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Figure 1: We introduce DexNDM, a sim-to-real approach that enables unprecedented in-hand rotation in
the real world. We master a wide object distribution, including (A) challenging geometries and (B) complex
shapes, across (C) rich wrist orientations. (D) A teleoperation application. Videos in website.

ABSTRACT

Achieving generalized in-hand object rotation remains a significant challenge in
robotics, largely due to the difficulty of transferring policies from simulation to the
real world. The complex, contact-rich dynamics of dexterous manipulation create
a “reality gap” that has limited prior work to constrained scenarios involving sim-
ple geometries, limited object sizes and aspect ratios, constrained wrist poses, or
customized hands. We address this sim-to-real challenge with a novel framework
that enables a single policy, trained in simulation, to generalize to a wide variety
of objects and conditions in the real world. The core of our method is a joint-
wise dynamics model that learns to bridge the reality gap by effectively fitting
limited amount of real-world collected data and then adapting the sim policy’s ac-
tions accordingly. The model is highly data-efficient and generalizable across dif-
ferent whole-hand interaction distributions by factorizing dynamics across joints,
compressing system-wide influences into low-dimensional variables, and learning
each joint’s evolution from its own dynamic profile, implicitly capturing these net
effects. We pair this with a fully autonomous data collection strategy that gathers
diverse, real-world interaction data with minimal human intervention. Our com-
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plete pipeline demonstrates unprecedented generality: a single policy successfully
rotates challenging objects with complex shapes (e.g., animals), high aspect ratios
(up to 5.33), and small sizes, all while handling diverse wrist orientations and ro-
tation axes. Comprehensive real-world evaluations and a teleoperation application
for complex tasks validate the effectiveness and robustness of our approach.

1 INTRODUCTION

Advancing dexterous manipulation is essential to achieving highly capable embodied intelligence.
A fundamental yet challenging skill in this domain is in-hand object rotation. The long-standing
goal, which we also pursue in this work, is to develop a general-purpose policy that can rotate a
broad distribution of objects across diverse wrist orientations and rotation axes in the real world.

Despite recent progress, the community has yet to achieve this level of generality. Existing meth-
ods (Chen et al., 2022; Yang et al., 2024; Qi et al., 2023; Wang et al., 2024; Zhao et al., 2025;
Yuan et al., 2023) are often constrained to specific scenarios: some assume a consistently up-facing
hand, others handle only a limited set of simple, regular-sized objects, and many rely on expen-
sive, customized hardware with sophisticated tactile sensing. While some approaches (Yang et al.,
2024) show generality in one dimension, such as rotation axes, they are limited in others, like object
complexity. To our knowledge, no prior work demonstrates robust, in-the-air rotation for a wide
spectrum of objects—including complex shapes, high aspect ratios, and varied sizes—under diverse
wrist orientations and rotation axes.

The primary barrier to this goal is the formidable “sim-to-real gap”, due to the difficulty in modeling
the complex interaction dynamics marked by rich, rapidly varying, and load-dependent contacts.
This undermines both model-based (Pang & Tedrake, 2021; Pang et al., 2023; Suh et al., 2025) and
model-free (Qi et al., 2023; Chen et al., 2022; Yang et al., 2024) approaches. A promising idea for
sim-to-real transfer is learning a neural dynamics model from real-world data (He et al., 2025; bin
Shi et al., 2024). This approach has proven effective in locomotion, where relatively easier fail-
ure recovery and readily observable states permit efficient collection of distributionally relevant task
data. This success, however, does not easily translate to general-purpose manipulation, where the re-
quirements for data volume and distributional relevance create an inescapable conflict. The need for
generality demands massive data to cover diverse objects. Yet, ensuring this data is distributionally
relevant is sometimes impossible and operationally far more complex: suboptimal deployable policy
cannot manipulate hard objects (e.g., long); catastrophic failures (i.e., dropping the object) necessi-
tates frequent human intervention for resets; severe hand-induced occlusions complicate accurately
tracking states of diverse objects. This conflict creates a critical bottleneck for the field.

To overcome these challenges, we introduce a framework that breaks this inescapable conflict by
fundamentally rethinking both the model and the data. Our central insight is to factorize the learn-
ing problem through a more generalizable dynamics model, which in turn enables a more scalable
data collection strategy. First, instead of modeling the high-dimensional hand-object system as a
whole (bin Shi et al., 2024), we learn a joint-wise neural dynamics model. This model factorizes the
system and predicts the evolution of each joint using only its own proprioceptive history, generaliz-
ing the idea of RMA (Kumar et al., 2021). This design directly confronts the challenges: it is inher-
ently immune to object state estimation difficulty, and by distilling system-wide influences—self-
actuation, inter-joint couplings and object loads—into low-dimensional and task-sufficient net ef-
fects with reduced nuisance variability, the model becomes highly sample-efficient and generaliz-
able without sacrificing expressivity as evidenced by experiments. This enhanced generalizability
is the key that unlocks our second innovation: a fully autonomous data collection strategy. By ap-
plying randomized loads to the hand in a task-agnostic manner, we gather data while eliminating
catastrophic failures and the need for human resets. This allows us to learn a dynamics model gener-
alizing well to our task of interest from cheap and scalable data, which we then use to train a residual
policy that adapts a simulation-trained base policy to the real world, achieving broad generality. We
attain the base policy via a specialist-to-generalist pipeline: train category-specific experts on data
spanning aspect ratios and geometric complexities, then distill them into a unified policy.

We validate our method in both the simulation and the real world. In simulation, our base policy gen-
eralizes to novel, complex shapes, outperforming strong baselines by 37%–81%. In real world, our
sim-to-real method significantly and consistently improves rotation performance, enabling versatile
rotation across diverse wrist orientations and rotation axes on a broad object distribution—including
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Figure 2: Learning from Real-World Data for Control. (A) Learn a whole-body dynamics model from
real-world data for policy tuning or model-based control. (B) Learn a residual action model to finetune a base
policy. (C) Learn joint-wise dynamics and a residual policy to adapt the base policy.
complex geometries (e.g., animal models), aspect ratios up to 5.33, and object-to-hand ratios of
0.31–1.68 (Fig. 1; videos on our website). Notably, in a challenging downward-facing hand con-
figuration, we are, to our knowledge, the first to rotate long objects (10–16 cm) around their long
axis for about one full circle in the air. Compared to Visual Dexterity (Chen et al., 2022) on a large,
customized D’Claw, our smaller LEAP hand matches or surpasses performance and succeeds on
shapes it struggles with (e.g., elephant, bunny, teapot). We also generalize to a much broader, more
challenging object distribution than the prior multi-wrist SOTA (Yang et al., 2024). Moreover, we
showcase an application enabled by our general rotation policy: building a teleoperation system to
perform complex dexterous tasks, such as tool-using (e.g., screwdriver, knife) and assembly (Heo
et al., 2023). A systematic ablation study validates the crucial role of our key design choices in both
the dynamics model and the data collection strategy. Our main contributions are four-fold:

• A novel sim-to-real framework for dexterous in-hand rotation, built on a joint-wise neural dy-
namics model and autonomous data collection to tackle the core challenges of learning complex
interaction dynamics and acquiring real-world interaction data.

• An in-hand object rotation policy that achieves unprecedented generality in rotating challenging
objects (high-aspect-ratio, complex shapes, small sizes) under difficult wrist orientations.

• An in-depth analysis of the rationale, advantages, and scope of effectiveness of the joint-wise
neural dynamics model from both theoretical and empirical perspectives.

• A demonstration of a practical application in teleoperation for complex dexterous tasks.

2 RELATED WORK
Our work is broadly related to two research topics: in-hand object rotation and sim-to-real strate-
gies. In-hand rotation is an important yet challenging robitc task. Despite advances, prior methods
still (i) assume an up-facing hand (Qi et al., 2022; Wang et al., 2024; Yuan et al., 2023; Zhao et al.,
2025), (ii) handle only normal-sized objects with limited geometric diversity (Qi et al., 2023; Röstel
et al., 2025; Pitz et al., 2024a;b; Yang et al., 2024), or (iii) rely on expensive hardware and sophisti-
cated tactile sensing (Yang et al., 2024; Wang et al., 2024; Qi et al., 2023). AnyRotate (Yang et al.,
2024) achieves axis and wrist generality, but only on normal-sized regular objects in the real world.
Visual Dexterity (Chen et al., 2022) rotates complex shapes in the air, yet performance on small
or high-aspect-ratio objects is unverified. DexterityGen (Yin et al., 2025) showcases a meaningful
application of in-hand reorientation policies in teleoperation, but its rotation capability does not ex-
ceed the upper bound of prior work. We aim to achieve generality in rotating challenging (e.g., long,
small) and complex objects across diverse wrist orientations and rotation axes. A central obstacle to
realizing this is the sim-to-real gap: mismatched parameters, model discrepancies, and unmodeled
effects derail transfer of simulation-trained policies. Existing approaches include: (1) Domain Ran-
domization (DR), which broadens training distributions (Loquercio et al., 2019; Peng et al., 2017;
Tan et al., 2018; Yu et al., 2019; Mozifian et al., 2019; Siekmann et al., 2020); (2) System Identifi-
cation (SysID), which fits simulator parameters from real data (An et al., 1985; Mayeda et al., 1988;
Lee et al., 2023; Sobanbabu et al., 2025); (3) online adaptive policies (Kumar et al., 2021; Qi et al.,
2022); and (4) neural modeling of real dynamics to guide transfer (He et al., 2025; Fey et al., 2025;
Hwangbo et al., 2019). DR relies on heuristic ranges; SysID is bounded by its parameterization;
and online adaptation typically depends on dynamics coverage in training. Learning real dynam-
ics offers the highest ceiling: A classical line in neural control learns residual or full models for
the whole system for model-based control (Fig. 2 (A), e.g., Neural Lander (Shi et al., 2018), MB-
Max (bin Shi et al., 2024)). As the task complexity increases, learning globally accurate, physically
plausible dynamics that is super robust to support policy tuning or controller development is diffi-
cult (Shi, 2025). Therefore, another trend of methods proposed in sim-to-real RL (e.g., UAN (Fey
et al., 2025) and ASAP (He et al., 2025)) learn sim-real delta actions and fine-tune policies based on
that to bridge the dynamics gap (Fig. 2 (B)). Success hinges on collecting enough real-world data
that is distributionally relevant to the task or can offer a comprehensive coverage—a minor issue in
locomotion and static-contact tasks, but a major bottleneck in dexterous manipulation. We address
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this with a generalizable joint-wise neural dynamics model that relaxes the training data distribution
requirement, followed by a residual policy to bridge the reality gap (Fig. 2 (C)).

3 METHODOLOGY

𝐨! i-th Category-
Specific Specialist 𝐚!

Rollout
in Sim

Trajectory
Dataset

𝐪!"#$%,	𝐚!"#
𝐪!,	𝐚!"%
… Generalist

Policy 𝐚$!
ℒ!" = 𝐚# − 𝐚%# $

𝐚!
Real Replay
Dataset𝐪!$%(

Joint-Wise
Neural
Dynamics

𝐪!")$%,	( 𝐚!")$%

𝐪!,	( 𝐚!
… 𝐪%!$%

𝐪!"#$%,	𝐚!"#
𝐪!,	𝐚!"% Residual

Policy
𝐚!*+,

𝐪!")$%,	𝐚!")$%
+ 𝐚!")$%*+,

𝐪!,	𝐚! + 𝐚!*+,
…

Joint-Wise
Neural
Dynamics

𝐪'!$%

ℒ%&' = 𝐪#() − 𝐪'#() $

(A) Oracle Policy Training
in Sim via RL

(B) Generalist Policy Training via BC

(C) Autonomous Real Data Collection (D) Real-World Dynamics Model Training

(E) Residual Policy Training

i = 1

#Obj Categories

“Chaos Box”

soft
balls

ℒ*+, = 𝐪(#() − 𝐪#()%
$

wrist pose, rot axis

…

wrist pose, rot axis
𝐚!

Figure 3: Method Overview. (A) RL-train object category-specific rotation specialists. (B) Distill them into a
single generalist via BC. (C-E) Neural sim-to-real: autonomously collect real-world transitions with stochastic
contact conditions (C), learn a joint-wise neural dynamics model (D), and train a residual to bridge the reality
gap (E). Deploy the base generalist (B) augmented with the residual (E).

Our goal is a generalist policy that can rotate a wide variety of objects under various conditions in the
real world. We adopt a model-free RL approach. Key challenges are the pronounced sim-to-real dy-
namics gap in contact-rich dexterous manipulation and the need for broad object generalization. To
achieve broad generalization, we adopt a specialist-to-generalist approach: we first train category-
specific oracle policies across curated object categories (Sec. 3.1), and then distill them into a single
generalist policy (Sec. 3.2). We address the sim-to-real challenge via a neural sim-to-real strategy
centered on an expressive, data-efficient, and generalizable joint-wise dynamics model (Sec. 3.3).
This model can generalize to the target rotation task by training on imperfectly aligned data, en-
abling a fully autonomous data-collection system in which real-world interaction data is gathered
by applying stochastic contacts to the robotic hand. With the neural dynamics model learned from
this autonomously collected data, we train a residual policy that compensates for the base generalist
policy’s actions to close the sim-to-real dynamics gap. Workflow illustrated in Figure 3.

3.1 MULTI-WRIST-ORIENTATION IN-HAND OBJECT ROTATION ACROSS MULTI-AXIS

We formulate in-hand rotation as a finite-horizon Partially Observable Markov Decision Process
(POMDP), M = (S,A,O,P,R), with state, action, and observation spaces (S,A,O), transition
dynamics P , and reward R. We train a neural policy π : O → A with RL to maximize expected
cumulative return over horizon N : π∗ = argmaxπ Eτ∼pπ(τ)[

∑N
t=1 r(st,at)].

Observations and Actions. At timestep t, the policy receives ot: a short history of proprioception,
fingertip and object states, per-joint/per-finger force measurements, binary contact signals, wrist
orientation, and the target rotation axis (Sec. A.1). The policy outputs a distribution over relative
target position. We sample ∆at ∼ π(ot) and update the joint target at = at−1 + α∆at with
α = 1/24. at is converted to torques via a PD controller and executed on the robot.
Reward Function. The reward consists of three weighted components r = αrotrrot + αgoalrgoal +
αpenaltyrpenalty, with rrot and rpenalty following RotateIt (Qi et al., 2023). The rotation term rrot en-
courages rotation about the target axis. The penalty rpenalty discourages off-axis angular velocity,
deviation from a canonical hand pose, object linear velocity, and joint work/torque. Since these
rewards alone struggle on hard cases (e.g., rotating long objects), we add an intermediate goal-pose
reward, rgoal, that guides the object to a waypoint on the target rotation axis. Details in Sec. A.1

3.2 GENERALIST POLICY TRAINING VIA BEHAVIOUR CLONING

Having obtained the oracle policy with rich privileged observations for each object category, we
use Behavior Cloning (BC) to train the unified, real-world deployable, multi-geometry generalist
policy. Although DAgger-style distillation has been effective in prior work, in our early experiments
on deploying single-object-category, downward-facing hand rotation policies, we observe that they
either fail to optimize in simulation or collapse in the real world. We attribute this to high task diffi-
culty. We therefore switched to BC and discovered that the resulting proprioception-only specialist
policy behaves more stably than the DAgger policy and can rotate simple cylinder objects. We
continue to use BC to train the generalist, real-world deployable policy: roll out all oracle policies,
aggregate only successful trajectories, and train a generalist via supervised learning. This approach
works well on hardware. We hypothesize that its success stems from imitating only high-quality
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oracle behavior. The observation ogene
t of the generalist policy contains a history of proprioception

{(qk,ak−1)}tk=t−T+1, wrist orientation and rotation axis. We use T = 10 and implement the policy
as a residual MLP (He et al., 2015).

3.3 CLOSING THE REALITY GAP VIA JOINT-WISE NEURAL DYNAMICS

While the generalist policy is already real-world deployable, a persistent sim-to-real gap—caused
by mismatched physical dynamics and unmodeled effects—prevents it from mastering challenging
object interactions. We bridge this gap with a novel neural sim-to-real strategy that effectively learns
complex, real-world dynamics model.
The central challenge is to acquire useful and sufficient volume of real data so that the learned
dynamics model can help sim-to-real transfer. For dexterous manipulation, prior data acquisition
methods (Hwangbo et al., 2019; He et al., 2025; Fey et al., 2025; bin Shi et al., 2024) are often
impractical. Rolling out a base policy (He et al., 2025; bin Shi et al., 2024) or executing wave
actions (Fey et al., 2025) frequently fails on diverse and complex objects, requiring constant human
intervention, while imperfect state estimators introduce heavy noise. This leads to real datasets
that are small, biased, and insufficient in coverage and quality. We address these challenges by
rethinking both model and data. We propose a joint-wise neural dynamics model that dramatically
improves sample efficiency and generalizability while preserving expressivity by learning from a
low-dimensional, information-contractive, task-sufficient representation of the system dynamics.
This allows for an autonomous data collection strategy that gathers diverse, large-scale real-world
data by applying stochastic contact, eliminating the need for task-specific rollouts and human resets.

Joint-Wise Neural Dynamics. To model the system’s dynamics without relying on noisy and lim-
ited object-state estimation, one way is to learn a “whole-hand” neural model. This model pre-
dicts the hand’s next state from its length-W state–action history, qt+1 = fθ(Ht) with Ht =
{qj ,aj}tj=t−W+1, thereby implicitly capturing the whole system dynamics, including external
forces from the object (Qi et al., 2022). However, this approach remains data-hungry, inheriting
the other data acquisition challenges described above.

