis to the relative
343 rotation axis; count success if the orientation is within 0.1π of the goal (simulation only).

344 4.2 IN-HAND ROTATION RESULTS AND ANALYSIS

345 **Simulation Results.** Our policy generalizes to unseen objects and outperforms our re-implemented
346 baseline (Table 1). Among all settings, rotating along the gravity direction ($\pm z$ axis) is the easiest
347 task, similar to the observations made in prior works (Qi et al., 2023; Yang et al., 2024).

Method	$\pm x$ -axis			$\pm y$ -axis			$\pm z$ -axis			General Rotation Axes			GO. Succ.
	RotR \uparrow	TTF \uparrow	RotP \downarrow	RotR \uparrow	TTF \uparrow	RotP \downarrow	RotR \uparrow	TTF \uparrow	RotP \downarrow	RotR \uparrow	TTF \uparrow	RotP \downarrow	
AnyRotate* (re-implementation)	91.90 \pm 11.60	0.67 \pm 0.17	0.72 \pm 0.05	163.78 \pm 20.44	0.73 \pm 0.18	0.81 \pm 0.19	173.87 \pm 11.70	0.82 \pm 0.15	0.52 \pm 0.14	162.55 \pm 19.18	0.86 \pm 0.18	0.79 \pm 0.11	64.33 \pm 4.70
Ours (Generalist in Sim)	144.22 \pm 13.91	0.77 \pm 0.19	0.54 \pm 0.03	224.28 \pm 23.69	0.88 \pm 0.17	0.58 \pm 0.09	314.28 \pm 27.91	0.92 \pm 0.14	0.37 \pm 0.05	242.33 \pm 23.30	0.94 \pm 0.05	0.46 \pm 0.06	88.27 \pm 3.70

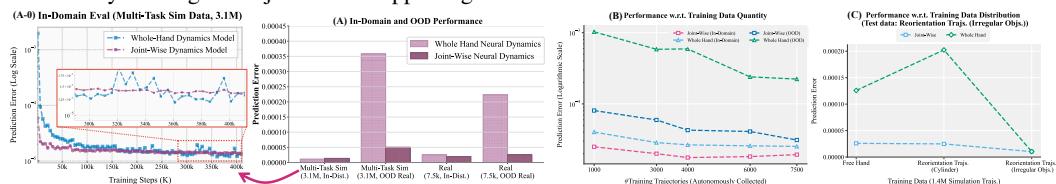
351 **Table 1: Generalization Test in Simulation.** Comparisons of the rotation performance on the *unseen test*
352 *object set* along each axis with hand wrist orientation randomized over rotation metrics.

Method	"Cube"			"Container"			"Tin Cylinder"			"Gum Box"			
	Rotation Axis Rot (rad)	TTF (s)	Hand Orientation Rot (rad)	Rotation Axis Rot (rad)	TTF (s)	Hand Orientation Rot (rad)	Rotation Axis Rot (rad)	TTF (s)	Hand Orientation Rot (rad)	Rotation Axis TTF (s)	Hand Orientation Rot (rad)	Rotation Axis TTF (s)	Hand Orientation Rot (rad)
AnyRotate	6.53 \pm 1.32	24.00 \pm 1.30	5.52 \pm 0.02	23.00 \pm 0.10	2.63 \pm 0.75	25.00 \pm 1.71	3.70 \pm 1.19	27.80 \pm 3.11	5.78 \pm 2.64	29.7 \pm 0.5	5.09 \pm 1.51	28.3 \pm 3.3	4.08 \pm 2.20
Ours (Direct Transfer)	14.92 \pm 1.36	38.67 \pm 4.13	8.73 \pm 0.60	21.89 \pm 2.67	40.22 \pm 2.14	8.81 \pm 0.54	26.67 \pm 2.02	9.16 \pm 2.76	23.67 \pm 8.52	8.03 \pm 0.30	29.22 \pm 2.46	10.65 \pm 1.91	38.56 \pm 3.50
Ours (DeNDM)	39.10 \pm 4.75	198.39 \pm 21.45	10.12 \pm 1.09	38.33 \pm 2.25	10.79 \pm 0.54	45.00 \pm 1.21	11.00 \pm 0.44	31.50 \pm 14.85	15.68 \pm 3.30	37.83 \pm 6.71	9.42 \pm 0.52	35.33 \pm 3.18	47.22 \pm 1.07

355 **Table 2: Comparisons to AnyRotate.** Comparison of rotation degrees (Rot (radian)) and time-to-fall (TTF
356 (s)) under two test settings introduced in AnyRotate (Table 12, 13) on replicable objects.

Method	"Cow" "Bear" "Truck" "GRAB" "Elephant" "Bunny" "Duck" "Teapot" "Dragon" "Train" "Hundepaar" "Elephant" "Airplane" "Mouse"												
	Visual Dexterity	7	10	6	3	2	5	8*	2*	2*	3*	4*	3*
DeNDM	8	10	6	7	5	6	48	4	3	4	4	3	4

357 **Table 3: Comparisons to Visual Dexterity.** Survival Angles ([radian/ 0.5π]), roughly measuring (from
358 videos) how many 90 degrees the object can be rotated before falling. The subscript * denotes the performance
359 achieved by rotating the object with a supporting table.



362 **Figure 6: Comparisons to Whole-Hand Neural Dynamics w.r.t. Model Expressivity, Sample Efficiency
363 and Transferrability.** (A-A-0) In-domain and out-of-distribution performance in high (3.1M) and low (7.5k)
364 data regimes. (B) Sample efficiency. (C) Transferrability from different training distributions.

365 **Real World Results.** Our sim-to-real method consistently improves real-world performance, and
366 the policy exhibits unprecedented dexterity, rotating high-aspect-ratio geometries, small objects, and
367 complex shapes under challenging hand wrist orientations in the air (Tables 4 (multi-axis with palm-
368 down), 5 (multi-wrist-pose, z -rot); Fig. 1; Fig. 22, object gallery (Fig. 21) (in Appendix); [videos](#)).
369 Contrary to AnyRotate, which finds “Thumb Up/Down” most difficult, we observe “Base Up/Down”
370 are harder, likely due to different actuator performance between Allegro and LEAP.

371 **Comparisons to AnyRotate.** We evaluate on four replicable items from AnyRotate’s suit—“Tin
372 Cylinder”, Cube, “Gum Box”, and “Container” (Sec. C)—which are their most difficult cases (ac-
373 cording to Table 12-13), and compare with their reported real-world results. Table 2 shows our

374 **Figure 5: Objects for Real Experiment.**

Object Set	Method	±x-axis		±y-axis		±z-axis		Cubic Diagonal Axes	
		Rot (rad)	TTF (s)	Rot (rad)	TTF (s)	Rot (rad)	TTF (s)	Rot (rad)	TTF (s)
Regular	Direct Transfer	9.84 \pm 0.36	26.80 \pm 0.20	10.37 \pm 0.55	30.73 \pm 1.67	11.69 \pm 0.30	21.67 \pm 2.74	9.03 \pm 0.47	22.71 \pm 2.04
	Whole Hand NDM	5.92 \pm 0.14	15.04 \pm 1.43	2.41 \pm 0.22	8.59 \pm 0.35	7.38 \pm 0.49	16.33 \pm 1.79	3.30 \pm 0.44	8.87 \pm 0.62
	DexNDM	11.36 \pm 0.40	32.40 \pm 1.78	14.24 \pm 1.19	44.60 \pm 5.44	23.82 \pm 3.86	37.50 \pm 5.02	16.93 \pm 1.84	30.44 \pm 3.08
Small	Direct Transfer	4.71 \pm 0.00	25.17 \pm 0.41	6.11 \pm 0.30	26.22 \pm 1.90	6.94 \pm 0.85	20.17 \pm 0.72	5.40 \pm 0.32	23.21 \pm 3.80
	Whole Hand NDM	0.35 \pm 0.06	0.44 \pm 0.08	0.87 \pm 0.10	1.33 \pm 0.13	0.00 \pm 0.00	0.00 \pm 0.00	0.26 \pm 0.14	0.67 \pm 0.21
	DexNDM	5.24 \pm 1.35	28.00 \pm 9.13	6.81 \pm 0.91	29.78 \pm 5.09	9.29 \pm 1.63	26.75 \pm 5.24	6.03 \pm 0.51	27.34 \pm 4.97
Irregular	Direct Transfer	4.41 \pm 0.34	19.95 \pm 2.26	6.13 \pm 0.47	24.62 \pm 2.54	5.26 \pm 0.31	21.19 \pm 2.22	6.53 \pm 0.37	26.29 \pm 1.25
	Whole Hand NDM	1.34 \pm 0.21	5.51 \pm 0.36	2.91 \pm 0.50	10.32 \pm 0.72	0.72 \pm 0.06	4.03 \pm 2.92	2.33 \pm 0.68	11.68 \pm 2.05
	DexNDM	6.35 \pm 0.69	24.21 \pm 2.87	11.32 \pm 2.08	39.04 \pm 7.28	8.61 \pm 0.76	29.33 \pm 1.38	9.19 \pm 1.01	33.14 \pm 1.86

Table 4: **Multi-Axis Rotation in Real.** Comparison of rotation degrees (Rot (radian)) and time-to-fall (TTF (s)) along each axis under the palm down wrist orientation. The metric was first averaged over all objects within each trial. We then report avg. \pm std of these results across three independent trials.

Method	Palm Up		Palm Down		Base Up		Base Down		Thumb Up		Thumb Down	
	Rot (rad)	TTF (s)	Rot (rad)	TTF (s)	Rot (rad)	TTF (s)	Rot (rad)	TTF (s)	Rot (rad)	TTF (s)	Rot (rad)	TTF (s)
Direct Transfer	10.03 \pm 0.59	25.63 \pm 2.88	7.64 \pm 0.32	20.98 \pm 2.00	5.40 \pm 0.23	21.48 \pm 1.04	4.92 \pm 0.18	18.37 \pm 0.93	6.46 \pm 0.20	25.02 \pm 3.84	5.90 \pm 0.48	20.77 \pm 1.10
Whole Hand NDM	7.37 \pm 0.25	20.42 \pm 1.88	3.46 \pm 0.83	14.21 \pm 3.72	4.17 \pm 0.40	18.22 \pm 4.97	2.33 \pm 0.41	7.06 \pm 1.25	4.79 \pm 0.88	20.15 \pm 4.46	1.91 \pm 0.04	6.35 \pm 0.75
DexNDM	14.61 \pm 1.15	32.82 \pm 3.06	13.20 \pm 1.71	29.33 \pm 3.94	9.42 \pm 1.39	36.00 \pm 4.67	7.59 \pm 1.63	44.67 \pm 6.51	11.93 \pm 1.29	28.37 \pm 2.84	8.60 \pm 0.72	26.93 \pm 3.06

Table 5: **Multi-Wrist Orientation Rotation in Real.** Comparison of rotation degrees (Rot (radian)) and time-to-fall (TTF (s)) under six representative hand orientations across direction z .

method substantially outperforms AnyRotate and is more versatile: whereas AnyRotate targets moderately sized, simple shapes (min 5cm, max aspect ratio 1.67) with conservative motions, our policy handles smaller objects (3cm) and high aspect ratios (up to 5.3) with sophisticated finger gaiting.

Comparisons to Visual Dexterity. A direct comparison with Visual Dexterity (VD) is infeasible due to differing task definitions (axis-oriented continuous rotation vs. goal-oriented reorientation). To enable comparison, we introduce the survival rotation angle metric: the angle an object is rotated before being dropped. We estimate VD’s best performance by analyzing their [videos](#). Despite this metric favoring VD (their setup sometimes includes a supporting table), we achieve comparable or superior results on their showcased and replicable objects (Table 3). Besides, we can uniquely manipulate small objects and high aspect ratios as well as handle diverse wrist orientations (Fig. 22).

Comparisons to Whole-Hand Nueral Dynamics. We compare against the whole-hand dynamics model to answer: **(Q1)** Does predicting each joint’s transition from its own history (without global information) reduce expressivity? **(Q2)** Is our model more sample-efficient? **(Q3)** Does it generalize better? **(A1)** Trained on 3.1M simulated trajectories and evaluated in-domain, our model is nearly as expressive as the whole-hand model (Fig. 6(A, column 1)(A-0)). **(A2)** With limited data—using 7.5k autonomously collected trajectories in the real world (Fig. 6(A, column 3)) and across varying real-world dataset sizes (Fig. 6(B))—our model achieves better in-domain performance, indicating higher sample efficiency. The advantage is more obvious under insufficient data settings. **(A3)** On an OOD real-world test set (task-relevant transitions under “Thumb Up” wrist), our model generalizes much better in both high- and low-data regimes; see Fig. 6(A, column 2,4) and Fig. 6(B). Fig. 6(C) systematically studies the cross-domain transferability in various settings. **Summary:** For data-driven neural dynamics, joint-wise model significantly outperform whole-hand models in insufficient-data or train–test distribution-shift settings; with ample data and in-domain evaluation, performance is similar, with only a slight loss in expressivity for joint-wise models.

Comparisons to ASAP and UAN. We implement UAN and ASAP, but their resulting policies fail entirely in real-world tests—unable to rotate even a simple cylinder (Fig. 36, [videos](#)). We attribute this to an OOD issue: compensators trained solely on free-hand data do not generalize to the interaction dynamics introduced by manipulated objects. Please note that their methods can only use either free-hand data or task-relevant data with object states—difficult and noisy to obtain, and unusable even for compensator training—and cannot leverage our autonomously collected data with randomized object loads; see Sec. D. Our strategy is more tolerant of real-data imperfections (Figs. 8, 9, 36).

“Sim-to-Sim” Comparisons. We conduct a cross-simulator transfer evaluation (Isaac Gym to Genesis and MuJoCo). We collect object-loaded rotation data in the target simulator for training. Table 4.2

Simulator	Genesis			MuJoCo		
	RotR \uparrow	TTF \uparrow	RotP \downarrow	RotR \uparrow	TTF \uparrow	RotP \downarrow
Direct Transfer	72.74 \pm 18.13	16.83 \pm 4.50	0.70 \pm 0.17	82.03 \pm 25.38	15.33 \pm 1.11	0.65 \pm 0.07
UAN	87.23 \pm 10.54	17.81 \pm 1.56	1.03 \pm 0.05	99.14 \pm 17.02	18.67 \pm 1.18	0.75 \pm 0.14
ASAP	75.72 \pm 11.29	19.11 \pm 0.74	1.48 \pm 0.31	26.25 \pm 6.37	15.60 \pm 2.30	1.89 \pm 0.12
DexNDM	111.29 \pm 33.30	19.26 \pm 1.61	0.66 \pm 0.18	124.69 \pm 14.06	18.90 \pm 1.57	0.57 \pm 0.09

Table 6: **“Sim-to-Sim” Transfer.** shows our method consistently surpasses prior work, owing to designs on dynamics modeling, higher data efficiency, and practical choices (e.g., pre-train in source sim). We find UAN outperforms ASAP, likely because its history-based design better captures object effects. Details in Sec. C.

Applications. A meaningful application of in-hand rotation/reorientation policies is their integration into teleoperation systems to enhance manipulation capabilities (Yin et al., 2025). In our work, we demonstrate a similar application using our in-hand rotation policy within a teleoperation setup (with a Meta Quest 3). The robotic hand is controlled by our rotation policy, conditioned on the

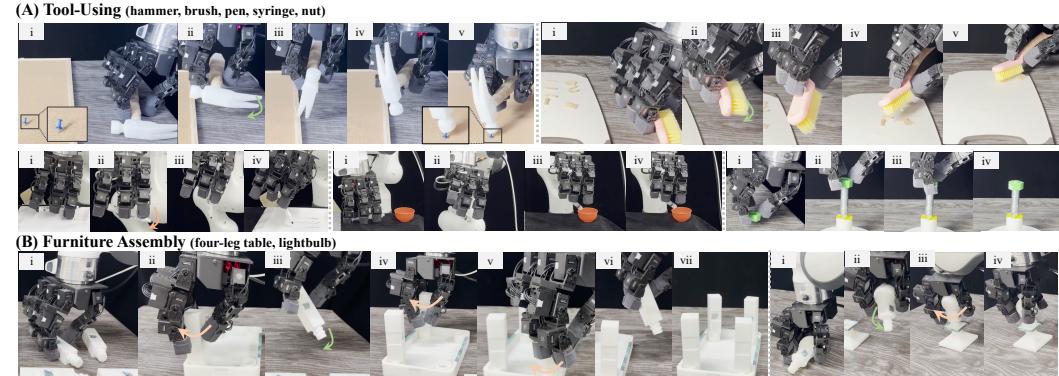


Figure 7: **Application.** Our rotation policy enables a teleoperation system to perform complex, long-horizon manipulation tasks. See videos and more results on our [project website](#).

rotation-axis commands sent by the human operator, while the robot arm is teleoperated through the operator’s arm motion. Details are provided in Sec. C. We demonstrate its strong ability in performing long-horizon and complex dexterous manipulation tasks (Fig. 7, [videos](#)).

5 ABLATION STUDIES

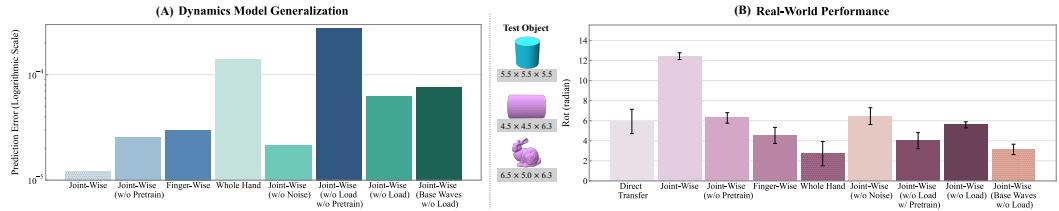


Figure 8: **Ablation Study of the Dynamics Model.** (A) Generalization error of different model ablations (lower is better). (B) Corresponding real-world task performance.

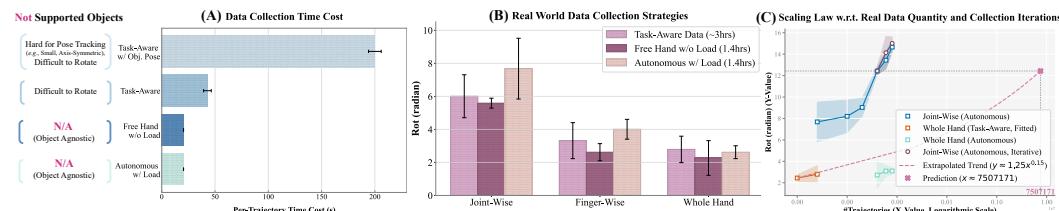


Figure 9: **Analysis of Data Collection Strategies.** (A) Time efficiency of different collection methods. (B) Resulting model performance on datasets of equal size. (C) Performance scaling with dataset size and data collection iterations, including a power-law fit for extrapolation.

We conduct ablations to validate key design choices of our method. Real-world experiments are performed with the hand fixed palm-down, evaluating z-axis rotation; data are collected under the same wrist pose. Dynamics model are evaluated in an OOD test setting. See Sec. C for details.

Designs on the Joint-Wise Neural Dynamics Model. We ablate five design choices: (i) joint-wise vs. finger-wise (per finger prediction from its own history) and whole-hand modeling; (ii) simulation pretraining; (iii) injecting noise into replayed actions during real-world data collection; (iv) collecting with object loads rather than free-hand w/o load; and (v) replaying policy rollouts instead of base waves (Fey et al., 2025). As summarized in Fig. 8, these choices consistently improve learned dynamics generalization and real-world performance.

Real-World Data Collection Strategies. We compare our autonomous data collection against three baselines—task-aware with vision-based object states, task-aware without object states, and free-hand motions—evaluating limitations, efficiency, and model performance (Figure 9). Task-aware pipelines are slow and intervention-heavy: estimating object poses is prohibitively slow (~ 200 s on average), requires continuous human supervision, yields noisy poses and complex setup, and fails on small, occluded, or axis-symmetric objects; without vision they still need intervention, remain slow (42.86 s), and produce low-diversity, low-coverage data (data restricted to policy’s ability). In contrast, our method is fully automated and, by continuously varying hand loads, collects diverse data spanning a wide range of external influences. Figure 9(B) shows the resulting performance

486 gains: broader coverage improves prediction, and the joint-wise model is most robust to training-
 487 distribution shifts, whereas other variants tend to overfit to the source data.

488 **Scaling with Real-World Data Quantity and Collection Iterations.** As shown in Fig. 9, our
 489 performance improves with more real-world data. However, iterative data collection—intended to
 490 align real-world and simulated transition distributions for better policy updates—yields only modest
 491 gains. We hypothesize this is because the dynamics model already generalizes well, and adding
 492 noise to replay actions provides broad coverage, reducing sensitivity to this distribution shift. In
 493 contrast, the whole-hand model benefits little from additional data, especially under autonomous
 494 collection, likely due to its higher dimensionality and a distributional mismatch between autonomous
 495 data and rotation task transitions. A simple extrapolation suggests matching our 4,000-trajectory
 496 result would require 7.5M task-aware trajectories (417k hours; 52k 8-hour workdays), which is
 497 impractical. While approximate, this highlights the superiority of our approach.

498 6 CONCLUSIONS AND LIMITATIONS

500 We propose a neural sim-to-real framework centered on a joint-wise neural dynamics model and
 501 autonomous data collection. This enables unprecedented dexterity in rotating challenging objects.

502 **The main limitation** is that the model’s performance ceiling is constrained by its reliance on partial,
 503 proprioception-only observations, as well as task- and hardware-specific evaluation. Jointly modeling
 504 hand–object transitions using richer sensory signals, incorporating vision and tactile feedback,
 505 and extending the framework to a broader set of tasks and hardware platforms represent valuable
 506 directions for future work.

507 508 REPRODUCIBILITY STATEMENT

510 **Novel Models and Algorithms.** Our method is composed of two novel designs: 1) Specialist-
 511 to-generalist for unified multi-geometry wrist-orientation conditioned and axis-conditioned rotation
 512 policy. We have provided detailed explanations of the algorithms in Sections 3.1, A. Besides,
 513 we have included the source code in the Supplementary Materials, where the implementations of
 514 the algorithm are contained. Please refer to the *Key Implementations* section in the file *DexNDM-
 515 Code/README.md* in our Supplementary Materials. 2) The neural sim-to-real approach that learns
 516 the joint-wise neural dynamics model and trains a residual policy to bridge the sim-to-real gap. We
 517 have provided detailed explanations in Sections 3.3 and A. Besides, we have included the source
 518 code in the Supplementary Materials. Please refer to the *Key Implementations* section in the file
 519 *DexNDM-Code/README.md* in our Supplementary Materials.

520 **Theoretical Results.** Please refer to section A.2 in the Appendix for the proof of Theorem 3.1,
 521 3.2. Please refer to sections A.3 and A.4 for analysis on the rationality of the joint-wise neural
 522 dynamics. Please refer to section A.5 for an analysis on the rationality of our autonomous data
 523 collection strategy.

524 **Datasets.** Please refer to sections 4.1 and C for a detailed explanation of the training, evaluation,
 525 real-world experiment objects, and how we replicate AnyRotate’s replicable objects.

526 **Experiments.** For experiments, we provide 1) Source code. Please refer to the folder *DexNDM-
 527 Code* in our Supplementary Materials for details. 2) Experimental details of our method and com-
 528 pared baselines. Please refer to the sections 4.1 and C for details. We also provide related informa-
 529 tion and instructions in the *DexNDM-Code/README.md* file.

