
Under review as a conference paper at ICLR 2024

PERFECT ALIGNMENT MAY BE POISONOUS TO GRAPH
CONTRASTIVE LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Contrastive Learning (GCL) aims to learn node representations by aligning
positive pairs and separating negative ones. However, limited research has been
conducted on the inner law behind specific augmentations used in graph-based
learning. What kind of augmentation will help downstream performance, how
does contrastive learning actually influence downstream tasks, and why the mag-
nitude of augmentation matters? This paper seeks to address these questions by
establishing a connection between augmentation and downstream performance,
as well as by investigating the generalization of contrastive learning. Our findings
reveal that GCL contributes to downstream tasks mainly by separating different
classes rather than gathering nodes of the same class. So perfect alignment and
augmentation overlap which draw all intra-class samples the same can not explain
the success of contrastive learning. Then in order to comprehend how augmenta-
tion aids the contrastive learning process, we conduct further investigations into
its generalization, finding that perfect alignment that draw positive pair the same
could help contrastive loss but is poisonous to generalization, on the contrary,
imperfect alignment enhances the model’s generalization ability. We analyse the
result by information theory and graph spectrum theory respectively, and propose
two simple but effective methods to verify the theories. The two methods could
be easily applied to various GCL algorithms and extensive experiments are con-
ducted to prove its effectiveness.

1 INTRODUCTION

Graph Neural Networks (GNNs) have been successfully applied in various fields such as recom-
mendation systems (He et al., 2020b), drug discovery (Liu et al., 2018), and traffic analysis (Wu
et al., 2019), etc. However, most GNNs require labeled data for training, which may not always
be available or easily accessible. To address this issue, Graph Contrastive Learning (GCL), which
does not rely on labels, has gained popularity as a new approach to graph representation learning
(Veličković et al., 2018; You et al., 2020).

GCL often generates new graph views through data augmentation (Chen et al., 2020; Zhu et al.,
2020). GCL uses nodes augmented from the same node as positive samples and other nodes as
negative samples, then maximize similarity between positive samples and minimize similarity be-
tween negative ones (Wang & Isola, 2020; Hassani & Khasahmadi, 2020). Data augmentation can
be categorized into three types (Zhao et al., 2022): random augmentation (Veličković et al., 2018;
Zhu et al., 2020), rule-based augmentation (Zhu et al., 2021; Wei et al., 2023; Liu et al., 2022),
and learning-based augmentation (Suresh et al., 2021; Jiang et al., 2019). For instance, Zhu et al.
(2020) randomly masks node attributes and edges in graph data to obtain augmented graphs; Zhu
et al. (2021) uses node degree to measure its importance and mask those unimportant with higher
probability; And Suresh et al. (2021) uses a model to learn the best augmentation and remove irrel-
evant information as much as possible. However, most data augmentation algorithms are designed
heuristically, and there is a lack of theoretical analysis on how these methods will influence the
downstream performance.

Some researchers have explored the generalization ability of contrastive learning (Arora et al., 2019;
Wang & Isola, 2020; Huang et al., 2021). They propose contrastive learning works by gathering
positive pairs and separating negative samples uniformly. Wang et al. (2022b) argues that perfect

1

Under review as a conference paper at ICLR 2024

alignment and uniformity alone cannot guarantee optimal performance. They propose that through
stronger augmentation, there will be support overlap between different intra-class samples, which
is called augmentation overlap (Saunshi et al., 2022; Huang et al., 2021). Thus, the alignment of
positive samples will also cluster all the intra-class samples together, and lead to class-separated
representations due to the limited inter-class overlap. However, Saunshi et al. (2022) points out that
augmentation overlap may be relatively rare despite the excellent performance of contrastive learn-
ing methods. Hence, chances are that the success of contrastive learning cannot be solely attributed
to alignment and augmentation overlap. It is of vital importance to evaluate how augmentation works
in the contrastive learning process, why the magnitude of augmentation matters so much and how to
perform better augmentation? As data augmentation on graphs could be more customized and the
magnitude of augmentation can be clearly represented by the number of modified edges/nodes (You
et al., 2020), we mainly study the augmentation on graphs. But it works the same in other fields.

In this paper, we provide a new understanding of Graph Contrastive Learning and use a theoretical
approach to analyze the impact of augmentation on model generalization. We find that with a better
augmentation, the model is performing better mainly because of inter-class separating rather than
intra-class gathering brought by augmentation overlap. So perfect augmentation overlap and align-
ment are not the key factor for contrastive learning. To further analyze the phenomena, we formulate
a relationship between downstream performance, contrastive learning loss, and augmentation, reveal
the reason why stronger augmentation helps class separating, and find stronger augmentation could
benefit the generalization by weaken the positive pair alignment. Therefore, perfect alignment is not
the key to success, and may be poisonous to contrastive learning.

Then aiming to achieve a better balance between generalization and contrastive loss, we further
analyze the contrastive process through information theory and graph spectrum theory. From the
information theory perspective, we find augmentation should be stronger while reducing the infor-
mation loss, which is actually adopted explicitly or implicitly by designed algorithms (Zhu et al.,
2021; 2020; Suresh et al., 2021). From the graph spectrum theory perspective, we analyze how
the graph spectrum will affect the contrastive loss and generalization (Liu et al., 2022), finding that
non-smooth spectral distribution will have a negative impact on generalization. Then we propose
two methods based on the theories to verify our findings.

Our main contributions are as follows. (1) We reveal that when stronger augmentation is applied,
contrastive learning benefits from inter-class separating more than intra-class gathering, and imper-
fect alignment could be more beneficial as it enlarges the inter-class distance. (2) We establish the
relationship between downstream performance, contrastive learning loss, and data augmentation.
Further explains why stronger augmentation helps, then we analyze the result from information the-
ory and graph spectrum theory to guide algorithm design. (3) Based on the proposed theoretical
results, we provide specific algorithms that verify the correctness of the theory. We also show that
these algorithms can be extended to various contrastive learning methods to enhance their perfor-
mance. (4) Extensive experiments are conducted on different contrastive learning algorithms and
datasets using our proposed methods to demonstrate its effectiveness.

2 AUGMENTATION AND GENERALIZATION

2.1 PRELIMINARIES

A graph can be represented as G = (V, E), where V is the set of N nodes and E ⊆ V ×V is the edge
set. The feature matrix and the adjacency matrix are denoted as X ∈ RN×F and A ∈ {0, 1}N×N ,
where F is the dimension of input feature, xi ∈ RF is the feature of node vi and Ai,j = 1 iff
(vi, vj) ∈ E . The node degree matrix D = diag(d1, d2, ..., dN), where di is the degree of node vi.

In contrastive learning, data augmentation is used to create new graphs G1,G2 ∈ Gaug, and the
corresponding nodes, edges, and adjacency matrices are denoted as V1, E1,A1,V2, E2,A2. In the
following of the paper, v is used to represent all nodes including the original nodes and the aug-
mented nodes; v+i is used to represent the augmented nodes including both v1i and v2i ; v0i represents
the original nodes only.