Our solution is to factorize the problem. We introduce joint-wise neural dynamics where the dynam-
ics of each joint i are modeled as Heff

t q̈it + Geff
t = τ it , where Heff

t ,Geff
t ∈ R are low-dimensional

effective terms that distill high-dimensional, system-wide influences such as inter-joint coupling,
actuation, and object-induced effects. The neural model then predicts the next state of each joint i
from its own W -step state–action history: qit+1 = fψi

(hit) with hit = {qij ,aij}tj=t−W+1. This fac-
torization is effective as it acts as an information bottleneck, forcing the model to discard spurious
correlations and learn only the essential dynamics of each joint. This projected history is sufficiently
informative with enough information to accurately predict the joint’s next state (Sec. 4.2, A.3). At
the same time, it is also robustly simple as it is too low-dimensional to permit the reconstruction
of the original high-dimensional system-wide influences, thus avoiding the need to model irrelevant
complexity (Sec. A.4). The direct consequence is a model that is highly sample-efficient and gener-
alizes broadly across interactions, yet retains expressivity (Sec. 4.2). We now provide a theoretical
analysis to formalize why this simplification leads to better generalization.

Theoretical Rationale: Generalization via Information Contraction. We write the whole-hand
model as fθ = {f iθ} with qit+1 = f iθ(Ht), and the joint-wise model as qit+1 = f iψi

(hit). Let P
be the target distribution for (Ht,q

i
t+1) (e.g., formed by task of our interest); consider a different

distribution Q and the projection g : (Ht,q
i
t+1) 7→ (hit,q

i
t+1), i.e., g : R2Wd × R → R2W × R.

We compare the prediction error of joint i on the target distribution P achieved by these two types
of model, i.e., f iθ and f iψi

, to support the generalization benefit:

Claim 3.1 Under assumptions typical of our setting, ∀1 ≤ i ≤ d, the joint-wise model f iψi
trained

on g(Q) generalizes to g(P) better than the whole-hand model f iθ trained on Q generalizes to P .

We first show that, under mild assumptions typically satisfied in our setting, the projection g con-
tracts distribution shift: KL(g(P)∥g(Q)) < KL(P∥Q) (Theorem 3.1, proof deferred to Sec. A.2).

Theorem 3.1 (Data Processing Inequality for KL (strict form)) Let P and Q be probability dis-
tributions on Rn × R with densities P and Q with respect to a common base measure. Let
g : X ∈ Rn × R → Y ∈ Rm × R be measurable, m ≤ n, and denote the pushforwards by
g(P) and g(Q). Then KL(P ∥Q) ≥ KL

(
g(P) ∥ g(Q)

)
. Moreover, the inequality is strict if g is

non-injective in a way that merges points where P and Q have a different relative structure. More
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concretely, it indicates that if there ∃y0 ∈ Rm, P (Y = y0) > 0, P (X|Y = y0) ̸= Q(X|Y = y0),
then KL(P ∥Q) > KL

(
g(P) ∥ g(Q)

)
.

The contraction of divergence implies tighter generalization guarantees (Theorem 3.2, proof in A.2):
Theorem 3.2 (Generalization Gap Contraction) Let (X,Y ) ∈ Rn × R and g(X,Y ) =
(gX(X), Y ) with gX : Rn → Rm, m < n. Let P,Q be distributions on (X,Y ) satisfy-
ing covariate shift, i.e., P(Y | X) = Q(Y | X). Let L be a loss bounded by B, and de-
fine RP(h) = E(X,Y )∼P [L(h(X), Y )]. If KL

(
g(P)∥g(Q)

)
< KL(P∥Q), then for function

f1 : X → Y and f2 : gX(X) → Y : sup|RP(f2 ◦ gX)−RQ(f2 ◦ gX)| < sup|RP(f1)−RQ(f1)|.

Assuming f2 ◦ gX is sufficiently expressive and a relatively large domain shift from Q to P (typical
of our setting), f2◦gX has lower prediction error than f1 on target domain P , establishing Claim 3.1.
See Sec. A.2 for details. In practice, we pretrain the model on simulation data for initialization.

(A) Single Joint (B) Whole Hand

t-SNE Visualization

Separate Scatter Plots

Task-Relevant Trajectories Autonomously Collected Trajectories

Separate Scatter Plots

Figure 4: State-Action History Distribution.

Autonomous Data Collection. Our model’s
ability to generalize from distributionally dif-
ferent data motivates our second innovation:
a low-cost, autonomous data collection strat-
egy. This approach, which we call the “Chaos
Box” (Fig. 3(C)), embodies four principles: (i)
policy-awareness (to roughly align the distribu-
tion), (ii) object-loaded interaction, (iii) broad coverage, and (iv) scalability. The implementation
is simple: the robotic hand is placed in a container of soft balls. We then open-loop replay actions
from the simulated base policy, which provides a coarse distributional prior (i). The hand’s interac-
tion with the balls imposes rich, stochastic contacts (ii-iii). With probability 0.5, we add Gaussian
noise (σ=0.01) to each action to broaden coverage (iii). This entire process is fully autonomous,
hardware-safe, and requires no human resets (iv). Fig. 4 supports our model and data designs: I/O
histories of a joint cover the task-relevant distribution, whereas histories of the whole hand do not.

Bridging the Dynamics Gap via a Residual Policy. Using the learned dynamics fψ , we
train a residual policy πres that compensates the base policy’s actions to bridge the dynam-
ics gap (Fig. 3(E)). By adding a corrective term to the base action, it wishes that the result-
ing state transition of the interaction system in the real world closely matches what would oc-
cur in simulation. Concretely, given the base policy’s observation ogene

t and base action at,
πres outputs a correction arest , and to match the simulator’s next state qt+1, we solve πres∗ =

argminπres Eτ∼pπ∗ (τ)

∑N−1
t=1

∥∥qt+1 − fψ
(
{qj , aj + πres(ogene

j ,aj)}tj=t−W+1

)∥∥ . We solve it by
training πres in a supervised manner on the trajectory dataset used to train the base policy. At de-
ployment, we execute at + arest . We opt not to use fψ for policy training or finetuning the policy
directly, which would require globally accurate, penetration-free, contact-rich dynamics (including
the object) and super robustness to out-of-distribution exploration (Shi, 2025). See Sec. B.4 for a
discussion on residual policy vs. direct finetuning.

4 EXPERIMENTS

We extensively evaluate our method in simulation and real world against strong baselines (Sec. 4.1).
In simulation, our generalist policy generalizes to unseen geometries for multi-wrist poses, multi-
axis rotation. On hardware, it achieves unprecedented in-air rotation with a LEAP hand (Shaw et al.,
2023) under challenging wrist poses on difficult objects, including long (13.5-20cm), small (2-3cm)
objects, and complex animal shapes (Sec. 4.2). We also show a teleoperation setup that pairs the
policy with VR to perform complex dexterous tasks (Sec. 4.2), such as tool-using and assembly.

4.1 EXPERIMENTAL SETTINGS

Training and Evaluation Protocols. We create an object dataset spanning aspect ratios, sizes, and
complexity with randomized physical properties for training. We split objects into five categories
and train an oracle policy for each with PPO (Schulman et al., 2017) in Isaac Gym (Makoviychuk
et al., 2021). We use objects from ContactDB (Brahmbhatt et al., 2019) as the test set in simulation to
evaluate the generalization ability to shape variations. We evaluate rotation across randomized wrist
orientations and four rotation-axis groups: ±x, ±y, ±z, and a general axis set with 26 axes. We
evaluate on three object sets in the real world (Fig. 5): (1) regular objects (including a high-aspect-
ratio cuboid); (2) small objects; and (3) normal-sized irregular objects. Objects shown in purple
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and all small objects are unseen. We evaluate on three principle axis sets and a cubic-diagonal set:
(1,1,1), (1,0,1), (1,1,0), (0,1,1). Results are averaged over objects and reported as mean ± standard
deviation across three independent evaluations. Details in Sec. C.

(A) Regular Objects (B) Small Objects

(C) Normal-Sized Irregular Objects

Figure 5: Objects for Real Experiment.

Baselines. We compare against in-hand rota-
tion/reorientation baselines—AnyRotate (Yang et al.,
2024) and Visual Dexterity (VD) (Chen et al.,
2022)—and sim-to-real methods UAN (Fey et al.,
2025) and ASAP (He et al., 2025). AnyRotate’s code is
unavailable and relies on specialized tactile sensing, so we use our re-implementation in simulation;
on hardware, we evaluate on their replicable objects and compare to their reported performance.
A direct comparison to VD is impractical: adapting their D’Claw code to LEAP failed to behave
well in simulation, so we compare to their qualitatively results (link). UAN and ASAP, designed for
arms/legged robots and not modeling objects, are adapted by training compensators on object-free
transitions; making them object-aware is nontrivial (see Sec. D).
Metrics. We evaluate using RotateIt metrics (Qi et al., 2023), plus a goal-oriented success: Time-
to-Fall (TTF)—duration until termination; in simulation, episodes are capped at 400 steps (20s)
and TTF is normalized by 20s, while in the real world we report raw time; Rotation Reward
(RotR)—episode sum of ω · k (simulation only); Rotation Penalty (RotP)—per-step average ω × k
(simulation only); Radians Rotated (Rot)—total radians rotated in the real world; Goal-Oriented
Success (GO Succ.) following Visual Dexterity: sample a goal pose; set the target axis to the rela-
tive rotation axis; count success if the orientation is within 0.1π of the goal (simulation only).

4.2 IN-HAND ROTATION RESULTS AND ANALYSIS

Simulation Results. Our policy generalizes to unseen objects and outperforms our re-implemented
baseline (Table 1). Among all settings, rotating along the gravity direction (±z axis) is the easiest
task, similar to the observations made in prior works (Qi et al., 2023; Yang et al., 2024).

Method ±x-axis ±y-axis ±z-axis General Rotation Axes GO.
Succ.RotR ↑ TTF ↑ RotP ↓ RotR ↑ TTF ↑ RotP ↓ RotR ↑ TTF ↑ RotP ↓ RotR ↑ TTF ↑ RotP ↓

AnyRotate* (re-implementation) 91.90±11.60 0.67±0.17 0.72±0.05 163.78±20.44 0.73±0.18 0.81±0.19 173.87±11.70 0.82±0.15 0.52±0.14 162.55±19.18 0.86±0.18 0.79±0.11 64.33±4.70

Ours (Generalist in Sim) 144.22±13.91 0.77±0.19 0.54±0.03 224.28±23.69 0.88±0.17 0.58±0.09 314.28±27.91 0.92±0.14 0.37±0.05 242.33±23.30 0.94±0.05 0.46±0.06 88.27±3.21

Table 1: Generalization Test in Simulation. Comparisons of the rotation performance on the unseen test
object set along each axis with hand wrist orientation randomized over rotation metrics.

Method
“Cube” “Container” “Tin Cylinder” “Gum Box”

Rotation Axis Hand Orientation Rotation Axis Hand Orientation Rotation Axis Hand Orientation Rotation Axis Hand Orientation
Rot (rad) TTF (s) Rot (rad) TTF (s) Rot (rad) TTF (s) Rot (rad) TTF (s) Rot TTF (s) Rot (rad) TTF (s) Rot TTF (s) Rot (rad) TTF (s)

AnyRotate 6.53±1.32 24.00±4.30 5.52±3.02 23.00±10.9 2.63±0.75 25.00±7.1 3.70±1.19 27.80±3.1 5.78±2.64 29.7±0.5 5.09±1.51 28.3±3.3 4.08±3.20 18.3±13.1 5.21±2.82 24.2±11.0

Ours (Direct Transfer) 14.92±1.36 38.67±4.16 8.73±0.60 21.89±2.67 8.49±0.36 40.22±2.14 8.81±0.54 26.67±2.02 9.16±2.76 23.67±8.52 8.03±0.30 29.22±2.46 10.65±1.91 38.56±3.50 5.76±0.45 32.50±2.18

Ours (DexNDM ) 39.10±4.75 198.39±21.65 10.12±1.09 38.33±2.52 10.79±0.54 45.00±2.52 11.00±4.44 31.50±14.85 15.68±3.30 37.83±6.71 9.42±0.52 35.33±3.18 13.96±0.60 47.22±1.07 7.59±0.83 32.50±2.29

Table 2: Comparisons to AnyRotate. Comparison of rotation degrees (Rot (radian)) and time-to-fall (TTF
(s)) under two test settings introduced in AnyRotate (Table 12, 13) on replicable objects.

Method Cow Bear Truck GRAB Elephant Bunny Duck Teapot Dragon Train Hundepaar Elephant Airplane Mouse

Visual Dexterity 7 10 6 3 2 5 8* 2* 2* 3* 4* 3* 4*
DexNDM 8 10 6 7 5 6 48 4 3 4 4 3 4

Table 3: Comparisons to Visual Dexterity of Survival Angles (⌊radian/0.5π⌋), roughly measuring (from
videos) how many 90 degrees the object can be rotated before falling. The subscript ∗ denotes the performance
achieved by rotating the object with a supporting table.

(C)(B)(A)(A-0)

Figure 6: Comparisons to Whole-Hand Neural Dynamics w.r.t. Model Expressivity, Sample Efficiency
and Transferrability. (A,A-0) In-domain and out-of-distribution performance in high (3.1M) and low (7.5k)
data regimes. (B) Sample efficiency. (C) Transferrability from different training distributions.
Real World Results. Our sim-to-real method consistently improves real-world performance, and
the policy exhibits unprecedented dexterity, rotating high-aspect-ratio geometries, small objects, and
complex shapes under challenging hand wrist orientations in the air (Tables 4 (multi-axis with palm-
down), 5 (multi-wrist-pose, z-rot); Fig. 1; Fig. 22, object gallery (Fig. 21) (in Appendix); videos).
Contrary to AnyRotate, which finds “Thumb Up/Down” most difficult, we observe “Base Up/Down”
are harder, likely due to different actuator performance between Allegro and LEAP.
Comparisons to AnyRotate. We evaluate on four replicable items from AnyRotate’s suit—“Tin
Cylinder”, Cube, “Gum Box”, and “Container” (Sec. C)—which are their most difficult cases (ac-
cording to Table 12-13), and compare with their reported real-world results. Table 2 shows our
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Object Set Method ±x-axis ±y-axis ±z-axis Cubic Diagonal Axes
Rot (rad) TTF (s) Rot (rad) TTF (s) Rot (rad) TTF (s) Rot (rad) TTF (s)

Regular
Direct Transfer 9.84±0.36 26.80±0.20 10.37±0.55 30.73±1.67 11.69±0.30 21.67±2.74 9.03±0.47 22.71±2.04

Whole Hand NDM 5.92±0.14 15.04±1.43 2.41±0.22 8.59±0.35 7.38±0.49 16.33±1.79 3.30±0.44 8.87±0.62

DexNDM 11.36±0.40 32.40±1.78 14.24±1.19 44.60±5.44 23.82±3.86 37.50±5.02 16.93±1.84 30.44±3.08

Small
Direct Transfer 4.71±0.00 25.17±9.41 6.11±0.30 26.22±1.90 6.94±0.85 20.17±0.72 5.40±0.32 23.21±3.80

Whole Hand NDM 0.35±0.06 0.44±0.08 0.87±0.10 1.33±0.13 0.00±0.00 0.00±0.00 0.26±0.14 0.67±0.21

DexNDM 5.24±1.35 28.00±9.13 6.81±0.91 29.78±5.09 9.29±1.63 26.75±5.24 6.03±0.51 27.34±4.97

Irregular
Direct Transfer 4.41±0.34 19.95±2.26 6.13±0.47 24.62±2.54 5.26±0.31 21.19±2.22 6.53±0.37 26.29±1.25

Whole Hand NDM 1.34±0.21 5.51±0.36 2.91±0.50 10.32±0.72 0.720.06 4.03±2.92 2.33±0.68 11.68±2.05

DexNDM 6.35±0.69 24.21±2.87 11.32±2.08 39.04±7.28 8.61±0.76 29.33±1.38 9.19±1.01 33.14±1.86

Table 4: Multi-Axis Rotation in Real. Comparison of rotation degrees (Rot (radian)) and time-to-fall (TTF
(s)) along each axis under the palm down wrist orientation. The metric was first averaged over all objects within
each trial. We then report avg. ± std of these results across three independent trials.