531 532 REFERENCES

533 Chae H. An, Christopher G. Atkeson, and John M. Hollerbach. Estimation of inertial parameters
 534 of rigid body links of manipulators. *1985 24th IEEE Conference on Decision and Control*, pp.
 535 990–995, 1985. 3, 45

536 Hao bin Shi, Tingguang Li, Qing Zhu, Jiapeng Sheng, Lei Han, and Max Q.-H. Meng. An effi-
 537 cient model-based approach on learning agile motor skills without reinforcement. *2024 IEEE
 538 International Conference on Robotics and Automation (ICRA)*, pp. 5724–5730, 2024. URL
 539 <https://api.semanticscholar.org/CorpusID:268248331>. 2, 3, 5, 19

540 Samarth Brahmbhatt, Cusuh Ham, Charles C. Kemp, and James Hays. Contactdb: Analyzing and predicting grasp contact via thermal imaging. *2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 8701–8711, 2019. URL <https://api.semanticscholar.org/CorpusID:118643835>. 6

541

542

543

544 Tao Chen, Megha H. Tippur, Siyang Wu, Vikash Kumar, Edward H. Adelson, and Pulkit Agrawal. Visual dexterity: In-hand reorientation of novel and complex object shapes. *Science Robotics*, 8, 2022. URL <https://api.semanticscholar.org/CorpusID:253734517>. 2, 3, 7, 37, 39

545

546

547

548

549 Ho Kei Cheng and Alexander G. Schwing. Xmem: Long-term video object segmentation with an atkinson-shiffrin memory model. In *European Conference on Computer Vision*, 2022. URL <https://api.semanticscholar.org/CorpusID:250526250>. 31

550

551

552

553 Xuxin Cheng, Jialong Li, Shiqi Yang, Ge Yang, and Xiaolong Wang. Open-television: Teleoperation with immersive active visual feedback. In *Conference on Robot Learning*, 2024. URL <https://api.semanticscholar.org/CorpusID:270869903>. 44

554

555

556 John J Craig. *Introduction to robotics: mechanics and control*, 3/E. Pearson Education India, 2009. 20

557

558

559 Marc Peter Deisenroth and Carl Edward Rasmussen. Pilco: A model-based and data-efficient approach to policy search. In *International Conference on Machine Learning*, 2011. 45

560

561

562 Runyu Ding, Yuzhe Qin, Jiyue Zhu, Chengzhe Jia, Shiqi Yang, Ruihan Yang, Xiaojuan Qi, and Xiaolong Wang. Bunny-visionpro: Real-time bimanual dexterous teleoperation for imitation learning. 2024. URL <https://arxiv.org/abs/2407.03162>. 44

563

564

565 Nolan Fey, G. Margolis, Martin Petっこ, and Pulkit Agrawal. Bridging the sim-to-real gap for athletic loco-manipulation. *ArXiv*, abs/2502.10894, 2025. URL <https://api.semanticscholar.org/CorpusID:276408331>. 3, 5, 7, 9, 31, 45

566

567

568

569 Victor Guillemin and Alan Pollack. *Differential topology*, volume 370. American Mathematical Soc., 2010. 20

570

571

572 Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. *2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 770–778, 2015. URL <https://api.semanticscholar.org/CorpusID:206594692>. 5

573

574

575 Tairan He, Jiawei Gao, Wenli Xiao, Yuanhang Zhang, Zi Wang, Jiashun Wang, Zhengyi Luo, Guanqi He, Nikhil Sobanbab, Chaoyi Pan, Zeji Yi, Guannan Qu, Kris Kitani, Jessica Hodgins, “Jim” Fan, Yuke Zhu, Changliu Liu, and Guanya Shi. Asap: Aligning simulation and real-world physics for learning agile humanoid whole-body skills. *ArXiv*, abs/2502.01143, 2025. URL <https://api.semanticscholar.org/CorpusID:276095101>. 2, 3, 5, 7, 45

576

577

578

579

580

581 Minho Heo, Youngwoon Lee, Doohyun Lee, and Joseph J. Lim. Furniturebench: Reproducible real-world benchmark for long-horizon complex manipulation. In *Robotics: Science and Systems*, 2023. 3

582

583

584

585 Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis, Vladlen Koltun, and Marco Hutter. Learning agile and dynamic motor skills for legged robots. *Science Robotics*, 4, 2019. URL <https://api.semanticscholar.org/CorpusID:58031572>. 3, 5, 45

586

587

588

589 Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra Malik. Rma: Rapid motor adaptation for legged robots. *ArXiv*, abs/2107.04034, 2021. URL <https://api.semanticscholar.org/CorpusID:235650916>. 2, 3

590

591

592

593 Taeyoon Lee, Jaewoon Kwon, Patrick M. Wensing, and Frank C. Park. Robot model identification and learning: A modern perspective. *Annu. Rev. Control. Robotics Auton. Syst.*, 7, 2023. 3, 45

594 Antonio Loquercio, Elia Kaufmann, René Ranftl, Alexey Dosovitskiy, Vladlen Koltun, and Davide
 595 Scaramuzza. Deep drone racing: From simulation to reality with domain randomization. *IEEE*
 596 *Transactions on Robotics*, 36:1–14, 2019. URL <https://api.semanticscholar.org/CorpusID:162183971>. 3, 45

598 Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
 599 David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac gym: High performance
 600 gpu-based physics simulation for robot learning. *arXiv preprint arXiv:2108.10470*, 2021. 6
 601

602 Hirokazu Mayeda, Koji Yoshida, and Koichi Osuka. Base parameters of manipulator dynamic mod-
 603 els. *Proceedings. 1988 IEEE International Conference on Robotics and Automation*, pp. 1367–
 604 1372 vol.3, 1988. 3, 45

605 Melissa Mozifian, Juan Camilo Gamboa Higuera, David Meger, and Gregory Dudek. Learning
 606 domain randomization distributions for training robust locomotion policies. *2020 IEEE/RSJ In-
 607 ternational Conference on Intelligent Robots and Systems (IROS)*, pp. 6112–6117, 2019. URL
 608 <https://api.semanticscholar.org/CorpusID:204185733>. 3, 45

609 James R Munkres. *Analysis on manifolds*. CRC Press, 2018. 20
 610

611 Richard M Murray, Zexiang Li, and S Shankar Sastry. *A mathematical introduction to robotic
 612 manipulation*. CRC press, 2017. 20

613 Michael O’Connell, Guanya Shi, Xichen Shi, Kamyar Azizzadenesheli, Anima Anandkumar,
 614 Yisong Yue, and Soon-Jo Chung. Neural-fly enables rapid learning for agile flight in strong winds.
 615 *Science Robotics*, 7, 2022. URL <https://api.semanticscholar.org/CorpusID:248527107>. 45
 616

617 Tao Pang and Russ Tedrake. A convex quasistatic time-stepping scheme for rigid multibody systems
 618 with contact and friction. In *2021 IEEE International Conference on Robotics and Automation
 (ICRA)*, pp. 6614–6620. IEEE, 2021. 2, 20

619 Tao Pang, HJ Terry Suh, Lujie Yang, and Russ Tedrake. Global planning for contact-rich manipula-
 620 tion via local smoothing of quasi-dynamic contact models. *IEEE Transactions on Robotics*, 2023.
 621 2

622 Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and P. Abbeel. Sim-to-real transfer of
 623 robotic control with dynamics randomization. *2018 IEEE International Conference on Robotics
 624 and Automation (ICRA)*, pp. 1–8, 2017. URL <https://api.semanticscholar.org/CorpusID:3707478>. 3, 45

625 Johannes Pitz, Lennart Röstel, Leon Sievers, and Berthold Bauml. Learning time-optimal
 626 and speed-adjustable tactile in-hand manipulation. *2024 IEEE-RAS 23rd International Con-
 627 ference on Humanoid Robots (Humanoids)*, pp. 973–979, 2024a. URL <https://api.semanticscholar.org/CorpusID:274150211>. 3
 628

629 Johannes Pitz, Lennart Röstel, Leon Sievers, Darius Burschka, and Berthold Bauml. Learning
 630 a shape-conditioned agent for purely tactile in-hand manipulation of various objects. *2024
 631 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, pp. 13112–13119,
 632 2024b. URL <https://api.semanticscholar.org/CorpusID:271516159>. 3

633 Haozhi Qi, Ashish Kumar, Roberto Calandra, Yinsong Ma, and Jitendra Malik. In-hand object
 634 rotation via rapid motor adaptation. In *Conference on Robot Learning*, 2022. URL <https://api.semanticscholar.org/CorpusID:252781034>. 3, 5, 20, 26, 27, 37, 38
 635

636 Haozhi Qi, Brent Yi, Sudharshan Suresh, Mike Lambeta, Y. Ma, Roberto Calandra, and Jitendra
 637 Malik. General in-hand object rotation with vision and touch. *ArXiv*, abs/2309.09979, 2023.
 638 URL <https://api.semanticscholar.org/CorpusID:262045795>. 2, 3, 4, 7, 15,
 639 26, 27, 37, 38

640 Lennart Röstel, Dominik Winkelbauer, Johannes Pitz, Leon Sievers, and Berthold Bauml. Com-
 641 posing dexterous grasping and in-hand manipulation via scoring with a reinforcement learn-
 642 ing critic. *ArXiv*, abs/2505.13253, 2025. URL <https://api.semanticscholar.org/CorpusID:278768673>. 3

648 Fereshteh Sadeghi and Sergey Levine. Real single-image flight without a single real image. *ArXiv*,
 649 abs/1611.04201, 2016. 45
 650

651 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proxi-
 652 mal policy optimization algorithms. *ArXiv*, abs/1707.06347, 2017. URL <https://api.semanticscholar.org/CorpusID:28695052>. 6
 653

654 Kenneth Shaw, Ananya Agarwal, and Deepak Pathak. Leap hand: Low-cost, efficient, and an-
 655 thropomorphic hand for robot learning. *ArXiv*, abs/2309.06440, 2023. URL <https://api.semanticscholar.org/CorpusID:259327055>. 6, 42
 656

657 Guanya Shi. From sim2real 1.0 to 4.0 for humanoid whole-body control and loco-manipulation,
 658 2025. URL https://opendrivelab.github.io/CVPR2025/Guangya_Shi_From_Sim2Real_1.0_to_4.0_for_Humanoid_Whole-Body_Control.pdf. 3, 6
 659

660 Guanya Shi, Xichen Shi, Michael O’Connell, Rose Yu, Kamyar Azizzadenesheli, Anima Anandku-
 661 mar, Yisong Yue, and Soon-Jo Chung. Neural lander: Stable drone landing control using learned
 662 dynamics. *2019 International Conference on Robotics and Automation (ICRA)*, pp. 9784–9790,
 663 2018. URL <https://api.semanticscholar.org/CorpusID:53725979>. 3, 45
 664

665 Jonah Siekmann, Yesh Godse, Alan Fern, and Jonathan W. Hurst. Sim-to-real learning of all
 666 common bipedal gaits via periodic reward composition. *2021 IEEE International Confer-
 667 ence on Robotics and Automation (ICRA)*, pp. 7309–7315, 2020. URL <https://api.semanticscholar.org/CorpusID:226237257>. 3, 45
 668

669 Nikhil Sobanbabu, Guanqi He, Tairan He, Yuxiang Yang, and Guanya Shi. Sampling-based system
 670 identification with active exploration for legged robot sim2real learning. *ArXiv*, abs/2505.14266,
 671 2025. URL <https://api.semanticscholar.org/CorpusID:278768643>. 3, 45
 672

673 Mark W. Spong, Seth A. Hutchinson, and Mathukumalli Vidyasagar. Robot modeling and control.
 674 2005. URL <https://api.semanticscholar.org/CorpusID:106678735>. 20
 675

676 Mark W Spong, Seth Hutchinson, and M Vidyasagar. Robot modeling and control. *John Wiley*
 677 &, 2020. 20

678 H. J. Terry Suh, Tao Pang, Tong Zhao, and Russ Tedrake. Dexterous contact-rich manipu-
 679 lation via the contact trust region. *ArXiv*, abs/2505.02291, 2025. URL <https://api.semanticscholar.org/CorpusID:278327864>. 2
 680

681 Omid Taheri, Nima Ghorbani, Michael J Black, and Dimitrios Tzionas. Grab: A dataset of whole-
 682 body human grasping of objects. In *Computer Vision–ECCV 2020: 16th European Conference,
 683 Glasgow, UK, August 23–28, 2020, Proceedings, Part IV 16*, pp. 581–600. Springer, 2020. 37
 684

685 Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner, Steven
 686 Bohez, and Vincent Vanhoucke. Sim-to-real: Learning agile locomotion for quadruped
 687 robots. *ArXiv*, abs/1804.10332, 2018. URL <https://api.semanticscholar.org/CorpusID:13750177>. 3, 45
 688

689 Russ Tedrake and the Drake Development Team. Drake: Model-based design and verification for
 690 robotics, 2019. URL <https://drake.mit.edu>. 20
 691

692 Jun Wang, Ying Yuan, Haichuan Che, Haozhi Qi, Yi Ma, Jitendra Malik, and Xiaolong Wang.
 693 Lessons from learning to spin” pens”. *arXiv preprint arXiv:2407.18902*, 2024. 2, 3
 694

695 Bowen Wen, Wei Yang, Jan Kautz, and Stanley T. Birchfield. Foundationpose: Unified 6d
 696 pose estimation and tracking of novel objects. *2024 IEEE/CVF Conference on Computer*
 697 *Vision and Pattern Recognition (CVPR)*, pp. 17868–17879, 2023. URL <https://api.semanticscholar.org/CorpusID:266191252>. 45
 698

699 Max Yang, Chenghua Lu, Alex Church, Yijiong Lin, Christopher J. Ford, Haoran Li, Efi Psos-
 700 mopoulos, David A.W. Barton, and Nathan F. Lepora. Anyrotate: Gravity-invariant in-hand
 701 object rotation with sim-to-real touch. In *Conference on Robot Learning*, 2024. URL <https://api.semanticscholar.org/CorpusID:269757396>. 2, 3, 7, 26, 39

702 Zhao-Heng Yin, Changhao Wang, Luis Pineda, Francois Hogan, Chaithanya Krishna Bodduluri,
703 Akash Sharma, Patrick Lancaster, Ishita Prasad, Mrinal Kalakrishnan, Jitendra Malik, Mike
704 Lambeta, Tingfan Wu, Pieter Abbeel, and Mustafa Mukadam. Dexteritygen: Foundation con-
705 troller for unprecedented dexterity. *ArXiv*, abs/2502.04307, 2025. URL <https://api.semanticscholar.org/CorpusID:276160987>. 3, 8

706

707 Wenhao Yu, Visak C. V. Kumar, Greg Turk, and C. Karen Liu. Sim-to-real transfer for
708 biped locomotion. *2019 IEEE/RSJ International Conference on Intelligent Robots and Sys-
709 tems (IROS)*, pp. 3503–3510, 2019. URL <https://api.semanticscholar.org/CorpusID:67856268>. 3, 45

710

711 Ying Yuan, Haichuan Che, Yuzhe Qin, Binghao Huang, Zhao-Heng Yin, Kang-Won Lee, Yi Wu,
712 Soo-Chul Lim, and Xiaolong Wang. Robot synesthesia: In-hand manipulation with visuotactile
713 sensing. *2024 IEEE International Conference on Robotics and Automation (ICRA)*, pp. 6558–
714 6565, 2023. URL <https://api.semanticscholar.org/CorpusID:265609488>. 2,
715 3

716 Shuqi Zhao, Ke Yang, Yuxin Chen, Chenran Li, Yichen Xie, Xiang Zhang, Changhao Wang,
717 and Masayoshi Tomizuka. Dexctrl: Towards sim-to-real dexterity with adaptive controller
718 learning. *ArXiv*, abs/2505.00991, 2025. URL <https://api.semanticscholar.org/CorpusID:278310700>. 2, 3

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

APPENDIX

759	A Additional Explanations of the Method	15
760	A.1 Policy Design	15
761	A.2 Proof of Main Theorems	16
762	A.3 Rationality of Joint-Wise Dynamics Modeling (part I)	20
763	A.4 Rationality of Joint-Wise Dynamics Modeling (part II)	23
764	A.5 Comparisons of Data Distributions between Collected Trajectories and Rotation Trajectories	25
765		
766	B Additional Experiments and Analysis	26
767	B.1 Training Performance	26
768	B.2 Additional Real World Results	27
769	B.3 Case Study on the Effectiveness of Our Sim-to-Real Method	27
770	B.4 Further Discussions, Analysis, and Ablation Studies	29
771	B.5 Runtime Performance Analysis	36
772		
773	C Additional Experimental Details	37
774		
775	D Discussions on Related Sim-to-Real Works	44
776		
777	E LLMs Usage Disclosure	46
778		

We include a [video](#) and an anonymous [website](#) to introduce our work. The website and the video contain robot videos. We highly recommend exploring these resources for an intuitive understanding of the challenges, the effectiveness of our method, and its superiority over prior approaches.

A ADDITIONAL EXPLANATIONS OF THE METHOD

A.1 POLICY DESIGN

Observations. The observation of the oracle policy contains: 3-length joint position history (48-dim), 3-length joint positional target history (48-dim), joint velocity (16-dim), fingertip state and velocity (52-dim), object state and velocity (13-dim), object guiding goal pose (4-dim), joint and rigid body forces (40-dim), contact force and binary contact (92-dim), wrist orientation (quaternion, 4-dim), and rotation axis (3-dim).

Rewards. The reward function consists of three parts $r = \alpha_{\text{rot}}r_{\text{rot}} + \alpha_{\text{goal}}r_{\text{goal}} + \alpha_{\text{penalty}}r_{\text{penalty}}$, with r_{rot} and r_{penalty} following RotateIt (Qi et al., 2023). The rotation term $r_{\text{rot}} = \text{clip}(\omega_t \cdot \mathbf{k}, -c, c)$ encourages rotation about the unit target axis $\mathbf{k} \in \mathbb{R}^3$, $\|\mathbf{k}\|_2 = 1$, where ω_t is the object angular velocity and $c = 0.5$ caps excessive speed. The penalty r_{penalty} discourages off-axis angular velocity, deviation from a canonical hand pose, object linear velocity, and joint work/torque: $r_{\text{penalty}} = -\alpha_{\text{rot}}\|\omega_t \times \mathbf{k}\|_1 - \alpha_{\text{lin}}\|\mathbf{v}_t\|_2^2 - \alpha_{\text{pose}}\|\mathbf{q}_t - \mathbf{q}_{\text{init}}\|_2^2 - \alpha_{\text{work}}\tau^T \dot{\mathbf{q}} - \alpha_{\text{torque}}\|\tau\|_2^2$, where \mathbf{v}_t , \mathbf{q}_{init} , and τ denote the object pose, initial hand joint position, and joint commanded torques at the current timestep t , $\alpha_{\text{lin}} = 0.3$, $\alpha_{\text{pose}} = 0.3$, $\alpha_{\text{torque}} = 0.1$, $\alpha_{\text{work}} = 2.0$. We schedule the coefficient α_{rot} linearly: set it to zero at the beginning of the training; use the number of resets to count the training process; at the 10 resets, we keep α_{rot} to zero; from 10 to 100, linearly increase it to 0.1; after 100, keep it at 0.1. $\alpha_{\text{penalty}} = 1.0$

We find that solely relying on these rewards cannot solve challenging problems like rotating a long object. Therefore, we add an intermediate goal: at episode start set \mathbf{p}^{goal} 90° ahead along the

810 desired rotation and update it whenever $\text{ang_diff}(\mathbf{p}_t, \mathbf{p}^{\text{goal}}) < 15^\circ$; the guidance term is $r_{\text{goal}} =$
 811 $\text{clip}\left(\frac{g_{\text{goal}}}{\text{ang_diff}(\mathbf{p}_t, \mathbf{p}^{\text{goal}}) + \epsilon}, 0, c_{\text{goal}}\right) + g_{\text{bonus}} \mathbf{1}_{\text{ang_diff}(\mathbf{p}_t, \mathbf{p}^{\text{goal}}) < c_{\text{threshold}}}$, where $\text{ang_diff}(\cdot, \cdot)$ is the quaternion
 812 angular distance, $\epsilon > 0$ ensures numerical stability, and $c_{\text{threshold}}$ is the proximity threshold. We set
 813 $r_{\text{goal}} = 1.0$.

814 **Control Strategy.** We use torque control with 20Hz, where each control step is realized by running
 815 the torque control for 6 times. Each time the joint torque is calculated as $\tau_t = \mathbf{K}_p(\mathbf{q}_t^{\text{tar}} - \mathbf{q}) - \mathbf{K}_d\dot{\mathbf{q}}_t$,
 816 where the \mathbf{q} and $\dot{\mathbf{q}}$ represent the current joint position and joint velocity, \mathbf{K}_p and \mathbf{K}_d are preset
 817 constant positional gain and damping parameters.

818 **Generalist Policy Architecture.** We use a residual MLP with five residual blocks. The input
 819 layer is a single linear network with a hidden dimension of 1024. After that, we stack five residual
 820 blocks each with the hidden dimension of 1024. Each residual block processes input \mathbf{x} via $\mathbf{y} =$
 821 $\text{ReLU}(\text{NN}_1(\mathbf{x}) + \text{NN}_3(\text{ReLU}(\text{NN}_2(\mathbf{x}))))$. The output layer is a single linear network that maps the
 822 latent to the output dimension.

823 **Further Discussions on Design Choices.** The BC-style training allows us to achieve a real-world
 824 deployable multi-geometry policy in a simple way by combining datasets resulting from different
 825 multiple oracle policies, each trained for a specific object category, to train a unified policy. We use
 826 BC to achieve both real-world deployment ability and generality across diverse objects. An alter-
 827 native is achieving the generality in the teacher level, *e.g.*, training RL for an any-wrist orientation
 828 any-axis on all object categories. However, this can hardly work. This may require us to add an
 829 automatic or multi-stage curriculum to make sure the final policy can perform at least as good as
 830 each individual policy. This is a valuable research direction. In this work, we choose to leave the
 831 oracle policy training a neat pipeline, adopt to train a collection of teacher policies, and achieve the
 832 unified real-world deployable policy at once in the student policy training stage.

833 A.2 PROOF OF MAIN THEOREMS

834 **Theorem A.1 (Data Processing Inequality for KL (strict form))** *Let \mathcal{P} and \mathcal{Q} be two probability*
 835 *distributions on $\mathbb{R}^n \times \mathbb{R}$ with respective probability density functions (PDFs) $P(x)$ and $Q(x)$. Let*
 836 *$g : \mathbb{R}^n \times \mathbb{R} \rightarrow \mathbb{R}^m \times \mathbb{R}$ be a measurable function, where $m \leq n$. This function transforms a random*
 837 *variable $X \sim \mathcal{P}$ (or $X \sim \mathcal{Q}$) into a new random variable $Y = g(X)$. Let $g(\mathcal{P})$ and $g(\mathcal{Q})$ denote*
 838 *the resulting pushforward distributions on $\mathbb{R}^m \times \mathbb{R}$.*

839 *The Kullback-Leibler (KL) divergence between the distributions is reduced or remains the same after*
 840 *the transformation, a property known as the Data Processing Inequality:*

$$841 \text{KL}(\mathcal{P} \parallel \mathcal{Q}) \geq \text{KL}(g(\mathcal{P}) \parallel g(\mathcal{Q})). \quad (1)$$

842 *The inequality is strict, $\text{KL}(\mathcal{P} \parallel \mathcal{Q}) > \text{KL}(g(\mathcal{P}) \parallel g(\mathcal{Q}))$, if g is non-injective in a way that merges*
 843 *points where \mathcal{P} and \mathcal{Q} have a different relative structure. More concretely, it indicates that there*
 844 $\exists y_0 \in \mathbb{R}^m \times \mathbb{R}, P(Y = y_0) > 0, P(X|Y = y_0) \neq Q(X|Y = y_0)$.

845 **Proof A.1** We start with prove that $\text{KL}(\mathcal{P} \parallel \mathcal{Q}) \geq \text{KL}(g(\mathcal{P}) \parallel g(\mathcal{Q}))$ always holds for any function g .
 846 Let X be a random variable drawn from one of two distributions, \mathcal{P} or \mathcal{Q} . Denote their PDFs as
 847 $P_X(x)$ and $Q_X(x)$.

