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Abstract

Generating hyperspectral images (HSIs) from RGB images through spectral re-
construction can significantly reduce the cost of HSI acquisition. In this paper, we
propose a Fractal-Based Recursive Spectral Reconstruction Network (FRN), which
differs from existing paradigms that attempt to directly integrate the full-spectrum
information from the R, G, and B channels in a one-shot manner. Instead, it treats
spectral reconstruction as a progressive process, predicting from broad to narrow
bands or employing a coarse-to-fine approach for predicting the next wavelength.
Inspired by fractals in mathematics, FRN establishes a novel spectral reconstruc-
tion paradigm by recursively invoking an atomic reconstruction module. In each
invocation, only the spectral information from neighboring bands is used to provide
clues for the generation of the image at the next wavelength, which follows the
low-rank property of spectral data. Moreover, we design a band-aware state space
model that employs a pixel-differentiated scanning strategy at different stages of
the generation process, further suppressing interference from low-correlation re-
gions caused by reflectance differences. Through extensive experimentation across
different datasets, FRN achieves superior reconstruction performance compared to
state-of-the-art methods. Code is available at https://github.com/mongko007/frn.

1 Introduction

Figure 1: PSNR-Parameters comparisons of
FRN and SOTA methods. FRN achieves out-
standing HSI reconstruction performance with
only a minimal number of parameters.

Hyperspectral images (HSIs) contain more spectral
bands (channels) than RGB images, enabling them
to capture richer emission information that more
accurately reflects the properties of objects. As a
result, HSIs are commonly used in applications such
as medical imaging [33, 35, 3], remote sensing [55,
46, 34, 19], material classification [25, 26], and
object tracking [48, 31], etc.

Conventional hyperspectral imaging systems typi-
cally employ a single 1D or 2D sensor to scan the
scene along the spatial or spectral dimension, cap-
turing hyperspectral information through prolonged,
repeated exposures. However, this approach is not
well-suited for dynamic scenes. The coded aperture
snapshot spectral imaging (CASSI) system takes
advantage of the sparsity of spectral data, acquiring

∗Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



Figure 2: Overview of the Fractal-Based Progressive Spectral Reconstruction Paradigm: (a) illustrates
how FRN reconstructs images at specific wavelengths in a coarse-to-fine manner, transitioning from
wide spectral bands to narrow ones across multiple levels. (b) demonstrates the structural self-
similarity of the modules within each level.

compressed 2D measurements by modulating spectral signals at different wavelengths. The original
HSIs are then reconstructed from these measurements using reconstruction algorithms [7, 9, 23, 24,
8, 36]. Despite its effectiveness, the high cost of CASSI devices has led researchers to explore more
affordable alternatives. Given the widespread availability of RGB cameras, spectral reconstruction
(SR) algorithms have been developed to recover HSIs from RGB input [10, 28, 20, 16, 52, 15].

The SR task is inherently ill-posed [15, 52]. Due to the variability in camera response functions, a sin-
gle RGB image may correspond to multiple HSIs, complicating the accurate retrieval of hyperspectral
information from limited RGB data. Traditional methods rely on statistical principles or hand-crafted
sparse priors [2, 44]. However, the scarcity of paired RGB-HSI data limits the ability to fully capture
and explore these prior assumptions. Convolutional neural networks (CNNs) have demonstrated
strong performance in addressing various ill-posed problems, with some studies exploring their
application to the SR task [15, 45, 29, 20]. Nevertheless, CNNs struggle to capture non-local spatial
dependencies and model correlations between spectral bands. In contrast, transformers, owing to their
multi-head self-attention mechanism, are better suited for handling long-range spatial dependencies
and inter-band relationships, and have thus been widely applied to the SR task [10, 52, 11, 9, 8, 27].
However, such methods typically integrate spectral information from RGB images in a brute-force
manner, leading to significant computational overhead and increased training complexity for neural
networks.

Fractals are common patterns observed in neural networks [30]. Numerous studies have demonstrated
the effectiveness of fractal or scale-invariant small-world network structures in the brain and its
functional networks [4, 47, 6]. This inspires the idea that a larger network can be recursively
constructed from smaller atomic modules. In addition to neural networks, fractal or near-fractal
patterns are also commonly observed in natural data [30]. HSI data consists of sub-images from
different bands, where sub-bands with slow variations in object emission characteristics can be
treated as atomic cubes. Therefore, the SR task can be decomposed into the reconstruction of these
sub-bands.