Method Palm Up Palm Down Base Up Base Down Thumb Up Thumb Down

Rot (rad) TTF (s) Rot (rad) TTF (s) Rot (rad) TTF (s) Rot (rad) TTF (s) Rot (rad) TTF (s) Rot (rad) TTF (s)

Direct Transfer 10.03±0.59 25.63±2.88 7.64±0.32 20.98±2.00 5.40±0.23 21.48±1.04 4.92±0.18 18.37±0.93 6.46±0.20 25.02±3.84 5.90±0.48 20.77±1.10

Whole Hand NDM 7.37±0.25 20.42±1.83 3.46±0.83 14.21±3.72 4.17±0.40 18.22±4.97 2.33±0.41 7.06±1.25 4.79±0.88 20.15±4.46 1.91±0.04 6.33±0.75

DexNDM 14.61±1.15 32.82±3.06 13.20±1.71 29.33±3.94 9.42±1.39 36.00±4.67 7.59±1.63 44.67±6.51 11.93±1.29 28.37±2.84 8.60±0.72 26.93±3.06

Table 5: Multi-Wrist Orientation Rotation in Real. Comparison of rotation degrees (Rot (radian)) and time-
to-fall (TTF (s)) under six representative hand orientations across direction z.

method substantially outperforms AnyRotate and is more versatile: whereas AnyRotate targets mod-
erately sized, simple shapes (min 5cm, max aspect ratio 1.67) with conservative motions, our policy
handles smaller objects (3cm) and high aspect ratios (up to 5.3) with sophisticated finger gaiting.
Comparisons to Visual Dexterity. A direct comparison with Visual Dexterity (VD) is infeasible due
to differing task definitions (axis-oriented continuous rotation vs. goal-oriented reorientation). To
enable comparison, we introduce the survival rotation angle metric: the angle an object is rotated
before being dropped. We estimate VD’s best performance by analyzing their videos. Despite this
metric favoring VD (their setup sometimes includes a supporting table), we achieve comparable
or superior results on their showcased and replicable objects (Table 3). Besides, we can uniquely
manipulate small objects and high aspect ratios as well as handle diverse wrist orientations (Fig. 22).
Comparisons to Whole-Hand Nueral Dynamics. We compare against the whole-hand dynamics
model to answer: (Q1) Does predicting each joint’s transition from its own history (without global
information) reduce expressivity? (Q2) Is our model more sample-efficient? (Q3) Does it generalize
better? (A1) Trained on 3.1M simulated trajectories and evaluated in-domain, our model is nearly as
expressive as the whole-hand model (Fig. 6(A, column 1)(A-0)). (A2) With limited data—using 7.5k
autonomously collected trajectories in the real world (Fig.6(A, column 3)) and across varying real-
world dataset sizes (Fig.6(B))—our model achieves better in-domain performance, indicating higher
sample efficiency. The advantage is more obvious under insufficient data settings. (A3) On an OOD
real-world test set (task-relevant transitions under “Thumb Up” wrist), our model generalizes much
better in both high- and low-data regimes; see Fig.6(A, column 2,4) and Fig.6(B). Fig. 6(C) sys-
tematically studies the cross-domain transferability in various settings. Summary: For data-driven
neural dynamics, joint-wise model significantly outperform whole-hand models in insufficient-data
or train–test distribution-shift settings; with ample data and in-domain evaluation, performance is
similar, with only a slight loss in expressivity for joint-wise models.
Comparisons to ASAP and UAN. We implement UAN and ASAP, but their resulting policies fail en-
tirely in real-world tests—unable to rotate even a simple cylinder (Fig. 36; videos). We attribute this
to an OOD issue: compensators trained solely on free-hand data do not generalize to the interaction
dynamics introduced by manipulated objects. Please note that their methods can only use either free-
hand data or task-relevant data with object states—difficult and noisy to obtain, and unusable even
for compensator training—and cannot leverage our autonomously collected data with randomized
object loads; see Sec. D. Our strategy is more tolerant of real-data imperfections (Figs. 8, 9, 36).

Simulator Genesis MoJoCo

Method RotR ↑ TTF ↑ RotP ↓ RotR ↑ TTF ↑ RotP ↓
Direct Transfer 72.74±18.13 16.83±4.50 0.70±0.17 82.03±25.38 15.33±1.11 0.65±0.07

UAN 87.23±16.54 17.81±1.56 1.03±0.05 99.14±17.02 18.67±1.18 0.75±0.14

ASAP 75.72±11.29 19.11±0.74 1.48±0.31 26.25±6.37 15.60±2.30 1.89±0.12

DexNDM 111.29±33.30 19.26±1.61 0.66±0.18 124.69±14.06 18.90±1.57 0.57±0.09

Table 6: “Sim-to-Sim” Transfer.

“Sim-to-Sim” Comparisons. We conduct a cross-
simulator transfer evaluation (Isaac Gym to Gene-
sis and MuJoCo). We collect object-loaded rotation
data in the target simulator for training. Table 4.2
shows our method consistently surpasses prior work, owing to designs on dynamics modeling,
higher data efficiency, and practical choices (e.g., pre-train in source sim). We find UAN outper-
forms ASAP, likely because its history-based design better captures object effects. Details in Sec. C.
Applications. A meaningful application of in-hand rotation/reorientation policies is their integration
into teleoperation systems to enhance manipulation capabilities (Yin et al., 2025). In our work, we
demonstrate a similar application using our in-hand rotation policy within a teleoperation setup
(with a Meta Quest 3). The robotic hand is controlled by our rotation policy, conditioned on the
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i ii iii iv v vi vii i ii iii iv

i ii iii iv i ii iii iv i ii iii iv

(A) Tool-Using (hammer, brush, pen, syringe, nut)

(B) Furniture Assembly (four-leg table, lightbulb)

i ii iii iv v i ii iii iv v

Figure 7: Application. Our rotation policy enables a teleoperation system to perform complex, long-horizon
manipulation tasks. See videos and more results on our project website.

rotation-axis commands sent by the human operator, while the robot arm is teleoperated through
the operator’s arm motion. Details are provided in Sec. C. We demonstrate its strong ability in
performing long-horizon and complex dexterous manipulation tasks (Fig. 7, videos).

5 ABLATION STUDIES

Test Object

5.5 × 5.5 × 5.5

4.5 × 4.5 × 6.3

6.5 × 5.0 × 6.3

(A) (B)

Figure 8: Ablation Study of the Dynamics Model. (A) Generalization error of different model ablations
(lower is better). (B) Corresponding real-world task performance.

(A)Not Supported Objects

Hard for Pose Tracking
(e.g., Small, Axis-Symmetric),
Difficult to Rotate

Difficult to Rotate

N/A
(Object Agnostic)

N/A
(Object Agnostic)

(B) (C)

Figure 9: Analysis of Data Collection Strategies. (A) Time efficiency of different collection methods. (B)
Resulting model performance on datasets of equal size. (C) Performance scaling with dataset size and data
collection iterations, including a power-law fit for extrapolation.

We conduct ablations to validate key design choices of our method. Real-world experiments are
performed with the hand fixed palm-down, evaluating z-axis rotation; data are collected under the
same wrist pose. Dynamics model are evaluated in an OOD test setting. See Sec. C for details.
Designs on the Joint-Wise Neural Dynamics Model. We ablate five design choices: (i) joint-
wise vs. finger-wise (per finger prediction from its own history) and whole-hand modeling; (ii)
simulation pretraining; (iii) injecting noise into replayed actions during real-world data collection;
(iv) collecting with object loads rather than free-hand w/o load; and (v) replaying policy rollouts
instead of base waves (Fey et al., 2025). As summarized in Fig. 8, these choices consistently improve
learned dynamics generalization and real-world performance.
Real-World Data Collection Strategies. We compare our autonomous data collection against three
baselines—task-aware with vision-based object states, task-aware without object states, and free-
hand motions—evaluating limitations, efficiency, and model performance (Figure 9). Task-aware
pipelines are slow and intervention-heavy: estimating object poses is prohibitively slow (∼200s on
average), requires continuous human supervision, yields noisy poses and complex setup, and fails
on small, occluded, or axis-symmetric objects; without vision they still need intervention, remain
slow (42.86 s), and produce low-diversity, low-coverage data (data restricted to policy’s ability). In
contrast, our method is fully automated and, by continuously varying hand loads, collects diverse
data spanning a wide range of external influences. Figure 9(B) shows the resulting performance
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gains: broader coverage improves prediction, and the joint-wise model is most robust to training-
distribution shifts, whereas other variants tend to overfit to the source data.
Scaling with Real-World Data Quantity and Collection Iterations. As shown in Fig. 9, our
performance improves with more real-world data. However, iterative data collection—intended to
align real-world and simulated transition distributions for better policy updates—yields only modest
gains. We hypothesize this is because the dynamics model already generalizes well, and adding
noise to replay actions provides broad coverage, reducing sensitivity to this distribution shift. In
contrast, the whole-hand model benefits little from additional data, especially under autonomous
collection, likely due to its higher dimensionality and a distributional mismatch between autonomous
data and rotation task transitions. A simple extrapolation suggests matching our 4,000-trajectory
result would require 7.5M task-aware trajectories (417k hours; 52k 8-hour workdays), which is
impractical. While approximate, this highlights the superiority of our approach.

6 CONCLUSIONS AND LIMITATIONS

We propose a neural sim-to-real framework centered on a joint-wise neural dynamics model and
autonomous data collection. This enables unprecedented dexterity in rotating challenging objects.
The main limitation is that the model’s performance ceiling is constrained by its reliance on partial,
proprioception-only observations, as well as task- and hardware-specific evaluation. Jointly model-
ing hand–object transitions using richer sensory signals, incorporating vision and tactile feedback,
and extending the framework to a broader set of tasks and hardware platforms represent valuable
directions for future work.

REPRODUCIBILITY STATEMENT

Novel Models and Algorithms. Our method is composed of two novel designs: 1) Specialist-
to-generalist for unified multi-geometry wrist-orientation conditioned and axis-conditioned rota-
tion policy. We have provided detailed explanations of the algorithms in Sections 3.1, A. Besides,
we have included the source code in the Supplementary Materials, where the implementations of
the algorithm are contained. Please refer to the Key Implementations section in the file DexNDM-
Code/README.md in our Supplementary Materials. 2) The neural sim-to-real approach that learns
the joint-wise neural dynamics model and trains a residual policy to bridge the sim-to-real gap. We
have provided detailed explanations in Sections 3.3 and A. Besides, we have included the source
code in the Supplementary Materials. Please refer to the Key Implementations section in the file
DexNDM-Code/README.md in our Supplementary Materials.

Theoretical Results. Please refer to section A.2 in the Appendix for the proof of Theorem 3.1,
3.2. Please refer to sections A.3 and A.4 for analysis on the rationality of the joint-wise neural
dynamics. Please refer to section A.5 for an analysis on the rationality of our autonomous data
collection strategy.

Datasets. Please refer to sections 4.1 and C for a detailed explanation of the training, evaluation,
real-world experiment objects, and how we replicate AnyRotate’s replicable objects.

Experiments. For experiments, we provide 1) Source code. Please refer to the folder DexNDM-
Code in our Supplementary Materials for details. 2) Experimental details of our method and com-
pared baselines. Please refer to the sections 4.1 and C for details. We also provide related informa-
tion and instructions in the DexNDM-Code/README.md file.
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We include a video and an anonymous website to introduce our work. The website and the video
contain robot videos. We highly recommend exploring these resources for an intuitive understanding
of the challenges, the effectiveness of our method, and its superiority over prior approaches.

A ADDITIONAL EXPLANATIONS OF THE METHOD

A.1 POLICY DESIGN

Observations. The observation of the oracle policy contains: 3-length joint position history (48-
dim), 3-length joint positional target history (48-dim), joint velocity (16-dim), fingertip state and
velocity (52-dim), object state and velocity (13-dim), object guiding goal pose (4-dim), joint and
rigid body forces (40-dim), contact force and binary contact (92-dim), wrist orientation (quaterion,
4-dim), and rotation axis (3-dim).

Rewards. The reward function consists of three parts r = αrotrrot + αgoalrgoal + αpenaltyrpenalty, with
rrot and rpenalty following RotateIt (Qi et al., 2023). The rotation term rrot = clip(ωt · k,−c, c)
encourages rotation about the unit target axis k ∈ R3, ∥k∥2 = 1, where ωt is the object an-
gular velocity and c = 0.5 caps excessive speed. The penalty rpenalty discourages off-axis angu-
lar velocity, deviation from a canonical hand pose, object linear velocity, and joint work/torque:
rpenalty = −αrotp∥ωt × k∥1 − αlin∥vt∥22 − αpose∥qt − qinit∥22 − αworkτ

T q̇ − αtorque∥τ∥22, where vt,
qinit, and τ denote the object pose, initial hand joint position, and joint commanded torques at the
current timestep t, αlin = 0.3, αpose = 0.3, αtorque = 0.1, αwork = 2.0. We schedule the coefficient
αrotp linearly: set it to zero at the beginning of the training; use the number of resets to count the
training process; at the 10 resets, we keep αrotp to zero; from 10 to 100, linearly increase it to 0.1;
after 100, keep it at 0.1. αpenalty = 1.0

We find that solely relying on these rewards cannot solve challenging problems like rotating a long
object. Therefore, we add an intermediate goal: at episode start set pgoal 90◦ ahead along the
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desired rotation and update it whenever ang diff(pt,pgoal) < 15◦; the guidance term is rgoal =

clip
(

ggoal

ang diff(pt,pgoal)+ϵ
, 0, cgoal

)
+ gbonus1ang diff(pt,pgoal)<cthreshold , where ang diff(·, ·) is the quaternion

angular distance, ϵ > 0 ensures numerical stability, and cthreshold is the proximity threshold. We set
rgoal = 1.0.

Control Strategy. We use torque control with 20Hz, where each control step is realized by running
the torque control for 6 times. Each time the joint torque is calculated as τt = Kp(q

tar
t −q)−Kdq̇t,

where the q and q̇ represent the current joint position and joint velocity, Kp and Kd are preset
constant positional gain and damping parameters.

Generalist Policy Architecture. We use a residual MLP with five residual blocks. The input
layer is a single linear network with a hidden dimension of 1024. After that, we stack five residual
blocks each with the hidden dimension of 1024. Each residual block processes input x via y =
ReLU(NN1(x) +NN3(ReLU(NN2(x)))). The output layer is a single linear network that maps the
latent to the output dimension.

Further Discussions on Design Choices. The BC-style training allows us to achieve a real-world
deployable multi-geometry policy in a simple way by combining datasets resulting from different
multiple oracle policies, each trained for a specific object category, to train a unified policy. We use
BC to achieve both real-world deployment ability and generality across diverse objects. An alter-
native is achieving the generality in the teacher level, e.g., training RL for an any-wrist orientation
any-axis on all object categories. However, this can hardly work. This may require us to add an
automatic or multi-stage curriculum to make sure the final policy can perform at least as good as
each individual policy. This is a valuable research direction. In this work, we choose to leave the
oracle policy training a neat pipeline, adopt to train a collection of teacher policies, and achieve the
unified real-world deployable policy at once in the student policy training stage.

A.2 PROOF OF MAIN THEOREMS

Theorem A.1 (Data Processing Inequality for KL (strict form)) Let P and Q be two probability
distributions on Rn × R with respective probability density functions (PDFs) P (x) and Q(x). Let
g : Rn×R → Rm×R be a measurable function, where m ≤ n. This function transforms a random
variable X ∼ P (or X ∼ Q) into a new random variable Y = g(X). Let g(P) and g(Q) denote
the resulting pushforward distributions on Rm × R.

The Kullback-Leibler (KL) divergence between the distributions is reduced or remains the same after
the transformation, a property known as the Data Processing Inequality:

KL(P∥Q) ≥ KL(g(P)∥g(Q)). (1)

The inequality is strict, KL(P∥Q) > KL(g(P)∥g(Q)), if g is non-injective in a way that merges
points where P and Q have a different relative structure. More concretely, it indicates that there
∃y0 ∈ Rm × R, P (Y = y0) > 0, P (X|Y = y0) ̸= Q(X|Y = y0).
Proof A.1 We start with prove that KL(P∥Q) ≥ KL(g(P)∥g(Q)) always holds for any function g.
Let X be a random variable drawn from one of two distributions, P or Q. Denote their PDFs as
PX(x) and QX(x).

Let Y be a new random variable created by applying a function to X: Y = g(X). The distributions
of Y are the pushforward distributions f(P) and f(Q), with PDFs PY (y) and QY (y). Consider the
joint distribution of (X,Y ), since Y is a deterministic function of X , the joint probability is simple:

PX,Y (x, y) = PX(x), if y = g(x) (2)
PX,Y (x, y) = 0, if y ̸= g(x) (3)

Using “chain rule” of KL divergence, we can expand the joint distributions in two ways:
(A) KL(PX,Y ∥QX,Y ) = KL(PX∥QX) + KL(PY |X∥QY |X) (4)

(B) KL(PX,Y ∥QX,Y ) = KL(PY ∥QY ) + KL(PX|Y ∥QX|Y ) (5)

Since Y is completely determined by X (Y = f(X)), we have
P (y|x) = 1, if y = f(x), (6)
P (y|x) = 0, if y ̸= f(x) (7)
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And the same property for Q(y|x):
Q(y|x) = 1, if y = f(x), (8)
Q(y|x) = 0, if y ̸= f(x) (9)

Therefore PY |X = QY |X , and the KL divergence between them is zero:

KL(PY |X∥QY |X) = Ex ∼PX

∫
y

P (y|x) log
(
P (y|x)
Q(y|x)

)
dy = Ex ∼PX

[0] = 0. (10)

Thus, the expansion 4 simplifies to

KL(PX,Y ∥QX,Y ) = KL(PX∥QX). (11)

We have:
KL(PX∥QX) = KL(PY ∥QY ) + KL(PX|Y ∥QX|Y ). (12)

Since KL divergence is always non-negative, which implies KL(PX|Y ∥QX|Y ) ≥ 0 , we have

KL(PX∥QX) ≥ KL(PY ∥QY ). (13)

The inequality is strict if and only if the second term of the RHS in Eq. 12 is strictly positive,
i.e., KL(PX|Y ∥QX|Y ) > 0. This term is the expected KL divergence between the conditional
distributions P (x|y) and Q(x|y), averaged over the distribution PY (y). It will be strictly positive if
and only if ∃y0 ∈ Rm × R, PY (y0) > 0, P (X|Y = y0) ̸= Q(X|Y = y0).

This is direct. We provide the proof below.