848 Let Y be a new random variable created by applying a function to X : $Y = g(X)$. The distributions
 849 of Y are the pushforward distributions $f(\mathcal{P})$ and $f(\mathcal{Q})$, with PDFs $P_Y(y)$ and $Q_Y(y)$. Consider the
 850 joint distribution of (X, Y) , since Y is a deterministic function of X , the joint probability is simple:

$$851 P_{X,Y}(x, y) = P_X(x), \text{ if } y = g(x) \quad (2)$$

$$852 P_{X,Y}(x, y) = 0, \text{ if } y \neq g(x) \quad (3)$$

853 Using “chain rule” of KL divergence, we can expand the joint distributions in two ways:

$$854 (A) \text{KL}(P_{X,Y} \parallel Q_{X,Y}) = \text{KL}(P_X \parallel Q_X) + \text{KL}(P_{Y|X} \parallel Q_{Y|X}) \quad (4)$$

$$855 (B) \text{KL}(P_{X,Y} \parallel Q_{X,Y}) = \text{KL}(P_Y \parallel Q_Y) + \text{KL}(P_{X|Y} \parallel Q_{X|Y}) \quad (5)$$

856 Since Y is completely determined by X ($Y = f(X)$), we have

$$857 P(y|x) = 1, \text{ if } y = f(x), \quad (6)$$

$$858 P(y|x) = 0, \text{ if } y \neq f(x) \quad (7)$$

864 And the same property for $Q(y|x)$:

865

$$Q(y|x) = 1, \text{ if } y = f(x), \quad (8)$$

866

$$Q(y|x) = 0, \text{ if } y \neq f(x) \quad (9)$$

867 Therefore $P_{Y|X} = Q_{Y|X}$, and the KL divergence between them is zero:

868

$$870 \text{KL}(P_{Y|X} \| Q_{Y|X}) = \mathbb{E}_{x \sim P_X} \int_y P(y|x) \log \left(\frac{P(y|x)}{Q(y|x)} \right) dy = \mathbb{E}_{x \sim P_X} [0] = 0. \quad (10)$$

871

872 Thus, the expansion 4 simplifies to

873

$$\text{KL}(P_{X,Y} \| Q_{X,Y}) = \text{KL}(P_X \| Q_X). \quad (11)$$

874 We have:

875

$$\text{KL}(P_X \| Q_X) = \text{KL}(P_Y \| Q_Y) + \text{KL}(P_{X|Y} \| Q_{X|Y}). \quad (12)$$

876 Since KL divergence is always non-negative, which implies $\text{KL}(P_{X|Y} \| Q_{X|Y}) \geq 0$, we have

877

$$\text{KL}(P_X \| Q_X) \geq \text{KL}(P_Y \| Q_Y). \quad (13)$$

878

879 The inequality is strict if and only if the second term of the RHS in Eq. 12 is strictly positive, i.e., $\text{KL}(P_{X|Y} \| Q_{X|Y}) > 0$. This term is the expected KL divergence between the conditional distributions $P(x|y)$ and $Q(x|y)$, averaged over the distribution $P_Y(y)$. It will be strictly positive if and only if $\exists y_0 \in \mathbb{R}^m \times \mathbb{R}, P_Y(y_0) > 0, P(X|Y = y_0) \neq Q(X|Y = y_0)$.

880 This is direct. We provide the proof below.

881 Sufficiency. Since $\text{KL}(P_{X|Y} \| Q_{X|Y}) = \mathbb{E}_{y \sim P_Y} [\text{KL}(P_{X|Y=y} \| Q_{X|Y=y})]$, if the condition is satisfied, we have $\text{KL}(P_{X|Y} \| Q_{X|Y}) \geq P_Y(y_0) \text{KL}(P_{X|Y=y_0} \| Q_{X|Y=y_0}) > 0$. Thus, it is a sufficient condition.

882 Necessity. We can prove it by disproof. Suppose that we can find a case with $\text{KL}(P_{X|Y} \| Q_{X|Y}) > 0$ but for every y_0 with non-zero $P_Y(y_0)$, we have $\text{KL}(P_{X|Y=y_0} \| Q_{X|Y=y_0}) = 0$, then we have $\text{KL}(P_{X|Y} \| Q_{X|Y}) = \mathbb{E}_{y \sim P_Y} [\text{KL}(P_{X|Y=y} \| Q_{X|Y=y})] = 0$, which contradicts the assumptions. Thus, it is a necessary condition.

883 In our setting, as g strictly reduces the dimensionality and is a continuous function (because it extracts the history of a joint from the whole hand history), g is a non-injective function, which we will show later in Theorem A.3. Since \mathcal{P} and \mathcal{Q} lie in different data domains (a visualization is shown in Figs. 16 17), and since as we've demonstrated $g(\mathcal{P})$ and $g(\mathcal{Q})$ share similarities (a visualization is shown in Fig. 15), the condition $\exists y_0 \in \mathbb{R}^m \times \mathbb{R}, P(Y = y_0) > 0, P(X|Y = y_0) \neq Q(X|Y = y_0)$ is then typically satisfied.

884

885 **Theorem A.2 (Generalization Gap Contraction)** Given data point $(X, Y) \in \mathbb{R}^n \times \mathbb{R}$, a measurable function $g : (X, Y) \in \mathbb{R}^n \rightarrow (g_X(X), Y) \in \mathbb{R}^m, m < n$, and two different distributions \mathcal{P}, \mathcal{Q} in the manifold \mathbb{R}^n whose pushforward distribution by g satisfy $\text{KL}(g(\mathcal{P}) \| g(\mathcal{Q})) < \text{KL}(\mathcal{P} \| \mathcal{Q})$. Under the covariant shift condition, i.e., $\mathcal{P}(Y|X) = \mathcal{Q}(Y|X)$, for any function $f_1 : X \in \mathbb{R}^n \rightarrow Y \in \mathbb{R}$ and $f_2 : g_X(X) \in \mathbb{R}^m \rightarrow Y \in \mathbb{R}$, we have

886

$$\sup |R_{\mathcal{P}}(f_2 \circ g_X) - R_{\mathcal{Q}}(f_2 \circ g_X)| < \sup |R_{\mathcal{P}}(f_1) - R_{\mathcal{Q}}(f_1)|, \quad (14)$$

887 where $R_{\mathcal{P}}(h) = \mathbb{E}_{(X,Y) \sim \mathcal{P}} [L(h(X), Y)]$ is the risk for the predictor h , L measures prediction error and is bounded by B .

888 **Proof A.2** Using the law of total expectation and the covariate shift assumption:

889

$$R_{\mathcal{P}}(h) = \mathbb{E}_{X \sim P_X} [\mathbb{E}_{Y \sim P(Y|X)} [L(h(X), Y)]]$$

890

$$R_{\mathcal{Q}}(h) = \mathbb{E}_{X \sim Q_X} [\mathbb{E}_{Y \sim Q(Y|X)} [L(h(X), Y)]] = \mathbb{E}_{X \sim Q_X} [\mathbb{E}_{Y \sim P(Y|X)} [L(h(X), Y)]]$$

891 Define the “inner risk” function for a fixed x :

892

$$r_h(x) := \mathbb{E}_{Y \sim P(Y|X=x)} [L(h(x), Y)]$$

893 The risk difference could be converted to an expectation over the marginals P_X and Q_X :

894

$$R_{\mathcal{P}}(h) - R_{\mathcal{Q}}(h) = \mathbb{E}_{X \sim P_X} [r_h(X)] - \mathbb{E}_{X \sim Q_X} [r_h(X)] = \int r_h(x) (p_X(x) - q_X(x)) dx$$

918 An IPM between two distributions P_X and Q_X over a function class \mathcal{F} is defined as:
919

$$920 \quad d_{\mathcal{F}}(P_X, Q_X) = \sup_{\phi \in \mathcal{F}} |\mathbb{E}_{X \sim P_X}[\phi(X)] - \mathbb{E}_{X \sim Q_X}[\phi(X)]|$$

921 Define two classes of “inner risk” functions:
922

$$923 \quad \mathcal{F}_1 = \{r_{f_1} \mid f_1 : \mathbb{R}^n \rightarrow \mathbb{R} \text{ is in the function space for } f_1\}$$

$$924 \quad \mathcal{F}_2 = \{r_{f_2 \circ g_X} \mid f_2 : \mathbb{R}^m \rightarrow \mathbb{R} \text{ is in the function space for } f_2\}$$

925 The inequality we want to prove becomes:
926

$$927 \quad d_{\mathcal{F}_2}(P_X, Q_X) < d_{\mathcal{F}_1}(P_X, Q_X)$$

929 Consider any function $\phi \in \mathcal{F}_2$. By definition, $\phi = r_{f_2 \circ g_X}$ for some function f_2 . Define a new
930 function $f_1(x) = (f_2 \circ g_X)(x)$. Assuming the \mathcal{F}_1 is rich enough to contain this composition, we
931 have $r_{f_1} = r_{f_2 \circ g_X} = \phi$. This means $\phi \in \mathcal{F}_1$. Therefore, $\mathcal{F}_2 \subseteq \mathcal{F}_1$.

932 We immediately have the non-strict inequality, since we are taking the supremum over a smaller set:
933

$$934 \quad \sup_{\phi \in \mathcal{F}_2} |\mathbb{E}_{P_X}[\phi] - \mathbb{E}_{Q_X}[\phi]| \leq \sup_{\phi \in \mathcal{F}_1} |\mathbb{E}_{P_X}[\phi] - \mathbb{E}_{Q_X}[\phi]|$$

936 Consider the given KL condition $\text{KL}(g(P_X) \| g(Q_X)) \leq \text{KL}(P_X \| Q_X)$ and the covariant shift
937 condition, we have: $\text{KL}(g_X(P_X) \| g_X(Q_X)) < \text{KL}(P_X \| Q_X)$. This implies that $g_X(X)$ is **not**
938 a sufficient statistic for distinguishing P_X from Q_X . This means the likelihood ratio $w(x) =$
939 $p_X(x)/q_X(x)$ cannot be written as a function of $g_X(x)$. This further implies there exist x_a, x_b
940 such that $g_X(x_a) = g_X(x_b)$ but $w(x_a) \neq w(x_b)$.

941 Now, consider the function classes:
942

- 943 Any function $\phi \in \mathcal{F}_2$ must be constant on the level sets of g_X . If $g_X(x_a) = g_X(x_b)$, then
944 $\phi(x_a) = \phi(x_b)$. These functions are blind to the information that g_X discards.
- 945 The function $\phi^* \in \mathcal{F}_1$ that maximizes the IPM difference, $d_{\mathcal{F}_1}(P_X, Q_X)$, must be maxi-
946 mally sensitive to the difference between P_X and Q_X . Since this difference (captured by
947 the likelihood ratio $w(x)$) depends on information discarded by g_X , the optimal discrimi-
948 nating function ϕ^* cannot be a function of $g_X(x)$ alone.

950 This means that the function ϕ^* that achieves the supremum for the larger set \mathcal{F}_1 is not contained in
951 the smaller set \mathcal{F}_2 (i.e., $\phi^* \notin \mathcal{F}_2$).

952 Because the supremum for \mathcal{F}_1 is achieved by a function that is not available in the strictly smaller
953 set \mathcal{F}_2 , the inequality is strict.

$$955 \quad \sup_{\phi \in \mathcal{F}_2} |\mathbb{E}_{P_X}[\phi] - \mathbb{E}_{Q_X}[\phi]| < \sup_{\phi \in \mathcal{F}_1} |\mathbb{E}_{P_X}[\phi] - \mathbb{E}_{Q_X}[\phi]|$$

956 This completes the proof.
957

958 Define the optimal predictors trained on the source distribution \mathcal{Q} as:
959

$$960 \quad f_1^{\mathcal{Q}} = \arg \min_{f_1} R_{\mathcal{Q}}(f_1) \tag{15}$$

$$962 \quad f_2^{\mathcal{Q}} = \arg \min_{f_2} R_{\mathcal{Q}}(f_2 \circ g_X) \tag{16}$$

964 We move on to show that under specific conditions, the predictor trained on the simpler representa-
965 tion generalizes better to the target distribution \mathcal{P} .

966 **Proposition** Let $f_1^{\mathcal{Q}}$ and $f_2^{\mathcal{Q}}$ be the optimal predictors on the source distribution \mathcal{Q} in the full and
967 reduced-dimensional spaces, respectively. Let the following assumptions hold:

968 **Assumption (Small Approximation Error)** The function class $\{f_2 \circ g_X \mid f_2 : \mathbb{R}^m \rightarrow \mathbb{R}\}$ is
969 sufficiently expressive to model the relationship on the source distribution \mathcal{Q} . The increase in source
970 risk due to the reduced representation is bounded by a small constant ϵ_A :
971

$$971 \quad R_{\mathcal{Q}}(f_2^{\mathcal{Q}} \circ g_X) - R_{\mathcal{Q}}(f_1^{\mathcal{Q}}) = \epsilon_A. \tag{17}$$

972 **Assumption (Generalization Gap Reduction)** *Building on Theorem A.2, we further assume a rel-*
 973 *atively large distribution shift from \mathcal{P} to \mathcal{Q} , such that f_2^Q exhibits a strong generalization advantage,*
 974 *and the difference in generalization gap achieved by the f_1^Q and f_2^Q satisfies:*

$$976 \quad (R_{\mathcal{P}}(f_2^Q \circ g_X) - R_{\mathcal{Q}}(f_2^Q \circ g_X)) - (R_{\mathcal{P}}(f_1^Q) - R_{\mathcal{Q}}(f_1^Q)) = -\epsilon_B, \quad (18)$$

977 *where ϵ_B is a positive constant.*

979 *If $\epsilon_B > \epsilon_A$, then the risk of the predictor trained in the reduced-dimensional space is strictly lower*
 980 *on the target distribution:*

$$981 \quad R_{\mathcal{P}}(f_2^Q \circ g_X) < R_{\mathcal{P}}(f_1^Q). \quad (19)$$

982 **Proof A.3** *Decompose the target risk:*

$$983 \quad R_{\mathcal{P}}(h) = R_{\mathcal{Q}}(h) + (R_{\mathcal{P}}(h) - R_{\mathcal{Q}}(h)). \quad (20)$$

985 *We further have:*

$$987 \quad R_{\mathcal{P}}(f_2^Q \circ g_X) - R_{\mathcal{P}}(f_1^Q) = [R_{\mathcal{Q}}(f_2^Q \circ g_X) + (R_{\mathcal{P}}(f_2^Q \circ g_X) - R_{\mathcal{Q}}(f_2^Q \circ g_X))] \\ 988 \quad - [R_{\mathcal{Q}}(f_1^Q) + (R_{\mathcal{P}}(f_1^Q) - R_{\mathcal{Q}}(f_1^Q))]. \quad (21)$$

990 *Rearranging the terms, we have:*

$$991 \quad R_{\mathcal{P}}(f_2^Q \circ g_X) - R_{\mathcal{P}}(f_1^Q) = \underbrace{[R_{\mathcal{Q}}(f_2^Q \circ g_X) - R_{\mathcal{Q}}(f_1^Q)]}_{\text{Term A: Approximation Error}} \\ 992 \quad + \underbrace{[(R_{\mathcal{P}}(f_2^Q \circ g_X) - R_{\mathcal{Q}}(f_2^Q \circ g_X)) - (R_{\mathcal{P}}(f_1^Q) - R_{\mathcal{Q}}(f_1^Q))]}_{\text{Term B: Difference in Generalization Gaps}}. \quad (22)$$

998 *From Assumption 1, Term A is equal to ϵ_A :*

$$1000 \quad R_{\mathcal{Q}}(f_2^Q \circ g_X) - R_{\mathcal{Q}}(f_1^Q) = \epsilon_A. \quad (23)$$

1001 *From Assumption 2, Term B is equal to $-\epsilon_B$:*

$$1003 \quad (R_{\mathcal{P}}(f_2^Q \circ g_X) - R_{\mathcal{Q}}(f_2^Q \circ g_X)) - (R_{\mathcal{P}}(f_1^Q) - R_{\mathcal{Q}}(f_1^Q)) = -\epsilon_B. \quad (24)$$

1005 *We have:*

$$1006 \quad R_{\mathcal{P}}(f_2^Q \circ g_X) - R_{\mathcal{P}}(f_1^Q) = \epsilon_A - \epsilon_B. \quad (25)$$

1007 *Given the condition $\epsilon_B > \epsilon_A$, we have:*

$$1009 \quad R_{\mathcal{P}}(f_2^Q \circ g_X) < R_{\mathcal{P}}(f_1^Q). \quad (26)$$

1010 *This completes the proof.*

1012 **When are these assumptions valid?** Assumption 1 characterizes the in-domain performance gap
 1013 between the joint-wise neural dynamics model and the whole-hand model. As shown in Sec. 4.2
 1014 and Fig. 6, it holds even when data are sufficient. In low-data regimes, the joint-wise model not only
 1015 avoids increasing source-domain risk but actually reduces it, thanks to better sample efficiency.

1016 Assumption 2 characterizes the generalization behavior of these two models. Under train–test dis-
 1017 tribution shift, it is satisfied in all our experiments (Sec. 4.2; Fig. 6); the joint-wise model exhibits
 1018 **much better** transferability than the whole-hand dynamics model.

1019 In our dexterous manipulation setting, data scarcity and train–test shift are pervasive, because ob-
 1020 taining perfectly distributionally aligned data is often infeasible or difficult to scale (Sec. 3.3), with
 1021 empirical evidence in Secs. 5 and B.4. Even with autonomous data collection, the volume of real-
 1022 world data is far smaller than in simulation, keeping us in the low-data regime. Consequently,
 1023 joint-wise modeling is the preferable choice for our task and a key to our success. By contrast,
 1024 using a whole-hand dynamics model degrades sim-to-real transfer (Tables 4 and 5). We attribute the
 1025 success of the whole-body dynamics model employed in [bin Shi et al. \(2024\)](#) to its in-distribution
 setting and to dynamics that are less complex than in our scenario.

1026 **Theorem A.3** $\forall C^1$ function $f : \mathbb{R}^n \rightarrow \mathbb{R}^m, m < n$ that projects n -dim data point in \mathbb{R}^n to that in
 1027 a lower dimensional space \mathbb{R}^m , then f is a non-injective function.
 1028

1029 **Proof A.4** For any point $\mathbf{x} \in \mathbb{R}^n$, its derivative is the Jacobian matrix $Df_{\mathbf{x}}$, which represents a
 1030 linear map from the tangent space at \mathbf{x} (i.e., \mathbb{R}^n) to the tangent space at $f(\mathbf{x})$ (i.e., \mathbb{R}^m). $Df_{\mathbf{x}}$ is
 1031 an $m \times n$ matrix. The rank of this matrix is at most $\min(m, n) = m$. Applying the Rank-Nullity
 1032 Theorem to this linear map $Df_{\mathbf{x}} : \mathbb{R}^n \rightarrow \mathbb{R}^m$, we find that its null space has dimension $\geq n - m > 0$.
 1033 According the Inverse Function Theorem (Munkres, 2018; Guillemin & Pollack, 2010), which states
 1034 that a function is locally injective around a point \mathbf{x} only if its derivative $Df_{\mathbf{x}}$ is injective. As we've
 1035 shown, $Df_{\mathbf{x}}$ is never injective when $n > m$. Since f is not locally injective at any point, it cannot
 1036 possibly be globally injective.
 1037

A.3 RATIONALITY OF JOINT-WISE DYNAMICS MODELING (PART I)

1039 We model the hand with the standard manipulator equation (Murray et al., 2017; Spong et al., 2020),
 1040 treating the object effect as an external force:
 1041

$$\mathbf{M}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}})\dot{\mathbf{q}} + \mathbf{G}(\mathbf{q}) = \boldsymbol{\tau} + \boldsymbol{\tau}_{\text{ext}}, \quad (27)$$

1043 where $\mathbf{M}(\mathbf{q})$, $\mathbf{C}(\mathbf{q}, \dot{\mathbf{q}})$, and $\mathbf{G}(\mathbf{q})$ are the inertia, Coriolis, and gravity matrices, respectively. $\boldsymbol{\tau}$ is
 1044 the applied joint torque, and $\boldsymbol{\tau}_{\text{ext}}$ represents the external force from the object. Given low-speed
 1045 operation, we neglect the Coriolis term (Craig, 2009; Spong et al., 2005), $\mathbf{C}(\mathbf{q}_t, \dot{\mathbf{q}}_t) \dot{\mathbf{q}}_t \approx 0$.
 1046

1047 Assuming we are modeling the i -th joint, we use $(\mathbf{q}^m, \dot{\mathbf{q}}^m)$ to represent the state of “modeled joints”,
 1048 e.g., $\mathbf{q}^m = [\mathbf{q}^i]^T \in \mathbb{R}^1$, while treating the joints as “slave” joints and denote their state as $(\mathbf{q}^s, \dot{\mathbf{q}}^s)$,
 1049 i.e., $\mathbf{q}^s = [\mathbf{q}^j, \forall 1 \leq j \leq 16, j \neq i]^T \in \mathbb{R}^{15}$. Rearranging other full dynamic equations (Eq. 27), we
 1050 write it as

$$\begin{bmatrix} \mathbf{M}_t^{mm} & \mathbf{M}_t^{ms} \\ \mathbf{M}_t^{sm} & \mathbf{M}_t^{ss} \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{q}}_t^m \\ \ddot{\mathbf{q}}_t^s \end{bmatrix} + \begin{bmatrix} \mathbf{G}_t^m \\ \mathbf{G}_t^s \end{bmatrix} = \begin{bmatrix} \boldsymbol{\tau}_t^{m,\text{total}} \\ \boldsymbol{\tau}_t^{s,\text{total}} \end{bmatrix}. \quad (28)$$

1051 Derive the equation of the modeled joints:
 1052

$$(\mathbf{M}^{mm} - \mathbf{M}^{ms}(\mathbf{M}^{ss})^{-1}\mathbf{M}^{sm})\ddot{\mathbf{q}}^m + \mathbf{M}^{ms}(\mathbf{M}^{ss})^{-1}(\boldsymbol{\tau}^{s,\text{total}} - \mathbf{G}^s) + \mathbf{G}^m = \boldsymbol{\tau}^m = [\boldsymbol{\tau}^i + \boldsymbol{\tau}^{i,\text{ext}}]^T. \quad (29)$$

1053 Introducing an “effective” torque as $\boldsymbol{\tau}^{\text{eff}} = [\boldsymbol{\tau}^{i,\text{ext}}]^T \in \mathbb{R}^1$, and write the equation as follows:
 1054

$$(\mathbf{M}^{mm} - \mathbf{M}^{ms}(\mathbf{M}^{ss})^{-1}\mathbf{M}^{sm})\ddot{\mathbf{q}}^m + \mathbf{M}^{ms}(\mathbf{M}^{ss})^{-1}(\boldsymbol{\tau}^{s,\text{total}} - \mathbf{G}^s) + \mathbf{G}^m - \boldsymbol{\tau}^{\text{eff}} = [\boldsymbol{\tau}_i]^T. \quad (30)$$

1055 Let $\mathbf{H}_t^{\text{eff}}$ denote the effective inertia matrix, $\mathbf{H}_t^{\text{eff}} \triangleq \mathbf{M}^{mm} - \mathbf{M}^{ms}(\mathbf{M}^{ss})^{-1}\mathbf{M}^{sm}$, and let $\mathbf{G}_t^{\text{eff}}$
 1056 denote the effective external term, $\mathbf{G}_t^{\text{eff}} \triangleq \mathbf{M}^{ms}(\mathbf{M}^{ss})^{-1}(\boldsymbol{\tau}^{s,\text{total}} - \mathbf{G}^s) + \mathbf{G}^m - \boldsymbol{\tau}^{\text{eff}}$. Given $\mathbf{H}_t^{\text{eff}}$,
 1057 $\mathbf{G}_t^{\text{eff}}$, and the modeled joint torque $\boldsymbol{\tau}_i^i$, the acceleration $\ddot{\mathbf{q}}_t^i$ is uniquely determined. $\mathbf{H}_t^{\text{eff}}$ and $\mathbf{G}_t^{\text{eff}}$ are
 1058 related to joint state and torques of other joints.
 1059

1060 It indicates that in the highly coupled interaction system, the dynamics of each single joint is related
 1061 to other joints’ states, torque, and the external influence of the objects. Employing a neural-based
 1062 approach to solve the dynamics evolution with the aim to account for all of those high-DoF influ-
 1063 ences would inevitably require a large amount of data with correct distribution, cannot resolve the
 1064 challenges in the data aspect.
 1065

1066 Focusing on each single joint dynamics system, joint-wise neural dynamics predicts each single
 1067 joint transition from its own state-action history. Predicting from history generalizes the idea of the
 1068 RMA approach in rotation (Qi et al., 2022) to implicitly account for time-varying influences at a
 1069 high level. We will show that, in a short time window (e.g., 10 frames, corresponding to 0.5s) and
 1070 under certain assumptions, this approach is reasonable.
 1071

1072 Specifically, we assume that in any short time window during the action trajectory execution, the
 1073 state trajectory of each slave joint, i.e., \mathbf{q}^s , the active torque applied to each slave joint, i.e., $\boldsymbol{\tau}^s$, and
 1074 the effective external torque applied to each joint, $\boldsymbol{\tau}^{\text{ext}}$, can be approximated by an infinitely dif-
 1075 ferentiable continuous function to within an acceptable error threshold. Intuitively, this assumption
 1076 holds true for joint states and active torques (related to input positional targets) in a continuously
 1077 evolved dynamical system where the actions are the policy network’s output. If we further assume
 1078 a soft contact model (Tedrake & the Drake Development Team, 2019; Pang & Tedrake, 2021), the
 1079

1080 assumption of the effective external torques, which is caused by contact forces with the object, is
 1081 thus reasonable.

1082 We give statistical evidence for these two assumptions. Specifically, we demonstrate that they could
 1083 be fitted to an acceptable error using polynomial functions, a special group of infinitely differentiable
 1084 continuous functions.