Nodes augmented from the same one, such as (v1i , v
2
i), are considered as positive pairs, while others

are considered as negative pairs. It is worth noting that a negative pair could come from the same

2

Under review as a conference paper at ICLR 2024

graph, for node v1i , its negative pair could be v−i ∈ {v+j |j ̸= i}. Graph Contrastive Learning (GCL)
is a method to learn an encoder that draws the embeddings of positive pairs similar and makes nega-
tive ones dissimilar (Chen et al., 2020; Wang & Isola, 2020). The encoder calculates the embedding
of node vi by f(X,A)[i], which can be summarized as f(vi) for better comprehension, we as-
sume that ||f(vi)|| = 1. The commonly used InfoNCE loss (Zhu et al., 2020) can be formulated as
follows:

LNCE = Ep(v1
i ,v

2
i)
E{p(v−

i)}

[
− log

exp(f(v1i)
T f(v2i))∑M

i=1 exp(f(v
1
i)

T f(v−i))

]
. (1)

We use two augmented views to perform GCL (Zhu et al., 2020; Chen et al., 2020). However, v1i
could be replaced by v0i (Liu et al., 2022; He et al., 2020a), as v0i is a special case of v1i where the
augmentation happen to change nothing about the original view.

2.2 HOW AUGMENTATION INFECT DOWNSTREAM PERFORMANCE

Previous work (Wang & Isola, 2020) proposes that effective contrastive learning should satisfy align-
ment and uniformity, meaning that positive samples should have similar embeddings, i.e., f(v1i) ≈
f(v2i), and features should be uniformly distributed in the unit hypersphere. However, Wang et al.
(2022b) pointed out that when {f(v0i)}Ni=1 are uniformly distributed and f(v0i) = f(v+i), there is a
chance that the model may converge to a trivial solution that only projects very similar features to the
same embedding, and projects other features randomly, then it will perform random classification in
downstream tasks although it achieves perfect alignment and uniformity.

Wang et al. (2022b) argues that perfect alignment and intra-class augmentation overlap would be
the best solution. The augmentation overlap means support overlap between different intra-class
samples, and stronger augmentation would more likely bring more augmentation overlap. If two
intra-class samples have augmentation overlap, then the best solution is projecting the two samples
and their augmentation to the same embedding, which is called perfect alignment. For example,
if two different nodes v0i , v0j get the same augmentation v+, then the best solution to contrative
learning is f(v0i) = f(v+) = f(v0j). So perfect alignment and augmentation overlap could project
all intra-class nodes to the same embedding, and project inter-class nodes differently because of
limited inter-class overlap.

However, a stronger augmentation would connect more intra-class nodes by overlap, but will in-
evitably make achieving perfect alignment more challenging. Conversely a weaker augmentation
would help alignment but augmentation overlap would be rare. Therefore, it is difficult to achieve
both optimal augmentation and perfect alignment. And Saunshi et al. (2022) proposes that augmen-
tation overlap is actually rare in practice, even with quite strong augmentation. So the better perfor-
mance may not be brought by perfect alignment and overlap, in order to further study how exactly
augmentation helps contrastive learning, we evaluate how the downstream performance changes
while the augmentation being stronger.

To begin with, we give an assumption on the label consistency between positive samples, which
means the class label does not change after augmentation.
Assumption 2.1 (View Invariance). For node v0i , the corresponding augmentation nodes v+i get
consistent labels: p(y|v0i) = p(y|v+i).

This assumption is widely adopted (Arora et al., 2019; Wang et al., 2022b; Saunshi et al., 2022)
and reasonable. If the augmentation still keeps the basic structure and most of feature information
is kept, the class label would not likely to change. Else if the augmentation destroys basic label
information, the model tends to learn a trivial solution, so it is meaningless and we do not discuss
the situation. Actually the graph data keeps great label consistency as discussed in Appendix C.9.

To further understand how is data augmentation is working in contrastive learning, we use graph
edit distance (GED) to denote the magnitude of augmentation, Trivedi et al. (2022) proposes that all
allowable augmentations can be expressed using GED which is defined as minimum cost of graph
edition (node insertion, node deletion, edge deletion, feature transformation) transforming graph G0

to G+. So a stronger augmentation could be defined as augmentation with a larger GED.
Assumption 2.2 (Positive Pair difference and Augmentation). While Assumption 2.1 holds
i.e., p(y|v0i) = p(y|v+i), as the augmentation getting stronger, positive pair difference δ2aug =

3

Under review as a conference paper at ICLR 2024

Figure 1: PCS means positive center similarity (f(vy)Tµy), NCS means negative center similarity
(f(vy)Tµy−) and accuracy is the downstream performance. X-axis stands for dropout rate of both
edge and feature, and the y-axis stands for the normalized values.

Ep(v0
i ,v

+
i)||f(v0i) − f(v+i)||2 will increase, i.e., δaug ∝ GED(G0,G+). GED(G0,G+) indicates

the graph edit distance between G0 and G+.

This is a natural assumption that is likely to hold because input with a bigger difference will
lead to a bigger difference in output when the model is correctly trained, which is guaranteed by
p(y|v0i) = p(y|v+i). Also we can notice that δaug does not only correlates with the magnitude of aug-
mentation, it also implies the alignment performance. So Assumption 2.2 actually means stronger
augmentation would lead to larger δaug and worse alignment performance which is commonly in
empirical experiments as shown in Appendix C.9. This means in graph contrastive learning, aug-
mentation overlap brought by strong augmentation and perfect alignment are mutual exclusive.

With the assumptions, we can get the theorem below:

Theorem 2.3 (Augmentation and Classification). If Assumption 2.1 holds, we know that:

Ep(v,y)f(v
0
y)

Tµy ≥ 1− 1

3
δ2aug −

2

3
δaugδy+ − 1

2
δ2y+ , (2)

Ep(v,y,y−)f(v
0
y)

Tµy− ≥ 1− 1

3
δ2aug −

2

3
δaugδy− − 1

2
δ2y− , (3)

where µy = Ep(v,y) [f(v)], δ2y+ = Ep(y,i,j)||f(v0y,i)− f(v0y,j)||2 and δ2y− = Ep(y,y−,i,j)||f(v0y,i)−
f(v0y−,j)||

2, y− stands for a class different from y.

The proof can be found in Appendix A.1. This shows that the similarity between a node and the cen-
ter could be roughly represented by the positive pair difference δaug and the inter-class/intra-class di-
vergence δy− , δy+ . We then use positive and negative center similarity to represent Ep(v,y)f(v

0
y)

Tµy

and Ep(v,y,y−)f(v
0
y)

Tµy− , respectively. Note that we calculate the class center µy by averaging
nodes from both original view and augmented views, as the class label of nodes after augmentation
remains unchanged, our class center should be more precise as more nodes are included.

As we assumed in Assumption 2.2, when the augmentation becomes stronger, positive pair differ-
ence i.e., δaug would increase, and based on previous researches (Zhu et al., 2020; You et al., 2020;
Veličković et al., 2018), the express power of the model would also be enhanced initially, causing
intra-class divergence δy+ decreasing and inter-class divergence δy− increasing. Therefore, from In-
equality (2) we can conclude that when we perform a stronger augmentation, initially, the similarity
between node vy and its center µy (positive center similarity) is hard to predict as δaug increases and
δy+ decreases. However, the right hand side of Inequality (3) should decrease gradually as both δaug
and δy− increase, so the similarity between node vy and other center µy− (negative center similarity)
would more likely to be lower. In nutshell, with stronger augmentation the negative center similarity
is likely to decrease while the positive center similarity may not be increasing.