Sufficiency. Since KL(PX|Y ∥QX|Y ) = Ey∼PY

[
KL(PX|Y=y∥QX|Y=y)

]
, if the condition is satis-

fied, we have KL(PX|Y ∥QX|Y ) ≥ PY (y0)KL(PX|Y=y0∥QX|Y=y0) > 0. Thus, it is a sufficient
condition.

Necessity. We can prove it by disproof. Suppose that we can find a case with KL(PX|Y ∥QX|Y ) >
0 but for every y0 with non-zero PY (y0), we have KL(PX|Y=y0∥QX|Y=y0) = 0, then we have
KL(PX|Y ∥QX|Y ) = Ey∼PY

[
KL(PX|Y=y∥QX|Y=y)

]
= 0, which contradicts the assumptions.

Thus, it is a necessary condition.

In our setting, as g strictly reduces the dimensionality and is a continuous function (because it
extracts the history of a joint from the whole hand history), g is a non-injective function, which we
will show later in Theorem A.3. Since P and Q lie in different data domains (a visualization is shown
in Figs. 16 17), and since as we’ve demonstrated g(P) and g(Q) share similarities (a visualization is
shown in Fig. 15), the condition ∃y0 ∈ Rm × R, P (Y = y0) > 0, P (X|Y = y0) ̸= Q(X|Y = y0)
is then typically satisfied.
Theorem A.2 (Generalization Gap Contraction) Given data point (X,Y ) ∈ Rn × R, a measur-
able function g : (X,Y ) ∈ Rn → (gX(X), Y ) ∈ Rm,m < n, and two different distributions P , Q
in the manifold Rn whose pushforward distribution by g satisfy KL(g(P∥g(Q)) < KL(P∥Q). Un-
der the covariant shift condition, i.e., P(Y |X) = Q(Y |X), for any function f1 : X ∈ Rn → Y ∈ R
and f2 : gX(X) ∈ Rm → Y ∈ R, we have

sup|RP(f2 ◦ gX)−RQ(f2 ◦ gX)| < sup|RP(f1)−RQ(f1)|, (14)

where RP(h) = E(X,Y )∼P [L(h(X), Y )] is the risk for the predictor h, L measures prediction error
and is bounded by B.

Proof A.2 Using the law of total expectation and the covariate shift assumption:

RP(h) = EX∼PX

[
EY∼P (Y |X)[L(h(X), Y )]

]
RQ(h) = EX∼QX

[
EY∼Q(Y |X)[L(h(X), Y )]

]
= EX∼QX

[
EY∼P (Y |X)[L(h(X), Y )]

]
Define the “inner risk” function for a fixed x:

rh(x) := EY∼P (Y |X=x)[L(h(x), Y )]

The risk difference could be converted to an expectation over the marginals PX and QX :

RP(h)−RQ(h) = EX∼PX
[rh(X)]− EX∼QX

[rh(X)] =

∫
rh(x)(pX(x)− qX(x))dx

17
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An IPM between two distributions PX and QX over a function class F is defined as:

dF (PX , QX) = sup
ϕ∈F

|EX∼PX
[ϕ(X)]− EX∼QX

[ϕ(X)]|

Define two classes of “inner risk” functions:

F1 = {rf1 | f1 : Rn → R is in the function space for f1}
F2 = {rf2◦gX | f2 : Rm → R is in the function space for f2}

The inequality we want to prove becomes:

dF2
(PX , QX) < dF1

(PX , QX)

Consider any function ϕ ∈ F2. By definition, ϕ = rf2◦gX for some function f2. Define a new
function f1(x) = (f2 ◦ gX)(x). Assuming the F1 is rich enough to contain this composition, we
have rf1 = rf2◦gX = ϕ. This means ϕ ∈ F1. Therefore, F2 ⊆ F1.

We immediately have the non-strict inequality, since we are taking the supremum over a smaller set:

sup
ϕ∈F2

|EPX
[ϕ]− EQX

[ϕ]| ≤ sup
ϕ∈F1

|EPX
[ϕ]− EQX

[ϕ]|

Consider the given KL condition KL(g(PX)∥g(QX)) ≤ KL(PX∥QX) and the covariant shift
condition, we have: KL(gX(PX)∥gX(QX)) < KL(PX∥QX). This implies that gX(X) is not
a sufficient statistic for distinguishing PX from QX . This means the likelihood ratio w(x) =
pX(x)/qX(x) cannot be written as a function of gX(x). This further implies there exist xa, xb
such that gX(xa) = gX(xb) but w(xa) ̸= w(xb).

Now, consider the function classes:

• Any function ϕ ∈ F2 must be constant on the level sets of gX . If gX(xa) = gX(xb), then
ϕ(xa) = ϕ(xb). These functions are blind to the information that gX discards.

• The function ϕ∗ ∈ F1 that maximizes the IPM difference, dF1
(PX , QX), must be maxi-

mally sensitive to the difference between PX and QX . Since this difference (captured by
the likelihood ratio w(x)) depends on information discarded by gX , the optimal discrimi-
nating function ϕ∗ cannot be a function of gX(x) alone.

This means that the function ϕ∗ that achieves the supremum for the larger set F1 is not contained in
the smaller set F2 (i.e., ϕ∗ /∈ F2).

Because the supremum for F1 is achieved by a function that is not available in the strictly smaller
set F2, the inequality is strict.

sup
ϕ∈F2

|EPX
[ϕ]− EQX

[ϕ]| < sup
ϕ∈F1

|EPX
[ϕ]− EQX

[ϕ]|

This completes the proof.

Define the optimal predictors trained on the source distribution Q as:

fQ
1 = argmin

f1
RQ(f1) (15)

fQ
2 = argmin

f2
RQ(f2 ◦ gX) (16)

We move on to show that under specific conditions, the predictor trained on the simpler representa-
tion generalizes better to the target distribution P .

Proposition Let fQ
1 and fQ

2 be the optimal predictors on the source distribution Q in the full and
reduced-dimensional spaces, respectively. Let the following assumptions hold:
Assumption (Small Approximation Error) The function class {f2 ◦ gX | f2 : Rm → R} is
sufficiently expressive to model the relationship on the source distribution Q. The increase in source
risk due to the reduced representation is bounded by a small constant ϵA:

RQ(f
Q
2 ◦ gX)−RQ(f

Q
1 ) = ϵA. (17)
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Assumption (Generalization Gap Reduction) Building on Theorem A.2, we further assume a rel-
atively large distribution shift from P to Q, such that fQ

2 exhibits a strong generalization advantage,
and the difference in generalization gap achieved by the fQ

1 and fQ
2 satisfies:(

RP(f
Q
2 ◦ gX)−RQ(f

Q
2 ◦ gX)

)
−
(
RP(f

Q
1 )−RQ(f

Q
1 )

)
= −ϵB , (18)

where ϵB is a positive constant.

If ϵB > ϵA, then the risk of the predictor trained in the reduced-dimensional space is strictly lower
on the target distribution:

RP(f
Q
2 ◦ gX) < RP(f

Q
1 ). (19)

Proof A.3 Decompose the target risk:

RP(h) = RQ(h) + (RP(h)−RQ(h)) . (20)

We further have:

RP(f
Q
2 ◦ gX)−RP(f

Q
1 ) =

[
RQ(f

Q
2 ◦ gX) +

(
RP(f

Q
2 ◦ gX)−RQ(f

Q
2 ◦ gX)

)]
−
[
RQ(f

Q
1 ) +

(
RP(f

Q
1 )−RQ(f

Q
1 )

)]
. (21)

Rearranging the terms, we have:

RP(f
Q
2 ◦ gX)−RP(f

Q
1 ) =

[
RQ(f

Q
2 ◦ gX)−RQ(f

Q
1 )

]︸ ︷︷ ︸
Term A: Approximation Error

+
[(
RP(f

Q
2 ◦ gX)−RQ(f

Q
2 ◦ gX)

)
−
(
RP(f

Q
1 )−RQ(f

Q
1 )

)]︸ ︷︷ ︸
Term B: Difference in Generalization Gaps

.

(22)

From Assumption 1, Term A is equal to ϵA:

RQ(f
Q
2 ◦ gX)−RQ(f

Q
1 ) = ϵA. (23)

From Assumption 2, Term B is equal to −ϵB:(
RP(f

Q
2 ◦ gX)−RQ(f

Q
2 ◦ gX)

)
−

(
RP(f

Q
1 )−RQ(f

Q
1 )

)
= −ϵB . (24)

We have:
RP(f

Q
2 ◦ gX)−RP(f

Q
1 ) = ϵA − ϵB . (25)

Given the condition ϵB > ϵA, we have:

RP(f
Q
2 ◦ gX) < RP(f

Q
1 ). (26)

This completes the proof.

When are these assumptions valid? Assumption 1 characterizes the in-domain performance gap
between the joint-wise neural dynamics model and the whole-hand model. As shown in Sec. 4.2
and Fig. 6, it holds even when data are sufficient. In low-data regimes, the joint-wise model not only
avoids increasing source-domain risk but actually reduces it, thanks to better sample efficiency.

Assumption 2 characterizes the generalization behavior of these two models. Under train–test dis-
tribution shift, it is satisfied in all our experiments (Sec. 4.2; Fig. 6); the joint-wise model exhibits
much better transferability than the whole-hand dynamics model.

In our dexterous manipulation setting, data scarcity and train–test shift are pervasive, because ob-
taining perfectly distributionally aligned data is often infeasible or difficult to scale (Sec. 3.3), with
empirical evidence in Secs. 5 and B.4. Even with autonomous data collection, the volume of real-
world data is far smaller than in simulation, keeping us in the low-data regime. Consequently,
joint-wise modeling is the preferable choice for our task and a key to our success. By contrast,
using a whole-hand dynamics model degrades sim-to-real transfer (Tables 4 and 5). We attribute the
success of the whole-body dynamics model employed in bin Shi et al. (2024) to its in-distribution
setting and to dynamics that are less complex than in our scenario.
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Theorem A.3 ∀ C1 function f : Rn → Rm,m < n that projects n-dim data point in Rn to that in
a lower dimensional space Rm, then f is a non-injective function.

Proof A.4 For any point x ∈ Rn, its derivative is the Jacobian matrix Dfx, which represents a
linear map from the tangent space at x (i.e., Rn) to the tangent space at f(x) (i.e., Rm). Dfx is
an m × n matrix. The rank of this matrix is at most min(m,n) = m. Applying the Rank-Nullity
Theorem to this linear map Dfx : Rn → Rm, we find that its null space has dimension ≥ n−m > 0.
According the Inverse Function Theorem (Munkres, 2018; Guillemin & Pollack, 2010), which states
that a function is locally injective around a point x only if its derivative Dfx is injective. As we’ve
shown, Dfx is never injective when n > m. Since f is not locally injective at any point, it cannot
possibly be globally injective.

A.3 RATIONALITY OF JOINT-WISE DYNAMICS MODELING (PART I)

We model the hand with the standard manipulator equation (Murray et al., 2017; Spong et al., 2020),
treating the object effect as an external force:

M(q)q̈+C(q, q̇)q̇+G(q) = τ + τext, (27)

where M(q), C(q, q̇), and G(q) are the inertia, Coriolis, and gravity matrices, respectively. τ is
the applied joint torque, and τext represents the external force from the object. Given low-speed
operation, we neglect the Coriolis term (Craig, 2009; Spong et al., 2005), C(qt, q̇t)q̇t ≈ 0.

Assuming we are modeling the i-th joint, we use (qm, q̇m) to represent the state of “modeled joints”,
e.g., qm = [qi]T ∈ R1, while treating the joints as “slave” joints and denote their state as (qs, q̇s),
i.e., qs = [qj ,∀1 ≤ j ≤ 16, j ̸= i]T ∈ R15. Rearranging other full dynamic equations (Eq. 27), we
write it as [

Mmm
t Mms

t
Msm

t Mss
t

] [
q̈mt
q̈st

]
+

[
Gm
t

Gs
t

]
=

[
τm,total
t

τs,total
t

]
. (28)

Derive the equation of the modeled joints:

(Mmm −Mms(Mss)−1Msm)q̈m +Mms(Mss)−1(τs,total −Gs) +Gm = τm = [τ i + τ i,ext]T .
(29)

Introducing an “effective” torque as τ eff = [τ i,ext]T ∈ R1, and write the equation as follows:

(Mmm −Mms(Mss)−1Msm)q̈m +Mms(Mss)−1(τs,total −Gs) +Gm − τ eff = [τi]
T . (30)

Let Heff
t denote the effective inertia matrix, Heff

t ≜ Mmm − Mms(Mss)−1Msm, and let Geff
t

denote the effective external term, Geff
t ≜ Mms(Mss)−1

(
τ s,total−Gs

)
+Gm−τ eff . Given Heff

t ,
Geff
t , and the modeled joint torque τ it , the acceleration q̈it is uniquely determined. Heff

t and Geff
t are

related to joint state and torques of other joints.

It indicates that in the highly coupled interaction system, the dynamics of each single joint is related
to other joints’ states, torque, and the external influence of the objects. Employing a neural-based
approach to solve the dynamics evolution with the aim to account for all of those high-DoF influ-
ences would inevitably require a large amount of data with correct distribution, cannot resolve the
challenges in the data aspect.

Focusing on each single joint dynamics system, joint-wise neural dynamics predicts each single
joint transition from its own state-action history. Predicting from history generalizes the idea of the
RMA approach in rotation (Qi et al., 2022) to implicitly account for time-varying influences at a
high level. We will show that, in a short time window (e.g., 10 frames, corresponding to 0.5s) and
under certain assumptions, this approach is reasonable.

Specifically, we assume that in any short time window during the action trajectory execution, the
state trajectory of each slave joint, i.e., qs, the active torque applied to each slave joint, i.e., τs, and
the effective external torque applied to each joint, τ ext, can be approximated by an infinitely dif-
ferentiable continuous function to within an acceptable error threshold. Intuitively, this assumption
holds true for joint states and active torques (related to input positional targets) in a continuously
evolved dynamical system where the actions are the policy network’s output. If we further assume
a soft contact model (Tedrake & the Drake Development Team, 2019; Pang & Tedrake, 2021), the
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assumption of the effective external torques, which is caused by contact forces with the object, is
thus reasonable.

We give statistical evidence for these two assumptions. Specifically, we demonstrate that they could
be fitted to an acceptable error using polynomial functions, a special group of infinitely differentiable
continuous functions.
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Figure 10: Per-Joint State-Action Sequences (Free Hand, w/o Load).

Patterns of Per-Joint State Trajectory. Figure 10, 11, and 12 show the real-world state-action
trajectories collected using a free robot hand without object load, via our autonomous data collection
system with load, and the task-aware data collection with human interventions. Both action and state
trajectories of the hand under such three types of external influences are visually smooth.

We further analyze their polynomial fitting results. Figure 41 shows the 3-ordered polynomial fitting
results of per-joint state sequence over a 10-length time window. Figure 43 shows the per-joint fitting
error averaged over all tested 10-length sequences. We can observe good fitting results where the
original curve can be roughly approximated by the fitted curve. If we increase the polynomial order
to 5, we could observe excellent fitting results (Figure 42 44). These statistical results show the
rationality of the continuous function assumption on joint state sequences.

Patterns of Per-Joint Active Torque Trajectory. Since we cannot sense the torque directly, for
each joint i, we analyze the difference between the positional target and the joint state at each
timestep t, i.e., qi,tar

t − qit, to reflect the corresponding statistics of actuation torques. Figure 45
and 46 illustrate the fitting results using 3-ordered polynomial functions and 5-ordered polynomial
functions, respectively. Figure 47 and 48 further show the per-joint average fitting error. The action
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Figure 11: Per-Joint State-Action Sequences (Autonomous Data Collection, w/ Load).

force’s evolution is more complex than joint states. But we could still see satisfactory fitting results.
As the polynomial order increases, the fitting results become better.

Patterns of Per-Joint External Torques Trajectory. Since we cannot measure per-joint effective
external torques from the real world directly, which is related to the contact force between the object
and the hand, we introduce “virtual object force” (also denoted as “virtual force” or “virtual torque”)
as a proxy of the actual external torque. Specifically, we first train per-joint inverse dynamics models
that predicts the applied action from the state-action history and the next actual state, i.e., f invdyn,i :
{(sik+1,a

i
k)}tk=t−W+1 ∈ R2W → ât+1 ∈ R2W , from the free hand replay trajectories. Thus, it

predicts what action should be applied so that the next joint state can reach the desired value, without
the influence of the object (without the external torques). Then, for a collected task-aware trajectory,
we first use the inverse dynamics model to predict the desired action ât+1. We then calculate the
“virtual force” using its difference from the actual action, i.e., at+1 − ât+1. Since this discrepancy
reflects what amount of additional action is required to resist the object so that the joint can reach
the desired state. We then analyze the statistics of this quantity.

As shown in Figure 49, 50, 51, 52, we can still get satisfactory fitting results, although the evolution
of this quantity is more complex than both that of the active torque and the joint state.

Based on this, we can assume the evolution of Heff and Geff are good continuous functions over
the considered time window. We can then approximate their evolution by a low-order function, e.g.,
using its Taylor expansions, to an acceptable error. Assuming k1 order for Heff while k2 for Geff,
the underlying number of unknown variables becomes k1 + k2. Solving for all unknown variables
is enough to solve the next step transition. The state-action history of each joint could be viewed as
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Figure 12: Per-Joint State-Action Sequences (Task-Aware Data).

the input and output of the function 30 with k1 + k2 unknown parameters, which contain enough
information to solve for them if the history is long enough. It then indicates the reasonability of using
a neural network to predict the next transition from the state-action history, considering the sufficient
information contained in the input and the universal approximation ability of neural networks.