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

assumption of the effective external torques, which is caused by contact forces with the object, is thus reasonable.

We give statistical evidence for these two assumptions. Specifically, we demonstrate that they could be fitted to an acceptable error using polynomial functions, a special group of infinitely differentiable continuous functions.

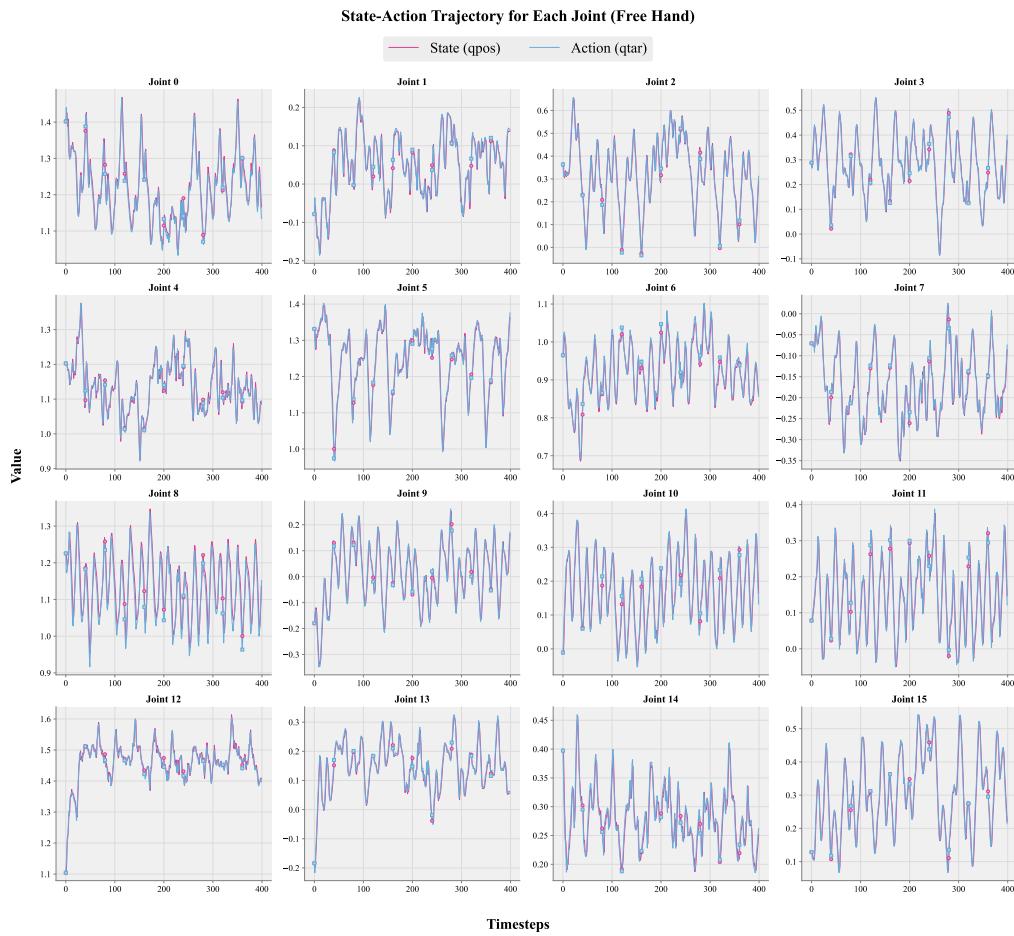


Figure 10: Per-Joint State-Action Sequences (Free Hand, w/o Load).

Patterns of Per-Joint State Trajectory. Figure 10, 11, and 12 show the real-world state-action trajectories collected using a free robot hand without object load, via our autonomous data collection system with load, and the task-aware data collection with human interventions. Both action and state trajectories of the hand under such three types of external influences are visually smooth.

We further analyze their polynomial fitting results. Figure 41 shows the 3-ordered polynomial fitting results of per-joint state sequence over a 10-length time window. Figure 43 shows the per-joint fitting error averaged over all tested 10-length sequences. We can observe good fitting results where the original curve can be roughly approximated by the fitted curve. If we increase the polynomial order to 5, we could observe excellent fitting results (Figure 42-44). These statistical results show the rationality of the continuous function assumption on joint state sequences.

Patterns of Per-Joint Active Torque Trajectory. Since we cannot sense the torque directly, for each joint i , we analyze the difference between the positional target and the joint state at each timestep t , *i.e.*, $q_t^{i,\text{tar}} - q_t^i$, to reflect the corresponding statistics of actuation torques. Figure 45 and 46 illustrate the fitting results using 3-ordered polynomial functions and 5-ordered polynomial functions, respectively. Figure 47 and 48 further show the per-joint average fitting error. The action

Figure 11: Per-Joint State-Action Sequences (Autonomous Data Collection, w/ Load).

force’s evolution is more complex than joint states. But we could still see satisfactory fitting results. As the polynomial order increases, the fitting results become better.

Patterns of Per-Joint External Torques Trajectory. Since we cannot measure per-joint effective external torques from the real world directly, which is related to the contact force between the object and the hand, we introduce “virtual object force” (also denoted as “virtual force” or “virtual torque”) as a proxy of the actual external torque. Specifically, we first train per-joint inverse dynamics models that predicts the applied action from the state-action history and the next actual state, *i.e.*, $f_{\text{invdyn},i} : \{(\mathbf{s}_k^i, \mathbf{a}_k^i)\}_{k=t-W+1}^t \in \mathbb{R}^{2W} \rightarrow \hat{\mathbf{a}}_{t+1} \in \mathbb{R}^{2W}$, from the **free hand** replay trajectories. Thus, it predicts what action should be applied so that the next joint state can reach the desired value, without the influence of the object (without the external torques). Then, for a collected task-aware trajectory, we first use the inverse dynamics model to predict the desired action $\hat{\mathbf{a}}_{t+1}$. We then calculate the “virtual force” using its difference from the actual action, *i.e.*, $\mathbf{a}_{t+1} - \hat{\mathbf{a}}_{t+1}$. Since this discrepancy reflects what amount of additional action is required to resist the object so that the joint can reach the desired state. We then analyze the statistics of this quantity.

As shown in Figure 49, 50, 51, 52, we can still get satisfactory fitting results, although the evolution of this quantity is more complex than both that of the active torque and the joint state.

Based on this, we can assume the evolution of \mathbf{H}^{eff} and \mathbf{G}^{eff} are good continuous functions over the considered time window. We can then approximate their evolution by a low-order function, *e.g.*, using its Taylor expansions, to an acceptable error. Assuming k_1 order for \mathbf{H}^{eff} while k_2 for \mathbf{G}^{eff} , the underlying number of unknown variables becomes $k_1 + k_2$. Solving for all unknown variables is enough to solve the next step transition. The state-action history of each joint could be viewed as

Figure 12: Per-Joint State-Action Sequences (Task-Aware Data).

the input and output of the function 30 with $k_1 + k_2$ unknown parameters, which contain enough information to solve for them if the history is long enough. It then indicates the reasonability of using a neural network to predict the next transition from the state-action history, considering the sufficient information contained in the input and the universal approximation ability of neural networks.

A.4 RATIONALITY OF JOINT-WISE DYNAMICS MODELING (PART II)

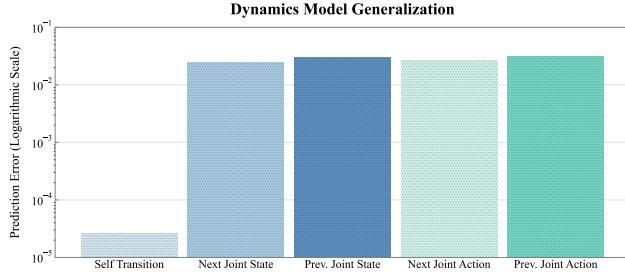


Figure 13: Predicting via Single Joint State-Action History (Generalization Error).

In the previous section, we demonstrated that the state-action history of a single joint is sufficient to predict its own next transition. This indicates that the information contained in the single joint

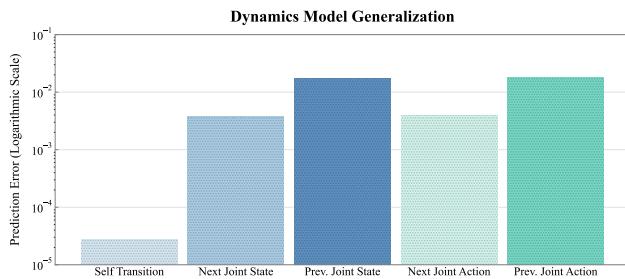


Figure 14: Predicting via Single Joint State-Action History (In-Distribution Validation Error).

m

state action history is at least sufficient to account for the evolution of low-dimensional effective variables over a short time window, *i.e.*, $\mathbf{H}_t^{\text{eff}}$ and $\mathbf{G}_t^{\text{eff}}$. However, this is not enough to demonstrate that a model that learns to predict from the history *would not* implicitly learn to predict the original high-dimensional complex forces like inter-joint coupling to predict the transition. Demonstrating this point is important since if the single joint state-action history contains sufficient information to predict a higher-ordered system’s states, learning from the single joint history is thus not an effective dimensionality reduction and would hamper the generalization ability as the model would still overfit to the system’s high-variance influences.

We demonstrate via experiments aiming to say that the state action history of a specific joint does not contain sufficient information to predict other joints’ information.

We train the joint-wise dynamics model to predict the following information 1) its next joint’s current state, 2) the previous joint’s current state, 3) the next joint’s action (positional target), and 4) the previous joint’s action (positional target). We then compare their prediction and generalization error with that achieved by the joint-wise dynamics model (predicting itself’s next state) for analysis.

We train all models from scratch using real-world transition data without pretraining using simulation data. Real-world transition data is the same as that we use in the ablation study. As shown in Figure 14 and 13, utilizing a single joint state-action history to predict statistics of other joints cannot even achieve reasonable performance in the original distribution. The generalization error is three order larger than that achieved by using a single joint state-action history to predict its own next transition. As for the in-distribution validation error (which is achieved on the in-distribution validation set and is close to the training error), predicting neighboring joints’ states achieves a slightly better performance than predicting their actions. However, this is still far from a reasonable prediction, with the error two-ordered larger than that achieved in predicting the joint’s own transition.

These experiments demonstrate that even predicting the easiest information that results in the complex coupling (*i.e.*, neighboring joints’ state and action) via a single joint’s state-action history is not feasible. This further indicates that a single joint’s state-action history does not contain enough information to account for the complex influence factors in the original high-dimensional space. Since such information is sufficient to predict the joint’s own transition, a reasonable assumption is that the network tends to leverage such net effects implicitly from the history for predicting the dynamics evolution.

What does the joint-wise neural dynamics model implicitly capture? Analyses and experiments in Secs. A.3 and A.4 clarify what is and is not predictable from a single joint’s state-action history. Our comprehensive experiments (Sec. 4.2) show that joint-wise neural dynamics are expressive, sample-efficient, and generalize well. The analysis in Sec. A.3 indicates that a single joint’s history contains sufficient information to approximate its next transition, whereas Sec. A.4 shows it cannot recover each underlying coupling effect. Thus, the per-joint history captures low-dimensional net effects while avoiding overfitting to system-wide variations. This factorized, per-joint modeling transfers across changes in whole-hand interaction because the distribution of net effects is comparatively more stable than that of full-system interactions.

Limitations of joint-wise neural dynamics mode. As shown in Fig. 6, the joint-wise dynamics model performs slightly worse than the whole hand dynamics model in the in-domain test setting

under the multi-task high data regime. The optimization speed is also a limitation, as iterating over all joints takes time, resulting in a longer training time.

A.5 COMPARISONS OF DATA DISTRIBUTIONS BETWEEN COLLECTED TRAJECTORIES AND ROTATION TRAJECTORIES

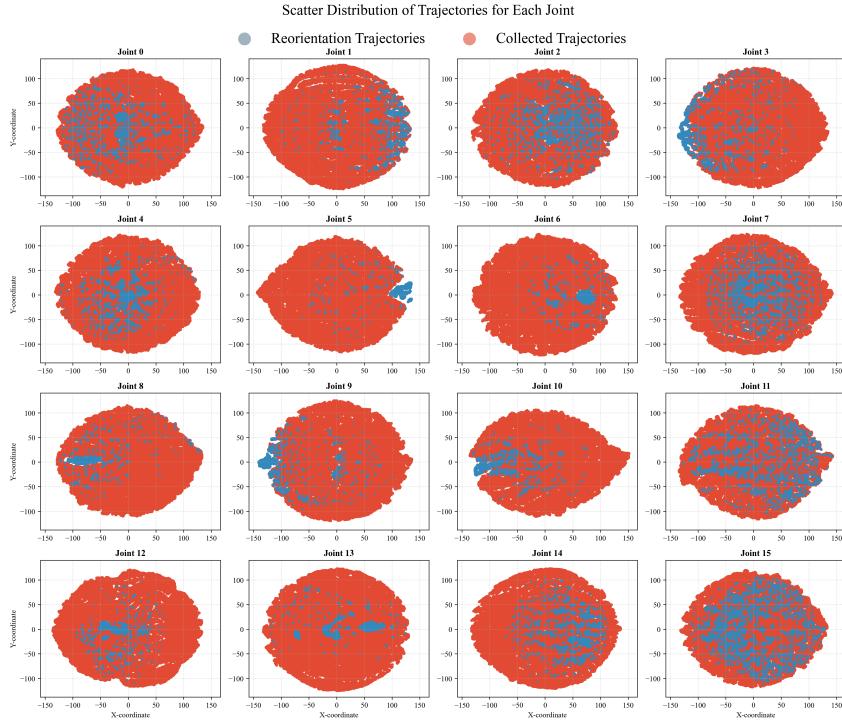


Figure 15: Per-Joint Distribution

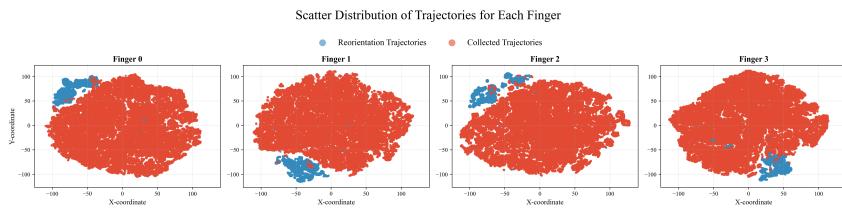


Figure 16: Per-Finger Distribution

Figure 15, 16, and 17 summarize the per-joint, per-finger, and whole hand data distribution. It compares trajectories collected by our autonomous data collection strategy and task-relevant rotation trajectories. The task relevant trajectories are 20 cube-rotation trajectories ($\sim 8,000$ data points in total) collected using under the “Thumb Up” wrist orientation. Per-Joint state-action trajectories can well cover the distribution of task-aware rotation trajectories. However, per-finger and whole hand distributions exhibit a huge discrepancy.

We additionally compare the data distribution between trajectories collected via rolling out the policy on a small object and that collected autonomously in “Chaos Box” to further demonstrate the broad coverage of per-joint transition data collected in “Chaos Box”. We use T-SNE to visualize the per-joint I/O history space achieved by the autonomously collected data and the real-world rollouts on the small corn object. Results show that the joint I/O history space formed by the autonomously collected data can still offer a good coverage for that of policy rollouts on the small object (Fig. 18). In comparison, their whole-hand I/O history distributions differ a lot from each other (Fig. 19).

Scatter Distribution of Trajectories for Whole Hand

● Reorientation Trajectories ● Collected Trajectories

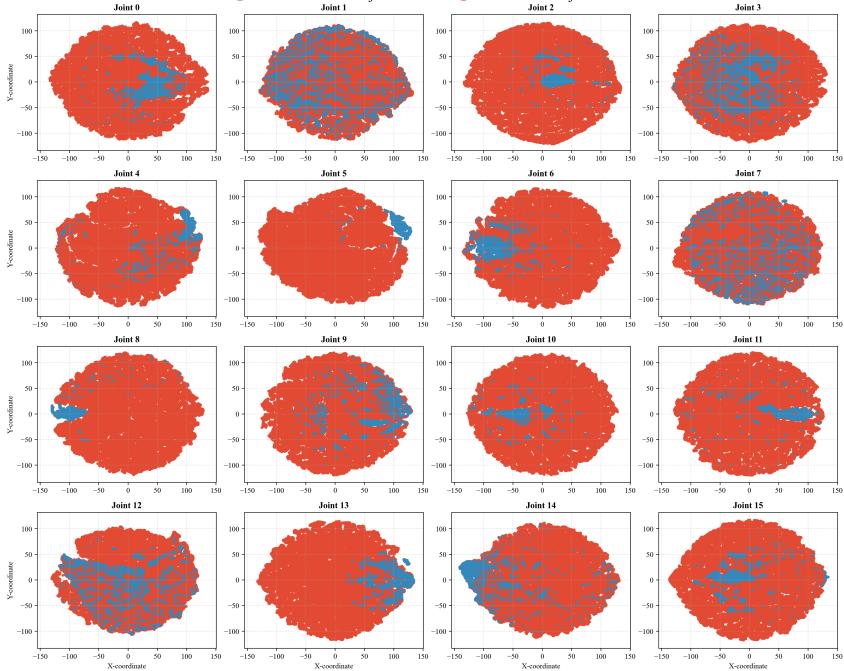
Whole Hand



Figure 17: Whole Hand Distribution

Scatter Distribution of Trajectories for Each Joint

● Reorientation Trajectories ● Collected Trajectories

Figure 18: Per-Joint Distribution. Real-world data collected by rolling out the policy on a small object, *i.e.*, corn, for -z axis rotation.

B ADDITIONAL EXPERIMENTS AND ANALYSIS

B.1 TRAINING PERFORMANCE

AnyRotate (Yang et al., 2024) improves over prior works regarding the generality to diverse writing orientations and various rotation axes. However, they only considered regular objects. Achieving such general rotation ability for complex objects poses additional challenges, even in the policy training aspect. In our experiments, we find that prior RL designs for rotation policies (Qi et al., 2022; 2023; Yang et al., 2024), where only proprioceptions and object and system parameters-related privileged information, such as masses, are considered in the observation, may let the training get stuck in a local optimum. Thus, we include more privileged information into the observation, followed by observation space distillation for sim-to-real (Sec. 3.1). We compare with our re-implemented

Scatter Distribution of Trajectories for Whole Hand

● Reorientation Trajectories ● Collected Trajectories

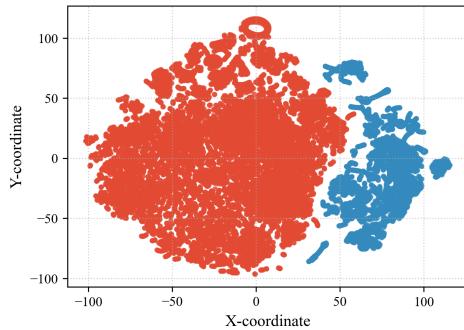


Figure 19: **Whole Hand Distribution.** Real-world data collected by rolling out the policy on a small object, *i.e.*, corn, for -z axis rotation.

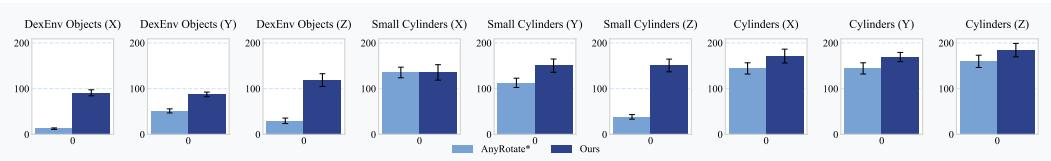


Figure 20: **Training Performance.** Comparison of the final training performance (total reward) achieved by our method and the re-implemented AnyRotate on different training sets. “DexEnv Objects” denote an irregular training object category.

AayRotate to demonstrate this design’s superiority. Our method shows noticeably better training performance over AnyRotate (Fig. 20), especially on challenging object sets, *i.e.*, “DexEnv Objects” with irregular and complex geometries and “Small Cylinders” featured by small sizes, where stable finger gaiting cannot emerge in AnyRotate. We also re-implement RotatIt (Qi et al., 2023) in the Hora (Qi et al., 2022) codebase, but find that it can hardly achieve satisfactory results in the most basic cylinder object set. We also adapt Hora to the down-facing hand scenario but find it cannot work.

B.2 ADDITIONAL REAL WORLD RESULTS

Fig. 22 and 23 provide more real-world qualitative results. See more results and videos in our website.

Recovery Behaviour. Fig. 24 illustrates two examples of the recovery behavior exhibited by our final policy.

Effectiveness in In-Hand Translation. We conduct preliminary validations on the in-hand translation task to confirm our method’s effectiveness beyond the specific in-hand rotation task. For instance, in the downward-facing configuration, the NDM enables the leap hand to translate a 3cm x 3cm x 10cm cuboid from being initially grasped by the thumb, middle, and pinky fingers be grasped by the thumb, middle, and index finger (Fig. 25). Without NDM, for such a thin object, directly transferring the corresponding in-hand-translation policy fails to do this.

This study aims to demonstrate the cross-task effectiveness of our sim-to-real methodology. Conducting a more comprehensive evaluation and developing a multi-task benchmark are high-priority directions for our future work.

B.3 CASE STUDY ON THE EFFECTIVENESS OF OUR SIM-TO-REAL METHOD

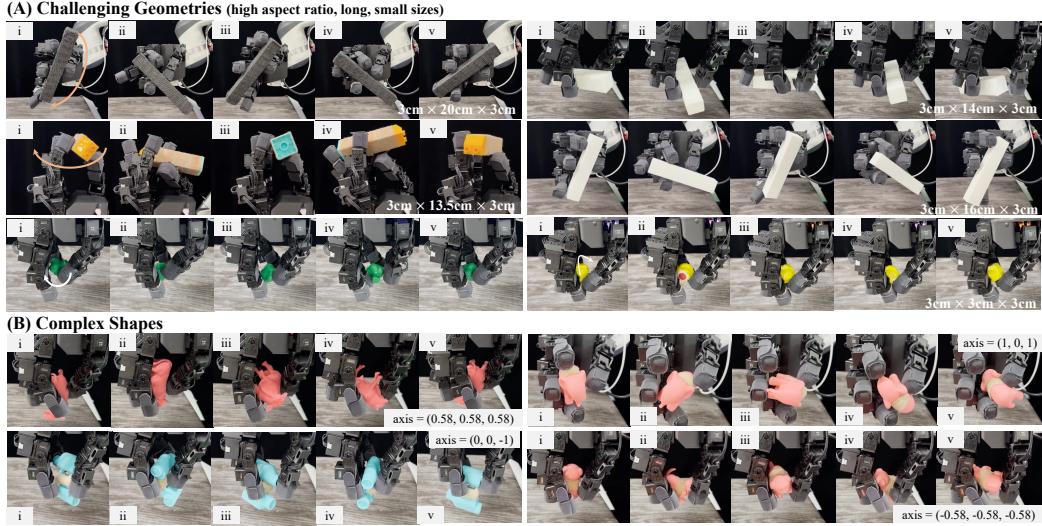
As shown in Table 4 and 5, our design on learning neural dynamics and residual policy for sim-to-real can achieve notably superior results than the policy without sim-to-real design. Below, we

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480

1481
1482

Figure 21: Evaluated Objects in the Real World.

1483
1484
1485
1486
1487
1488
1489
1490
1491
1492



1500
1501
1502

introduce several empirical observations and case studies on our sim-to-real method. Notably, the residual policy can effectively improve the performance on challenging shapes, helping us solve previously unsolvable rotation tasks, and also enhancing the stability of the rotation (Table 7).

1503
1504
1505
1506
1507
1508
1509
1510
1511

Rotating Challenging Objects. One of the important features of the residual policy is enabling us to rotate challenging objects with high aspect ratios or difficult object-to-hand ratios. For instance, without the sim-to-real strategy, the policy can only rotate the long “Lego” leg (width=3cm, length=13.5cm) for at most 180 degrees. However, introducing the residual policy can help us rotate it for (almost) a complete circle (demonstrated in Figure 22 and videos in our website). For longer (14cm, 16cm) objects, the base policy can only rotate the object for at most 90 degrees, while incorporating our sim-to-real method can let it rotate the object for almost a full circle. Similar ob-

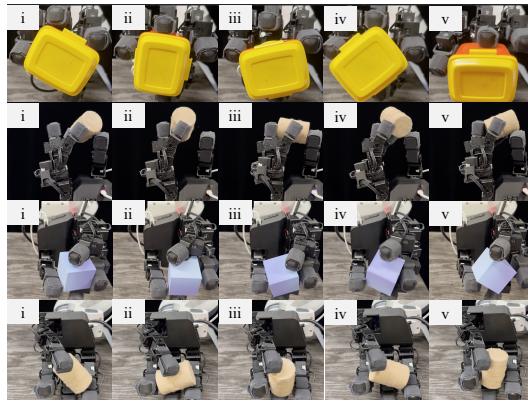


Figure 23: Diverse Wrist Orientations.