The experiment shown in Figure 1 confirms our suspicion. We use dropout on edges and features
to perform augmentation, and the dropout rate naturally represents the magnitude of augmentation
i.e., graph edit distance and present the normalized positive/negative center similarity and down-
stream accuracy to show the changing tendency. Figure 1 shows that initially, as the dropout rate

4

Under review as a conference paper at ICLR 2024

increases, positive center similarity may decrease sometimes, but downstream performance could
be enhanced as negative center similarity decreases much faster which aligns with our suspicion.

In some datasets, the downstream performance may not be increasing at first, this is mainly be-
cause we use 0.05 as the lowest drop rate rather than 0, we show results on lower drop rates and
more datasets including shopping graph, graph with heterophily and coauthor network in Appendix
C.8. From Figure 1, 11 and 12, we can conclude that contrastive learning mainly contributes to
downstream tasks by separating nodes of different classes (decreasing negative center similarity)
rather than gathering nodes of the same class (non-increasing positive center similarity), and perfect
alignment may not help as it hinders class separating.

We can understand the phenomena intuitively, as the InfoNCE loss LNCE can be written as

LNCE = Ep(v1
i ,v

2
i)
Ep(v−

i)

[
− log

exp(f(v1
i)

T f(v2
i))∑

{v−
i

}
exp(f(v1

i)
T f(v−

i))

]
, and the numerator f(v1i)

T f(v2i) ∝

1 − Ep(vi)||f(v1i) − f(v2i)|| ∝ 1 − Ep(vi)||f(v0i) − f(v+i)|| ∝ 1 − δaug , so a higher δaug caused
by stronger augmentation tends to make the numerator harder to maximize. Then GCL would pay
more attention to the minimize the denominator just as shown in Figure 5. And minimizing the de-
nominator is actually separating negative samples which is mainly performing inter-class separating
as most negative samples are from the different classes. Thus inter-class separating is enhanced. In
contrast, intra-class gathering is weakened due to the existence of same-class samples in the negative
set, while the worse alignment performance and better augmentation overlap can hardly help (Wang
et al., 2022b; Saunshi et al., 2022). As a result intra-class nodes may not gather closer. Also we can
observe from Figure 1 that when we drop too much edges/features, downstream performance de-
creases sharply, and both positive and negative center similarity increases as too much information
is lost and the basic assumption p(y|v0i) = p(y|v+i) does not hold, then a trivial solution is learned.

2.3 AUGMENTATION AND GENERALIZATION

Although GCL with a stronger augmentation may help to improve downstream performance, why
it works stays unclear. We need to figure out the relationship between positive pair difference,
contrastive loss and downstream performance to further guide algorithm design. We first define the
mean cross-entropy (CE) loss below, and use it to represent downstream performance.
Definition 2.4 (Mean CE loss). For an encoder f and downstream labels y ∈ [1,K], we use the

mean CE loss L̂CE = Ep(v0,y)

[
− log

exp(f(v0)Tµy)∑K
j=1 exp(f(v0)Tµj)

]
to evaluate downstream performance,

where µj = Ep(v|y=j) [f(v)].

It is easy to see that mean CE loss could indicate downstream performance as it requires nodes
similar to their respective class center, and different from others class centers. Also it is an upper
bound of CE loss LCE = E(v0,y)

[
− log

exp(f(v0)Tωy∑K
i=1 exp(f(v0)Tωi)

]
, where ω is parameter to train a linear

classifier g(z) = Wz, W = [ω1, ω2, ..., ωk]. Arora et al. (2019) showed that the mean classifier
could achieve comparable performance to learned weights, so we analyze the mean CE loss instead
of the CE loss in this paper. Similar to Theorem 2.3, we calculate the class center using both original
and augmented view nodes, instead of using only the original view nodes (Arora et al., 2019).
Theorem 2.5 (Generalization and Positive Pair Difference). If Assumption 2.1 holds, and ReLU is
applied as activation, then the relationship between downstream performance and InfoNCE loss
could be represented as:

L̂CE ≥ LNCE − 3δ2aug − 2δaug − log
M

K
− 1

2
Var(f(v+)|y)

−
√
Var(f(v0)|y)− eVar(µy)−O(M− 1

2),

where M is number of negative samples1, K is number of classes, Var(f(v0)|y) =
Ep(y)Ep(v0|y)||f(v0)−Ep(v|y)f(v)||2 and Var(f(v+)|y) = Ep(y)Ep(v+|y)||f(v+)−Ep(v|y)f(v)||2
both mean intra-class variance, and Var(µy) = Ep(y)||Ep(v|y)f(v) − Ep(v)f(v)||2 represents the
variance of K class centers.

1the generalization are correlated with − logM − O(M− 1
2), which is decreasing when M increases and

M is large, so the theorem encourages large negative samples.

5

Under review as a conference paper at ICLR 2024

The proof can be found in Appendix A.2. Theorem 2.5 suggests a gap between L̂CE and LNCE,
meaning that the encoders that minimize LNCE may not yield optimal performance on downstream
tasks. Furthermore, it suggests that a higher positive pair difference δaug and Var(f(v)|y) would
enhance generalization and potentially improve performance on downstream tasks. Also Inequality
(2) also demonstrates that f(vy)Tµy ∝ [−Var(f(v)|y)] and f(vy)

Tµy ∝ [−δaug]. So better gen-
eralization correlates with worse positive center similarity. This aligns with the findings before that
better downstream performance may come with a lower positive center similarity.

Theorem 2.5 also highlights the significance of augmentation magnitude in graph contrastive learn-
ing algorithms like GRACE (Zhu et al., 2020). A weak augmentation leads to better alignment but
also a weak generalization, InfoNCE loss might be relatively low but downstream performance could
be terrible (Saunshi et al., 2022). When augmentation gets stronger, although perfect alignment can-
not be achieved, it promotes better generalization and potentially leads to improved downstream
performance. And when the augmentation is too strong, minimizing the InfoNCE loss becomes
challenging (Li et al., 2022), leading to poorer downstream performance. Therefore, it is crucial to
determine the magnitude of augmentation and how to perform augmentation as it directly affects
contrastive performance and generalization.

3 FINDING BETTER AUGMENTATION

Previous sections have revealed that perfect alignment, which minimizes the positive pair difference
δaug to 0 may not help downstream performance. Instead a stronger augmentation that leads to larger
δaug will benefit generalization while weakening contrastive learning process. Therefore, we need
to find out how to perform augmentation to strike a better balance between positive pair difference
and contrastive loss, leading to better downstream performance.

3.1 INFORMATION THEORY PERSPECTIVE

As shown by Oord et al. (2018), LNCE is actually a lower bound of mutual information. Addi-
tionally, Var(f(v0)|y), Var(f(v+|y)) and Var(µy) can be represented by inherent properties of the
graph and the positive pair difference δaug . Thus, Theorem 2.5 could be reformulated as follows:
Corollary 3.1 (CE with Mutual Information). If Assumption 2.1 holds, the relationship between
downstream performance, mutual information between views and positive pair difference could be
represented as:

L̂CE ≥ log(K)− I(f(v1), f(v2))− g(δaug)−O(M− 1
2), (4)

where I(f(v1), f(v2)) stands for the mutual information between f(v1) and f(v2), g(δaug) is
monotonically increasing, and is defined in Appendix A.3.