A.4 RATIONALITY OF JOINT-WISE DYNAMICS MODELING (PART II)
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Figure 13: Predicting via Single Joint State-Action History (Generalization Error).

In the previous section, we demonstrated that the state-action history of a single joint is sufficient
to predict its own next transition. This indicates that the information contained in the single joint
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Figure 14: Predicting via Single Joint State-Action History (In-Distribution Validation Error).
m

state action history is at least sufficient to account for the evolution of low-dimensional effective
variables over a short time window, i.e., Heff

t and Geff
t . However, this is not enough to demonstrate

that a model that learns to predict from the history would not implicitly learn to predict the original
high-dimensional complex forces like inter-joint coupling to predict the transition. Demonstrating
this point is important since if the single joint state-action history contains sufficient information to
predict a higher-ordered system’s states, learning from the single joint history is thus not an effective
dimensionality reduction and would hamper the generalization ability as the model would still overfit
to the system’s high-variance influences.

We demonstrate via experiments aiming to say that the state action history of a specific joint does
not contain sufficient information to predict other joints’ information.

We train the joint-wise dynamics model to predict the following information 1) its next joint’s current
state, 2) the previous joint’s current state, 3) the next joint’s action (positional target), and 4) the
previous joint’s action (positional target). We then compare their prediction and generalization error
with that achieved by the joint-wise dynamics model (predicting itself’s next state) for analysis.

We train all models from scratch using real-world transition data without pretraining using simula-
tion data. Real-world transition data is the same as that we use in the ablation study. As shown in
Figure 14 and 13, utilizing a single joint state-action history to predict statistics of other joints cannot
even achieve reasonable performance in the original distribution. The generalization error is three
order larger than that achieved by using a single joint state-action history to predict its own next tran-
sition. As for the in-distribution validation error (which is achieved on the in-distribution validation
set and is close to the training error), predicting neighboring joints’ states achieves a slightly better
performance than predicting their actions. However, this is still far from a reasonable prediction,
with the error two-ordered larger than that achieved in predicting the joint’s own transition.

These experiments demonstrate that even predicting the easiest information that results in the com-
plex coupling (i.e., neighboring joints’ state and action) via a single joint’s state-action history is
not feasible. This further indicates that a single joint’s state-action history does not contain enough
information to account for the complex influence factors in the original high-dimensional space.
Since such information is sufficient to predict the joint’s own transition, a reasonable assumption
is that the network tends to leverage such net effects implicitly from the history for predicting the
dynamics evolution.

What does the joint-wise neural dynamics model implicitly capture? Analyses and experiments
in Secs.A.3 and A.4 clarify what is and is not predictable from a single joint’s state–action his-
tory. Our comprehensive experiments (Sec.4.2) show that joint-wise neural dynamics are expressive,
sample-efficient, and generalize well. The analysis in Sec.A.3 indicates that a single joint’s history
contains sufficient information to approximate its next transition, whereas Sec.A.4 shows it cannot
recover each underlying coupling effect. Thus, the per-joint history captures low-dimensional net
effects while avoiding overfitting to system-wide variations. This factorized, per-joint modeling
transfers across changes in whole-hand interaction because the distribution of net effects is compar-
atively more stable than that of full-system interactions.

Limitations of joint-wise neural dynamics mode. As shown in Fig. 6, the joint-wise dynamics
model performs slightly worse than the whole hand dynamics model in the in-domain test setting
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under the multi-task high data regime. The optimization speed is also a limitation, as iterating over
all joints takes time, resulting in a longer training time.

A.5 COMPARISONS OF DATA DISTRIBUTIONS BETWEEN COLLECTED TRAJECTORIES AND
ROTATION TRAJECTORIES

Figure 15: Per-Joint Distribution

Figure 16: Per-Finger Distribution

Figure 15, 16, and 17 summarize the per-joint, per-finger, and whole hand data distribution. It
compares trajectories collected by our autonomous data collection strategy and task-relevant rotation
trajectories. The task relevant trajectories are 20 cube-rotation trajectories (∼8,000 data points in
total) collected using under the “Thumb Up” wrist orientation. Per-Joint state-action trajectories can
well cover the distribution of task-aware rotation trajectories. However, per-finger and whole hand
distributions exhibit a huge discrepancy.

We additionally compare the data distribution between trajectories collected via rolling out the policy
on a small object and that collected autonomously in “Chaos Box” to further demonstrate the broad
coverage of per-joint transition data collected in “Chaos Box”. We use T-SNE to visualize the per-
joint I/O history space achieved by the autonomously collected data and the real-world rollouts on
the small corn object. Results show that the joint I/O history space formed by the autonomously
collected data can still offer a good coverage for that of policy rollouts on the small object (Fig. 18).
In comparison, their whole-hand I/O history distributions differ a lot from each other (Fig. 19).

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 17: Whole Hand Distribution

Figure 18: Per-Joint Distribution. Real-world data collected by rolling out the policy on a small object, i.e.,
corn, for -z axis rotation.

B ADDITIONAL EXPERIMENTS AND ANALYSIS

B.1 TRAINING PERFORMANCE

AnyRotate (Yang et al., 2024) improves over prior works regarding the generality to diverse writing
orientations and various rotation axes. However, they only considered regular objects. Achieving
such general rotation ability for complex objects poses additional challenges, even in the policy train-
ing aspect. In our experiments, we find that prior RL designs for rotation policies (Qi et al., 2022;
2023; Yang et al., 2024), where only proprioceptions and object and system parameters-related priv-
ileged information, such as masses, are considered in the observation, may let the training get stuck
in a local optimum. Thus, we include more privileged information into the observation, followed
by observation space distillation for sim-to-real (Sec. 3.1). We compare with our re-implemented
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Figure 19: Whole Hand Distribution. Real-world data collected by rolling out the policy on a small object,
i.e., corn, for -z axis rotation.
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Figure 20: Training Performance. Comparison of the final training performance (total reward) achieved by
our method and the re-implemented AnyRotate on different training sets. “DexEnv Objects” denote an irregular
training object category.

AayRotate to demonstrate this design’s superiority. Our method shows noticeably better training
performance over AnyRotate (Fig. 20), especially on challenging object sets, i.e., “DexEnv Ob-
jects” with irregular and complex geometries and “Small Cylinders” featured by small sizes, where
stable finger gaiting cannot emerge in AnyRotate. We also re-implement RotatIt (Qi et al., 2023) in
the Hora (Qi et al., 2022) codebase, but find that it can hardly achieve satisfactory results in the most
basic cylinder object set. We also adapt Hora to the down-facing hand scenario but find it cannot
work.

B.2 ADDITIONAL REAL WORLD RESULTS

Fig. 22 and 23 provide more real-world qualitative results. See more results and videos in our
website.

Recovery Behaviour. Fig. 24 illustrates two examples of the recovery behavior exhibited by our
final policy.

Effectiveness in In-Hand Translation. We conduct preliminary validations on the in-hand trans-
lation task to confirm our method’s effectiveness beyond the specific in-hand rotation task. For
instance, in the downward-facing configuration, the NDM enables the leap hand to translate a 3cm x
3cm x 10cm cuboid from being initially grasped by the thumb, middle, and pinky fingers be grasped
by the thumb, middle, and index finger (Fig. 25). Without NDM, for such a thin object, directly
transferring the corresponding in-hand-translation policy fails to do this.

This study aims to demonstrate the cross-task effectiveness of our sim-to-real methodology. Con-
ducting a more comprehensive evaluation and developing a multi-task benchmark are high-priority
directions for our future work.

B.3 CASE STUDY ON THE EFFECTIVENESS OF OUR SIM-TO-REAL METHOD

As shown in Table 4 and 5, our design on learning neural dynamics and residual policy for sim-
to-real can achieve notably superior results than the policy without sim-to-real design. Below, we
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Figure 21: Evaluated Objects in the Real World.
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Figure 22: Real World Results. Rotating challenging objects in the air. See more and videos in our website.

introduce several empirical observations and case studies on our sim-to-real method. Notably, the
residual policy can effectively improve the performance on challenging shapes, helping us solve
previously unsolvable rotation tasks, and also enhancing the stability of the rotation (Table 7).

Rotating Challenging Objects. One of the important features of the residual policy is enabling
us to rotate challenging objects with high aspect ratios or difficult object-to-hand ratios. For in-
stance, without the sim-to-real strategy, the policy can only rotate the long “Lego” leg (width=3cm,
lenght=13.5cm) for at most 180 degrees. However, introducing the residual policy can help us ro-
tate it for (almost) a complete circle (demonstrated in Figure 22 and videos in our website). For
longer (14cm, 16cm) objects, the base policy can only rotate the object for at most 90 degrees, while
incorporating our sim-to-real method can let it rotate the object for almost a full circle. Similar ob-
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Figure 23: Diverse Wrist Orientations.
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Figure 24: Recovery Behaviour.

servations for the “book” object, which is 16cm long. For complex shapes (e.g., Cow, Truck, Bear,
Dragon), the base policy can rotate for 1/4, 1/2, or at most 3/4 circles. While our sim-to-real strategy
can improve it to a full circle rotation. Similar observations for small objects (e.g., “Zongzi”, Broc-
coli). For in-hand rotation, there is typically no standard definition of “success”. If one is required,
a reasonable criterion could be completing at least one full rotation of the object. Failing to achieve
a full 360 degree rotation indicates that the policy cannot successfully navigate the fingers around
the object’s surface and would likely fail on challenging features (e.g., the four legs of the cow). For
such difficult shapes, the role of our sim-to-real strategy can be seen as elevating performance from
failure to success.

Improving the Stability. Apart from rotating, equipping us with the ability to rotate challenging
objects, the residual policy can effectively make the rotation more stable and thus help us achieve
long-term rotation. A representative example is rotating the 3cm×3cm×10cm cuboid in this vertical
pose. When dealing with such thin objects, the policy would use three fingers – the thumb, middle,
and pinky fingers – to rotate the object. Compared to using four fingers, this rotation gait is unstable.
If we do not include the residual policy, we can rotate the object for at most 5 circles. However,
including the residual policy can let us rotate the object continuously for more than 5 minutes,
which corresponds to about 30 circles. Similar observations for rotating the “cube” object along the
y-axis.

B.4 FURTHER DISCUSSIONS, ANALYSIS, AND ABLATION STUDIES

Residual Policy v.s. Direct Finetuning. A natural alternative for adapting the base policy is direct
fine-tuning. We evaluated this by fine-tuning the base policy on the learned dynamics model. We
empirically find that the direct fine-tuning fails to produce good behaviour and is even unable to
execute basic rotations. We attribute this to two main reasons: 1) Fine-tuning requires careful hy-
perparameter selection, such as using a small initial learning rate to prevent overly large updates to
the base policy. 2) The learned neural dynamics do not cover the full state-action distribution (i.e.,
is not ”globally accurate”), making them unsuitable for direct policy tuning. For instance, when the
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Figure 25: Example of In-hand Translation .

Method Bunny (z) Elephant (z) Cow (z) Truck (z) Bear (z) Cuboid (V, -z) Cuboid (H, z) Corn (-z) Broccoli (-z) Cube (y) 14-cm Cuboid (z) 16-cm Cuboid (z) Dargon (z) “Zongzi” (z)

Direct Transfer 7.33 6.28 3.67 4.36 4.19 31.42 3.67 10.47 5.76 19.37 1.57 1.57 3.14 3.14
DexNDM 8.38 7.07 6.28 6.81 6.28 99.48 6.28 16.76 10.47 130.90 6.28 6.28 6.28 7.85

Table 7: Effectiveness of the Sim-to-Real Method on Challenging Shapes. Comparison on Rot (in radian)
achieved by the base policy w/ and w/o DexNDM on challenging shapes (i.e., high aspect ratios, small sizes,
and complex geometry). Performance tested on a down-facing hand. Symbols in parentheses indicate the
rotation axis. Values are the average over three independent trials.

fine-tuned policy outputs actions outside the distribution supported by the learned dynamics, i.e.,
fr(s, πfinetune(s,a)), the predicted state transitions are unreliable.

One potential solution is to regularize the base policy update, e.g., penalizing deviations from the
original base policy’s outputs. This is similar in spirit to our practical residual-policy design, which
uses a relatively small action scale. Compared to direct fine-tuning, this approach is easier to imple-
ment and yields stable training without complex hyperparameter tuning.

In terms of performance, adding a residual policy on top of the base policy and directly fine-tuning
the base policy could produce roughly comparable results. Practically, the residual-policy approach
is more flexible, easier to implement, and more stable, which is why we adopted it.

Evaluated Objects in the Real World. Our policy demonstrates effectiveness in rotating a wide
variety of objects in the real world. Photo of real-world object gallery: Figure 21.

Joint Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Delta Action Magnitude 0.0075 0.0104 0.0074 0.0043 0.0116 0.0093 0.0089 0.0061 0.0113 0.0066 0.0054 0.0059 0.0085 0.0113 0.0052 0.0047

Table 8: Per-Joint Delta Action Magnitude. Running average of per-joint delta action scale when rotating a
cylinder (radius = 5.5cm, length = 5.5cm) along the z axis in the real world. Joints are arranged according to
the joint order in Isaac Gym.

Per-Joint Delta Action Value. Table 8 summarizes the per-joint delta-action magnitudes observed
when rotating a cylinder (radius 5.5 cm, length 5.5 cm) about the z-axis in real-world experiments.
These values quantify the amount of compensation applied to each joint.

Inherent Limitations of Task-Relevant Data Collection. Collecting task-relevant transitions
with estimating object poses suffer from the following inherent limitations: 1) Inability to be ap-
plied to small objects due to heavy occlusions; 2) Inability to estimate an accurate full pose for
axis-symmetric objects like cylinders. 3) Noisy poses caused by fast movements, tracking inaccu-
racy, and heavy occlusions; 4) Huge time cost for the first time setup, i.e., several days, and large
time cost for launching the pipeline before each data collection, i.e., about one minute. Besides, only
successful trajectories can be kept, as the hand would then experience no load, and the object falling
off would lead to a fast movement and an estimation failure. We can only roll out the policy and
use clean actions without the flexibility to add noise, which may lead to task failure. As such, the
diversity of the data would be restricted to objects that can be estimated and is biased towards easy
geometries. Moreover, the object shape and scales used should match those used in the training.
The dynamics model learning, even though we can collect a large amount of data, is relatively ill-
posed if learning only from object states without the shape information, as for different objects, the
same states and actions may lead to different transitions. Including the object shape in the dynamics
modeling would inevitably further increase the modeling dimensionality and require an even larger
amount of data to learn.

Collecting task-relevant data, even without estimating object poses, is also inherently limited to low
efficiency, limited coverage, and restricted diversity since 1) data would be biased to easy objects
that can be rotated well, 2) cannot add noise as it leads to the rotation failure, and 3) requires human
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interventions to reset the object to the hand. According to our experiments, the average time cost is
42.86s.

ObjectDeviated
poseObjectObject

(i) Insert the object
into the robotic hand

(ii) Human hand
retracts from it

(iii) Pose tracking
deviates significantly

Figure 26: Pose Tracking During Manipulation for A Small Object.

Timestep

Cylinder
Pose Estimation “Rotates”

Figure 27: Pose Tracking for Axis-Symmetric Objects.

Case Study on Estimating Object Poses via Foundation Pose. Collecting real-world transitions
by leveraging a vision-based estimator to track object poses is difficult, requires frequent and tedious
human interventions, and is prone to yielding noisy results. For each object, we need its CAD model
with exactly the same scale. Initialization steps involve capturing images via the camera and utilizing
XMem (Cheng & Schwing, 2022) to get the object mask. At the beginning of each trail, we need to
put the object near to the pose where we get the mask. After that, we need to move the object from
the table to the robotic hand and launch the policy.

The difficulty of the data collection varies across the object geometry. For normal-sized objects,
limitations primarily lie in noisy estimations, time-consuming, and human labor extensive. On
average, we need 200s to collect a usable transition trajectory.

However, for small objects, it struggles to yield successful or even usable data. If we put the object
initially on a table, then as we move the object up to the robotic hand, the pose tracking would fail,
even if we move it very slowly. To resolve this, we hold the object by hand at a pose near to the
robotic hand for initialization. After that, we need to insert it to the robotic hand for rotation. As the
human hand retracts from the object, the estimated pose deviates from the object (Fig. 26).

Besides, for axis-symmetric objects, Foundation Pose cannot give stable estimations, where the pose
continuously “rotates” while the object is kept still (Fig. 27). It prevents us from getting high-quality
and clean pose estimations.

Superiority of Our Autonomous Data Collection. Compared to task-relevant data, our au-
tonomous data collection is object-agnostic. The hand would be continuously affected by time-
varying object influences during the task execution. Joint effects of all loads to each joint simulate
various external influences coming from coupling effects and the object. One can also use any other
objects in he data collection to expand the diversity. Besides, we can add noise to the replay actions
to expand the diversity and coverage. Moreover, it is efficient and requires no human intervention.

Inherent Limitations of Playing Base Waves to Collect Data. To get real-world transitions, a
different approach from open-loop replaying policy action rollouts and rolling out the policy is play-
ing parameterized waves such as sine waves, square waves, and Gaussian noise (Fey et al., 2025).
This strategy suffers from the following drawbacks compared to using policy data: 1) For dexterous
hands, sending signals to a single joint while keeping others still would cause self-collision, which
may harm the hardware. 2) The model, either the dynamics model in our work or the compensator
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Figure 28: Performance scaling with dataset size. We fit the curve of “Task-Awre w/ Obj. Pose” via power-
law and extrapolate it to estimate the number of data required to achieve the desired result.

in UAN and ASAP, learned based on transition data obtained via playing such signals, would poten-
tially suffer from a distribution shift when applied in the following policy finetuning or compensator
training scenarios, especially when the model input contains a history. 3) Designing the frequency
and magnitude of such waves is labor-intensive and time-consuming. Thus, we adopt to use of
policy rollout to obtain real-world transitions.