Based on the above analysis, we attempt to introduce the concept of fractals into the SR task.
Fig. 1 shows the superior performance of our method. By employing the recursive principle, our
method achieves superior HSI reconstruction performance while requiring only a minimal number of
parameters. Fig. 2 (a) illustrates the progressive spectral reconstruction from wide to narrow bands.
During the generation of a specific wavelength image, only spectral information from neighboring
channels is used as cues for reconstruction, which aligns with the low-rank properties of HSI. Unlike
integrating all hyperspectral information from an RGB image in a single step, this recursive generation
approach mitigates the ill-posed problem by increasing the input and reducing the output at each
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level. Fig. 2 (b) depicts our recursive generation framework, which exhibits self-similarity across
levels by recursively invoking atomic reconstruction modules within atomic reconstruction modules.

A major challenge of recursively invoking the model is the substantial increase in the number of
parameters and FLOPs. Visual Mamba (VMamba) models sequential dependencies by dividing an
image into sequential blocks. A key advantage of VMamba is its linear computational complexity [57,
13, 42, 41, 43], which is particularly critical for handling high-dimensional hyperspectral features.
Therefore, we design a state space model (SSM) with an adaptive band-aware mask (BAMamba)
that filters out pixels with low spatial correlation before cross-scanning. This approach reduces
computational cost while enabling the network to learn spatial sparsity effectively. In summary, our
contributions are listed as follow:

1) We propose a fractal-based recursive spectral reconstruction network (FRN), to the best of
our knowledge, it is the first attempt to introduce fractals to the SR task. FRN decomposes
SR task into the reconstruction of sub-band images, establishing a new paradigm for spectral
reconstruction.

2) FRN effectively leverages the low-rank characteristics of HSI while reducing the complexity
of solving the ill-posed problem. Moreover, it exhibits self-similarity between atomic
reconstruction modules across different levels.

3) We design a SSM with an adaptive band-aware mask (BAMamba), which reduces the
computational cost by filtering out pixels with lower spatial correlation and forces the
network to learn more compact pixel-wise inductive biases.

4) Through experiments conducted on different datasets, FRN demonstrates outstanding per-
formance in both qualitative and quantitative metrics.

2 Related Work

2.1 Hyperspectral Image Reconstruction

Conventional hyperspectral imaging systems typically use spectrometers to scan scenes along the spa-
tial or spectral dimensions. These scanners—such as pushbroom and whiskbroom types—have been
widely applied in remote sensing, medical imaging, and environmental monitoring [5, 40]. However,
they require long exposure times during scanning, rendering them unsuitable for dynamic scenes,
and the imaging devices are too large to be easily portable. To overcome these limitations, snapshot
compressive imaging (SCI) systems have been developed [12, 18, 32, 49]. These systems compress
3D HSI data into 2D measurements. The original HSIs are then reconstructed from these measure-
ments using reconstruction algorithms. A representative example is the CASSI system. Despite their
advantages, SCI systems are costly. As a more accessible alternative, many researchers have explored
spectral reconstruction algorithms that aim to recover hyperspectral data from conventional RGB
images [56, 53, 52, 10, 11], leveraging the widespread availability of RGB cameras.

2.2 Model-Based Methods

Model-based SR methods generally introduce prior knowledge to help the model reduce the difficulty
of the ill-posed problem. Given the intrinsic low-rank nature of HSIs, sparse representation has
become one of the most typically techniques for incorporating prior knowledge [38, 2, 44]. Some
methods assume that the camera response function is known and learn a mapping from RGB images
to hyperspectral reflectance [37, 27, 53]. However, this assumption is overly restrictive in practice. In
addition, mathematical techniques such as singular value decomposition (SVD) [21] and Gaussian
processes [1] are also employed to reconstruct HSIs. These methods place excessive reliance on
priors, which constrains the model’s representational ability and generalization capability.