The proof can be found in Appendix A.3. Corollary 3.1 suggests that the best augmentation would
be one that maximize the mutual information and positive pair difference. To verify this, we propose
a simple but effective method. We recognize important nodes, features and edges, then leave them
unchanged during augmentation to increase mutual information. Then for those unimportant ones,
we should perform stronger augmentation to increase the positive pair difference.

Similar to Wei et al. (2023), we utilize gradients to identify which feature of node v is relatively
important and carries more information. We calculate the importance of feature by averaging the
feature importance across all nodes, the importance of node v could be calculated by simply aver-
aging the importance of its features, and then use the average of the two endpoints to represent the
importance of an edge:

αv,p =
∂LNCE

∂xv,p
, αp = ReLU

(
1

|V ′|
∑
v

αv,p

)
,

αv = ReLU

(
1

|P ′|
∑
p

αv,p

)
, αei,j =

(
αvi + αvj

)
/2,

where αv,p means importance of the pth feature of node v, αp means the importance of pth feature,
αv means importance of node v, and αei,j means the importance of edge (vi, vj).

6

Under review as a conference paper at ICLR 2024

For those edges/features with high importance, we should keep them steady and do no modifi-
cation during augmentation. For those with relatively low importance, we can freely mask those
edges/features, but we should make sure that the number of masked edges/features is greater than
the number of kept ones to prevent δaug from decreasing. The process can be described by the
following equation:

Ã = A ∗ (Me ∨ Se ∧De), F̃ = F ∗ (Mf ∨ Sf ∧Df),

where ∗ is hadamard product, ∨ stands for logical OR, ∧ stands for logical AND. Me, Mf rep-
resent the random mask matrix, which could be generated using any mask method, Se, Sf are the
importance based retain matrix, it tells which edge/feature is of high importance and should be re-
tained. For the top ξ important edges/features, we set Se, Sf to 1 with a probability of 50% and to
0 otherwise. De, Df show those edges/features should be deleted to increase δaug , for the least 2ξ
important edges/features, we also set De, Df to 0 with a probability of 50% and to 1 otherwise. It is
worth noting that δaug is defined as Ep(v0

i ,v
+
i)||f(v

+
i)−f(v0i)|| rather than Ep(v1

i ,v
2
i)
||f(v1i)−f(v2i)||,

therefore, we applied this deletion on both views.

This is a simple method, and the way to measure importance can be replaced by any other methods.
It can be easily integrated into any other graph contrastive learning methods that require edge/feature
augmentation. There are many details that could be optimized, such as how to choose which
edges/features to delete and the number of deletions. However, since this algorithm is primarily
intended for theoretical verification, we just randomly select edges to be deleted and set the number
to twice the number of edges kept.

In fact, most graph contrastive learning methods follow a similar framework to maximize mutual
information and implicitly increase positive pair difference as discussed in Appendix B.1.

3.2 GRAPH SPECTRUM PERSPECTIVE

In this section, we attempt to analyze InfoNCE loss and positive pair difference from graph spectrum
perspective. We start by representing them using the spectrum of the adjacency matrix A.
Theorem 3.2 (Theorem 1 of Liu et al. (2022) Restated). Given adjacency martix A and the gener-
ated augmentation A′,A′′, the ith eigenvalues of A′ and A′′ are λ′

i, λ
′′
i , respectively. The following

upper bound is established:

LNCE ≥ N logN − (N + 1)
∑
i

θiλ
′
iλ

′′
i , (5)

where θi is the adaptive weight of the ith term, the detail of θi is discussed in Appendix C.4.
Corollary 3.3 (Spectral Representation of δaug). If Assumption 2.1 holds, and λ′

i, λ
′′
i are ith eigen-

values of A′ and A′′, respectively, then:

2δaug ≥ Ep(v1
i ,v

2
i)
||f(v1i)− f(v2i)|| ≥

√
2− 2

N

∑
i

θiλ′
iλ

′′
i . (6)

Theorem 2.5 suggests that we should strive to make LNCE small while increase δaug , but they are
kindly mutually exclusive. As shown in Theorem 3.2, and Corallary 3.3 proved in Appendix A.4,
when θi is positive, a small LNCE requires for large |λi| while a large δaug requires for small |λi|, and
it works exclusively too when θi is negative. As contrastive learning is trained to minimize LNCE,
θs are going to increase as the training goes, so we can assume that θs will be positive, the detailed
discussion and exact definition of θ can be found in Appendix C.4. Since θs are trained parameters
that we have limited control over, we turn to adjusting λs through data augmentation. Therefore, to
achieve a better trade-off, we should decrease |λi| while keep InfoNCE loss also decreasing.

In fact, reducing |λi| actually reduces the positive λi and increases the negative λi, which is try-
ing to smoothen the graph spectrum and narrow the gap between the spectrum. As suggested
by Yang et al. (2022), graph convolution operation with an unsmooth spectrum results in sig-
nals correlated to the eigenvectors corresponding to larger magnitude eigenvalues and orthogo-
nal to the eigenvectors corresponding to smaller magnitude eigenvalues. So if |λi| ≫ |λj |, then
sim(f(v), ei) ≫ sim(f(v), ej), where ei denotes the eigenvector corresponding to λi, causing all

7

Under review as a conference paper at ICLR 2024

representations similar to ei. Therefore, an unsmooth spectrum may lead to similar representations.
This can also be observed from Inequality (6), where a higher |λi| will reduce the positive pair
difference, making f(v1i) and f(v2i) more similar.

We now know that smoothing the graph spectrum can help with graph contrastive learning. The
question is how to appropriately smooth the spectrum. We propose a simple method. As the training
aims to minimize LNCE, the parameter θis are supposed to increase. Therefore, we can use θi as
a symbol to show whether the model is correctly trained. When θi gradually increases, we can
decrease λ as needed. However, when θi starts to decrease, it is likely that the change on the
spectrum is too drastic, and we should take a step back. The process could be described as follows:

λi = λi + directioni ∗ λi ∗ α, directioni =


−1, cur(θi)− pre(θi) ≥ ϵ

1, cur(θi)− pre(θi) ≤ −ϵ,

0, otherwise
where α is a hyperparameter that determines how much we should decrease/increase λi. ϵ is used to
determine whether θi is increasing, decreasing, or just staying steady. cur(θi) and pre(θi) represents
the current and previous θi respectively.

In this way, the contrastive training will increase θi and result in a lower LNCE, while we justify λi

to achieve a better positive pair difference, which promises a better generalization ability. However,
just like Section 3.1, the method is quite simple, in fact this method is more a data preprocessing
rather than augmentation, but it is capable of verifying the theory and guide algorithm design, as we
decrease λ′ by directly decreasing λ, but it could also be achieved by augmentation methods.

Also some spectral augmentations implicitly decreases |λ|s as shown in Appendix B.2.

4 EXPERIMENTS

In this section, we mainly evaluate the performance of the methods we proposed on six datasets:
Cora, CiteSeer, PubMed, DBLP, Amazon-Photo and Amazon-Computer. We select 3 contrastive
learning GNN, GRACE (Zhu et al., 2020), GCA (Zhu et al., 2021), AD-GCL (Suresh et al., 2021),
and integrate those models with our proposed methods to verify its applicability and correctness of
the theory. Details of datasets and baselines are in Appendix C.1. The results are summarized in
Table 1. We further investigate the positive/negative center similarity in Appendix C.6, the hyperpa-
rameter sensitivity is studied in Appendix C.7, and the change of θ and the spectrum while training
is shown in Appendix C.5.