Task-Relevant Data w/ Obj. Pose. We use a 5 cm × 5 cm × 5 cm cube to collect real-world
transition trajectories with object-state annotations. During data collection, we roll out the policy
while rotating the object about the z-axis, and estimate its pose with FoundationPose. Because the
cube is symmetric, we resolve the pose-frame ambiguity at the start of tracking by flipping the model
to align with our frame convention. Each data-collection episode lasts about 200 s on average. We
evaluated datasets containing 17 and 54 trajectories. Under the same real-world evaluation protocol
as in our ablations, the average rotation is 0.55 and 0.70, respectively. Fitting a learning curve to
these points, we estimate how many trajectories would be required to match the performance of
our method with 4,000 autonomous trajectories. As shown in Figure 28, the estimate is 52,483,440
trajectories—clearly impractical. Although this extrapolation is based on a small number of data
points, it highlights the data efficiency and generalization of our approach.

We attempted to train the sim-to-real baselines (ASAP and UAN) using these task-relevant,
object-state–annotated data, but even the first stage—compensator training—failed to converge, and
rewards showed no meaningful improvement, likely due to poor data quality.

(i) (ii) (iii) (iv) (v)

Figure 29: Out-of-Distribution Behaviour.

BC v.s. DAgger. The BC vs. DAgger issue arose in our early experiments when we tried to dis-
till specialist single-object-category rotation oracle policies, trained with a downward-facing hand,
into real-world deployable proprioception-only policies. We ultimately chose BC because, in these
downward-facing rotation experiments, DAgger failed, whereas BC could reliably work well on
hardware. We explain below:

• We first trained basic cylinder-rotation specialist policies with the robotic hand kept in the
downward-facing direction for x-, y-, z-axis rotation, and attempted to distill them using
both DAgger and BC, followed by real-world testing.

• Initially, we tried DAgger, following prior works. For cylinder-rotation policies with an
up-facing hand, the distillation process could be successfully optimized (achieving total

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

rewards around 80–100), and the distilled policy could be successfully transferred to the
real robot, rotating the cylinders with the hand facing up.

• However, when the oracle policy is trained with the hand kept in the downward-facing
orientation, DAgger fails to optimize the distillation process (i.e., rewards around 10–30;
rotations along the z-axis may reach 50). The transferred policy immediately fails in the
real world. For visualizations of a typical out-of-distribution behavior, see the section (Out-
of-Distribution Behaviour) on the website and Fig. 29 for a visualization.

• We then switched to BC and observed that it works well in this setting. Here, “works
well on hardware” means that the transferred cylinder-rotation BC policy with the hand
facing down avoids the out-of-distribution failures seen with DAgger and can perform basic
rotations reliably.

Figure 30: Performance w.r.t. Object Physical Weight.

Cube Cyliner Apple Cuboid (H) Lightbulb Bear Truck Cow Bunny Elephant Mouse “Zongzi” Cabbage Cylinder Small Corn Broccoli Lego Sweet Potato Teapot Mug Duck

Weight (g) 32.3 15.7 24.9 33.7 58.2 32.1 23.3 39.1 67.8 42.0 17.93 5.1 3.8 4.4 3.2 3.7 7.2 3.2 27.4 31.7 50.4

Table 9: Object Weight measured in the real world.

Performance w.r.t. Object Weight. The plot of performance w.r.t. object weight is shown in
Fig. 30. We measure the object weight in the real world (Table 9).

Because the objects vary significantly in shape, size, and geometric complexity, the plot does not
exhibit a clear trend showing how performance changes as weight increases.

Weight (g) 15.7 33.2 39.2 49.4 62.0

Rot (radian) 12.57 12.57 12.57 9.42 7.85

Table 10: Rot (radian) v.s. Weight for cylinder (5.5cm × 5.5cm × 5.5cm) with z-axis rotation.

To conduct a more controlled study and isolate the effect of object weight, we designed an exper-
iment using cylinders of identical geometry but different masses as test objects, and evaluated the
performance on z-axis rotation. Results are summarized in Table 10 and Fig. 31. During training,
the upper limit of the object weight randomization range is 50.0g. When the test object weight is be-
low 40 g, we do not observe a clear difference in rotation performance. This may seem unintuitive,
as lighter objects might appear easier to rotate. However, in practice, for relatively light objects,
the robotic hand often tends to continuously translate the object upward during the rotation, causing
it to become “stuck” between several fingers, which can actually hinder rotation. For heavier ob-
jects—for example, the 62 g case—a common cause of failure is that the robot hand cannot maintain
a stable grasp during the rotation, leading to the object being dropped.
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Figure 31: Performance w.r.t. Object Physical Weight. Rotate the cylinder object (5.5cm × 5.5cm ×
5.5cm) along the z-axis with the hand facing down.

Figure 32: “Half Load” Chaos Box. Instead of totally sinking into balls, the hand only touches the surface
of the balls in the box using fingertips.

Sensitivity to Noise and Load Distribution. To explore the influence of the magnitude of the
injected noise, we design two additional settings and replay ation sequences with noise magnitude
0.005 and 0.02, i.e., σ = 0.005, 0.02. and compare the results with those acheived using default
value, i.e., σ = 0.01.

To explore the influence of the distribution of random loads, we add an experiment where the hand
only touches the surface of balls in the box using fingertips (denoted as “half loads” (Fig. 32), while
the original setting where the hand is sunk into the balls is represented as “full loads”)

Other settings, including the replayed trajectories and the distribution of balls in the box, are kept
the same as the settings in our ablation study.

σ = 0.01, full loads σ = 0.005, full loads σ = 0.02, full loads σ = 0.01, half loads

Generalization Ability (Prediction Error ) 1.21× 10−5 1.89× 10−5 1.47× 10−5 3.81× 10−5

Real-World Performance (Rot (radian)) 12.43 ± 0.34 7.51 ± 1.03 10.58 ± 0.92 6.28 ± 0.67

Table 11: Sensitivity to Noise and Load Distribution. Generalization performance and the final real world
effectiveness w.r.t. magnitude of the noise injected to the replayed actions and the load distribution.

Same as we evaluate in the ablation study, we evaluate the generalization ability of the resulting
neural dynamics model and the final real world performance achieved by the residual policy with
the base policy. Results are summarized in Table 11.

Regarding the noise magnitude, increasing the noise has only a minor impact on both the general-
ization ability of the neural dynamics model and the final policy performance. It does slightly affect
the model’s behavior, likely because expanding the randomization range broadens the data distri-
bution while reducing the amount of data available at some noise levels, which can make learning
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more difficult. Reducing the noise magnitude, however, has a more noticeable negative effect on the
learning of the neural dynamics model, its generalization ability, and the final policy performance.
When the noise magnitude is too small, the data distribution becomes narrower, making the model
less robust and reducing the degree of extrapolation required for training the residual policy. This in
turn degrades overall performance.

Regarding the load distribution, narrowing the load distribution—for example, when only the fin-
gertips are able to contact the small sphere—reduces the effective disturbances experienced by other
joints. This weakens the robustness of the neural dynamics model and the extrapolation ability
needed for training the residual policy, ultimately harming generalization and sim-to-real perfor-
mance.

(A) Cross-Joint Finetuning v.s. Training from Scratch (Real Data) (B) Cross-Embodiment Finetuning v.s. Training from Scratch (Sim Data)

Figure 33: Cross-Joint and Cross-Embodiment Transfer. (A) Comparisons of the training loss in the
cross-joint transfer setting (fine-tuning v.s. training from scratch); (B) Comparisons of the training loss in the
cross-embodiment transfer setting (fine-tuning v.s. training from scratch).

Cross-Joint and Cross-Embodiment Transfer. We test the cross-joint and cross-embodiment
transfer ability of our joint-wise neural dynamics model. We conduct the following experiments:

• Cross-joint transfer on the same embodiment (Leap Hand, real-world collected data),
where we transfer the dynamics model of joint i+ 1 (modNJ) to joint i.

• Cross-embodiment transfer (Leap Hand → Allegro Hand, simulator rollout data).

In both scenarios, we observe that:

• the neural dynamics model initialized from a different joint or from a different embodiment
provides a good starting point; and

• achieving the same prediction loss requires significantly less fine-tuning time compared to
training from scratch.

More specifically, with such initialization, for cross-joint transfer:

• The initial training loss is over five times lower than that obtained when training from
scratch;

• Fine-tuning a pre-trained network requires approximately 51× less time to reach the final
prediction loss of the training from scratch.

For cross-embodiment transfer in the simulator:

• The initial training loss is over four times lower than that obtained when training from
scratch;

• Fine-tuning a pre-trained network requires approximately 11× less time to reach the final
prediction loss of the training from scratch.

Fig. 33 plots the training loss curves in such two settings.
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B.5 RUNTIME PERFORMANCE ANALYSIS

While the joint-wise neural dynamics model enjoys generalization ability and sample efficiency, it
would require a longer training time. Compared to whole-hand neural dynamics model, both the
neural dynamics training process and the residual policy learning would take more time. We include
the detailed training process of the joint-wise neural dynamics model and the residual policy in the
following text.

• Joint-wise dynamics model is trained in a per-joint manner. All 16 joint-wise models are
trained in parallel. To be more specific:

– Given a batch of input history and output state of the whole hand, i.e., {h, s}, we split
for each joint, i.e., {(hi, si)}16i=1.

– For each joint i, the history is passed to the model to get the corresponding prediction
s′i.

– After that the full prediction is obtained by concatenating them together, i.e., s′ =
{s′i}16i=1. And the loss is computed between s′ and s.

– Compared to the whole hand dynamics model, the extra time cost come from forward-
ing through 16 joint networks.

– Comparisons of the time consumption. In practice, training the neural dynamics
in a joint-wise manner roughly takes 4 6 times longer than training the whole hand
dynamics model.

• The residual policy is a full-hand model, i.e., accepting the I/O history and the base action
of the hand and outputting the residual action for all joints in the hand. Since we need to
query the learned neural dynamics model, compared to whole hand dynamics model, the
extra time cost of the joint-wise dynamics model come from forwarding through 16 joint
networks.

– Comparisons of the time consumption. In practice, training the residual policy using
a joint-wise neural dynamics model is roughly 6.2 times slower than training it using
the whole hand dynamics model.

# Trajectories 4,000 6,000 8,000 24,000

Joint-Wise 3.44 hrs 5.30 hrs 6.83 hrs 18.72 hrs
Whole Hand 0.61 hrs 0.88 hrs 1.47 hrs 4.67 hrs

Table 12: Training Time Comparison between joint-wise neural dynamics model and the whole hand dy-
namics model using training datasets with different sizes.

# Trajectories 937,275 1,792,431 2,073,973

Joint-Wise 6.2 hrs 13.68 hrs 15.25 hrs
Whole Hand 3.6 hrs 5.5 hrs 5.8 hrs

Table 13: Training Time Comparison between residual policies using the joint-wise neural dynamics and
that using whole hand dynamics.

We train both the dynamics model and the residual policy in parallel on eight 23GB A10 GPUs in a
Ubuntu 20.04 server. For the neural dynamics model, we vary the dataset size (#Trajectories, where
each trajectory contains 400 step transitions) and train each model for 100 epochs. The training time
for the joint-wise dynamics model and the whole hand dynamics model is summarized in Table 12.

Training the neural dynamics in a joint-wise manner roughly takes 4 6 times longer than training the
whole hand dynamics model. However, the time cost is still acceptable. For our final model where
24,000 trajectories are leveraged to train the neural dynamics model, it takes less than 19 hours to
complete.
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For the residual policy, we train on the simulation rollout dataset for one epoch. We vary the dataset
size (#Trajectories, where each trajectory contains 400 step transitions) and train the residual policy
using the joint-wise neural dynamics model and the whole hand dynamics model, respectively. The
training time for them is summarized in Table 13.

C ADDITIONAL EXPERIMENTAL DETAILS

Figure 34: General Rotation Axes.

Object Set Normal-Sized Cylinders Normal-Sized Cuboids Long Cuboids Small Cylinders DexEnv Objects ContactDB Objects (Test Set)

#Shapes 9 9 4 9 120 26
Object Minimum Extent 0.04 0.064 [0.06, 0.08] 0.025 [0.056, 0.115] [0.017, 0.153]
Object Aspect Ratios [1.6, 2.4] [1.25, 1.5] [2.5, 6.67] [1.92, 2.56] [1.05, 2.00] [1.0, 11.67]
Object Scale [0.70, 0.86] [0.70, 0.86] 0.5 [0.5, 0.6] [0.6, 0.7] [0.5, 0.6]
Mass [0.01, 0.05] kg [0.01, 0.05] kg [0.01, 0.05] kg [0.01, 0.05] kg [0.01, 0.05] kg [0.01, 0.05] kg
Coefficient of Friction [0.3, 3.0] [0.3, 3.0] [0.3, 3.0] [0.3, 3.0] [0.3, 3.0] [0.3, 3.0]
External Disturbance (2, 0.25) (2, 0.25) (2, 0.25) (2, 0.25) (2, 0.25) (2, 0.25)

Table 14: Information and Physical Parameter Randomization Ranges of Training Object Sets and the
Test Object Set.

(2.75, 2.75, 3) (5, 3.5, 3.5) (3, 3, 3) (3.5, 3) (2.5, 3, 3) (4.5, 4, 4) (2, 2, 3) (cm)

Figure 35: Dimensions of Small Objects Used in Real World Experiments.

Datasets. Our training objects comprise the following subsets: 1) Normal-sized cylinders from
Hora (Qi et al., 2022); 2) Normal-sized cuboids from Hora (Qi et al., 2022); 3) Long cuboids; 4)
Small-sized cylinders; and 5) Normal-sized complex shapes from Visual Dexterity (Chen et al.,
2022) (denoted as “DexEnv Objects”). Details with scale randomization ranges are summarized in
Table 14. To test the generalization performance in unseen shapes, we filter objects with an aspect
ratio no larger than 2:1 from the ContactDB dataset (Taheri et al., 2020) (obtained from GRAB
dataset) as our test set, resulting in 26 objects in total. The filter rule follows RotateIt (Qi et al.,
2023). As we aim to test the generalization performance on shape variation in this evaluation, we
do not consider high aspect ratio ones or scale them to small sizes. In the real world, we test the
performance on three subsets (Fig. 5, purple objects and small objects are unseen):

• Regular objects: cube (5 cm × 5 cm × 5 cm), cylinder (radius 5.5 cm, length 5.5 cm), apple
(GRAB/ContactDB apple, scaled to 0.5×), cuboid (3 cm × 10 cm × 3 cm), and light bulb
(“lamp bulb” from FurnitureBench).

• Small objects: Purchased online; vendor links are withheld to preserve anonymity during
review and will be provided upon acceptance. Fig. 35 shows dimensions of those objects
used in the real-world experiment.
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• Normal-sized irregular objects: bear, truck, and cow from Visual Dexterity (each scaled to
0.7×); and bunny, elephant, duck, mug, teapot, and mouse from GRAB/ContactDB (each
scaled to 0.5×).

Policy Optimization. We use PPO for policy optimization. Training environments are 30,000 for
cylinders and cuboids, while 50,000 for long cuboids, small cylinders, and “DexEnv Objects”. We
randomly sample a wrist pose and a target rotation axis at each environment reset.

General Rotation Axes. To construct the general rotation axis set, we generate 32 axes evenly
distributed in SO(3). Removing six principal axes, ±x, ±y, and ±z, we get the general rotation axis
set. Figure 34 provides a visualization of all 32 evenly distributed rotation axes.

Generalist Training via Behaviour Cloning. To obtain the dataset to train the generalist policy, we
roll out each oracle policy in the simulation to construct the dataset. Only transition trajectories that
would not terminate in the full 400 steps would be saved in the dataset. We set the maximum number
of tested environments to 1,500,000. In each step, the hand joint states, positional targets, object
states, rotation axis, and the hand wrist orientation would be saved. Numbers of trajectories collected
by each object category are summarized in Table 15. The number of successful rollouts could reflect
the difficulty of different training object sets. Among all five object sets, regular cylinders and
cuboids construct the easiest rotation tasks. Small cylinders introduces additional challenges due to
its small scales. Complexity in the geometry further increases the difficulty. Rotating long objects
with large aspect ratios is the most difficult task, which yields the smallest transition dataset.

Object Set Cylinders Cuboids Long Cuboids Small Cylinders DexEnv Objects

# Transitions 1,333,282 1,282,973 235,413 743,543 681,199

Table 15: The Number of Collected Transition Trajectories in Simulation.

Metrics (detailed version). We evaluate using RotateIt metrics (Qi et al., 2023) in simulation and
the real world, plus a goal-oriented success metric: Time-to-Fall (TTF)—duration until the object
drops; in simulation, episodes are capped at 400 steps (20s) and TTF is normalized by 20s, while
in the real world we report raw time; Rotation Reward (RotR)—episode sum of ω · k (simulation
only); Rotation Penalty (RotP)—per-step average ω × k (simulation only); and Radians Rotated
(Rot)—total radians rotated in the real world, measured from videos. We also report Goal-Oriented
Success (GO Succ.) following Visual Dexterity (simulation only): we sample a random goal pose,
set the target axis to the relative rotation axis, and count success if the final orientation is within 0.1π
of the goal.