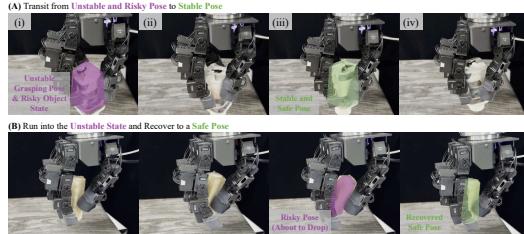


Figure 24: Recovery Behaviour.

servations for the “book” object, which is 16cm long. For complex shapes (e.g., Cow, Truck, Bear, Dragon), the base policy can rotate for 1/4, 1/2, or at most 3/4 circles. While our sim-to-real strategy can improve it to a full circle rotation. Similar observations for small objects (e.g., “Zongzi”, Broccoli). For in-hand rotation, there is typically no standard definition of “success”. If one is required, a reasonable criterion could be completing at least one full rotation of the object. Failing to achieve a full 360 degree rotation indicates that the policy cannot successfully navigate the fingers around the object’s surface and would likely fail on challenging features (e.g., the four legs of the cow). For such difficult shapes, the role of our sim-to-real strategy can be seen as elevating performance from failure to success.

Improving the Stability. Apart from rotating, equipping us with the ability to rotate challenging objects, the residual policy can effectively make the rotation more stable and thus help us achieve long-term rotation. A representative example is rotating the 3cm×3cm×10cm cuboid in this vertical pose. When dealing with such thin objects, the policy would use three fingers – the thumb, middle, and pinky fingers – to rotate the object. Compared to using four fingers, this rotation gait is unstable. If we do not include the residual policy, we can rotate the object for at most 5 circles. However, including the residual policy can let us rotate the object continuously for more than 5 minutes, which corresponds to about 30 circles. Similar observations for rotating the “cube” object along the y-axis.

B.4 FURTHER DISCUSSIONS, ANALYSIS, AND ABLATION STUDIES

Residual Policy v.s. Direct Finetuning. A natural alternative for adapting the base policy is direct fine-tuning. We evaluated this by fine-tuning the base policy on the learned dynamics model. We empirically find that the direct fine-tuning fails to produce good behaviour and is even unable to execute basic rotations. We attribute this to two main reasons: 1) Fine-tuning requires careful hyperparameter selection, such as using a small initial learning rate to prevent overly large updates to the base policy. 2) The learned neural dynamics do not cover the full state-action distribution (i.e., is not “globally accurate”), making them unsuitable for direct policy tuning. For instance, when the

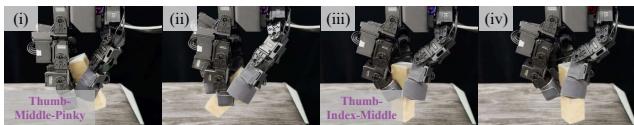


Figure 25: Example of In-hand Translation .

Method	Bunny (z)	Elephant (z)	Cow (z)	Truck (z)	Bear (z)	Cuboid (V, -z)	Cuboid (H, z)	Corn (-z)	Broccoli (-z)	Cube (y)	14-cm Cuboid (z)	16-cm Cuboid (z)	Dargon (z)	"Zongzi" (z)
Direct Transfer	7.33	6.28	3.67	4.36	4.19	31.42	3.67	10.47	5.76	19.37	1.57	1.57	3.14	3.14
DexNDM	8.38	7.07	6.28	6.81	6.28	99.48	6.28	16.76	10.47	130.90	6.28	6.28	6.28	7.85

Table 7: **Effectiveness of the Sim-to-Real Method on Challenging Shapes.** Comparison on Rot (in radian) achieved by the base policy w/ and w/o **DexNDM** on challenging shapes (*i.e.*, high aspect ratios, small sizes, and complex geometry). Performance tested on a down-facing hand. Symbols in parentheses indicate the rotation axis. Values are the average over three independent trials.

fine-tuned policy outputs actions outside the distribution supported by the learned dynamics, *i.e.*, $f^r(\mathbf{s}, \pi_{\text{finetune}}(\mathbf{s}, \mathbf{a}))$, the predicted state transitions are unreliable.

One potential solution is to regularize the base policy update, *e.g.*, penalizing deviations from the original base policy’s outputs. This is similar in spirit to our practical residual-policy design, which uses a relatively small action scale. Compared to direct fine-tuning, this approach is easier to implement and yields stable training without complex hyperparameter tuning.

In terms of performance, adding a residual policy on top of the base policy and directly fine-tuning the base policy could produce roughly comparable results. Practically, the residual-policy approach is more flexible, easier to implement, and more stable, which is why we adopted it.

Evaluated Objects in the Real World. Our policy demonstrates effectiveness in rotating a wide variety of objects in the real world. Photo of real-world object gallery: Figure 21.

Joint Index	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Delta Action Magnitude	0.0075	0.0104	0.0074	0.0043	0.0116	0.0093	0.0089	0.0061	0.0113	0.0066	0.0054	0.0059	0.0085	0.0113	0.0052	0.0047

Table 8: **Per-Joint Delta Action Magnitude.** Running average of per-joint delta action scale when rotating a cylinder (radius = 5.5cm, length = 5.5cm) along the z axis in the real world. Joints are arranged according to the joint order in Isaac Gym.

Per-Joint Delta Action Value. Table 8 summarizes the per-joint delta-action magnitudes observed when rotating a cylinder (radius 5.5 cm, length 5.5 cm) about the z-axis in real-world experiments. These values quantify the amount of compensation applied to each joint.

Inherent Limitations of Task-Relevant Data Collection. Collecting **task-relevant transitions with estimating object poses** suffer from the following inherent limitations: 1) Inability to be applied to small objects due to heavy occlusions; 2) Inability to estimate an accurate full pose for axis-symmetric objects like cylinders. 3) Noisy poses caused by fast movements, tracking inaccuracy, and heavy occlusions; 4) Huge time cost for the first time setup, *i.e.*, several days, and large time cost for launching the pipeline before each data collection, *i.e.*, about one minute. Besides, only successful trajectories can be kept, as the hand would then experience no load, and the object falling off would lead to a fast movement and an estimation failure. We can only roll out the policy and use clean actions without the flexibility to add noise, which may lead to task failure. As such, the diversity of the data would be restricted to objects that can be estimated and is biased towards easy geometries. Moreover, the object shape and scales used should match those used in the training. The dynamics model learning, even though we can collect a large amount of data, is relatively ill-posed if learning only from object states without the shape information, as for different objects, the same states and actions may lead to different transitions. Including the object shape in the dynamics modeling would inevitably further increase the modeling dimensionality and require an even larger amount of data to learn.

Collecting task-relevant data, even without estimating object poses, is also inherently limited to low efficiency, limited coverage, and restricted diversity since 1) data would be biased to easy objects that can be rotated well, 2) cannot add noise as it leads to the rotation failure, and 3) requires human

1620 interventions to reset the object to the hand. According to our experiments, the average time cost is
 1621 42.86s.
 1622

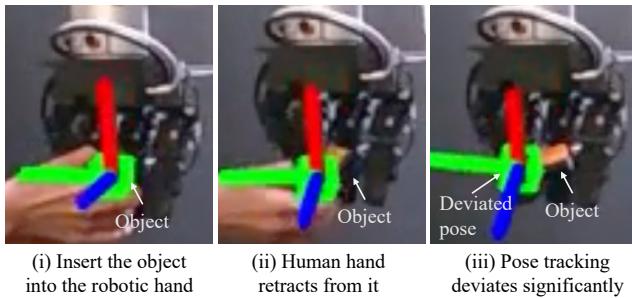


Figure 26: Pose Tracking During Manipulation for A Small Object.

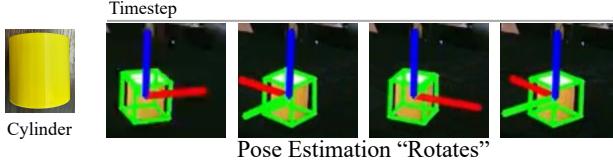


Figure 27: Pose Tracking for Axis-Symmetric Objects.

1644 **Case Study on Estimating Object Poses via Foundation Pose.** Collecting real-world transitions
 1645 by leveraging a vision-based estimator to track object poses is difficult, requires frequent and tedious
 1646 human interventions, and is prone to yielding noisy results. For each object, we need its CAD model
 1647 with exactly the same scale. Initialization steps involve capturing images via the camera and utilizing
 1648 XMem (Cheng & Schwing, 2022) to get the object mask. At the beginning of each trial, we need to
 1649 put the object near to the pose where we get the mask. After that, we need to move the object from
 1650 the table to the robotic hand and launch the policy.

1651 The difficulty of the data collection varies across the object geometry. For normal-sized objects,
 1652 limitations primarily lie in noisy estimations, time-consuming, and human labor extensive. On
 1653 average, we need 200s to collect a usable transition trajectory.

1654 However, for small objects, it struggles to yield successful or even usable data. If we put the object
 1655 initially on a table, then as we move the object up to the robotic hand, the pose tracking would fail,
 1656 even if we move it very slowly. To resolve this, we hold the object by hand at a pose near to the
 1657 robotic hand for initialization. After that, we need to insert it to the robotic hand for rotation. As the
 1658 human hand retracts from the object, the estimated pose deviates from the object (Fig. 26).

1660 Besides, for axis-symmetric objects, Foundation Pose cannot give stable estimations, where the pose
 1661 continuously “rotates” while the object is kept still (Fig. 27). It prevents us from getting high-quality
 1662 and clean pose estimations.

1663 **Superiority of Our Autonomous Data Collection.** Compared to task-relevant data, our au-
 1664 tonomous data collection is object-agnostic. The hand would be continuously affected by time-
 1665 varying object influences during the task execution. Joint effects of all loads to each joint simulate
 1666 various external influences coming from coupling effects and the object. One can also use any other
 1667 objects in the data collection to expand the diversity. Besides, we can add noise to the replay actions
 1668 to expand the diversity and coverage. Moreover, it is efficient and requires no human intervention.

1669 **Inherent Limitations of Playing Base Waves to Collect Data.** To get real-world transitions, a
 1670 different approach from open-loop replaying policy action rollouts and rolling out the policy is play-
 1671 ing parameterized waves such as sine waves, square waves, and Gaussian noise (Fey et al., 2025).
 1672 This strategy suffers from the following drawbacks compared to using policy data: **1)** For dexterous
 1673 hands, sending signals to a single joint while keeping others still would cause self-collision, which
 may harm the hardware. **2)** The model, either the dynamics model in our work or the compensator

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

Figure 28: **Performance scaling with dataset size.** We fit the curve of “Task-Aware w/ Obj. Pose” via power-law and extrapolate it to estimate the number of data required to achieve the desired result.

1691

1692

in UAN and ASAP, learned based on transition data obtained via playing such signals, would potentially suffer from a distribution shift when applied in the following policy finetuning or compensator training scenarios, especially when the model input contains a history. 3) Designing the frequency and magnitude of such waves is labor-intensive and time-consuming. Thus, we adopt to use of policy rollout to obtain real-world transitions.

1697

Task-Relevant Data w/ Obj. Pose. We use a 5 cm \times 5 cm \times 5 cm cube to collect real-world transition trajectories with object-state annotations. During data collection, we roll out the policy while rotating the object about the z-axis, and estimate its pose with FoundationPose. Because the cube is symmetric, we resolve the pose-frame ambiguity at the start of tracking by flipping the model to align with our frame convention. Each data-collection episode lasts about 200 s on average. We evaluated datasets containing 17 and 54 trajectories. Under the same real-world evaluation protocol as in our ablations, the average rotation is 0.55 and 0.70, respectively. Fitting a learning curve to these points, we estimate how many trajectories would be required to match the performance of our method with 4,000 autonomous trajectories. As shown in Figure 28, the estimate is 52,483,440 trajectories—clearly impractical. Although this extrapolation is based on a small number of data points, it highlights the data efficiency and generalization of our approach.

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

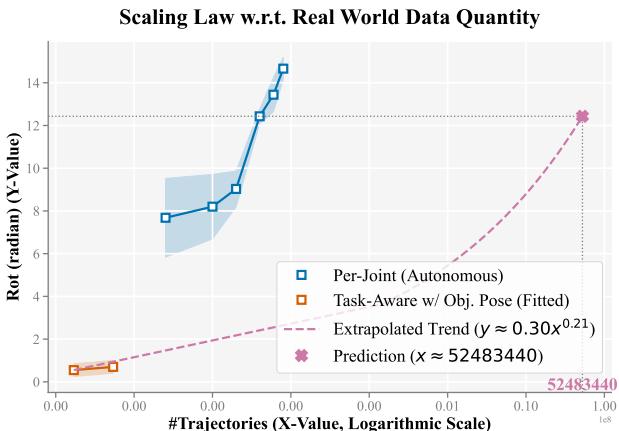


Figure 28: **Performance scaling with dataset size.** We fit the curve of “Task-Aware w/ Obj. Pose” via power-law and extrapolate it to estimate the number of data required to achieve the desired result.

Figure 29: **Out-of-Distribution Behaviour.**

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

BC v.s. DAgger. The BC vs. DAgger issue arose in our early experiments when we tried to distill specialist single-object-category rotation oracle policies, trained with a downward-facing hand, into real-world deployable proprioception-only policies. We ultimately chose BC because, in these downward-facing rotation experiments, DAgger failed, whereas BC could reliably work well on hardware. We explain below:

- We first trained basic cylinder-rotation specialist policies with the robotic hand kept in the downward-facing direction for x-, y-, z-axis rotation, and attempted to distill them using both DAgger and BC, followed by real-world testing.
- Initially, we tried DAgger, following prior works. For cylinder-rotation policies with an up-facing hand, the distillation process could be successfully optimized (achieving total

1728 rewards around 80–100), and the distilled policy could be successfully transferred to the
 1729 real robot, rotating the cylinders with the hand facing up.
 1730

- 1731 • However, when the oracle policy is trained with the hand kept in the downward-facing
 1732 orientation, DAgger fails to optimize the distillation process (*i.e.*, rewards around 10–30;
 1733 rotations along the z-axis may reach 50). The transferred policy immediately fails in the
 1734 real world. For visualizations of a typical out-of-distribution behavior, see the section (Out-
 1735 of-Distribution Behaviour) on the [website](#) and Fig. 29 for a visualization.
- 1736 • We then switched to BC and observed that it works well in this setting. Here, “works
 1737 well on hardware” means that the transferred cylinder-rotation BC policy with the hand
 1738 facing down avoids the out-of-distribution failures seen with DAgger and can perform basic
 1739 rotations reliably.

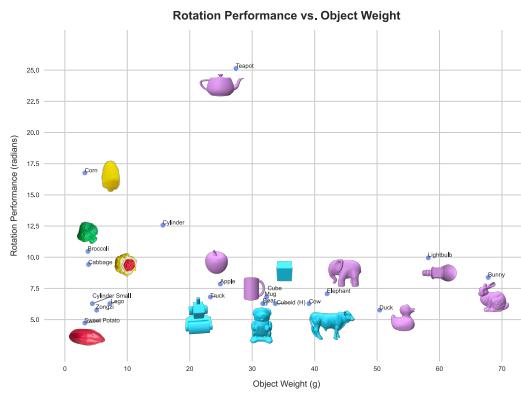


Figure 30: Performance w.r.t. Object Physical Weight.

Weight (g)	32.3	15.7	24.9	33.7	58.2	32.1	23.3	39.1	67.8	42.0	17.93	5.1	3.8	4.4	3.2	3.7	7.2	3.2	27.4	31.7	50.4
------------	------	------	------	------	------	------	------	------	------	------	-------	-----	-----	-----	-----	-----	-----	-----	------	------	------

Table 9: Object Weight measured in the real world.

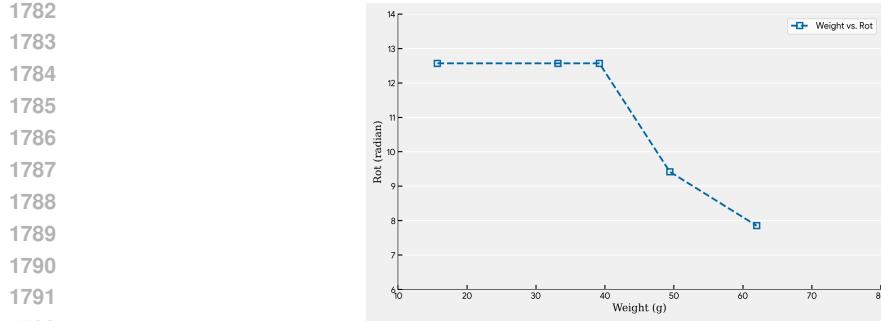
1761 **Performance w.r.t. Object Weight.** The plot of performance w.r.t. object weight is shown in
 1762 Fig. 30. We measure the object weight in the real world (Table 9).

1763 Because the objects vary significantly in shape, size, and geometric complexity, the plot does not
 1764 exhibit a clear trend showing how performance changes as weight increases.

Weight (g)	15.7	33.2	39.2	49.4	62.0
Rot (radian)	12.57	12.57	12.57	9.42	7.85

Table 10: Rot (radian) v.s. Weight for cylinder (5.5cm × 5.5cm × 5.5cm) with z-axis rotation.

1773 To conduct a more controlled study and isolate the effect of object weight, we designed an exper-
 1774 iment using cylinders of identical geometry but different masses as test objects, and evaluated the
 1775 performance on z-axis rotation. Results are summarized in Table 10 and Fig. 31. During training,
 1776 the upper limit of the object weight randomization range is 50.0g. When the test object weight is
 1777 below 40 g, we do not observe a clear difference in rotation performance. This may seem unintuitive,
 1778 as lighter objects might appear easier to rotate. However, in practice, for relatively light objects,
 1779 the robotic hand often tends to continuously translate the object upward during the rotation, causing
 1780 it to become “stuck” between several fingers, which can actually hinder rotation. For heavier ob-
 1781 jects—for example, the 62 g case—a common cause of failure is that the robot hand cannot maintain
 a stable grasp during the rotation, leading to the object being dropped.



1793 Figure 31: **Performance w.r.t. Object Physical Weight.** Rotate the cylinder object (5.5cm \times 5.5cm \times
1794 5.5cm) along the z-axis with the hand facing down.

1809 Figure 32: **“Half Load” Chaos Box.** Instead of totally sinking into balls, the hand only touches the surface
1810 of the balls in the box using fingertips.

1811
1812 **Sensitivity to Noise and Load Distribution.** To explore the influence of the magnitude of the
1813 injected noise, we design two additional settings and replay ation sequences with noise magnitude
1814 0.005 and 0.02, *i.e.*, $\sigma = 0.005, 0.02$. and compare the results with those acheived using default
1815 value, *i.e.*, $\sigma = 0.01$.

1816 To explore the influence of the distribution of random loads, we add an experiment where the hand
1817 only touches the surface of balls in the box using fingertips (denoted as “half loads” (Fig. 32), while
1818 the original setting where the hand is sunk into the balls is represented as “full loads”)

1819 Other settings, including the replayed trajectories and the distribution of balls in the box, are kept
1820 the same as the settings in our ablation study.

1822
1823

	$\sigma = 0.01$, full loads	$\sigma = 0.005$, full loads	$\sigma = 0.02$, full loads	$\sigma = 0.01$, half loads
Generalization Ability (Prediction Error)	1.21×10^{-5}	1.89×10^{-5}	1.47×10^{-5}	3.81×10^{-5}
Real-World Performance (Rot (radian))	12.43 ± 0.34	7.51 ± 1.03	10.58 ± 0.92	6.28 ± 0.67

1826 Table 11: **Sensitivity to Noise and Load Distribution.** Generalization performance and the final real world
1827 effectiveness w.r.t. magnitude of the noise injected to the replayed actions and the load distribution.

1828
1829 Same as we evaluate in the ablation study, we evaluate the generalization ability of the resulting
1830 neural dynamics model and the final real world performance achieved by the residual policy with
1831 the base policy. Results are summarized in Table 11.

1833 Regarding the noise magnitude, increasing the noise has only a minor impact on both the general-
1834 ization ability of the neural dynamics model and the final policy performance. It does slightly affect
1835 the model’s behavior, likely because expanding the randomization range broadens the data distri-
bution while reducing the amount of data available at some noise levels, which can make learning

more difficult. *Reducing the noise magnitude*, however, has a more noticeable negative effect on the learning of the neural dynamics model, its generalization ability, and the final policy performance. When the noise magnitude is too small, the data distribution becomes narrower, making the model less robust and reducing the degree of extrapolation required for training the residual policy. This in turn degrades overall performance.

Regarding the load distribution, narrowing the load distribution—for example, when only the fingertips are able to contact the small sphere—reduces the effective disturbances experienced by other joints. This weakens the robustness of the neural dynamics model and the extrapolation ability needed for training the residual policy, ultimately harming generalization and sim-to-real performance.

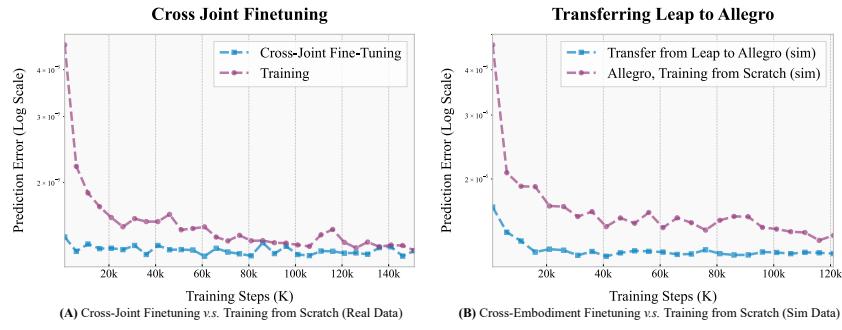


Figure 33: Cross-Joint and Cross-Embodiment Transfer. (A) Comparisons of the training loss in the cross-joint transfer setting (fine-tuning v.s. training from scratch); (B) Comparisons of the training loss in the cross-embodiment transfer setting (fine-tuning v.s. training from scratch).

Cross-Joint and Cross-Embodiment Transfer. We test the cross-joint and cross-embodiment transfer ability of our joint-wise neural dynamics model. We conduct the following experiments:

- **Cross-joint transfer on the same embodiment** (Leap Hand, real-world collected data), where we transfer the dynamics model of joint $i + 1 \pmod{N_J}$ to joint i .
- **Cross-embodiment transfer** (Leap Hand \rightarrow Allegro Hand, simulator rollout data).

In both scenarios, we observe that:

- the neural dynamics model initialized from a different joint or from a different embodiment provides a good starting point; and
- achieving the same prediction loss requires significantly less fine-tuning time compared to training from scratch.

More specifically, with such initialization, for cross-joint transfer:

- The initial training loss is over **five times lower** than that obtained when training from scratch;
- Fine-tuning a pre-trained network requires approximately **51x less time** to reach the final prediction loss of the training from scratch.

For cross-embodiment transfer in the simulator:

- The initial training loss is over **four times lower** than that obtained when training from scratch;
- Fine-tuning a pre-trained network requires approximately **11x less time** to reach the final prediction loss of the training from scratch.

Fig. 33 plots the training loss curves in such two settings.

1890

1891 B.5 RUNTIME PERFORMANCE ANALYSIS

1892

1893 While the joint-wise neural dynamics model enjoys generalization ability and sample efficiency, it
 1894 would require a longer training time. Compared to whole-hand neural dynamics model, both the
 1895 neural dynamics training process and the residual policy learning would take more time. We include
 1896 the detailed training process of the joint-wise neural dynamics model and the residual policy in the
 1897 following text.