Table 1: Quantitative results on node classification, algorithm+I stands for the algorithm with infor-
mation augmentation, and algorithm+S stands for the algirithm with spectrum augmentation

Datasets
Cora CiteSeer PubMed DBLP Amazon-P Amazon-C

pvalueMi-Fi Ma-Fi Mi-Fi Ma-Fi Mi-Fi Ma-Fi Mi-Fi Ma-Fi Mi-Fi Ma-Fi Mi-Fi Ma-Fi

GCN 83.31 81.97 69.81 66.44 85.36 84.88 81.26 75.40 93.28 91.78 88.11 81.57
GAT 83.83 82.45 70.31 66.76 84.04 83.43 81.92 75.87 93.17 91.84 86.82 78.37
SpCo 83.45 82.16 69.90 66.79 OOM OOM 83.61 79.25 91.56 89.85 83.37 80.14
GCS 83.39 82.11 68.73 67.92 84.92 83.70 83.38 78.82 90.15 89.21 86.54 84.75

GRACE 82.52 81.23 68.44 63.73 84.97 84.51 84.01 79.63 91.17 89.09 86.36 84.15
GRACE+I 83.33 82.23 70.47 64.83 84.99 84.57 84.39 80.24 91.13 89.11 86.61 84.77 0.155
GRACE+S 83.25 81.85 69.87 64.92 85.03 84.62 84.47 80.33 91.91 90.09 86.61 84.66 0.003

GCA 83.74 82.28 71.09 66.43 85.38 85.07 83.99 79.82 91.67 90.21 86.77 85.18
GCA+I 84.71 83.42 71.24 67.23 85.38 84.89 84.29 79.91 91.94 90.40 86.60 84.12 0.089
GCA+S 83.51 82.30 70.95 65.31 85.28 84.98 84.49 80.28 92.02 90.36 86.97 85.30 0.147

AD GCL 81.68 79.83 70.01 64.17 84.77 84.29 83.14 78.86 91.34 89.28 84.80 82.04
AD GCL+I 83.06 81.20 71.06 64.69 85.52 85.00 83.51 79.05 91.91 90.24 86.02 84.12 0.03
AD GCL+S 82.96 81.39 71.35 63.88 85.08 84.60 83.45 79.13 91.79 89.94 85.49 82.52 0.06

From Table 1, we can observe that GRACE+I (GRACE with information augmentation) and
GRACE+S (GRACE with spectrum augmentation) both improve the downstream performance. This
improvement is significant for GRACE since it primarily performs random dropout, resulting in the
loss of valuable information. But for GCA, the information augmentation only brings minor im-
provements. This is because GCA already drops the unimportant ones with a higher probability, al-
lowing it to capture sufficient information, especially on large graphs. AD-GCL aggressively drops

8

Under review as a conference paper at ICLR 2024

Figure 2: Positive pair difference and InfoNCE, GRACE+I stands for GRACE with information
augmentation, and GRACE+S stands for GRACE with spectrum augmentation. GRACE+x MI
means mutual information between two views after training, and GRACE+x δaug is positive pair
difference caused by the method.

Figure 3: Accuracy on downstream tasks with different number of layers. GRACE is the original
algorithm (Zhu et al., 2020), and GRACE+S stands for GRACE with spectrum augmentation.

as much information as possible to eliminate irrelevant information while some important ones are
also dropped, so the information augmentation helps greatly. Overall, our methods improve the
performance of original algorithm and helps downstream tasks, the p-value on the averaged perfor-
mance are also shown in Table 1.

4.1 POSITIVE PAIR DIFFERENCE

Figure 2 shows that for all three algorithms, our methods capture similar information while achieving
a larger positive pair difference. This indicates that we keep the contrastive loss while enhancing
its generalization, resulting in improved downstream performance. Similar to the result of Table
1, the improvement of δaug on GRACE and AD-GCL are much sharper as GCA has already tried
to increase positive pair difference and achieve a balance with the InfoNCE loss as discussed in
Appendix B.1.

4.2 OVER-SMOOTH

While reducing |λi|, we obtain a graph with smoother spectrum, and could relieve the over-smooth.
This, in turn, enables the application of relatively more complex models. We can verify this by
simply stacking more layers. As shown in Figure 3, if applied spectrum augmentation, the model
tends to outperform the original algorithm especially with more layer, and the best performance
may come with a larger number of layers, which indicates that more complicated models could be
applied and our method successfully relieve over-smooth.

5 CONCLUSION

In this paper, we investigate the impact of contrastive learning on downstream tasks and propose
that perfect alignment does not necessarily lead to improved performance. Instead, we find that
a relatively large positive pair difference is more beneficial for generalization. Building upon this
insight, we introduce two simple yet effective methods to strike a balance between the contrastive
loss and positive pair difference.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Sanjeev Arora, Hrishikesh Khandeparkar, Mikhail Khodak, Orestis Plevrakis, and Nikunj Saun-
shi. A theoretical analysis of contrastive unsupervised representation learning. arXiv preprint
arXiv:1902.09229, 2019.

Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Dipendra Misra. Investigating the role of
negatives in contrastive representation learning. arXiv preprint arXiv:2106.09943, 2021.

Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsuper-
vised inductive learning via ranking. arXiv preprint arXiv:1707.03815, 2017.

Ivan Budimir, Sever S Dragomir, and Josep Pecaric. Further reverse results for jensen’s discrete
inequality and applications in information theory. RGMIA research report collection, 3(1), 2000.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020.

Xiaojun Guo, Yifei Wang, Zeming Wei, and Yisen Wang. Architecture matters: Uncovering implicit
mechanisms in graph contrastive learning. arXiv preprint arXiv:2311.02687, 2023.

Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning on
graphs. In International conference on machine learning, pp. 4116–4126. PMLR, 2020.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729–9738, 2020a.

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In Proceedings of the
43rd International ACM SIGIR conference on research and development in Information Retrieval,
pp. 639–648, 2020b.

Weiran Huang, Mingyang Yi, and Xuyang Zhao. Towards the generalization of contrastive self-
supervised learning. arXiv preprint arXiv:2111.00743, 2021.

Bo Jiang, Ziyan Zhang, Doudou Lin, Jin Tang, and Bin Luo. Semi-supervised learning with graph
learning-convolutional networks. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 11313–11320, 2019.

Sihang Li, Xiang Wang, An Zhang, Yingxin Wu, Xiangnan He, and Tat-Seng Chua. Let invariant
rationale discovery inspire graph contrastive learning. In International conference on machine
learning, pp. 13052–13065. PMLR, 2022.

Lu Lin, Jinghui Chen, and Hongning Wang. Spectral augmentation for self-supervised learning on
graphs. arXiv preprint arXiv:2210.00643, 2022.

Nian Liu, Xiao Wang, Deyu Bo, Chuan Shi, and Jian Pei. Revisiting graph contrastive learning
from the perspective of graph spectrum. Advances in Neural Information Processing Systems, 35:
2972–2983, 2022.