Automatic System Identification. In addition to training neural dynamics models and the delta ac-
tion model to bridge the sim-to-real gap, we would align the dynamics between the simulator and the
real world by performing an automatic system identification process at the beginning. The process
involves the following steps: 1) Training probing rotation skills in the simulator using the default
PD gains and link configurations in the URDF. 2) Rollout probing skills in the simulator for multiple
state-action trajectories (denoted as “probing trajectories”). Replay probing trajectories on the real
robot. 3) Collect the resulting state and action trajectories. 4) Launch multiple parallel environments
in the simulator, each with different system parameters; 5) Replay probing action trajectories to get
resulting state trajectories. 6) Select parameters of the environment whose resulting state trajectories
are the most similar to those in the real world as the identified system parameters. We identify PD
gains and the mass of each link. Identified values are summarized in Table 16 and 17.

Joint Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P Gain 3.52 1.78 2.84 2.30 1.94 2.18 2.55 2.01 2.26 2.30 3.76 4.64 1.86 3.44 4.82 1.53
D Gain 0.194 0.106 0.091 0.195 0.199 0.192 0.149 0.050 0.088 0.135 0.027 0.081 0.123 0.042 0.082 0.068

Table 16: Identified PD Gains. Per-Joint PD Gains identified by the automatic system identification process.
Joints are arranged according to the joint order in Isaac Gym.

Domain Randomization. We apply domain randomization during training. We also randomize the
physical parameters during the test in the simulator. The randomization ranges of each object set
are summarized in Table 14. Following previous works (Qi et al., 2022; 2023), we apply a random
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Link Index 0 1 2 3 4 5 6 7 8 9 10

Mass (kg) 1.00× 10−7 2.57× 10−1 2.41× 10−2 1.90× 10−2 2.79× 10−2 1.05× 10−2 1.00× 10−7 4.68× 10−2 3.00× 10−3 3.65× 10−2 5.38× 10−2

Link Index 11 12 13 14 15 16 17 18 19 20 21

Mass (kg) 1.00× 10−7 3.12× 10−2 2.63× 10−2 2.11× 10−2 1.63× 10−2 1.00× 10−7 5.03× 10−2 3.43× 10−2 4.76× 10−2 2.23× 10−2 1.00× 10−7

Table 17: Identified Link Mass. Per-Link mass identified by the automatic system identification process.
Links are arranged according to IsaacGym’s link order.

disturbance force to the object. The force scale is 2m, where m is the object mass. We also resample
the force at each timestep with the probability 0.25. We add a noise sampled from the distribution
U(0, 0.005) to the joint positions to increase the robustness.

Baselines (detailed version). We compare our method against both previous in-hand rota-
tion/reorientation works and prior neural-based sim-to-real works. We compare with two strong
in-hand rotation/reorientation works, Visual Dexterity (Chen et al., 2022) and AnyRotate (Yang
et al., 2024). The experimental setup of AnyRotate is the most similar to ours. It demonstrates
multi-axis object rotation under various wrist orientations. However, its code is not publicly avail-
able, and the method requires tactile information. We re-implemented their environment setup and
training pipeline in IsaacGym based on the paper’s description. We’ve tried our best to set up a fair
comparison with it in the real world. Unfortunately, faithfully replicating their tactile sensor model
and sim-to-real methodology from the paper alone is difficult. We find that discarding the tactile in-
formation in its second stage training can hardly yield a policy with even basic rotation capabilities
in the real world. Thus, a direct real-world comparison was not possible. Instead, we demonstrate
our method’s superior performance by evaluating it on the same challenging object shapes used in
their experiments. For Visual Dexterity, the open-sourced code is designed for the D’Claw hand,
which is much large than and quite morphologically different from anthropomorphic hands like the
Allegro or LEAP. Despite our extensive efforts to adapt their code to the LEAP hand, the policy
failed to achieve reasonable performance in simulation on a basic cylinder shape, even after 1.5 days
of training. Thus, a direct comparison was infeasible. We therefore compare our method’s perfor-
mance with the quantitative results reported in their paper and the qualitative results shown in their
website.

We also compare with prior sim-to-real methods designed for robotic arms and legged robots,
namely UAN (Unsupervised Actuator Net) and ASAP. The core of both UAN and ASAP is sim-
ilar, which lies in collecting real-world transition data for actuators, training neural compensators to
bridge the dynamics gap between the simulator and the real world, followed by tuning/training the
task policy based on the learned neural compensator. The main differences lie in two aspects, includ-
ing data collection and model design. ASAP rollouts tracking policies and locomotion policies in
the real world for collecting real-world transitions, while UAN avoids using policy data by playing
sine waves, square waves, and Gaussian noises to prevent overfitting. UAN uses a shared network
for every actuator while ASAP trains a full-body compensator (four ankle joints for sim-to-real).
As discussed before (Sec. 3.3), neither including the object into the system modeling nor replicating
object influence in the simulator is possible. Thus, we collect 24,000 real-world free-hand replay tra-
jectories to train their corresponding compensators. To compare UAN, we employ their real-world
collection strategy and train a shared compensator for each joint in the hand. To compare ASAP,
we replay the policy rollouts and train a compensator for each finger in the sim-to-real comparison,
mirroring their four ankle joints sim-to-real setting. In sim-to-sim, we train a compensator for the
whole hand and the object.

Comparisons to AnyRotate (detailed version). We compare our real-world performance against
reported values in AnyRotate. As they did not provide links to obtain their real-world test objects,
we test our model on four of its tested objects that are easy to replicate, including “Tin Cylinder”,
Cube, “Gum Box” and “Container” (see details below). While the remaining plastic vegetable
models and the “Rubber Toy” are not reproducible according to the object size information provided
in their Table 10. According to its experiments, objects with sharp edges are more difficult to
rotate compared to plastic vegetable models (their performance on “Tin Cylinder”, “Gum Box”,
and “Container” is the worst regarding the number of rotations and survival time among all of its
tested objects as shown in its Table 12 and 13). We test the performance on three test rotation axes
from AnyRotate in the rotation axis test setting. We also employ the same rotation axis setting
and the hand orientation setting to AnyRotate in the hand orientation test setting. We conduct three
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independent experiments and present the average and deviations across the three trials in the Table 2.
As shown, we can outperform AnyRotate by a large margin.

Besides, as demonstrated, our policy can rotate a wide range of objects with diverse aspect ratios and
various object-to-hand ratios. Rotating some of them, such as the long Lego leg and animal shapes,
requires quite sophisticated finger gaiting. However, AnyRotate only demonstrates the ability of
rotating normal sized objects with relatively flat surfaces using conservative behaviours. As stated
in their paper, they would encounter difficulties when rotating objects with sharp edges. Besides, the
smallest objects that they have demonstrated the effectiveness are the “Rubber Toy” (8cm × 5.3cm ×
4.8cm ), “Tin Cylinder” (4.5 × 4.5cm × 6.3cm), and “Cube” (5.1cm × 5.1 cm × 5.1cm). However
we can deal with much smaller objects like vegetable models with sizes 3cm × 3cm ×2.5cm, 3cm
× 2.75cm × 2.75cm, and 3cm × 2cm × 2.1cm. Moreover, the most challenging aspect ratios of
their objects is 1.67 (Rubber Toy), while we can handle objects with challenging aspect ratios such
as Lego leg (4.5), Book (5.3), and long cuboid (3.33). Such comparisons further demonstrate the
superiority of our method in solving difficult in-hand rotation problems.

Details w.r.t. Our Replicated Objects from AnyRotate. We replicated their four test objects as
follows:

• Cube: We 3D-printed a cube to the specified dimensions of 5.1cm × 5.1cm × 5.1cm.
• Container: We buy a commercially available product that precisely matches the container

used in their experiment. We removed the labels from the container to maintain regional
anonymity.

• Tin Cylinder: We 3D-printed a cylinder with the specified 4.5cm radius and 6.3cm length.
• Gum Box: We identified a discrepancy in the documented dimensions (9cm × 8cm ×

7.6cm), which were identical to those of the “Container”. However, figures in the original
paper indicate the “Gum Box” is substantially smaller. Therefore, we estimated its dimen-
sions from the figures to be approximately 5cm × 4cm × 8cm and 3D-printed an object of
this size to serve as a proxy.

Comparisons to Visual Dexterity (detailed version). Compared to prior works, visual dexterity
shows improved results in rotating more complex objects with uneven surfaces and better general-
ization ability to unseen geometries. Conducting a direct and completely fair comparison between
our method and Visual Dexterity, however, is infeasible due to the different task settings (i.e., ours
axis-oriented continuous rotation v.s. Visual Dexterity’s goal pose-driven reorientation). Therefore,
we introduce a new metric, survival rotation angles, that could be computed from qualitative results
in both settings to facilitate a comparison. Specifically, it evaluates the angles the object could be
rotated before it falls from the hand. This metric is friendly for Visual Dexterity since, in some
settings, it has a supporting table. The object can touch the table during the rotation process. We
obtain Visual Dexterity’s results by carefully examining all of its demos present in all videos from its
website. Its best performance and the comparisons to our results are summarized in Table 3. Though
the metric is more friendly to Visual Dexterity, we can still achieve on par performance or bypass
its results for all irregular objects included in its demos (see videos in our website). Specifically,
we make the following observations: 1) For objects on which Visual Dexterity has demonstrated
strong results, including cow, bear, and truck, where they have shown the ability to rotate the object
to achieve several goals continuously without falling, we can at least achieve on-par performance
with it. 2) For objects that it struggles with, including elephant, bunny, duck, teapot, and dragon,
we can outperform it and achieve a much better performance regarding the survival angles. 3) We
have shown superiorities in rotating objects with challenging aspect ratios (up to 5.33) and difficult
object-to-hand ratios (i.e., long objects like the Lego leg and small plastic vegetable models, Fig. 1).
However, Visual Dexterity does not demonstrate such ability.

Comparisons to ASAP and UAN (detailed version). We evaluated our method against two promi-
nent sim-to-real transfer approaches in both sim-to-sim and sim-to-real settings. Considering the
difficulty in collecting real-world data with object states and the fact that their original data col-
lection strategy does not account for the object influence, we collect 24,000 freehand trajectories
in the real world by replaying policy action rollouts using the same hand wrist configurations as
in our data collection strategy for data with load. After that, we train a dynamics compensator
in the corresponding free-hand simulation setup. This compensator is subsequently used to fine-
tune the original policy. We reward the compensator training using the hand-only training penalty:
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Drops the object without any rotation.Rotate for at least one circle.
Joint-Wise
(w/o Load)

Difficult CylinderEasy Cylinder

Grasps the object but fails to 
manipulate it.

The object drops after
a strange rotation.

UAN

ASAP

Rotate the basic cylinder for at most 
270o.

Cannot rotate the hard cylinder.

Whole Hand
(w/ Load)

Figure 36: Case Study on Failure Cases of Baselines (UAN and ASAP) and Ablated Versions (Joint-Wise
(w/o Load) and Whole Hand (w/ Load)).
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Figure 37: Qualitative “Sim-to-Sim” Evaluation. Left: Results in Genesis. Right: Results in MuJoco.

rcompensator = −∥qref
t − q∥2, where qref

h and qt are the reference joint state and the current joint state
respectively. While we originally intended to conduct a comprehensive comparison in all settings
covered in Table 4 and 5, we found that the policies produced by these baseline methods failed
to function in the real world. They were unable to rotate the easiest cylinder object. The typical
failure modes involved the robot either grasping the object firmly without movement or failing af-
ter a strange perturbation (Fig. 36 (A)). (Videos demonstrating these failures are available on our
website.) Notably, the policy fine-tuning process did achieve satisfactory results. We therefore hy-
pothesize that an OOD issue causes this: the compensator, trained only on the dynamics of a free
hand, fails when the policy must handle the novel dynamics introduced by an object during the
rotation. This finding underscores the critical importance of modeling object dynamics in the de-
sign of sim-to-real strategies for manipulation, which also aligns with discoveries in ablation studies
(Sec. 5).

We also attempted to train the baseline sim-to-real methods (ASAP and UAN) using our
collected task-relevant, object-state–annotated dataset (54 trajectories). However, the first
stage—compensator training—failed to converge; the reward showed little to no improvement. We
attribute this to the dataset’s limited size and object state noise.

Sim-to-sim comparisons are summarized in Table 4.2.

Our compensation strategy also shows better resistance to the quality of real-world transitions. As
shown in Figure 36, our ablated version “Joint-Wise (w/o Load)” trains the dynamics model via
free hand replay data, whose data amount is even smaller than that used to train UAN and ASAP,
can rotate the basic cylinder object for at least one circle, though its final performance cannot even
surpass the base policy. However, the above two strategies totally fail in this task. Since they would
use the compensator to fine-tune the base policy, their final policy’s performance is quite sensitive to
the quality of the learned compensator. Thus, only if the learned compensator is of very high quality
and can generalize quite well can its fine-tuning achieve satisfactory results. Otherwise, the final
policy may totally fail since they are learned with “wrong” dynamics. However, we compensate
the base policy by using it with the learned residual policy together. With a good base, the final
performance would not at least totally fail.

“Sim-to-Sim”. We collect the data in Genesis by running the evaluation for the unified policy using
30.000 environments. We use cylinders to collect the data. We run the evaluation on each cylinder
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instance with the maximum number of evaluation trails set to 1,500,000. We use all rollout data to
train the joint-wise neural dynamics model (pre-trained using transitions in Isaac Gym). The training
is conducted on eight A10 GPUs for 2 epochs with a batch size of 64, which takes approximately two
days. We collect the data in MuJoCo using one environment. For each training cylinder instance, we
collect 4000 trajectories, resulting in 36,000 trajectories in total. We use all data to train a joint-wise
dynamics model (pre-trained using transitions in Isaac Gym).

After that, we train the residual policy for two epochs, which takes about 13 hours. We then deploy
the residual policy with the original base policy to the target simulator. The policy is tested on the
ContactDB test object set. We roll out the policy using 10 different initial grasps. Reported values
are the mean and standard deviation values of per-object average results over 10 trials.

Figure 37 shows a qualitative comparison of the policy’s performance w/ and w/o our method to
bridge the dynamics gap.

“Sim-to-Sim” Comparison Settings. We use the same data collection strategies to collect tran-
sitions in each simulator. The difference is that only successful rollouts are kept, resulting in
3280673 trajectories in Genesis, while 23650 trajectories in MuJoCo. These trajectories are
leveraged to train their corresponding action compensators for ASAP and UAN. For ASAP, we
use the whole hand formulation, different from the per-finger compensator that we leveraged in
ASAP’s sim-to-real setting. We reward the policy to track both the object state and the hand state:
rcompensator = −kh∥qref

t − q∥2 − koang diff(oref
t ,ot), where qref

t , oref
t , and ot are the hand reference

joint state, object reference orientation and object current orientation respectively. kh and ko are
coefficients to balance hand and object tracking. kh is set to 1.0. While we add a curriculum to ko.
It is set to a small value, i.e., 0.001, at first. And we use the reset number of the first environment to
count the reset step. During the first 10 reset steps, ko is kept at the initial value. While starting from
that and until the 200-th reset step, ko is linearly increased to 2.0. After the compensator has been
trained, we tune the policy based on it. The tuned policy is then deployed to the target simulator.
We adopt the same evaluation strategy as for our method.

(A) The Chaos Box with Balls (B) The Bandaged Ball (C) Bandaged Objects

Bandage Ball

Bandage

Plastic
Object

Plastic
Object

(D) Object on Table

Figure 38: Autonomous Real Data Collection Setup with Load. (A) A large box with many soft balls.
(B) Bind the object to three fingertips to avoid the object falling off and to add external object influence to the
hand. (C) Bind objects to two fingertip,s which adds external influence to the hand via collisions between these
objects. (D) Adding a supporting table to avoid the object falling off.

Grasping Pose Generation. We generate grasping poses with the “Palm Down” orientation, which
are used for the omni wrist orientation rotation training. For details, please refer to the cdoe in the
supp (‘DexNDM-Code/RL/README.md‘). The canonical qpos of LEAP hand, from which we
sample random noise to generate the grasping poses, is set to [1.244, 0.082, 0.265, 0.298, 1.163,
1.104, 0.953, -0.138, 1.096, 0.005, 0.080, 0.150, 1.337, 0.029, 0.285, 0.317].

Real-World Hardware Setup. We LEAP hand (Shaw et al., 2023) and Franka Arm for conducting
real-world experiments (Fig. 39). We use positional control with a control rate of 20 Hz. The
positional gain and damping coefficient are set to 800 and 200, respectively.

Real-World Data Collection Setup. To collect real-world transition data with varying loads while
minimizing human intervention, we developed several strategies, as illustrated in Figure 38.

Among these, the “Chaos Box” with balls proved most effective. Its setup is straightforward: place
the box on a table, open it, and position the robot’s hand inside with a desired orientation. Crucially,
this method operates autonomously, requiring no human intervention during data collection. This
setup ensures continuous interaction with a load, as the robot’s hand is always in contact with the
balls. The constantly shifting positions of the lightweight balls provide a diverse and continuous
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LEAP Hand

Franka Arm

Figure 39: Real World Experiment Hardware Setup.

range of loads. Furthermore, the balls’ deformable surfaces ensure that these interactions do not
damage the robot’s hardware. The autonomy of this system allows us to initiate data collection in
the evening and let it run overnight unattended.