1898

- 1899 • Joint-wise dynamics model is trained in a per-joint manner. All 16 joint-wise models are
 1900 trained in parallel. To be more specific:
 - 1901 – Given a batch of input history and output state of the whole hand, *i.e.*, $\{\mathbf{h}, \mathbf{s}\}$, we split
 1902 for each joint, *i.e.*, $\{(\mathbf{h}_i, \mathbf{s}_i)\}_{i=1}^{16}$.
 - 1903 – For each joint i , the history is passed to the model to get the corresponding prediction
 1904 \mathbf{s}'_i .
 - 1905 – After that the full prediction is obtained by concatenating them together, *i.e.*, $\mathbf{s}' =$
 1906 $\{\mathbf{s}'_i\}_{i=1}^{16}$. And the loss is computed between \mathbf{s}' and \mathbf{s} .
 - 1907 – Compared to the whole hand dynamics model, the extra time cost come from forward-
 1908 ing through 16 joint networks.
 - 1909 – **Comparisons of the time consumption.** In practice, training the neural dynamics
 1910 in a joint-wise manner roughly takes 4 6 times longer than training the whole hand
 1911 dynamics model.
- 1912 • The residual policy is a full-hand model, *i.e.*, accepting the I/O history and the base action
 1913 of the hand and outputting the residual action for all joints in the hand. Since we need to
 1914 query the learned neural dynamics model, compared to whole hand dynamics model, the
 1915 extra time cost of the joint-wise dynamics model come from forwarding through 16 joint
 1916 networks.
 - 1917 – **Comparisons of the time consumption.** In practice, training the residual policy using
 1918 a joint-wise neural dynamics model is roughly 6.2 times slower than training it using
 1919 the whole hand dynamics model.

1920

1921

1922

1923

# Trajectories	4,000	6,000	8,000	24,000
Joint-Wise	3.44 hrs	5.30 hrs	6.83 hrs	18.72 hrs
Whole Hand	0.61 hrs	0.88 hrs	1.47 hrs	4.67 hrs

1924 Table 12: **Training Time Comparison** between joint-wise neural dynamics model and the whole hand dy-
 1925 namics model using training datasets with different sizes.

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

# Trajectories	937,275	1,792,431	2,073,973
Joint-Wise	6.2 hrs	13.68 hrs	15.25 hrs
Whole Hand	3.6 hrs	5.5 hrs	5.8 hrs

1933 Table 13: **Training Time Comparison** between residual policies using the joint-wise neural dynamics and
 1934 that using whole hand dynamics.

1935 We train both the dynamics model and the residual policy in parallel on eight 23GB A10 GPUs in a
 1936 Ubuntu 20.04 server. For the neural dynamics model, we vary the dataset size (#Trajectories, where
 1937 each trajectory contains 400 step transitions) and train each model for 100 epochs. The training time
 1938 for the joint-wise dynamics model and the whole hand dynamics model is summarized in Table 12.

1939 Training the neural dynamics in a joint-wise manner roughly takes 4 6 times longer than training the
 1940 whole hand dynamics model. However, the time cost is still acceptable. For our final model where
 1941 24,000 trajectories are leveraged to train the neural dynamics model, it takes less than 19 hours to
 1942 complete.

1944 For the residual policy, we train on the simulation rollout dataset for one epoch. We vary the dataset
 1945 size (#Trajectories, where each trajectory contains 400 step transitions) and train the residual policy
 1946 using the joint-wise neural dynamics model and the whole hand dynamics model, respectively. The
 1947 training time for them is summarized in Table 13.

C ADDITIONAL EXPERIMENTAL DETAILS

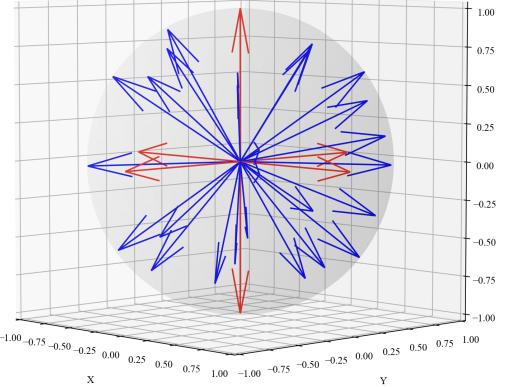


Figure 34: General Rotation Axes.

Object Set	Normal-Sized Cylinders	Normal-Sized Cuboids	Long Cuboids	Small Cylinders	DexEnv Objects	ContactDB Objects (Test Set)
#Shapes	9	9	4	9	120	26
Object Minimum Extent	0.04	0.064	[0.06, 0.08]	0.025	[0.056, 0.115]	[0.017, 0.153]
Object Aspect Ratios	[1.6, 2.4]	[1.25, 1.5]	[2.5, 6.67]	[1.92, 2.56]	[1.05, 2.00]	[1.0, 11.67]
Object Scale	[0.70, 0.86]	[0.70, 0.86]	0.5	[0.5, 0.6]	[0.6, 0.7]	[0.5, 0.6]
Mass	[0.01, 0.05] kg	[0.01, 0.05] kg	[0.01, 0.05] kg	[0.01, 0.05] kg	[0.01, 0.05] kg	[0.01, 0.05] kg
Coefficient of Friction	[0.3, 3.0]	[0.3, 3.0]	[0.3, 3.0]	[0.3, 3.0]	[0.3, 3.0]	[0.3, 3.0]
External Disturbance	(2, 0.25)	(2, 0.25)	(2, 0.25)	(2, 0.25)	(2, 0.25)	(2, 0.25)

Table 14: Information and Physical Parameter Randomization Ranges of Training Object Sets and the Test Object Set.

Figure 35: Dimensions of Small Objects Used in Real World Experiments.

Datasets. Our training objects comprise the following subsets: 1) Normal-sized cylinders from Hora (Qi et al., 2022); 2) Normal-sized cuboids from Hora (Qi et al., 2022); 3) Long cuboids; 4) Small-sized cylinders; and 5) Normal-sized complex shapes from Visual Dexterity (Chen et al., 2022) (denoted as “DexEnv Objects”). Details with scale randomization ranges are summarized in Table 14. To test the generalization performance in unseen shapes, we filter objects with an aspect ratio no larger than 2:1 from the ContactDB dataset (Taheri et al., 2020) (obtained from **GRAB dataset**) as our test set, resulting in 26 objects in total. The filter rule follows RotateIt (Qi et al., 2023). As we aim to test the generalization performance on shape variation in this evaluation, we do not consider high aspect ratio ones or scale them to small sizes. In the real world, we test the performance on three subsets (Fig. 5, purple objects and small objects are unseen):

- Regular objects: cube (5 cm \times 5 cm \times 5 cm), cylinder (radius 5.5 cm, length 5.5 cm), apple (GRAB/ContactDB apple, scaled to 0.5 \times), cuboid (3 cm \times 10 cm \times 3 cm), and light bulb (“lamp_bulb” from FurnitureBench).
- Small objects: Purchased online; vendor links are withheld to preserve anonymity during review and will be provided upon acceptance. Fig. 35 shows dimensions of those objects used in the real-world experiment.

1998 • Normal-sized irregular objects: bear, truck, and cow from Visual Dexterity (each scaled to
 1999 0.7 \times); and bunny, elephant, duck, mug, teapot, and mouse from GRAB/ContactDB (each
 2000 scaled to 0.5 \times).

2001
 2002 **Policy Optimization.** We use PPO for policy optimization. Training environments are 30,000 for
 2003 cylinders and cuboids, while 50,000 for long cuboids, small cylinders, and “DexEnv Objects”. We
 2004 randomly sample a wrist pose and a target rotation axis at each environment reset.

2005 **General Rotation Axes.** To construct the general rotation axis set, we generate 32 axes evenly
 2006 distributed in SO(3). Removing six principal axes, $\pm x$, $\pm y$, and $\pm z$, we get the general rotation axis
 2007 set. Figure 34 provides a visualization of all 32 evenly distributed rotation axes.

2008 **Generalist Training via Behaviour Cloning.** To obtain the dataset to train the generalist policy, we
 2009 roll out each oracle policy in the simulation to construct the dataset. Only transition trajectories that
 2010 would not terminate in the full 400 steps would be saved in the dataset. We set the maximum number
 2011 of tested environments to 1,500,000. In each step, the hand joint states, positional targets, object
 2012 states, rotation axis, and the hand wrist orientation would be saved. Numbers of trajectories collected
 2013 by each object category are summarized in Table 15. The number of successful rollouts could reflect
 2014 the difficulty of different training object sets. Among all five object sets, regular cylinders and
 2015 cuboids construct the easiest rotation tasks. Small cylinders introduces additional challenges due to
 2016 its small scales. Complexity in the geometry further increases the difficulty. Rotating long objects
 2017 with large aspect ratios is the most difficult task, which yields the smallest transition dataset.

Object Set	Cylinders	Cuboids	Long Cuboids	Small Cylinders	DexEnv Objects
# Transitions	1,333,282	1,282,973	235,413	743,543	681,199

2022 Table 15: The Number of Collected Transition Trajectories in Simulation.
 2023

2024 **Metrics (detailed version).** We evaluate using RotateIt metrics (Qi et al., 2023) in simulation and
 2025 the real world, plus a goal-oriented success metric: *Time-to-Fall (TTF)*—duration until the object
 2026 drops; in simulation, episodes are capped at 400 steps (20s) and TTF is normalized by 20s, while
 2027 in the real world we report raw time; *Rotation Reward (RotR)*—episode sum of $\omega \cdot k$ (simulation
 2028 only); *Rotation Penalty (RotP)*—per-step average $\omega \times k$ (simulation only); and *Radians Rotated
 2029 (Rot)*—total radians rotated in the real world, measured from videos. We also report *Goal-Oriented
 2030 Success (GO Succ.)* following Visual Dexterity (simulation only): we sample a random goal pose,
 2031 set the target axis to the relative rotation axis, and count success if the final orientation is within 0.1π
 2032 of the goal.

2033 **Automatic System Identification.** In addition to training neural dynamics models and the delta ac-
 2034 tion model to bridge the sim-to-real gap, we would align the dynamics between the simulator and the
 2035 real world by performing an automatic system identification process at the beginning. The process
 2036 involves the following steps: 1) Training probing rotation skills in the simulator using the default
 2037 PD gains and link configurations in the URDF. 2) Rollout probing skills in the simulator for multiple
 2038 state-action trajectories (denoted as “probing trajectories”). Replay probing trajectories on the real
 2039 robot. 3) Collect the resulting state and action trajectories. 4) Launch multiple parallel environments
 2040 in the simulator, each with different system parameters; 5) Replay probing action trajectories to get
 2041 resulting state trajectories. 6) Select parameters of the environment whose resulting state trajectories
 2042 are the most similar to those in the real world as the identified system parameters. We identify PD
 2043 gains and the mass of each link. Identified values are summarized in Table 16 and 17.

Joint Index	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
P Gain	3.52	1.78	2.84	2.30	1.94	2.18	2.55	2.01	2.26	2.30	3.76	4.64	1.86	3.44	4.82	1.53
D Gain	0.194	0.106	0.091	0.195	0.199	0.192	0.149	0.050	0.088	0.135	0.027	0.081	0.123	0.042	0.082	0.068

2047 Table 16: **Identified PD Gains.** Per-Joint PD Gains identified by the automatic system identification process.
 2048 Joints are arranged according to the joint order in Isaac Gym.
 2049

2050 **Domain Randomization.** We apply domain randomization during training. We also randomize the
 2051 physical parameters during the test in the simulator. The randomization ranges of each object set
 are summarized in Table 14. Following previous works (Qi et al., 2022; 2023), we apply a random

Link Index	0	1	2	3	4	5	6	7	8	9	10
Mass (kg)	1.00×10^{-7}	2.57×10^{-1}	2.41×10^{-2}	1.90×10^{-2}	2.79×10^{-2}	1.05×10^{-2}	1.00×10^{-7}	4.68×10^{-2}	3.00×10^{-3}	3.65×10^{-2}	5.38×10^{-2}
Link Index	11	12	13	14	15	16	17	18	19	20	21
Mass (kg)	1.00×10^{-7}	3.12×10^{-2}	2.63×10^{-2}	2.11×10^{-2}	1.63×10^{-2}	1.00×10^{-7}	5.03×10^{-2}	3.43×10^{-2}	4.76×10^{-2}	2.23×10^{-2}	1.00×10^{-7}

Table 17: **Identified Link Mass.** Per-Link mass identified by the automatic system identification process. Links are arranged according to IsaacGym’s link order.

disturbance force to the object. The force scale is $2m$, where m is the object mass. We also resample the force at each timestep with the probability 0.25. We add a noise sampled from the distribution $\mathcal{U}(0, 0.005)$ to the joint positions to increase the robustness.

Baselines (detailed version). We compare our method against both previous in-hand rotation/reorientation works and prior neural-based sim-to-real works. We compare with two strong in-hand rotation/reorientation works, Visual Dexterity (Chen et al., 2022) and AnyRotate (Yang et al., 2024). The experimental setup of AnyRotate is the most similar to ours. It demonstrates multi-axis object rotation under various wrist orientations. However, its code is not publicly available, and the method requires tactile information. We re-implemented their environment setup and training pipeline in IsaacGym based on the paper’s description. We’ve tried our best to set up a fair comparison with it in the real world. Unfortunately, faithfully replicating their tactile sensor model and sim-to-real methodology from the paper alone is difficult. We find that discarding the tactile information in its second stage training can hardly yield a policy with even basic rotation capabilities in the real world. Thus, a direct real-world comparison was not possible. Instead, we demonstrate our method’s superior performance by evaluating it on the same challenging object shapes used in their experiments. For Visual Dexterity, the open-sourced code is designed for the D’Claw hand, which is much large than and quite morphologically different from anthropomorphic hands like the Allegro or LEAP. Despite our extensive efforts to adapt their code to the LEAP hand, the policy failed to achieve reasonable performance in simulation on a basic cylinder shape, even after 1.5 days of training. Thus, a direct comparison was infeasible. We therefore compare our method’s performance with the quantitative results reported in their paper and the qualitative results shown in their [website](#).

We also compare with prior sim-to-real methods designed for robotic arms and legged robots, namely UAN (Unsupervised Actuator Net) and ASAP. The core of both UAN and ASAP is similar, which lies in collecting real-world transition data for actuators, training neural compensators to bridge the dynamics gap between the simulator and the real world, followed by tuning/training the task policy based on the learned neural compensator. The main differences lie in two aspects, including data collection and model design. ASAP rollouts tracking policies and locomotion policies in the real world for collecting real-world transitions, while UAN avoids using policy data by playing sine waves, square waves, and Gaussian noises to prevent overfitting. UAN uses a shared network for every actuator while ASAP trains a full-body compensator (four ankle joints for sim-to-real). As discussed before (Sec. 3.3), neither including the object into the system modeling nor replicating object influence in the simulator is possible. Thus, we collect 24,000 real-world free-hand replay trajectories to train their corresponding compensators. To compare UAN, we employ their real-world collection strategy and train a shared compensator for each joint in the hand. To compare ASAP, we replay the policy rollouts and train a compensator for each finger in the sim-to-real comparison, mirroring their four ankle joints sim-to-real setting. In sim-to-sim, we train a compensator for the whole hand and the object.

Comparisons to AnyRotate (detailed version). We compare our real-world performance against reported values in AnyRotate. As they did not provide links to obtain their real-world test objects, we test our model on four of its tested objects that are easy to replicate, including “Tin Cylinder”, Cube, “Gum Box” and “Container” (see details below). While the remaining plastic vegetable models and the “Rubber Toy” are not reproducible according to the object size information provided in their Table 10. According to its experiments, objects with sharp edges are more difficult to rotate compared to plastic vegetable models (their performance on “Tin Cylinder”, “Gum Box”, and “Container” is the worst regarding the number of rotations and survival time among all of its tested objects as shown in its Table 12 and 13). We test the performance on three test rotation axes from AnyRotate in the rotation axis test setting. We also employ the same rotation axis setting and the hand orientation setting to AnyRotate in the hand orientation test setting. We conduct three

2106 independent experiments and present the average and deviations across the three trials in the Table 2.
 2107 As shown, we can outperform AnyRotate by a large margin.
 2108

2109 Besides, as demonstrated, our policy can rotate a wide range of objects with diverse aspect ratios and
 2110 various object-to-hand ratios. Rotating some of them, such as the long Lego leg and animal shapes,
 2111 requires quite sophisticated finger gaiting. However, AnyRotate only demonstrates the ability of
 2112 rotating normal sized objects with relatively flat surfaces using conservative behaviours. As stated
 2113 in their paper, they would encounter difficulties when rotating objects with sharp edges. Besides, the
 2114 smallest objects that they have demonstrated the effectiveness are the “Rubber Toy” (8cm × 5.3cm ×
 2115 4.8cm), “Tin Cylinder” (4.5 × 4.5cm × 6.3cm), and “Cube” (5.1cm × 5.1 cm × 5.1cm). However
 2116 we can deal with much smaller objects like vegetable models with sizes 3cm × 3cm × 2.5cm, 3cm
 2117 × 2.75cm × 2.75cm, and 3cm × 2cm × 2.1cm. Moreover, the most challenging aspect ratios of
 2118 their objects is 1.67 (Rubber Toy), while we can handle objects with challenging aspect ratios such
 2119 as Lego leg (4.5), Book (5.3), and long cuboid (3.33). Such comparisons further demonstrate the
 2120 superiority of our method in solving difficult in-hand rotation problems.

2121 **Details w.r.t. Our Replicated Objects from AnyRotate.** We replicated their four test objects as
 2122 follows:

- 2123 • **Cube:** We 3D-printed a cube to the specified dimensions of 5.1cm × 5.1cm × 5.1cm.
- 2124 • **Container:** We buy a commercially available product that precisely matches the container
 2125 used in their experiment. We removed the labels from the container to maintain regional
 2126 anonymity.
- 2127 • **Tin Cylinder:** We 3D-printed a cylinder with the specified 4.5cm radius and 6.3cm length.
- 2128 • **Gum Box:** We identified a discrepancy in the documented dimensions (9cm × 8cm ×
 2129 7.6cm), which were identical to those of the “Container”. However, figures in the original
 2130 paper indicate the “Gum Box” is substantially smaller. Therefore, we estimated its dimen-
 2131 sions from the figures to be approximately 5cm × 4cm × 8cm and 3D-printed an object of
 2132 this size to serve as a proxy.

2133 **Comparisons to Visual Dexterity (detailed version).** Compared to prior works, visual dexterity
 2134 shows improved results in rotating more complex objects with uneven surfaces and better general-
 2135 ization ability to unseen geometries. Conducting a direct and completely fair comparison between
 2136 our method and Visual Dexterity, however, is infeasible due to the different task settings (*i.e.*, ours
 2137 axis-oriented continuous rotation v.s. Visual Dexterity’s goal pose-driven reorientation). Therefore,
 2138 we introduce a new metric, survival rotation angles, that could be computed from qualitative results
 2139 in both settings to facilitate a comparison. Specifically, it evaluates the angles the object could be
 2140 rotated before it falls from the hand. This metric is friendly for Visual Dexterity since, in some
 2141 settings, it has a supporting table. The object can touch the table during the rotation process. We
 2142 obtain Visual Dexterity’s results by carefully examining all of its demos present in all videos from its
 2143 [website](#). Its best performance and the comparisons to our results are summarized in Table 3. Though
 2144 the metric is more friendly to Visual Dexterity, we can still achieve on par performance or bypass
 2145 its results for all irregular objects included in its demos (see videos in our [website](#)). Specifically,
 2146 we make the following observations: 1) For objects on which Visual Dexterity has demonstrated
 2147 strong results, including cow, bear, and truck, where they have shown the ability to rotate the object
 2148 to achieve several goals continuously without falling, we can at least achieve on-par performance
 2149 with it. 2) For objects that it struggles with, including elephant, bunny, duck, teapot, and dragon,
 2150 we can outperform it and achieve a much better performance regarding the survival angles. 3) We
 2151 have shown superiorities in rotating objects with challenging aspect ratios (up to 5.33) and difficult
 2152 object-to-hand ratios (*i.e.*, long objects like the Lego leg and small plastic vegetable models, Fig. 1).
 2153 However, Visual Dexterity does not demonstrate such ability.

2154 **Comparisons to ASAP and UAN (detailed version).** We evaluated our method against two promi-
 2155 nent sim-to-real transfer approaches in both sim-to-sim and sim-to-real settings. Considering the
 2156 difficulty in collecting real-world data with object states and the fact that their original data col-
 2157 lection strategy does not account for the object influence, we collect 24,000 freehand trajectories
 2158 in the real world by replaying policy action rollouts using the same hand wrist configurations as
 2159 in our data collection strategy for data with load. After that, we train a dynamics compensator
 in the corresponding free-hand simulation setup. This compensator is subsequently used to fine-
 tune the original policy. We reward the compensator training using the hand-only training penalty:

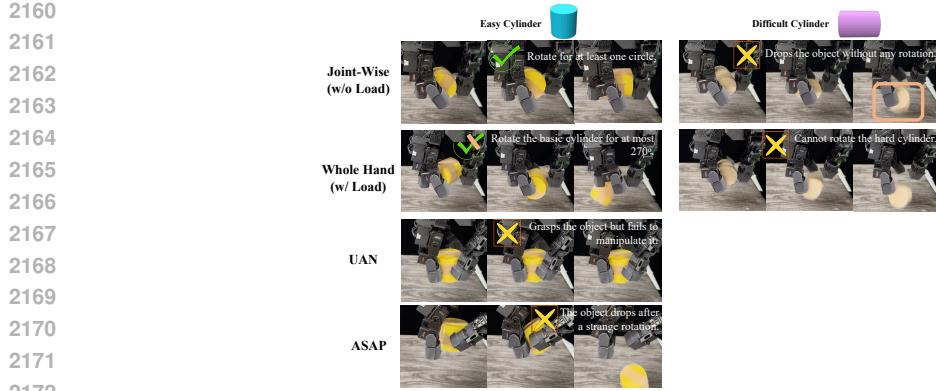


Figure 36: Case Study on Failure Cases of Baselines (UAN and ASAP) and Ablated Versions (Joint-Wise (w/o Load) and Whole Hand (w/ Load)).

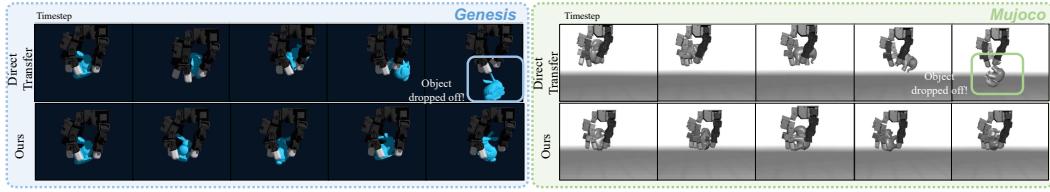


Figure 37: Qualitative ‘Sim-to-Sim’ Evaluation. Left: Results in Genesis. Right: Results in MuJoco.

$r^{\text{compensator}} = -\|\mathbf{q}_t^{\text{ref}} - \mathbf{q}_t\|_2$, where $\mathbf{q}_h^{\text{ref}}$ and \mathbf{q}_t are the reference joint state and the current joint state respectively. While we originally intended to conduct a comprehensive comparison in all settings covered in Table 4 and 5, we found that the policies produced by these baseline methods failed to function in the real world. They were unable to rotate the easiest cylinder object. The typical failure modes involved the robot either grasping the object firmly without movement or failing after a strange perturbation (Fig. 36 (A)). (Videos demonstrating these failures are available on our [website](#).) Notably, the policy fine-tuning process did achieve satisfactory results. We therefore hypothesize that an OOD issue causes this: the compensator, trained only on the dynamics of a free hand, fails when the policy must handle the novel dynamics introduced by an object during the rotation. This finding underscores the critical importance of modeling object dynamics in the design of sim-to-real strategies for manipulation, which also aligns with discoveries in ablation studies (Sec. 5).

We also attempted to train the baseline sim-to-real methods (ASAP and UAN) using our collected task-relevant, object-state-annotated dataset (54 trajectories). However, the first stage—compensator training—failed to converge; the reward showed little to no improvement. We attribute this to the dataset’s limited size and object state noise.

Sim-to-sim comparisons are summarized in Table 4.2.

Our compensation strategy also shows better resistance to the quality of real-world transitions. As shown in Figure 36, our ablated version ‘Joint-Wise (w/o Load)’ trains the dynamics model via free hand replay data, whose data amount is even smaller than that used to train UAN and ASAP, can rotate the basic cylinder object for at least one circle, though its final performance cannot even surpass the base policy. However, the above two strategies totally fail in this task. Since they would use the compensator to fine-tune the base policy, their final policy’s performance is quite sensitive to the quality of the learned compensator. Thus, only if the learned compensator is of very high quality and can generalize quite well can its fine-tuning achieve satisfactory results. Otherwise, the final policy may totally fail since they are learned with ‘‘wrong’’ dynamics. However, we compensate the base policy by using it with the learned residual policy together. With a good base, the final performance would not at least totally fail.