Qi Liu, Miltiadis Allamanis, Marc Brockschmidt, and Alexander Gaunt. Constrained graph varia-
tional autoencoders for molecule design. Advances in neural information processing systems, 31,
2018.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Nikunj Saunshi, Jordan Ash, Surbhi Goel, Dipendra Misra, Cyril Zhang, Sanjeev Arora, Sham
Kakade, and Akshay Krishnamurthy. Understanding contrastive learning requires incorporating
inductive biases. In International Conference on Machine Learning, pp. 19250–19286. PMLR,
2022.

10

Under review as a conference paper at ICLR 2024

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

Gilbert W Stewart. Matrix perturbation theory. 1990.

Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville. Adversarial graph augmentation to im-
prove graph contrastive learning. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp.
15920–15933. Curran Associates, Inc., 2021.

Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip Isola. What
makes for good views for contrastive learning? Advances in neural information processing sys-
tems, 33:6827–6839, 2020.

Puja Trivedi, Ekdeep Singh Lubana, and Danai Koutra. Understanding self-supervised graph repre-
sentation learning from a data-centric perspective. 2022.

Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. arXiv preprint arXiv:1809.10341, 2018.

Haoqing Wang, Xun Guo, Zhi-Hong Deng, and Yan Lu. Rethinking minimal sufficient represen-
tation in contrastive learning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 16041–16050, 2022a.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere. In International Conference on Machine Learning, pp.
9929–9939. PMLR, 2020.

Yifei Wang, Qi Zhang, Yisen Wang, Jiansheng Yang, and Zhouchen Lin. Chaos is a ladder: A
new theoretical understanding of contrastive learning via augmentation overlap. arXiv preprint
arXiv:2203.13457, 2022b.

Chunyu Wei, Yu Wang, Bing Bai, Kai Ni, David Brady, and Lu Fang. Boosting graph contrastive
learning via graph contrastive saliency. In International Conference on Machine Learning, pp.
36839–36855. PMLR, 2023.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph wavenet for deep
spatial-temporal graph modeling. arXiv preprint arXiv:1906.00121, 2019.

Dongkuan Xu, Wei Cheng, Dongsheng Luo, Haifeng Chen, and Xiang Zhang. Infogcl: Information-
aware graph contrastive learning, 2021.

Mingqi Yang, Yanming Shen, Rui Li, Heng Qi, Qiang Zhang, and Baocai Yin. A new perspective
on the effects of spectrum in graph neural networks. In International Conference on Machine
Learning, pp. 25261–25279. PMLR, 2022.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International conference on machine learning, pp. 40–48. PMLR, 2016.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. Advances in neural information processing systems, 33:
5812–5823, 2020.

Yige Yuan, Bingbing Xu, Huawei Shen, Qi Cao, Keting Cen, Wen Zheng, and Xueqi Cheng. To-
wards generalizable graph contrastive learning: An information theory perspective. arXiv preprint
arXiv:2211.10929, 2022.

Tong Zhao, Wei Jin, Yozen Liu, Yingheng Wang, Gang Liu, Stephan Günnemann, Neil Shah, and
Meng Jiang. Graph data augmentation for graph machine learning: A survey. arXiv preprint
arXiv:2202.08871, 2022.

11

Under review as a conference paper at ICLR 2024

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep graph contrastive
representation learning. arXiv preprint arXiv:2006.04131, 2020.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph contrastive learning
with adaptive augmentation. In Proceedings of the Web Conference 2021, pp. 2069–2080, 2021.

A THEORETICAL PROOF

A.1 PROOF OF LEMMA 2.3

If we set δ2y+ = Ep(y,i,j)||f(v0y,i) − f(v0y,j)||2, and δ2y+ = Ep(y,y′,i,j)||f(v0y,i) − f(v0y′,j)||2.
Then with Assumption 2.1 and jensen inequality, we know that Ep(vi)||f(v0i) − f(v+i)||2 ≤ δ2aug ,
Ep(vi)||f(v0i) − f(v+i)|| ≤ δaug and Ep(y,i,j)||f(v0y,i) − f(v0y,j)|| ≤ δy+ , Ep(y,y′,i,j)||f(v0y,i) −
f(v0y′,j)|| ≤ δy− . Therefore, we can get the inequality below:

Ep(vy,i,vy,j |y)||f(v
+
y,i)− f(v0y,j)||2 ≤ Ep(vy,i,vy,j |y)||f(v

+
y,i)− f(v0y,i)||2 + Ep(vy,i,vy,j |y)||f(v

0
y,i)− f(v0y,j)||2

+ 2Ep(vy,i,vy,j |y)||f(v
+
y,i)− f(v0y,j)|| · ||f(v0y,i)− f(v0y,j)||

≤ δ2aug + δ2y+ + 2δaugδy+

= (δaug + δy+)2.

As µy = Ep(vy|y)[f(vy)] =
1
3Ep(v0

y|y)f(v
0
y) +

2
3Ep(v+

y |y)f(v
0
y), we know that,

Ep(v0′
y |y)f(v

0′

y)Tµy = Ep(v0′
y |y)f(v

0′

y)T (
1

3
Ep(v0

y|y)f(v
0
y) +

2

3
Ep(v+

y |y)f(v
0
y))

=
1

3
Ep(v0′

y |y)Ep(v0
y|y)f(v

0′

y)T f(v0y) +
2

3
Ep(v0′

y |y)Ep(v+
y |y)f(v

0′

y)T f(v+y).

assume that Ep(a,b)||a− b||2 ≤ c2, ||a|| = ||b|| = 1, then

Ep(a,b)(a
T − bT)(a− b) ≤ c2

Ep(a,b)[a
Ta− aT b− bTa+ bT b] ≤ c2

Ep(a,b)[2− 2aT b] ≤ c2

Ep(a,b)a
T b ≥ 2− c2

2
= 1− c2

2
.

As we already know that Ep(y,y′,i,j)||f(v0y,i) − f(v0y′,j)||2 ≤ δ2y+ and Ep(vy,i,vy,j |y)||f(v
+
y,i) −

f(v0y,j)||2 ≤ (δaug + δy+)2. So Ep(v0′
y |y)Ep(v0

y|y)f(v
0′

y)T f(v0y) ≥ 1 −
δ2
y+

2 and

Ep(v0′
y |y)Ep(v+

y |y)f(v
0′

y)T f(v+y) ≥ 1− (δaug+δy+)2

2 .

Then, we can calculate Ep(v0′
y |y)f(v

0′

y)Tµy as below:

Ep(v0′
y |y)f(v

0′

y)Tµy =
1

3
Ep(v0′

y |y)Ep(v0
y|y)f(v

0′

y)T f(v0y) +
2

3
Ep(v0′

y |y)Ep(v+
y |y)f(v

0′

y)T f(v+y)

≥ 1−
δ2aug
3

−
2δaugδy+

3
−

δ2y+

2
.

(7)

Similarly, we know that Ep(v0
y,y

−|y)f(v
0
y)

Tµy− ≥ 1− δ2aug

3 − 2δaugδy−

3 −
δ2
y−

2 .

12

Under review as a conference paper at ICLR 2024

A.2 PROOF OF THEOREM 2.5

L̂CE = −Ep(v0
i ,y)

f(v0i)
Tµy︸ ︷︷ ︸

Λ1

+Ep(v0
i)
log

K∑
i=j

exp(f(v0i)
Tµj)︸ ︷︷ ︸

Λ2

.