2.3 Deep-Learning-Based Methods

Thanks to the powerful nonlinear fitting capabilities of CNNs, many researchers have applied them
on SR. Convolutional blocks are used for spectral upsampling [53] or stacked layer by layer to enable
the network to model more complex functions [45]. Considering the significant emission differences
of objects across different spectral bands, efficient spatial-spectral attention mechanisms have been
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Figure 3: The details of BAMamba. BAMamba is a U-Net style network built with state space
models equipped with band-aware masks (BSSM). BSSM introduces a band-aware spatial mask that
adaptively perceives the reflectance of objects at specific wavelengths, suppressing interference from
pixels with lower correlation.

designed to achieve more realistic reconstruction results [22, 28, 39]. To address the limitations of
CNNs in capturing long-range spatial dependencies, a variety of Transformer-based SR methods
have since emerged [10, 11, 52]. These methods learn inter-channel relationships by designing
effective spectral-wise self-attention mechanisms. However, the above methods follow a one-shot
reconstruction paradigm for HSI, overlooking the potential of recursive generation strategy to reduce
the complexity of SR.

3 Method

3.1 Problem Formulation

The sensor of an RGB camera transfers the incident light to the R, G, and B channels through filters.
This process can be regarded as an interaction between the camera response function (CRF) and the
hyperspectral image

X (h,w, λ) =

∫ λmax

λmin

ϕ (λi) · Y (h,w, λi) dλ, (1)

where X ∈ RH×W×3 represents the RGB image and Y ∈ RH×W×L is the corresponding HSI.
Y (h,w, λi) denotes the spectral reflectance in the location(h,w) at the wavelength of λi. ϕ (λi)
represents the spectral response of the sensors at the wavelength of λi, and [λmin, λmax] is the band
range of X (h,w, λ). The spectral information within the specified band range is integrated and
stored in the channels of the RGB image. Eq. (1) can be rewritten in a discrete form

X (h,w, c) =

K∑
i=1

ϕ (λi) · Y (h,w, λi) , (2)

where c ∈ [R,G,B] and K is the number of channels within the corresponding band. Furthermore,
Eq. (2) can be simplified as a matrix form

X = YΦ. (3)

where X ∈ RHW×3 denotes the vectorial representation of RGB image, and Y ∈ RHW×L is the
corresponding HSI with L channels, Φ ∈ RL×3 represents the CRF.

3.2 Spectral Reconstruction via Fractal Generator

Due to the self-similarity observed among local bands in HSI, we propose to construct a structurally
self-similar SR network by following a recursive principle. We define a fractal generator gi as an
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atomic module that generates next-level data xi+1 from the previous-level result xi: xi+1 = gi(xi),
as illustrated in Fig. 2 (b). Since the generator at each level can produce multiple outputs from
a small amount of input, the fractal framework enables exponential growth of generated outputs
with only a linear number of recursive levels [30], as shown in Fig. 2 (a). This property makes it
particularly suitable for modeling high-dimensional HSI data using only a limited number of recursive
levels. Specifically, we design an SSM with an adaptive band-aware mask (BAMamba) as the atomic
generator, which will be described in Section 3.3.

The neural network learns the recursive principle from inter-band spectral correlations. For SR task,
the objective is to learn the joint distribution of images at all wavelengths p (yλ1 , yλ2 , · · · , yλN

).
However, it is difficult to model the joint distribution in a single step. To address this, we adopt
a progressive strategy, which can be viewed as a divide-and-conquer approach, which model the
conditional distribution p (y | x) at different generation levels. Assume that each atomic generator
produces a data sequence of length n, and the number of channels in the HSI is K, let K = nm,
where m = logn K is the number of recursive levels. The atomic generator at the first level divides
the joint distribution p (y1, y2, · · · , yK) into n subsets, each containing nm−1 variables. The joint
distribution is decomposed

p (y1, y2, · · · , yK) =
∏n

i=1p
(
y(i−1)·nm−1+1, · · · , yi·nm−1 | y1, · · · , y(i−1)·nm−1

)
. (4)

Each conditional distribution is modeled by the atomic generator at the corresponding level. Fig. 2
illustrates the overall process. Through this typical divide-and-conquer strategy, FRN models the
joint distribution over K variables by employing m levels of generators. The self-similarity of HSI
along the spectral (channel) dimension, also known as its low-rank property, is effectively captured
via the recursive principle, enabling a progressive approximation of the CRF Φ in Eq. (3).