A key limitation of the Chaos Box is its inability to collect data in a palm-up orientation due to the
robot arm’s kinematic constraints. To address this, we developed a second setup where a ball is
secured to three of the robot’s fingers with a bandage (Fig. 38 (B)). Similar to the Chaos Box, this
method runs autonomously once initiated. However, binding the ball takes time. A drawback is that
the ball’s fixed position results in a less diverse set of perturbation patterns.

Two other approaches were explored but ultimately not adopted (Fig. 38 (C,D)). One involved at-
taching an object to the finger (C), but this was unreliable as the object could fall and require manual
reattachment. The other used a supporting table (D), but the object often moved outside the robot
hand’s workspace, necessitating human intervention to reposition it.

Robotic Hand Sizes. We define hand size as the fingertip span: for the D’Claw hand, the distance
between diagonally opposite fingertips (19.10 cm); for the Allegro and Leap hands, the distance
between the index and pinky fingertips (10.05 cm and 9.50 cm, respectively).

Real-World Transition Data Collection. We collect real-world transition data by replaying action
trajectories rolled out in the simulation. Each episode contains 400 steps. Actions are executed in
the hardware at 20Hz. Collecting one trajectory with a full episode takes approximately 20s. We
collect transitions with all six tested hand wrist orientations, that is, palm up, palm down, thumb up,
thumb down, base up, and base down. In each orientation, we collect 4,000 transition trajectories.
In more detail, we randomly at uniform select 4,000 trajectories from rollouts of all oracle polices
with the corresponding wrist orientation. We collect transitions using the “Chaos Box” system.

Experimental Settings of Ablation Studies. When comparing real-world performance of different
models in ablation studies, we keep the hand in the palm down orientation and test the z-rot per-
formance on three representative objects, including a regular cylinder, a cylinder with higher aspect
ratios, and an irregular object. We roll out the policy for rotating the regular cylinders in this specific
hand orientation and the rotation direction to construct the simulation dataset, which is composed of
937,275 trajectories, each of which has 400 transition steps.

Real-World Data Collection. We collect transition data via the Chaos Box setup (Fig. 38 (A)). We
replay action trajectories rolled out in the simulation in the real world to collect the data. We collect
4,000 trajectories, resulting in 1,600,000 transitions in total. In addition, we collect 20 successful
rotation trajectories (i.e., object does not fall during the whole episode) with the thumb up orientation
on a 5cm size cube by deploying policies in the real environment as the out-of-domain test data.

Task-Relevant Data Collection. We collected 1 hour of data per object using three objects: a 5 cm ×
5 cm × 5 cm cube, the Stanford Bunny, and a cylinder (radius 5.5 cm, length 5.5 cm). In total, we
obtained 111, 87, and 54 trajectories with the cube, cylinder, and Stanford Bunny, respectively.
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Left Controller Right ControllerVR Headset

Buttons to
define
rotation axes

Figure 40: Quest 3. We teleoperate the arm using the right controller’s pose, while the left controller’s pose
specifies the desired rotation axis. We also provide a button-controlled mode that restricts rotation to three fixed
axes, selected via the X, Y, and LG buttons on the left controller.

Collecting via Base Waves. We collect 2,000 trajectories using sine waves, 1,000 trajectories using
square waves, while 1,000 using Gaussian noise. When collecting the trajectory using the sine wave,
we randomly select a joint to send signals while leaving the other joints fixed. Specifically, we fix
other joints to the midpoint of their angle range. For LEAP hand, actuating the joint between mcp
link to pip link when fixing other joints would lead to self-collision. So we would not select such
joints when replaying trajectories. We use the sine wave with the form f(t) = σ sin(2ωt). At
the beginning of each data collection, we sample σ and ω from a uniform distribution, i.e., σ ∼
U(0.5, 1.0), ω ∼ U(0.2, 0.5). When using the square waves, we use g(t) = A ∗ sign(sin(2 ∗ω ∗ t)),
where A ∼ U(0.5, 1.0), ω ∼ U(0.2, 0.5). We add Gaussian noise to the square wave to collect
remaining 1,000 trajectories, i.e., ĝ(t) = A ∗ sign(sin(2 ∗ ω ∗ t)) + ϵ, where ϵ ∼ N (0, 0.01).

Dynamics Model Training. The pretrained dynamics model is obtained by leveraging the same
model architecture to fit the roll-out simulation trajectories. We then directly tune the model weights
on the real-world data for fine-tuning. An evaluation dataset is split out from the 4000 training tra-
jectories with a train: eval ratio of 9:1. The Model with the best evaluation loss is then leveraged to
train the residual policy model. We report the final result on the OOD test dataset as the generaliza-
tion performance. We train the residual policy on the simulation data for one epoch, which would
typically cost for about 10 hours using eight A10 GPUs.

Teleoperation System for Complex Dexterous Manipulation Data Collection. We demonstrate
an important application of our rotation policy: a teleoperation system for complext dexterous ma-
nipulation tasks with in-hand rotation. We implement it by pairing the policy with a Quest 3 headset
(Fig. 40). Leveraging in-hand rotation, the system completes complex tasks requiring fine-grained
finger coordination—scenarios where traditional teleoperation systems (Ding et al., 2024; Cheng
et al., 2024) often struggle.

We adapt BunnyVisionPro (Ding et al., 2024) for Franka arm teleoperation. The arm is controlled
with the Quest 3 right-hand controller, and we obtain controller states via oculus reader. We use
the left controller’s orientation to define the rotation axis and down-weight the component around
its short axis to reduce errors when inferring the axis from pose. In practice, this orientation-based
specification is not very intuitive, so we introduce a button-controlled mode in which the rotation
axis is selected by pressing the X, Y, or LG buttons on the left controller. Although this restricts
the available axes to three, we find it sufficient for single tasks; for example, lightbulb assembly and
disassembly can be completed using z, -z, and -y rotation modes.

All hand motions, including grasping, are controlled by the policy. We initialize the robotic hand in
a default pose. To grasp an object, we approach it and activate the rotation policy. Conditioned on an
initial open-hand observation, the policy outputs an action sequence that closes the fingers around
the object to achieve a secure grasp.

D DISCUSSIONS ON RELATED SIM-TO-REAL WORKS

Misaligned physical parameters, discrepancies in their physical models, and numerous unmodeled
effects in the actuator and contact dynamics hinder successfully transferring the policy trained in
simulation to the real world. Efforts to close this gap mainly fall into four types of approaches: 1)
Domain Randomization (DR) expands the distribution of training environment to train robust poli-
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cies that are expected to function well in different environments (Loquercio et al., 2019; Peng et al.,
2017; Tan et al., 2018; Yu et al., 2019; Mozifian et al., 2019; Siekmann et al., 2020; Sadeghi &
Levine, 2016). 2) System Identification (SysID) aligns The simulator dynamics to the real-world
in a principled and interpretable way by estimating critical physical parameters from real data (An
et al., 1985; Mayeda et al., 1988; Lee et al., 2023; Sobanbabu et al., 2025). 3) Adaptive Policy adapts
the policy online according to the real-world dynamics that are implicitly identified from real-world
feedback. 4) Neural-based Real World Modeling learns real dynamics to help with policy’s trans-
fer (He et al., 2025; Fey et al., 2025; Deisenroth & Rasmussen, 2011; Shi et al., 2018; Hwangbo
et al., 2019). As a popular and standard strategy, DR requires heuristic designs (Sobanbabu et al.,
2025) to find proper randomization ranges. While generalizable and interpretable, the upper bound
of SysID is restricted by the coverage of parameters to be identified. For a successful adaption,
the training environment should cover a wide distribution, which is typically achieved by DR. This
limits their effectiveness when the real-world dynamics cannot be covered by randomizing the sim-
ulated environment. With the potential of aligning all kinds of discrepancies, guiding the policy’s
transfer via modeling real-world dynamics has the highest upper capabilities, making it the focus
of our work. One approach is leveraging neural networks to perform system identification, learning
residual dynamics or representations (Shi et al., 2018; O’Connell et al., 2022), followed by develop-
ing a model-based controller (Fig. 2 (A)). For systems involving higher degrees of freedom (DoFs)
and more complex dynamics, learning a comprehensive dynamics model that supports controller
optimization is difficult. An alternative strategy is bridging the gap between an existing simulator
and the real world by learning a delta function (He et al., 2025; Fey et al., 2025), followed by policy
finetuning to bridge the gap (Fig. 2 (B)).

However, directly extending those approaches to dexterous manipulation, with rich, rapidly varying
contacts on moving objects, cannot work. The primary challenge lies in collecting high-quality real
world transition data that can cover the vast task distribution, thereby reflecting dynamics during the
task execution. This is achieved by replaying waveforms (e.g., sine) or rolling out policies–none can
work in our setting.

Wave-based collection is untenable: manipulated objects enlarge the transition space and impose
time-varying loads, yielding dynamics unlike the no-object regime (see Appendix A.3). Because
parameterized waves cannot reliably manipulate an object in air, they must be run without it, of-
fering poor coverage of in-hand dynamics. On-policy rollouts across diverse objects are costly and
unscalable—requiring frequent human resets (placing the object back in hand), biasing data toward
easy objects, confining coverage to the policy rollout distribution, and suffering from low quality
(imperfect policy).

Extending their methods to manipulation also necessitates modeling the interaction dynamics, which
inevitably involves modeling the object. There are two approaches to model the object: 1) Explicitly
including the object in the dynamics system. Achieving this requires collecting real-world transition
trajectories with object state annotations. However, obtaining object states (e.g., using vision-based
pose trackers like FoundationPose (Wen et al., 2023))) is difficult and impossible for some cases.
For instance, FoundationPose (Wen et al., 2023)) are unreliable for axis-symmetric, tiny, and oc-
cluded objects (see Sec. B.4). Besides, the object pose tracking results are noisy. It is also very
time-consuming, requiring extra time to launch and frequent human interventions. Using the small,
noisy dataset cannot even make the first stage, compensator training, successful. Another strategy
is modeling the object as a time-varying disturbance. This requires us to a) collect transition data
with the object loads; b) manage to simulate the object’s influence to the hand in the simulator; and
c) train the compensator to track the hand state only. However, it is almost impossible, as repro-
ducing its influence would require near-perfect alignment of geometry, initialization, and contact
evolution—unrealistic under mismatched dynamics.

What data can we use to train ASAP and UAN in dexterous manipulation? We discuss three
options: (1) transitions with object-state annotations—possible in principle but impractical, as object
states are hard and noisy to obtain and, in our tests, such small and noisy data fail to train their
compensator; (2) our autonomously collected trajectories with randomized object loads—unsuitable
because replicating the influence of such object loads to the hand in the simulator is infeasible;
(3) free-hand data—the only practical choice, on which we train their compensator to close the
dynamics gap in the free hand scenario. Hence, we use free hand transitions when comparing with
their methods.
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E LLMS USAGE DISCLOSURE

We use LLMs to aid and polish writing. Details are described as follows:

• Polish sentence or paragraph to correct grammatical errors, improve the writing, and make
statements more concise. Typically, we will give the LLM a sentence with the instruction
like “Help me polish this and make it more concise: [sentence to polish]”.

• Refine theorems and proofs to improve rigor and professionalism. After writing each the-
orem and its proof, we iterate with an LLM to identify potential logical gaps and revise
accordingly—for example, by adding missing assumptions or clarifying intermediate steps.
We also ask the model to assess the proof’s soundness, offer suggestions, based on which
we will revise the proof. Finally, we use it to make the statements’ wording more precise
and professional.

46



2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

0 2 4 6 8 10

0.25

0.30

0.35

0.40

St
at

e 
(q

po
s)

Joint 0

0 2 4 6
Mean Squared Error (MSE) 1e 5

0

2

4

6

8

Joint 0

0 2 4 6 8 10
0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

St
at

e 
(q

po
s)

Joint 1

0 2 4 6 8
Mean Squared Error (MSE) 1e 5

0

2

4

6

8

10

Joint 1

0 2 4 6 8 10

0.60

0.55

0.50

0.45

0.40

0.35

St
at

e 
(q

po
s)

Joint 2

0.00000
0.00005

0.00010
0.00015

Mean Squared Error (MSE)

0

2

4

6

8

10

Joint 2

0 2 4 6 8 10
0.60

0.55

0.50

0.45

0.40

0.35

St
at

e 
(q

po
s)

Joint 3

0.000000
0.000025

0.000050
0.000075

0.000100
0.000125

Mean Squared Error (MSE)

0

2

4

6

8

10

12

14

Joint 3

0 2 4 6 8 10

0.175

0.200

0.225

0.250

0.275

0.300

0.325

St
at

e 
(q

po
s)

Joint 4

0 1 2 3 4 5
Mean Squared Error (MSE) 1e 5

0

1

2

3

4

5

6

7

Joint 4

0 2 4 6 8 10

0.10

0.15

0.20

0.25

St
at

e 
(q

po
s)

Joint 5

0 1 2 3 4
Mean Squared Error (MSE) 1e 5

0

2

4

6

8

10

Joint 5

0 2 4 6 8 10

0.25

0.30

0.35

0.40

St
at

e 
(q

po
s)

Joint 6

0.0 0.5 1.0 1.5
Mean Squared Error (MSE) 1e 5

0

2

4

6

8

Joint 6

0 2 4 6 8 10
0.34

0.32

0.30

0.28

0.26

0.24

0.22

St
at

e 
(q

po
s)

Joint 7

0.0 0.2 0.4 0.6 0.8 1.0
Mean Squared Error (MSE) 1e 5

0

1

2

3

4

5

6

Joint 7

0 2 4 6 8 10

0.10

0.15

0.20

0.25

St
at

e 
(q

po
s)

Joint 8

0 1 2 3
Mean Squared Error (MSE) 1e 5

0

1

2

3

4

5

Joint 8

0 2 4 6 8 10
0.15

0.10

0.05

0.00

0.05

0.10

St
at

e 
(q

po
s)

Joint 9

0 1 2 3 4
Mean Squared Error (MSE) 1e 5

0

1

2

3

4

5

Joint 9

0 2 4 6 8 10
0.55

0.50

0.45

0.40

St
at

e 
(q

po
s)

Joint 10

0 1 2 3 4 5
Mean Squared Error (MSE) 1e 5

0

2

4

6

8

10

Joint 10

0 2 4 6 8 10

0.65

0.60

0.55

0.50

0.45

St
at

e 
(q

po
s)

Joint 11

0 1 2 3 4
Mean Squared Error (MSE) 1e 5

0

1

2

3

4

5

Joint 11

0 2 4 6 8 10
0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

St
at

e 
(q

po
s)

Joint 12

0 2 4 6
Mean Squared Error (MSE) 1e 5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Joint 12

0 2 4 6 8 10

0.00

0.05

0.10

0.15

St
at

e 
(q

po
s)

Joint 13

0 2 4
Mean Squared Error (MSE) 1e 5

0

2

4

6

8

Joint 13

0 2 4 6 8 10

0.40

0.38

0.36

0.34

0.32

St
at

e 
(q

po
s)

Joint 14

0 1 2 3
Mean Squared Error (MSE) 1e 5

0

2

4

6

8

10

12

Joint 14

0 2 4 6 8 10
0.50

0.45

0.40

0.35

0.30

0.25

0.20

St
at

e 
(q

po
s)

Joint 15

0 1 2 3
Mean Squared Error (MSE) 1e 5

0

1

2

3

4

5

6

7

Joint 15

Per-Joint State (qpos) Analysis
Case 1
Case 1 (Fitted)

Case 2
Case 2 (Fitted)

Case 3
Case 3 (Fitted)

Case 4
Case 4 (Fitted)

Case 5
Case 5 (Fitted)

Figure 41: Polynomial Fitting (order = 3) and Error Distribution of Per-Joint State Sequences (window
length = 10). In each group with two subfigures, the left one draws the original data sequence and the fitted
sequence using a 3-ordered polynomial function while the right one shows the fitting error distribution.
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Figure 42: Polynomial Fitting (order = 5) and Error Distribution of Per-Joint State Sequences (window
length = 10). In each group with two subfigures, the left one draws the original data sequence and the fitted
sequence using a 5-ordered polynomial function while the right one shows the fitting error distribution.
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Figure 43: Per-Joint Average Polynomial Fitting (order = 3) Error.
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Figure 44: Per-Joint Average Polynomial Fitting (order = 5) Error.
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Figure 45: Polynomial Fitting (order = 3) and Error Distribution of Per-Joint Active Force Sequences
(window length = 10). In each group with two subfigures, the left one draws the original data sequence and the
fitted sequence using a 3-ordered polynomial function while the right one shows the fitting error distribution.
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Figure 46: Polynomial Fitting (order = 5) and Error Distribution of Per-Joint Active Force Sequences
(window length = 10). In each group with two subfigures, the left one draws the original data sequence and the
fitted sequence using a 5-ordered polynomial function while the right one shows the fitting error distribution.
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Figure 47: Per-Joint Average Polynomial Fitting (order = 3) Error.
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Figure 48: Per-Joint Average Polynomial Fitting (order = 5) Error.
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Figure 49: Polynomial Fitting (order = 3) and Error Distribution of Per-Joint Virtual Force Sequences
(window length = 10). In each group with two subfigures, the left one draws the original data sequence and the
fitted sequence using a three-order polynomial function while the right one shows the fitting error distribution.
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Figure 50: Polynomial Fitting (order = 5) and Error Distribution of Per-Joint Virtual Force Sequences
(window length = 10). In each group with two subfigures, the left one draws the original data sequence and the
fitted sequence using a five-order polynomial function, while the right one shows the fitting error distribution.
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Figure 51: Per-Joint Average Polynomial Fitting (order = 3) Error.
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Figure 52: Per-Joint Average Polynomial Fitting (order = 5) Error.
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