Λ1 = −Ep(v0
i ,y)

f(v0i)
Tµy

= −Ep(v0
i ,y)

[
f(v0i)

T f(v+i) + f(v0i)
T (µy − f(v+i))

]
(a)

≥ −Ep(v0
i ,v

+
i ,y)f(v

0
i)

T f(v+i)− Ep(v+
i ,y)||f(v

+
i)− µy||

≥ −Ep(v0
i ,v

+
i ,y)f(v

0
i)

T f(v+i)− Ep(v0
i ,v

+
i ,y)||f(v

+
y)− f(v0y)|| − Ep(v0

i ,v
+
i ,y)||f(v

0
y)− µy||

(b)

≥ −Ep(v0
i ,v

+
i ,y)f(v

1
i)

T f(v2i)− 3δ2aug − δaug − Ep(v0
i ,v

+
i ,y)||f(v

0
y)− µy||.

(a) f(v0i)
T (µy − f(v+i)) ≤ (

µy−f(v+
i)

||µy−f(v+
i)||)

T (µy − f(v+i)) = ||µy − f(v+i)||.

(b) Ep(v0
i ,v

+
i)||f(v0i)− f(v+i)||2 ≤ δ2aug , then:

δ2aug ≥ Ep(v0
i ,v

1
i)
(f(v0i)− f(v1i))

T · (f(v0i)− f(v1i))

= Ep(v0
i ,v

1
i ,v

2
i)
(f(v0i)− f(v1i))

T · (f(v0i)− f(v1i) + f(v2i)− f(v2i))

= Ep(v0
i ,v

1
i ,v

2
i)
f(v0i)

T f(v0i)− f(v0i)
T f(v1i) + f(v0i)

T f(v2i)− f(v0i)
T f(v2i)

− f(v1i)
T f(v0i) + f(v1i)

T f(v1i)− f(v1i)
T f(v2i) + f(v1i)

T f(v2i)

= 2 + Ep(v0
i ,v

1
i ,v

2
i)

[
−2f(v0i)

T f(v1i) + f(v0i)
T f(v2i)− f(v0i)

T f(v2i)− f(v1i)
T f(v2i) + f(v1i)

T f(v2i)
]

(c)

≥ 2− 2 + Ep(v0
i ,v

1
i ,v

2
i)

[
f(v0i)

T f(v2i)− 1− f(v1i)
T f(v2i) + 1− 2δ2aug

]
= Ep(v0

i ,v
1
i ,v

2
i)

[
f(v0i)

T f(v2i)− f(v1i)
T f(v2i)

]
− 2δ2aug.

So, we can get the relationship between Ep(v0
i ,v

1
i ,v

2
i)
f(v0i)

T f(v2i) and Ep(v0
i ,v

1
i ,v

2
i)
f(v1i)

T f(v2i) −
2δ2aug as below:

δ2aug ≥ Ep(v0
i ,v

1
i ,v

2
i)
f(v0i)

T f(v2i)− Ep(v0
i ,v

1
i ,v

2
i)
f(v1i)

T f(v2i)− 2δ2aug,

Ep(v0
i ,v

1
i ,v

2
i)
f(v0i)

T f(v2i) ≤ Ep(v0
i ,v

1
i ,v

2
i)
f(v1i)

T f(v2i) + 3δ2aug.

As v2i is an augmented node, we can get that,

Ep(v0
i ,v

+
i)f(v

0
i)

T f(v+i) ≤ Ep(v0
i ,v

1
i ,v

2
i)
f(v1i)

T f(v2i) + 3δ2aug.

(c) f(v0i)
T f(v1i) ≤ 1, f(v0i)

T f(v2i) ≤ 1, and Ep(v1
i ,v

2
i)
f(v1i)

T f(v2i) ≥
2−E

p(v1
i
,v2

i
)
||f(v1

i)−f(v2
i)||

2

2 ≥

1−
E
p(v1

i
,v2

i
)
(||f(v1

i)−f(v0
i)||+||f(v0

i)−f(v2
i)||)

2

2 ≥ 1− 2δ2aug .
Lemma A.1 ((Budimir et al., 2000) Corollary 3.5 (restated)). Let g : Rm → R be a differentiable
convex mapping and z ∈ Rn. Suppose that g is L- smooth with the constant L > 0, i.e. ∀x, y ∈
Rm, ∥∇g(x)−∇g(y)∥ ≤ L∥x− y∥. Then we have

0 ≤ Ep(z)g(z)− g
(
Ep(z)z

)
≤ L

[
Ep(z)∥z∥2 − ∥Ep(z)z∥2

]
= L

n∑
j=1

Var(z(j)),

where z(j) denotes the j-th dimension of v.

13

Under review as a conference paper at ICLR 2024

Lemma A.2 ((Wang et al., 2022b) Lemma A.2. restated). For LSE := logEp(z) exp(f(v)
⊤g(z)),

we denote its (biased) Monte Carlo estimate with M random samples zi ∼ p(z), i = 1, . . . ,M

as L̂SEM = log 1
M

∑M
i=1 exp(f(v)

⊤g(zi)). Then the approvimation error A(M) can be upper
bounded in expectation as

A(M) := Ep(v,zi)|L̂SE(M)− LSE| ≤ O(M−1/2).

We can see that the approvimation error converges to zero in the order of M−1/2.

Λ2 = Ep(v0
i)
log

K∑
j=1

exp(f(v0i)
Tµyj)

= Ep(v0
i)
log

1

K

K∑
i=j

exp(f(v0i)
Tµyj) + logK

= Ep(v0
i)
logEp(yj) exp(f(v

0
i)

Tµyj) + logK

(d)

≥ Ep(v1
i)
logEp(yj) exp(f(v

1
i)

Tµyj
)− δaug − e

n∑
j=1

Var(µj) + logK

(e)

≥ Ep(v1
i)
Ep(yi) log

1

M

M∑
j=1

exp(f(v1i)
Tµyj

)−A(M) + logK − δaug − e

n∑
j=1

Var(µj)

= Ep(v1
i)
Ep(yi) log

1

M

M∑
j=1

exp(Ep(v−
i |y−

i)f(v
1
i)

T f(v−i))−A(M) + logK − δaug − e

n∑
j=1

Var(µj)

(f)

≥ Ep(v1
i)
Ep(yi)Ep(v−

i |y−
i) log

1

M

M∑
i=1

exp(f(v1i)
T f(v−i))

− 1

2

m∑
j=1

Var(fj(v
−|y))−A(M) + logK − δaug − e

n∑
j=1

Var(µj)

= Ep(v1
i)
Ep(yi)Ep(v−

i |y−
i) log

M∑
i=1

exp(f(v1i)
T f(v−i))

− logM − 1

2

m∑
j=1

Var(fj(v
−|y))−A(M) + logK − δaug − e

n∑
j=1

Var(µj).

(d) We can show that: exp(
[
f(v)Tµyj

]
is convex, and uyj

satisfy e-smooth,

||∂ exp(f(v)Ta)

∂a
− ∂ exp(f(v)T b)

∂b
||

= || exp(f(v)Ta)f(v)− exp(f(v)T b)f(v))||
= | exp(f(v)Ta)− exp(f(v)T b)| · ||f(v)||
≤ | exp(f(v)Ta)− exp(f(v)T b)|
≤ e||(f(v)T)(a− b)|| (f(v)Ta, f(v)T b ≤ 1, so the biggest slope is e)
≤ e||a− b||.