3.3 Architecture of BAMamba

Visual Mamba (VMamba) exhibits linear computational complexity, enabling it especially well-
suited for processing HSI data, which has a dimensionality much higher than that of RGB images.
To address the computational burden introduced by recursive calls, we propose a VMamba-based
sub-band generator that balances efficiency with performance, as shown in Fig. 3 (a).

The SSM employs a system of linear ordinary differential equations to connect inputs and outputs
via intermediate hidden state representation. For a system with input signal x(t) ∈ RL, hidden state
h(t) ∈ CN and output response y(t) ∈ RL, the model can be formulated as

h′(t) = Ah(t) +Bx(t),

y(t) = Ch(t) +Dx(t),
(5)

where A ∈ CN×N , B,C ∈ CN and D ∈ C1 are weighting parameters. Eq. (5) is typically
discretized using a zero-order keeper (ZOH)

A = exp(∆A),
B = (∆A)−1(exp(∆A)− I) ·∆B,

(6)

where ∆ is a time scale parameter used to transform the continuous parameters A, B into discrete
parameters A, B. The discretized Eq. (5) can be written as

ht = Aht−1 +Bxt,

yt = Cht +Dxt,
(7)

Figure 4: Residual maps across the R, G, and B
channels from a CAVE dataset sample.

Different objects may exhibit substantial differ-
ences in emissivity at the same wavelength, which
implies that the energy intensity in HSI can un-
dergo significant spatial variations. Furthermore,
as illustrated in Fig. 4, objects exhibit varying
degrees of distinction across different spectral
bands.

In SSMs, hidden states capture long-range de-
pendencies by propagating historical information
along the sequence. By accumulating and carrying previous data from earlier time steps, they enable
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the model to retain past context and effectively establish a global receptive field. However, varia-
tions in the spatial distribution of spectral features across different bands can negatively impact the
network’s generalization ability. As shown in Fig. 4, significant differences may exist between the
same (or different) objects across different (or the same) spectral bands. To mitigate the influence of
accumulated band-specific information in hidden states, we attempt to suppress the interference from
low-correlation regions by generating band-aware masks. According to the Eq. (6), ∆A controls the
impact of the current input sequence xt on the hidden states, with a positive correlation. Based on the
value of the coefficients in ∆A, a band-aware mask M is generated during each sub-band generation

M =

{
1, ∆A ≥ ϵ
0, ∆A < ϵ

, (8)

yt = (C⊙M)ht, (9)

where ϵ ∈ [0, α], and α is a hyperparameter. According to Eq. (8) and Eq. (9), features in the
hidden states associated with coefficient ∆A that fall below a defined threshold are suppressed. As
illustrated in Fig. 3 (b), some pixels with low spatial correlation (shaded areas) are filtered out. The
overall working mechanism of the Band-awared SSM block (BSSM) is as follows

featk+1 = CS (LN (featk))⊙ SiLU (LN (featk)) + featk. (10)

where feat denotes the backbone features and CS (·) represents the band-awared scanning operation
which employs the following operation sequence: DWConv → SiLU → SSM → LN .

3.4 Loss Function

In this paper, we use L1 loss to optimize the reconstructed HSI at the pixel level

Lrec =
1

H ×W × C

∑
i=0

∣∣∣Ŷ (i)− Y (i)
∣∣∣ . (11)

where C is the number of channels in the reconstructed HSI, Ŷ (i) represents the predicted value for
pixel i, and Y (i) is its corresponding ground truth.

4 Empirical Results

4.1 Experimental Settings

Dataset. To validate the effectiveness of the proposed network, we conducted experiments on two
datasets. The first dataset is the CAVE dataset [54] provided by Columbia University, which contains
32 HSIs. Each HSI consists of 31 spectral bands with a spectral interval of 10 nm, covering the
spectral range from 400 nm to 700 nm. We randomly selected 20 HSIs for training, 6 HSIs for
validation, and 6 HSIs for testing. The second dataset is the Harvard dataset [14] provided by Harvard
University. It contains 50 HSIs covering both indoor and outdoor scenes. Each HSI consists of
31 spectral bands with a 10 nm interval, covering the spectral range from 420 nm to 720 nm. We
randomly selected 30 HSIs for training, 10 HSIs for validation, and 10 HSIs for testing.