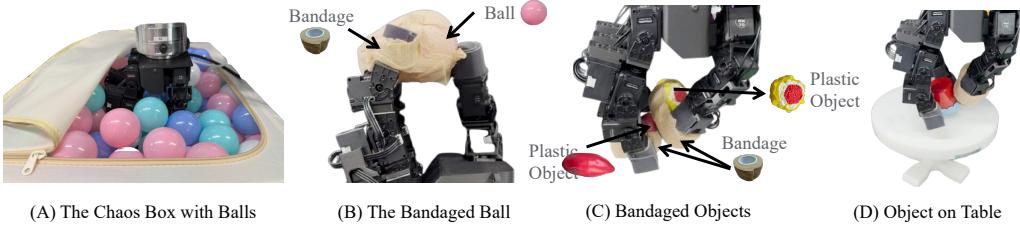
‘‘Sim-to-Sim’’. We collect the data in Genesis by running the evaluation for the unified policy using 30.000 environments. We use cylinders to collect the data. We run the evaluation on each cylinder

2214 instance with the maximum number of evaluation trials set to 1,500,000. We use all rollout data to
 2215 train the joint-wise neural dynamics model (pre-trained using transitions in Isaac Gym). The training
 2216 is conducted on eight A10 GPUs for 2 epochs with a batch size of 64, which takes approximately two
 2217 days. We collect the data in MuJoCo using one environment. For each training cylinder instance, we
 2218 collect 4000 trajectories, resulting in 36,000 trajectories in total. We use all data to train a joint-wise
 2219 dynamics model (pre-trained using transitions in Isaac Gym).

2220 After that, we train the residual policy for two epochs, which takes about 13 hours. We then deploy
 2221 the residual policy with the original base policy to the target simulator. The policy is tested on the
 2222 ContactDB test object set. We roll out the policy using 10 different initial grasps. Reported values
 2223 are the mean and standard deviation values of per-object average results over 10 trials.

2224 Figure 37 shows a qualitative comparison of the policy’s performance w/ and w/o our method to
 2225 bridge the dynamics gap.
 2226

2227 **“Sim-to-Sim” Comparison Settings.** We use the same data collection strategies to collect trans-
 2228 transitions in each simulator. The difference is that only successful rollouts are kept, resulting in
 2229 3280673 trajectories in Genesis, while 23650 trajectories in MuJoCo. These trajectories are
 2230 leveraged to train their corresponding action compensators for ASAP and UAN. For ASAP, we
 2231 use the whole hand formulation, different from the per-finger compensator that we leveraged in
 2232 ASAP’s sim-to-real setting. We reward the policy to track both the object state and the hand state:
 2233 $r_{\text{compensator}} = -k_h \|\mathbf{q}_t^{\text{ref}} - \mathbf{q}_t\|_2 - k_o \text{ang_diff}(\mathbf{o}_t^{\text{ref}}, \mathbf{o}_t)$, where $\mathbf{q}_t^{\text{ref}}$, $\mathbf{o}_t^{\text{ref}}$, and \mathbf{o}_t are the hand reference
 2234 joint state, object reference orientation and object current orientation respectively. k_h and k_o are
 2235 coefficients to balance hand and object tracking. k_h is set to 1.0. While we add a curriculum to k_o .
 2236 It is set to a small value, *i.e.*, 0.001, at first. And we use the reset number of the first environment to
 2237 count the reset step. During the first 10 reset steps, k_o is kept at the initial value. While starting from
 2238 that and until the 200-th reset step, k_o is linearly increased to 2.0. After the compensator has been
 2239 trained, we tune the policy based on it. The tuned policy is then deployed to the target simulator.
 We adopt the same evaluation strategy as for our method.



2249 **Figure 38: Autonomous Real Data Collection Setup with Load.** (A) A large box with many soft balls.
 2250 (B) Bind the object to three fingertips to avoid the object falling off and to add external object influence to the
 2251 hand. (C) Bind objects to two fingertips which adds external influence to the hand via collisions between these
 2252 objects. (D) Adding a supporting table to avoid the object falling off.

2253 **Grasping Pose Generation.** We generate grasping poses with the “Palm Down” orientation, which
 2254 are used for the omni wrist orientation rotation training. For details, please refer to the code in the
 2255 supp (‘DexNDM-Code/RL/README.md’). The canonical qpos of LEAP hand, from which we
 2256 sample random noise to generate the grasping poses, is set to [1.244, 0.082, 0.265, 0.298, 1.163,
 2257 1.104, 0.953, -0.138, 1.096, 0.005, 0.080, 0.150, 1.337, 0.029, 0.285, 0.317].

2258 **Real-World Hardware Setup.** We use LEAP hand (Shaw et al., 2023) and Franka Arm for conducting
 2259 real-world experiments (Fig. 39). We use positional control with a control rate of 20 Hz. The
 2260 positional gain and damping coefficient are set to 800 and 200, respectively.

2261 **Real-World Data Collection Setup.** To collect real-world transition data with varying loads while
 2262 minimizing human intervention, we developed several strategies, as illustrated in Figure 38.

2263 Among these, the “Chaos Box” with balls proved most effective. Its setup is straightforward: place
 2264 the box on a table, open it, and position the robot’s hand inside with a desired orientation. Crucially,
 2265 this method operates autonomously, requiring no human intervention during data collection. This
 2266 setup ensures continuous interaction with a load, as the robot’s hand is always in contact with the
 2267 balls. The constantly shifting positions of the lightweight balls provide a diverse and continuous

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281

2282 **Figure 39: Real World Experiment Hardware Setup.**
2283
2284
2285

2286 range of loads. Furthermore, the balls’ deformable surfaces ensure that these interactions do not
2287 damage the robot’s hardware. The autonomy of this system allows us to initiate data collection in
2288 the evening and let it run overnight unattended.

2289 A key limitation of the Chaos Box is its inability to collect data in a palm-up orientation due to the
2290 robot arm’s kinematic constraints. To address this, we developed a second setup where a ball is
2291 secured to three of the robot’s fingers with a bandage (Fig. 38 (B)). Similar to the Chaos Box, this
2292 method runs autonomously once initiated. However, binding the ball takes time. A drawback is that
2293 the ball’s fixed position results in a less diverse set of perturbation patterns.

2294 Two other approaches were explored but ultimately not adopted (Fig. 38 (C,D)). One involved at-
2295 taching an object to the finger (C), but this was unreliable as the object could fall and require manual
2296 reattachment. The other used a supporting table (D), but the object often moved outside the robot
2297 hand’s workspace, necessitating human intervention to reposition it.

2298 **Robotic Hand Sizes.** We define hand size as the fingertip span: for the D’Claw hand, the distance
2299 between diagonally opposite fingertips (19.10 cm); for the Allegro and Leap hands, the distance
2300 between the index and pinky fingertips (10.05 cm and 9.50 cm, respectively).

2302 **Real-World Transition Data Collection.** We collect real-world transition data by replaying action
2303 trajectories rolled out in the simulation. Each episode contains 400 steps. Actions are executed in
2304 the hardware at 20Hz. Collecting one trajectory with a full episode takes approximately 20s. We
2305 collect transitions with all six tested hand wrist orientations, that is, palm up, palm down, thumb up,
2306 thumb down, base up, and base down. In each orientation, we collect 4,000 transition trajectories.
2307 In more detail, we randomly at uniform select 4,000 trajectories from rollouts of all oracle policies
2308 with the corresponding wrist orientation. We collect transitions using the “Chaos Box” system.

2309 **Experimental Settings of Ablation Studies.** When comparing real-world performance of different
2310 models in ablation studies, we keep the hand in the palm down orientation and test the z-rot per-
2311 formance on three representative objects, including a regular cylinder, a cylinder with higher aspect
2312 ratios, and an irregular object. We roll out the policy for rotating the regular cylinders in this specific
2313 hand orientation and the rotation direction to construct the simulation dataset, which is composed of
937,275 trajectories, each of which has 400 transition steps.

2315 **Real-World Data Collection.** We collect transition data via the Chaos Box setup (Fig. 38 (A)). We
2316 replay action trajectories rolled out in the simulation in the real world to collect the data. We collect
2317 4,000 trajectories, resulting in 1,600,000 transitions in total. In addition, we collect 20 successful
2318 rotation trajectories (*i.e.*, object does not fall during the whole episode) with the thumb up orientation
on a 5cm size cube by deploying policies in the real environment as the out-of-domain test data.

2320 **Task-Relevant Data Collection.** We collected 1 hour of data per object using three objects: a 5 cm \times
2321 5 cm \times 5 cm cube, the Stanford Bunny, and a cylinder (radius 5.5 cm, length 5.5 cm). In total, we
obtained 111, 87, and 54 trajectories with the cube, cylinder, and Stanford Bunny, respectively.

Figure 40: **Quest 3.** We teleoperate the arm using the right controller’s pose, while the left controller’s pose specifies the desired rotation axis. We also provide a button-controlled mode that restricts rotation to three fixed axes, selected via the X, Y, and LG buttons on the left controller.

Collecting via Base Waves. We collect 2,000 trajectories using sine waves, 1,000 trajectories using square waves, while 1,000 using Gaussian noise. When collecting the trajectory using the sine wave, we randomly select a joint to send signals while leaving the other joints fixed. Specifically, we fix other joints to the midpoint of their angle range. For LEAP hand, actuating the joint between mcp link to pip link when fixing other joints would lead to self-collision. So we would not select such joints when replaying trajectories. We use the sine wave with the form $f(t) = \sigma \sin(2\omega t)$. At the beginning of each data collection, we sample σ and ω from a uniform distribution, *i.e.*, $\sigma \sim \mathcal{U}(0.5, 1.0)$, $\omega \sim \mathcal{U}(0.2, 0.5)$. When using the square waves, we use $g(t) = A * \text{sign}(\sin(2 * \omega * t))$, where $A \sim \mathcal{U}(0.5, 1.0)$, $\omega \sim \mathcal{U}(0.2, 0.5)$. We add Gaussian noise to the square wave to collect remaining 1,000 trajectories, *i.e.*, $\hat{g}(t) = A * \text{sign}(\sin(2 * \omega * t)) + \epsilon$, where $\epsilon \sim \mathcal{N}(0, 0.01)$.

Dynamics Model Training. The pretrained dynamics model is obtained by leveraging the same model architecture to fit the roll-out simulation trajectories. We then directly tune the model weights on the real-world data for fine-tuning. An evaluation dataset is split out from the 4000 training trajectories with a train: eval ratio of 9:1. The Model with the best evaluation loss is then leveraged to train the residual policy model. We report the final result on the OOD test dataset as the generalization performance. We train the residual policy on the simulation data for one epoch, which would typically cost for about 10 hours using eight A10 GPUs.

Teleoperation System for Complex Dexterous Manipulation Data Collection. We demonstrate an important application of our rotation policy: a teleoperation system for complex dexterous manipulation tasks with in-hand rotation. We implement it by pairing the policy with a Quest 3 headset (Fig. 40). Leveraging in-hand rotation, the system completes complex tasks requiring fine-grained finger coordination—scenarios where traditional teleoperation systems (Ding et al., 2024; Cheng et al., 2024) often struggle.

We adapt BunnyVisionPro (Ding et al., 2024) for Franka arm teleoperation. The arm is controlled with the Quest 3 right-hand controller, and we obtain controller states via `oculus_reader`. We use the left controller’s orientation to define the rotation axis and down-weight the component around its short axis to reduce errors when inferring the axis from pose. In practice, this orientation-based specification is not very intuitive, so we introduce a button-controlled mode in which the rotation axis is selected by pressing the X, Y, or LG buttons on the left controller. Although this restricts the available axes to three, we find it sufficient for single tasks; for example, lightbulb assembly and disassembly can be completed using z, -z, and -y rotation modes.

All hand motions, including grasping, are controlled by the policy. We initialize the robotic hand in a default pose. To grasp an object, we approach it and activate the rotation policy. Conditioned on an initial open-hand observation, the policy outputs an action sequence that closes the fingers around the object to achieve a secure grasp.

D DISCUSSIONS ON RELATED SIM-TO-REAL WORKS

Misaligned physical parameters, discrepancies in their physical models, and numerous unmodeled effects in the actuator and contact dynamics hinder successfully transferring the policy trained in simulation to the real world. Efforts to close this gap mainly fall into four types of approaches: 1) Domain Randomization (DR) expands the distribution of training environment to train robust poli-

2376 cies that are expected to function well in different environments (Loquercio et al., 2019; Peng et al.,
 2377 2017; Tan et al., 2018; Yu et al., 2019; Mozifian et al., 2019; Siekmann et al., 2020; Sadeghi &
 2378 Levine, 2016). 2) System Identification (SysID) aligns The simulator dynamics to the real-world
 2379 in a principled and interpretable way by estimating critical physical parameters from real data (An
 2380 et al., 1985; Mayeda et al., 1988; Lee et al., 2023; Sobanbabu et al., 2025). 3) Adaptive Policy adapts
 2381 the policy online according to the real-world dynamics that are implicitly identified from real-world
 2382 feedback. 4) Neural-based Real World Modeling learns real dynamics to help with policy’s trans-
 2383 fer (He et al., 2025; Fey et al., 2025; Deisenroth & Rasmussen, 2011; Shi et al., 2018; Hwangbo
 2384 et al., 2019). As a popular and standard strategy, DR requires heuristic designs (Sobanbabu et al.,
 2385 2025) to find proper randomization ranges. While generalizable and interpretable, the upper bound
 2386 of SysID is restricted by the coverage of parameters to be identified. For a successful adaption,
 2387 the training environment should cover a wide distribution, which is typically achieved by DR. This
 2388 limits their effectiveness when the real-world dynamics cannot be covered by randomizing the sim-
 2389 ulated environment. With the potential of aligning all kinds of discrepancies, guiding the policy’s
 2390 transfer via modeling real-world dynamics has the highest upper capabilities, making it the focus
 2391 of our work. One approach is leveraging neural networks to perform system identification, learning
 2392 residual dynamics or representations (Shi et al., 2018; O’Connell et al., 2022), followed by develop-
 2393 ing a model-based controller (Fig. 2 (A)). For systems involving higher degrees of freedom (DoFs)
 2394 and more complex dynamics, learning a comprehensive dynamics model that supports controller
 2395 optimization is difficult. An alternative strategy is bridging the gap between an existing simulator
 2396 and the real world by learning a delta function (He et al., 2025; Fey et al., 2025), followed by policy
 2397 finetuning to bridge the gap (Fig. 2 (B)).
 2398

2399 However, directly extending those approaches to dexterous manipulation, with rich, rapidly varying
 2400 contacts on moving objects, cannot work. The primary challenge lies in collecting high-quality real
 2401 world transition data that can cover the vast task distribution, thereby reflecting dynamics during the
 2402 task execution. This is achieved by replaying waveforms (e.g., sine) or rolling out policies—none can
 2403 work in our setting.

2404 Wave-based collection is untenable: manipulated objects enlarge the transition space and impose
 2405 time-varying loads, yielding dynamics unlike the no-object regime (see Appendix A.3). Because
 2406 parameterized waves cannot reliably manipulate an object in air, they must be run without it, of-
 2407 fering poor coverage of in-hand dynamics. On-policy rollouts across diverse objects are costly and
 2408 unscalable—requiring frequent human resets (placing the object back in hand), biasing data toward
 2409 easy objects, confining coverage to the policy rollout distribution, and suffering from low quality
 2410 (imperfect policy).

2411 Extending their methods to manipulation also necessitates modeling the interaction dynamics, which
 2412 inevitably involves modeling the object. There are two approaches to model the object: 1) Explicitly
 2413 including the object in the dynamics system. Achieving this requires collecting real-world transition
 2414 trajectories with object state annotations. However, obtaining object states (e.g., using vision-based
 2415 pose trackers like FoundationPose (Wen et al., 2023))) is difficult and impossible for some cases.
 2416 For instance, FoundationPose (Wen et al., 2023)) are unreliable for axis-symmetric, tiny, and oc-
 2417 cluded objects (see Sec. B.4). Besides, the object pose tracking results are noisy. It is also very
 2418 time-consuming, requiring extra time to launch and frequent human interventions. Using the small,
 2419 noisy dataset cannot even make the first stage, compensator training, successful. Another strategy
 2420 is modeling the object as a time-varying disturbance. This requires us to a) collect transition data
 2421 with the object loads; b) manage to simulate the object’s influence to the hand in the simulator; and
 2422 c) train the compensator to track the hand state only. However, it is almost impossible, as repro-
 2423 ducing its influence would require near-perfect alignment of geometry, initialization, and contact
 2424 evolution—unrealistic under mismatched dynamics.

2425 **What data can we use to train ASAP and UAN in dexterous manipulation?** We discuss three
 2426 options: (1) transitions with object-state annotations—possible in principle but impractical, as object
 2427 states are hard and noisy to obtain and, in our tests, such small and noisy data fail to train their
 2428 compensator; (2) our autonomously collected trajectories with randomized object loads—unsuitable
 2429 because replicating the influence of such object loads to the hand in the simulator is infeasible;
 2430 (3) free-hand data—the only practical choice, on which we train their compensator to close the
 2431 dynamics gap in the free hand scenario. Hence, we use free hand transitions when comparing with
 2432 their methods.

2430 **E LLMs USAGE DISCLOSURE**
24312432 We use LLMs to aid and polish writing. Details are described as follows:
24332434

- 2435 • Polish sentence or paragraph to correct grammatical errors, improve the writing, and make
2436 statements more concise. Typically, we will give the LLM a sentence with the instruction
2437 like “Help me polish this and make it more concise: [sentence to polish]”.
- 2438 • Refine theorems and proofs to improve rigor and professionalism. After writing each the-
2439 orem and its proof, we iterate with an LLM to identify potential logical gaps and revise
2440 accordingly—for example, by adding missing assumptions or clarifying intermediate steps.
2441 We also ask the model to assess the proof’s soundness, offer suggestions, based on which
2442 we will revise the proof. Finally, we use it to make the statements’ wording more precise
2443 and professional.

2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

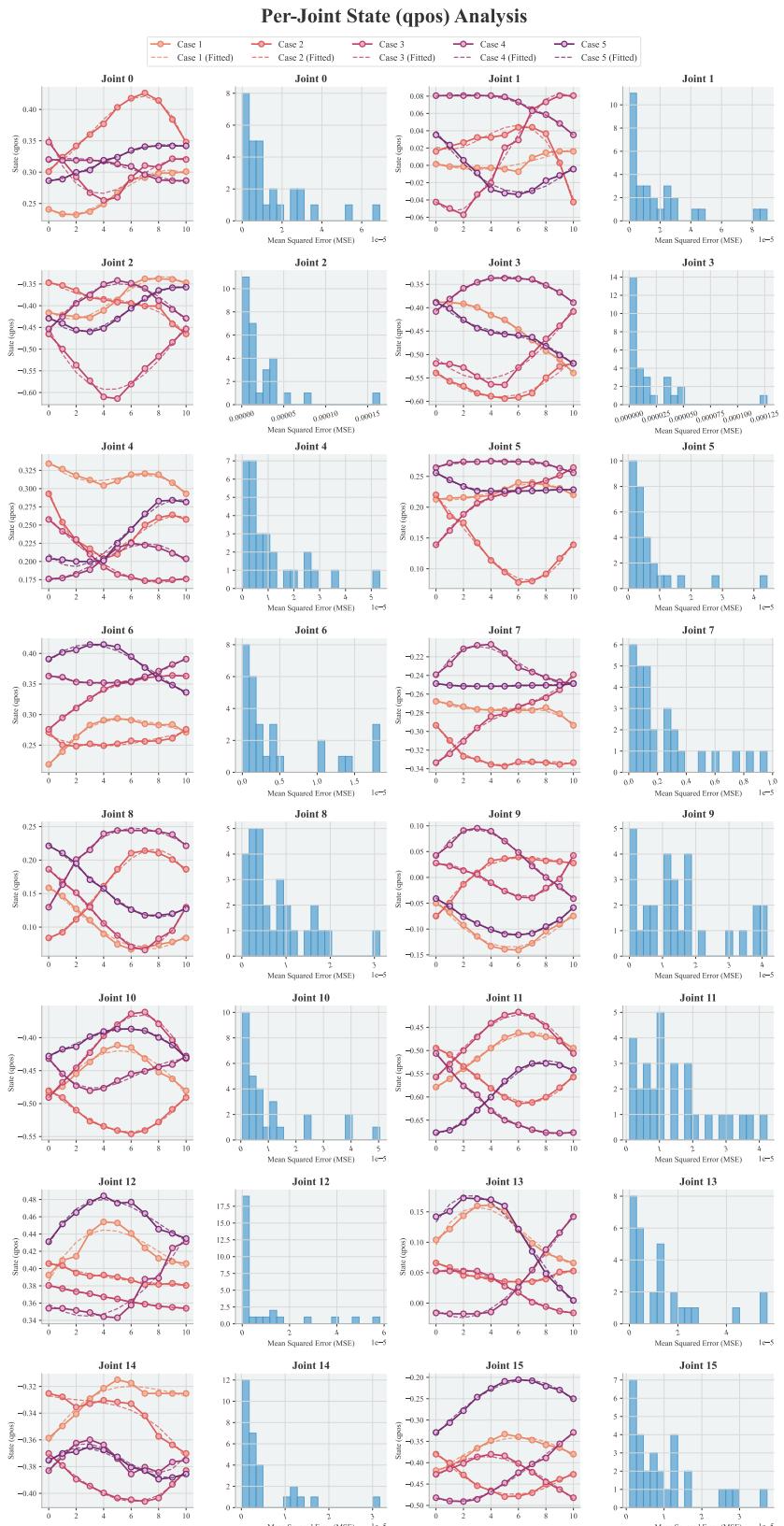


Figure 41: Polynomial Fitting (order = 3) and Error Distribution of Per-Joint State Sequences (window length = 10). In each group with two subfigures, the left one draws the original data sequence and the fitted sequence using a 3-ordered polynomial function while the right one shows the fitting error distribution.

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

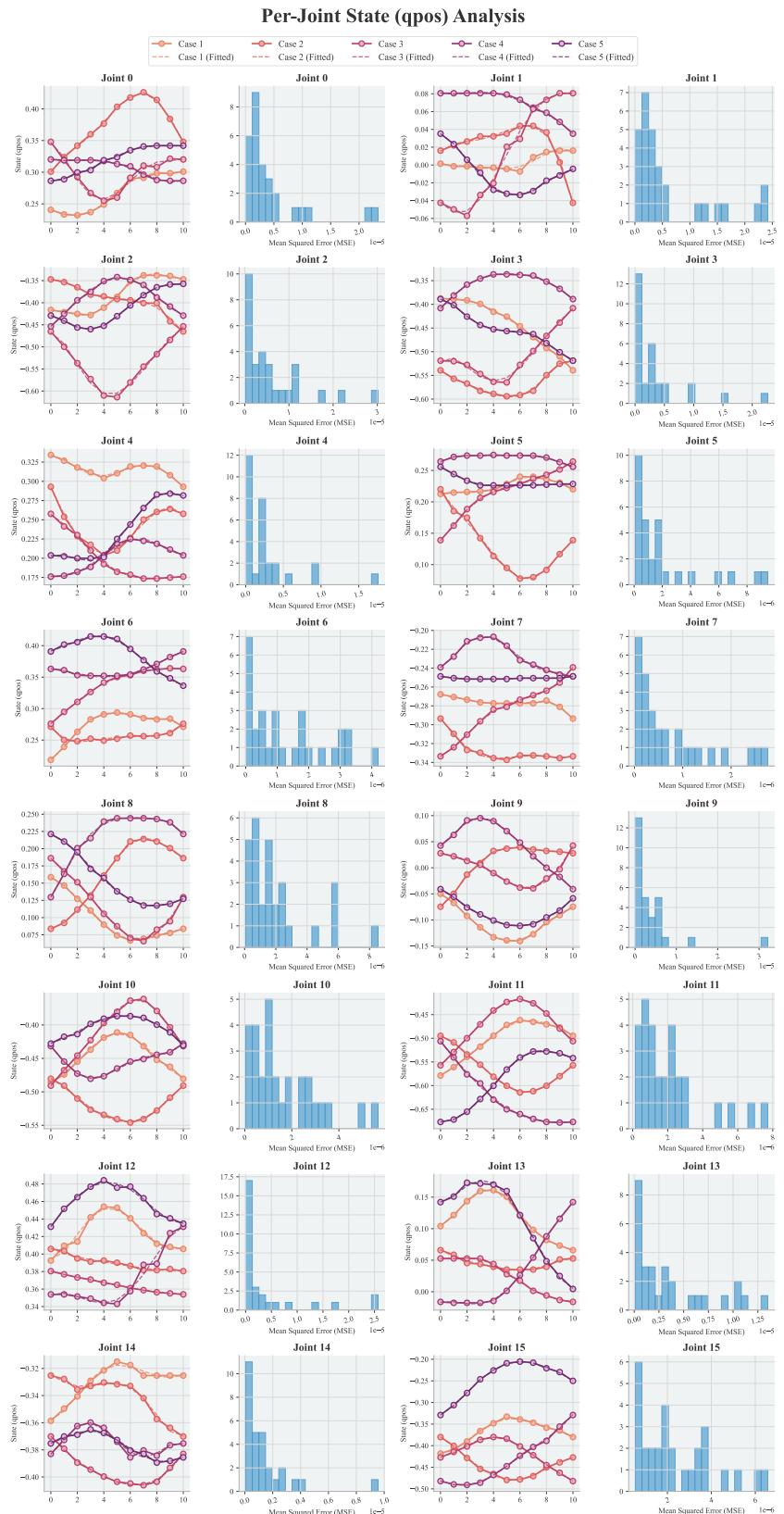


Figure 42: Polynomial Fitting (order = 5) and Error Distribution of Per-Joint State Sequences (window length = 10). In each group with two subfigures, the left one draws the original data sequence and the fitted sequence using a 5-ordered polynomial function while the right one shows the fitting error distribution.