Implementation Details. We implemented our network on the PC with a single NVIDIA RTX 4090
GPU and built it in the PyTorch framework. In the training phase, the Adam optimizer [17] was used
to optimize the model parameters. The initial learning rate was set to 4× 10−4 , and the learning rate
was decayed using a cosine annealing schedule with a minimum value of 1× 10−6. The batch size
was set to 32. We cropped 64× 64 patches from 3D cubes and input them into the network. We set
the number of recursive levels to 5, where each atomic generation module reconstructs a two-channel
image. The threshold parameter α in Eq. (8) is empirically set to 0.5.

4.2 Baseline Methods

We compared our FRN with seven SOTA spectral reconstruction methods: HSACS [29], SSRNet [16],
HSRNet [20], AWAN [28], MST++ [10], LTRN [15], and MSFN [52].
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4.3 Metrics

To evaluate the reconstruction quality of HSIs, we adopt four widely used IQA metrics: peak signal-
to-noise ratio (PSNR), structural similarity index (SSIM) [51], root mean square error (RMSE), and
universal image quality index (UIQI) [50]. PSNR quantifies reconstruction quality by computing
the ratio of signal variance to noise, providing a measure sensitive to pixel-level errors. SSIM
assesses the perceptual similarity between the reconstructed image and the ground truth by jointly
considering luminance, contrast, and structural information. UIQI evaluates the consistency of pixel
distributions by comparing the means and variances of the reconstruction and ground truth. Moreover,
we compared the number of parameters of FRN with those methods.

Table 1: Performance comparison of different methods on CAVE and Harvard datasets. The best
values are bolded. The up or down arrow indicates a higher or lower metric, corresponding to better
performance.

CAVE Harvard
Method Params(M) PSNR↑ RMSE↓ UIQI↑ SSIM↑ PSNR↑ RMSE↓ UIQI↑ SSIM↑
HSACS 19.74 37.9112 5.4099 0.8389 0.9765 42.1360 3.3203 0.8586 0.9762
SSRNet 0.39 38.6807 4.9824 0.8573 0.9794 42.1070 3.5370 0.8608 0.9760
HSRNet 0.77 38.4459 4.6511 0.8527 0.9801 41.6952 3.5459 0.8571 0.9747
MST++ 1.62 38.5511 4.6304 0.8731 0.9832 42.4756 3.2552 0.8623 0.9773
AWAN 21.36 39.4262 4.8245 0.8597 0.9798 42.2312 3.5034 0.8616 0.9769
LTRN 0.67 39.7349 4.3095 0.8702 0.9832 42.4953 3.3112 0.8632 0.9770
MSFN 2.48 39.8430 4.0372 0.8877 0.9860 42.6455 2.9916 0.8715 0.9771
Ours 0.30 41.0522 3.6243 0.9010 0.9900 42.8762 2.8933 0.8791 0.9774

Figure 5: Comparison of the reconstruction results of different methods on one scene from the CAVE
dataset, including seven SOTA methods and our FRN. We select three bands (20, 25, and 31) for
visualization.
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4.4 Performance Evaluation

Numerical Results. The quantitative results of different methods on the CAVE and Harvard datasets
are presented in Tab. 1. Our method consistently achieves superior performance across all evaluation
metrics. On the CAVE dataset, the average PSNR and SSIM of our method reach 41.05 dB and 0.99,
respectively, outperforming the second-best results by 1.2 dB and 0.004. On the Harvard dataset, our
method achieves a PSNR of 42.87 dB, surpassing the second-best results by 0.23 dB. Additionally, it
can be observed that, compared to other methods, FRN achieves higher reconstruction quality while
requiring the fewest model parameters.

Figure 6: Comparison of the reconstruction results of different methods on one scene from the
Harvard dataset, including seven SOTA methods and our FRN. We select three bands (10, 20, and 31)
for visualization.

Figure 7: Comparison of the spectral curves among different methods on CAVE (left) and Harvard
(right) datasets.

Visual Results. Fig. 5 and Fig. 6 show the reconstruction results of different methods on the
CAVE and Harvard datasets, respectively. We select three channels from each scene for qualitative
comparison. To provide a more intuitive comparison, we also present the residual maps between the
predicted results and the ground truth. By zooming into local regions, it can be observed that our
method reconstructs results that are closer to the ground truth in terms of spatial details and contrast.
The corresponding spectral curve in Fig. 7 indicates FRN achieves higher spectral accuracy.
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Table 2: Ablation studies of suppression threshold α on CAVE dataset. ‘w/o’ refers to the setting where the
band-aware mask is not used (only with vanilla VMamba).

Config PSNR↑ RMSE↓ UIQI↑ SSIM↑
w/o 39.7482 4.2998 0.8758 0.9840

α = 0.2 39.9022 4.1562 0.8820 0.9852
α = 0.3 40.3285 3.8683 0.8911 0.9866
α = 0.5 41.0522 3.6243 0.9010 0.9900
α = 0.7 40.1822 4.1022 0.8854 0.9860
α = 0.8 37.4822 5.8448 0.7822 0.9573

Table 3: Ablation studies of the number of recursive
levels on CAVE dataset. ‘w/o’ means reconstruct the
HSI from the RGB image in one step.

Config PSNR↑ RMSE↓ UIQI↑ SSIM↑
w/o 39.8644 3.8683 0.8898 0.9883

M=2 40.2210 3.7996 0.9001 0.9884
M=3 40.6382 3.7057 0.9004 0.9886
M=5 41.0522 3.6243 0.9010 0.9900

Table 4: Ablation studies of the number of reference
spectral on CAVE dataset. ‘w/o RGB’ refers to exclud-
ing the RGB image from each reconstruction level.

Config PSNR↑ RMSE↓ UIQI↑ SSIM↑
w/o RGB 38.6244 5.1320 0.8448 0.9773

S=2 40.3981 3.8862 0.8962 0.9884
S=3 40.8286 3.7900 0.8989 0.9886
S=4 41.0522 3.6243 0.9010 0.9900
S=5 40.8744 3.7458 0.8993 0.9888

4.5 Ablation Study

Band-awared Mask. We investigated the impact of the suppression threshold α. Tab. 2 shows that
setting α either too high or too low negatively affects the network performance. When the threshold
is too low, the suppression effect is weakened, and low-correlation regions introduce redundant
interference to feature learning. Conversely, an excessively high α causes the SSM to suppress
informative features, resulting in information loss.

Recursive Levels. We evaluated the impact of the number of recursive levels M on the reconstruction
performance on CAVE dataset. By default, we set M = 5, which means that each BAMamba
generated 2 new spectral channels based on the input from the previous level (25 = 32). In addition,
we also attempted to reconstruct the HSI from the RGB image in one step. Tab. 3 shows that the
reconstruction quality improves as the number of recursive levels increases. This is because each
atomic generation step deals with fewer unknowns, thereby reducing the difficulty of solving the
ill-posed problem.

Spectral Cues. We conducted ablation studies on the number of reference channels (wavelengths),
denoted as S, fed into each atomic generator. By default, we input RGB images into each atomic
generator to provide spectral priors. In Tab. 4, we found that setting S = 4 yields a relatively
optimal performance. A smaller value of S limits the amount of reference information available to the
network, while a larger value may introduce noisy features. Another notable finding is that excluding
the RGB image from each reconstruction level leads to a substantial decline in reconstruction quality.
This degradation is attributed to the loss of structural and contrast priors inherently embedded in the
RGB image, which are essential for accurate spectral learning.

5 Conclusion

In this paper, we propose a fractal-based recursive spectral reconstruction network (FRN). FRN estab-
lishes a new paradigm for spectral reconstruction by recursively invoking an atomic reconstruction
module to progressively predict spectra from wide to narrow bands. By introducing the concept of
fractals, FRN aligns with the low-rank nature of HSI data and exhibits structural self-similarity across
different levels of the network. Furthermore, to alleviate the computational burden caused by the
recursive design, we develop BAMamba, an atomic generation module based on SSM. Extensive
experiments on multiple datasets demonstrate that FRN achieves outstanding performance in HSI
reconstruction. Nevertheless, the recursive calling mechanism introduces significant computational
overhead, which represents an important direction for future optimization.
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• The answer NA means that the paper does not include experiments.
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experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).
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of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the NeurIPS Code
of Ethics.
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from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader impacts
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Answer: [NA]

Justification: There is no societal impact of the work performed.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.
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describe how they avoided releasing unsafe images.
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• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of
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be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
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• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]
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Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
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should or should not be described.
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