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

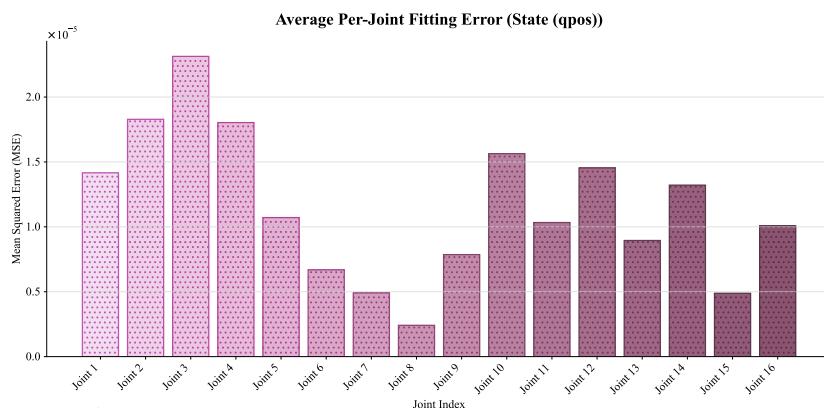


Figure 43: Per-Joint Average Polynomial Fitting (order = 3) Error.

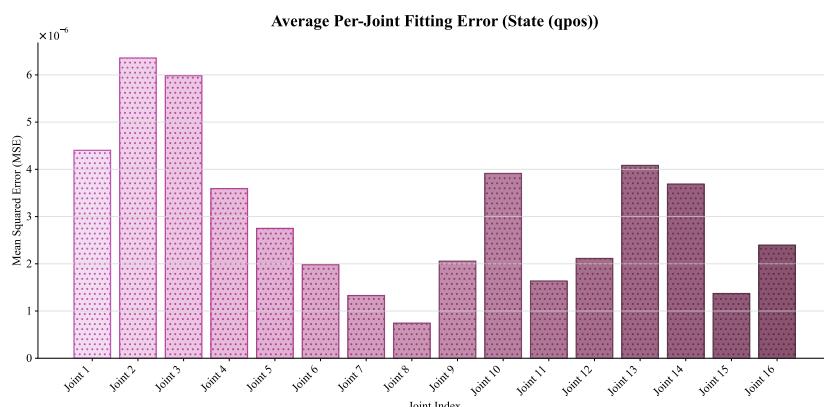


Figure 44: Per-Joint Average Polynomial Fitting (order = 5) Error.

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

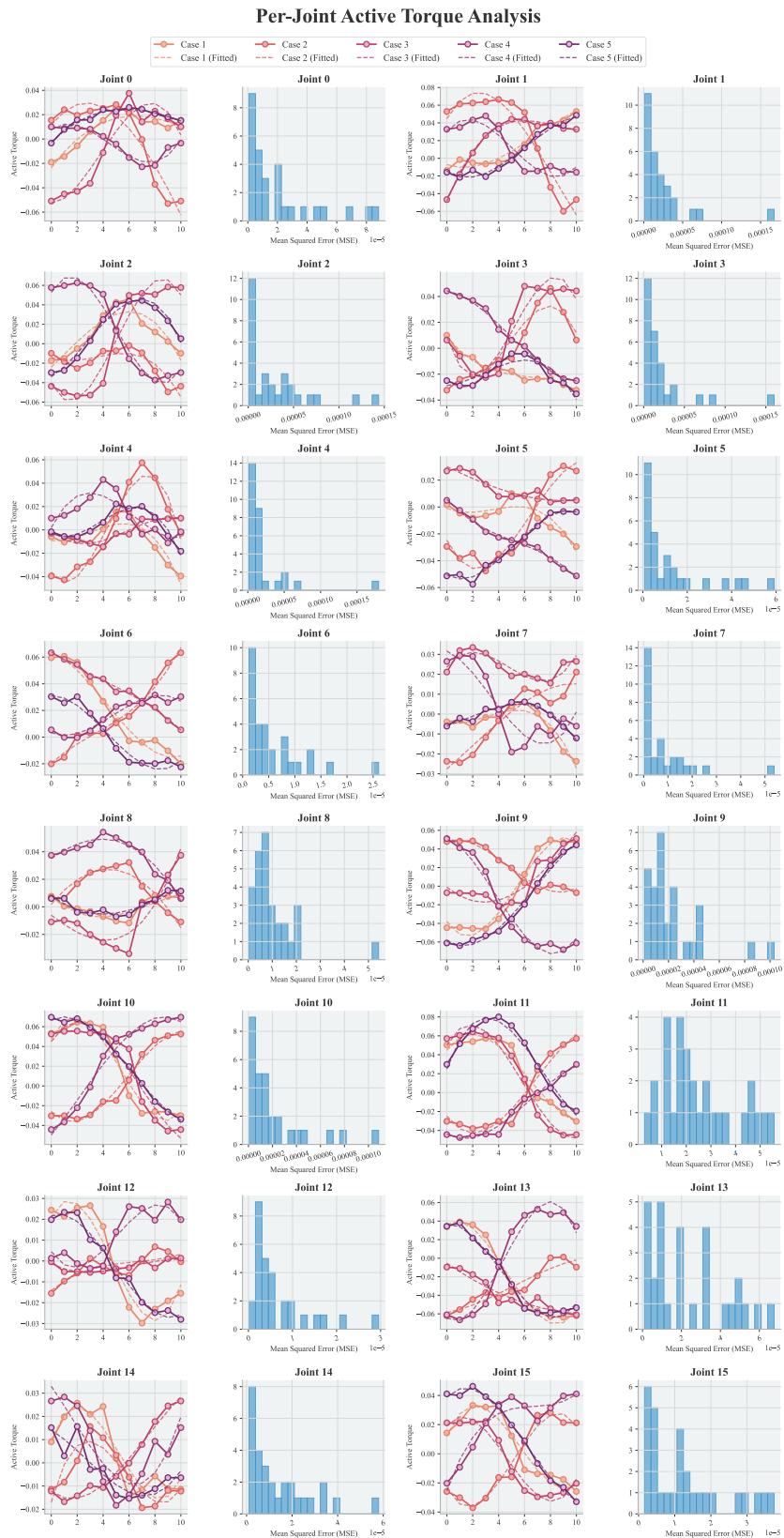
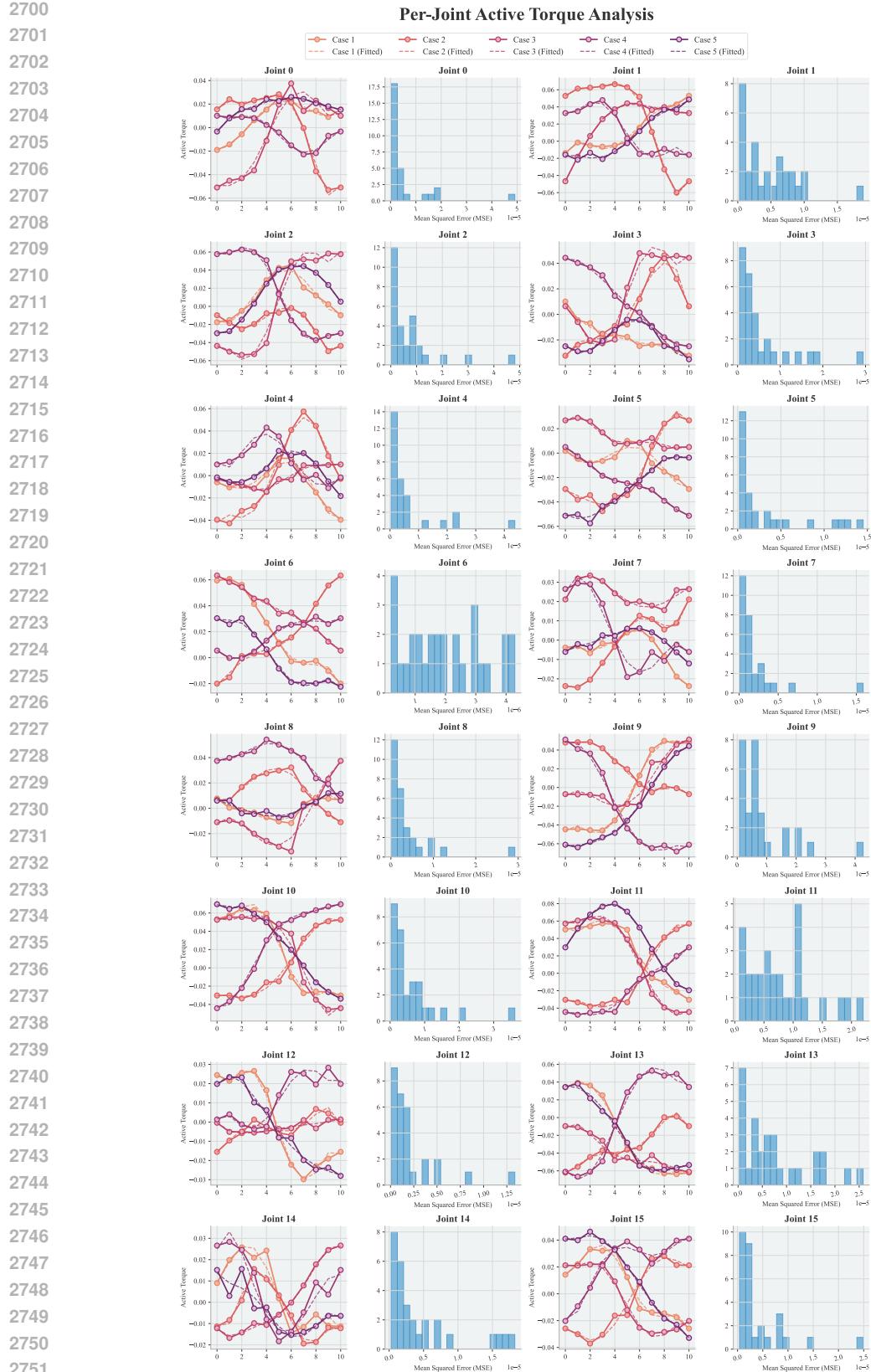


Figure 45: Polynomial Fitting (order = 3) and Error Distribution of Per-Joint Active Force Sequences (window length = 10). In each group with two subfigures, the left one draws the original data sequence and the fitted sequence using a 3-ordered polynomial function while the right one shows the fitting error distribution.



2752 **Figure 46: Polynomial Fitting (order = 5) and Error Distribution of Per-Joint Active Force Sequences**
2753 **(window length = 10).** In each group with two subfigures, the left one draws the original data sequence and the
fitted sequence using a 5-ordered polynomial function while the right one shows the fitting error distribution.

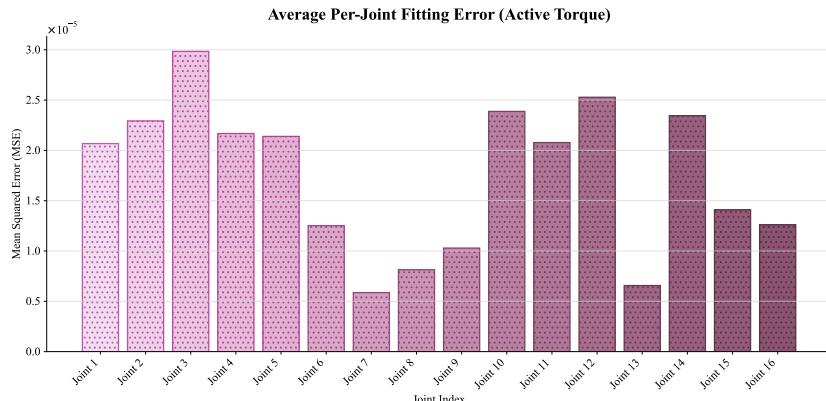


Figure 47: Per-Joint Average Polynomial Fitting (order = 3) Error.

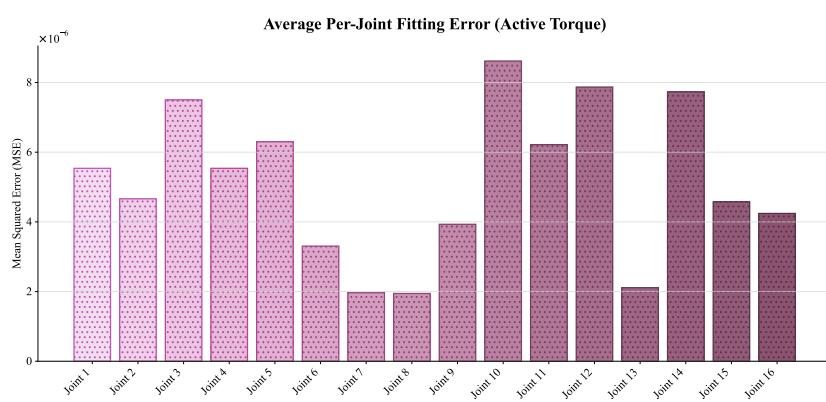


Figure 48: Per-Joint Average Polynomial Fitting (order = 5) Error.

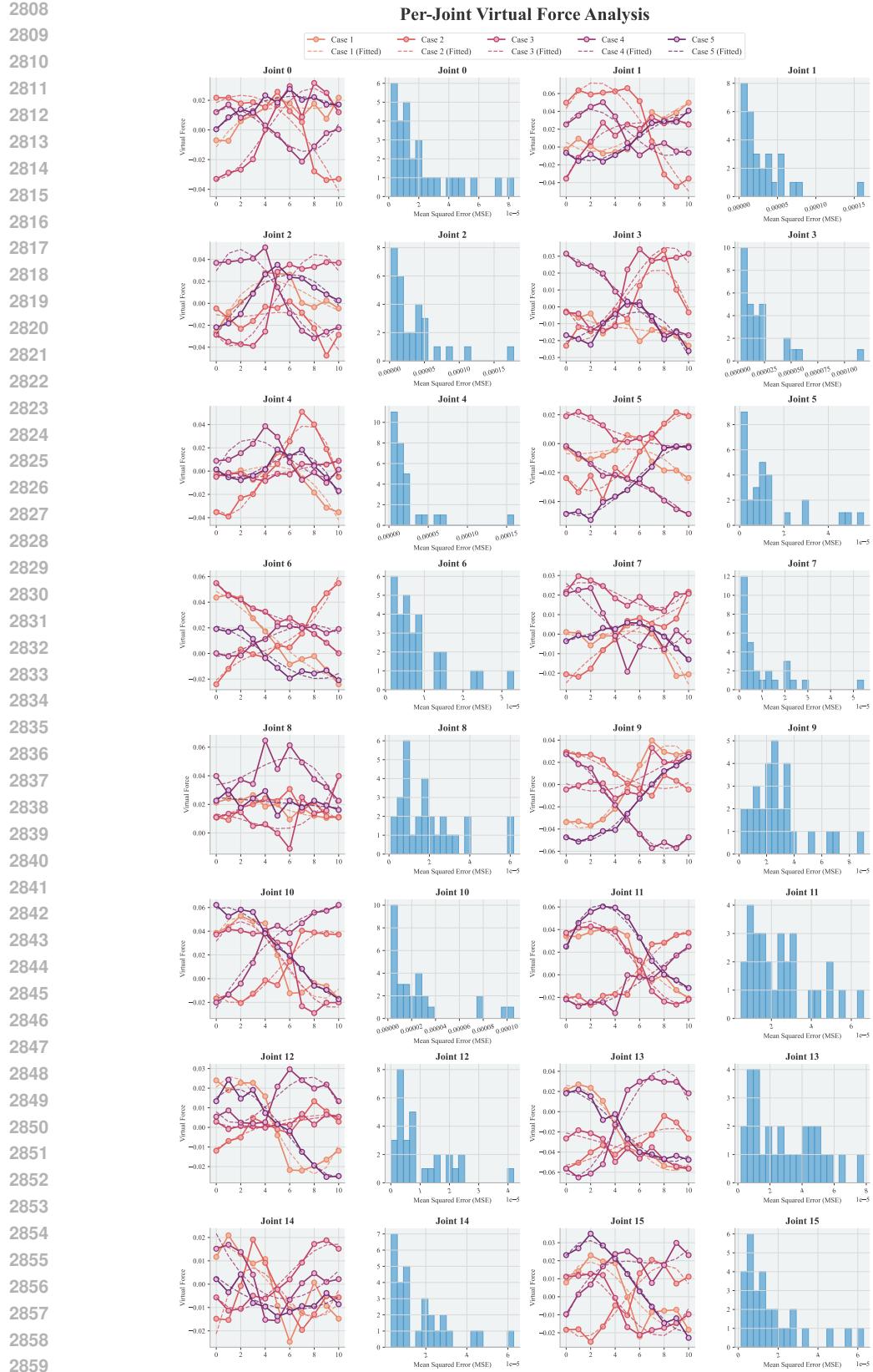


Figure 49: **Polynomial Fitting (order = 3) and Error Distribution of Per-Joint Virtual Force Sequences (window length = 10).** In each group with two subfigures, the left one draws the original data sequence and the fitted sequence using a three-order polynomial function while the right one shows the fitting error distribution.

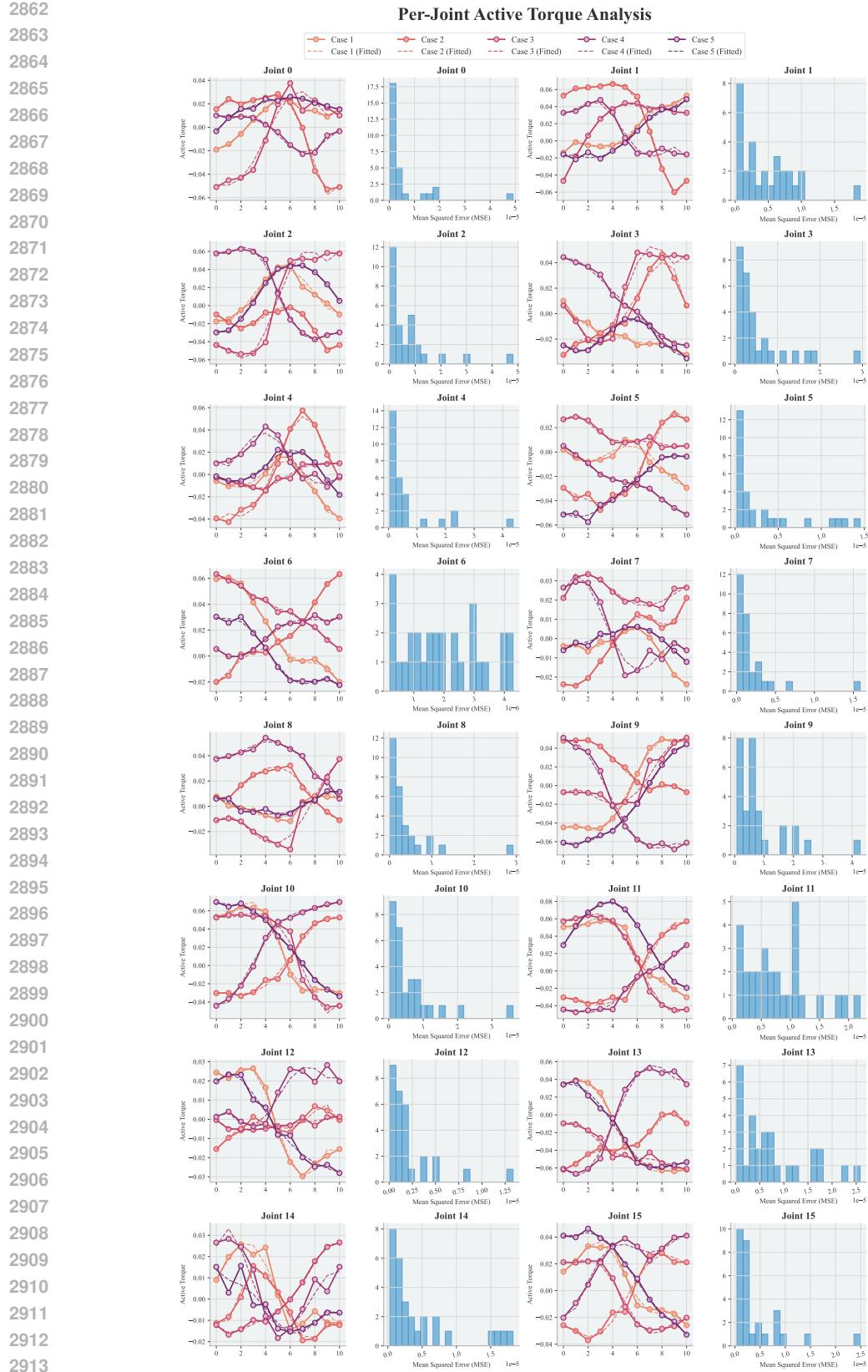


Figure 50: **Polynomial Fitting (order = 5) and Error Distribution of Per-Joint Virtual Force Sequences (window length = 10).** In each group with two subfigures, the left one draws the original data sequence and the fitted sequence using a five-order polynomial function, while the right one shows the fitting error distribution.

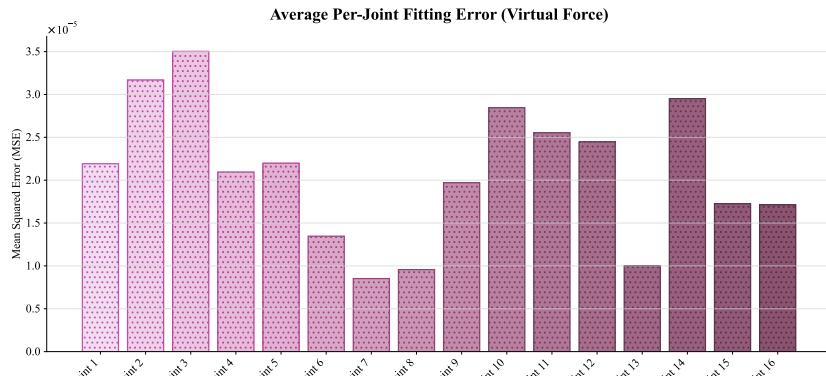


Figure 51: Per-Joint Average Polynomial Fitting (order = 3) Error.

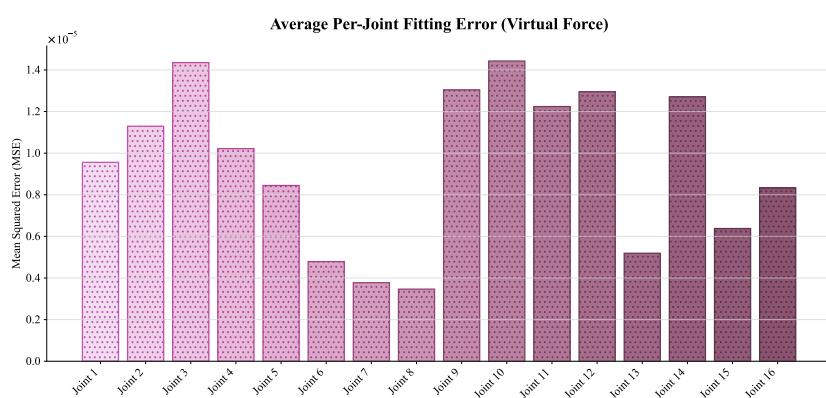


Figure 52: Per-Joint Average Polynomial Fitting (order = 5) Error.