So according to Lemma A.1, we get,

Ep(yj) exp(
[
f(v1i)

Tµyj

]
) ≤ exp(

[
f(v1i)

TEp(yj)µyj

]
) + e

n∑
j=1

Var(µj)

= exp(f(v1i)
Tµ) + e

n∑
j=1

Var(µj).

14

Under review as a conference paper at ICLR 2024

Then, we can calculate the difference between logEp(yj) exp(
[
f(v0i)

Tµyj

]
) and

logEp(yj) exp(
[
f(v1i)

Tµyj

]
) by applying reversed Jensen and Jensen inequality, respectively.

logEp(yj) exp(
[
f(v1i)

Tµyj

]
)− logEp(yj) exp(

[
f(v0i)

Tµyj

]
)

≤ logEp(yj) exp(
[
f(v1i)

Tµyj

]
)−

[
f(v0i)

Tµ
]

≤ log

exp(f(v1i)Tµ) + e

n∑
j=1

Var(µj)

−
[
f(v0i)

Tµ
]

= log
[
exp(f(v1i)

Tµ)
]
+ log

[
1 +

e
∑n

j=1 Var(µj)

exp(f(v1i)
Tµ)

]
−
[
f(v0i)

Tµ
]

≤ f(v1i)
Tµ− f(v0i)

Tµ+ log

1 + e

n∑
j=1

Var(µj)

 (e2
n∑

j=1

Var(µj), if not ReLU)

≤ (f(v1i)
T − f(v0i)

T)µ+ e

n∑
j=1

Var(µj)

≤ (f(v1i)− f(v0i))
T ||µ||
||f(v1i)− f(v0i)||

(f(v1i)− f(v0i)) + e

n∑
j=1

Var(µj)

≤ (f(v1i)− f(v0i))
T 1

||f(v1i)− f(v0i)||
(f(v1i)− f(v0i)) + e

n∑
j=1

Var(µj)

≤ δaug + e

n∑
j=1

Var(µj).

(e) We adopt a Monte Carlo estimation with M samples from p(y) and bound the approximation
error with Lemma A.2.

(f) We also uses Lemma A.1, and as proof by Wang et al. (2022b), logsumexp is L-smooth for
L = 1

2 .

LCE = Λ1 + Λ2

≥ −Ep(v,y)f(v
1
i)

T f(v2i)− 3δ2aug − δaug − Ep(v0,y)||f(v0y)− µy||

+ Ep(v1
i)
Ep(yi)Ep(v−

i |yi)
log

M∑
i=1

exp(f(v1i)
T f(v−i))

− logM − 1

2

m∑
j=1

Var(fj(v
−|y))−A(M) + logK − δaug − e

n∑
j=1

Var(µj)

=

[
−Ep(v1

i ,v
2
i)
f(v1i)

T f(v2i) + Ep(v−
i) log

M∑
i=1

exp(f(v1i)f(v
−
i))

]
− 3δ2aug − δaug − Ep(v0,y)||f(v0y)− µy||

− logM − 1

2

m∑
j=1

Var(fj(v
−|y))−A(M) + logK − δaug − e

n∑
j=1

Var(µj)

= LNCE − 3δ2aug − 2δaug − log
M

K
− 1

2

m∑
j=1

Var(fj(v
−|y))−A(M)− e

n∑
j=1

Var(µj)− Ep(v0,y)||f(v0y)− µy||

(g)

≥ LNCE − 3δ2aug − 2δaug − log
M

K
− 1

2
Var(f(v+)|y)−

√
Var(f(v0)|y)−O(M− 1

2)− eVar(µy).

15

Under review as a conference paper at ICLR 2024

(g) This holds because, v− is randomly selected from v+ and,
m∑
j=1

Var(fj(v
−|y))

=

m∑
j=1

Ep(y)Ep(v|y)(fj(v
+)− Ep(v′|y)fj(v

′))2

= Ep(y)Ep(v|y)

m∑
j=1

(fj(v
+)− Ev′fj(v

′))

= Ep(y)Ep(v|y)||f(v)− Ev′f(v′)||2

= Var(f(v+)|y).

And similarly, we can get
∑n

j=1 Var(µj) = Var(µy).

A.3 PROOF OF COROLLARY 3.1

For Var(f(v0y|y)), we can use positive pair difference and the intrinsic property of model and data
to express.

Var(f(v0y|y)) = Ep(y)Ep(v0
y|y)||f(v

0
y)− µy||2

= Ep(y)Ep(v0
y|y)

[
(f(v0y)− µy)

T (f(v0y)− µy))
]

= Ep(y)Ep(v0
y|y)

[
f(v0y)

T f(v0y) + µT
y µy − 2f(v0y)

Tµy

]
≤ Ep(y)Ep(v0

y|y)
[
2− 2f(v0y)

Tµy

]
(h)

≤ Ep(y)Ep(v0
y|y)

[
2− 2(1− 1

3
δ2aug −

2

3
δaugδy+ − 1

2
δ2y+)

]
= Ep(y)Ep(v0

y|y)

[
2

3
δ2aug +

4

3
δaugδy+ + δ2y+)

]
≤ 2

3
δ2aug +

4

3
δaugLϵ0 + L2ϵ20,

where ϵ0 = Ep(y)Ep(v0
i ,v

0
j |y)||v

0
i −v0j || and L is the Lipschitz constant, so δ2y+ = Ep(y,i,j)||f(v0y,i)−

f(v0y,j)||2 ≤ (Lϵ0)
2.

Then we can easily get that,

Var(f(v+y)|y) = Ep(y)Ep(v−
y |y)||f(v

+
y)− µy||2

≤ Ep(y)Ep(v+
y |y)(||f(v

+
y)− f(v0y)||+ ||f(v0y)− µy||)2

= Ep(y)Ep(v+
y |y)||f(v

+
y)− f(v0y)||2 + Ep(y)Ep(v+

y |y)||f(v
0
y)− µy||)2

+ 2Ep(y)Ep(v+
y |y)||f(v

+
y)− f(v0y)|| · ||f(v0y)− µy||

≤ δ2aug +Var(f(v0y)|y) + 2δaug

√
Var(f(v0y)|y)

= (δaug +
√
Var(f(v0y)|y))2.

(h) We use Theorem 2.3.

And Var(µy) can also be expressed by intrinsic properties.

Var(µy) = Ep(y)||µy − µ||2

= Ep(y)||µy − f(v∗y) + f(v∗y)− µ||2

≤ Ep(y)(||µy − f(v∗y)||+ ||f(v∗y)− µ||)2

= Ep(y)||Ep(vy|y)f(vy)− f(v∗y)||2 + Ep(y)||f(v∗y)− Ep(v)f(v)||2

16

Under review as a conference paper at ICLR 2024

+ 2Ep(y)(||Ep(vy|y)f(vy)− f(v∗y)|| · ||f(v∗y)− Ep(v)f(v)||)
= Ep(y)||Ep(vy|y)[f(vy)− f(v∗y)]||2 + Ep(y)||Ep(v)[f(v

∗
y)− f(v)]||2

+ 2Ep(y)(||Ep(vy|y)[f(vy)− f(v∗y)]|| · ||Ep(v)[f(v
∗
y)− f(v)]||)

≤ Ep(y)Ep(vy|y)||f(vy)− f(v∗y)||2 + Ep(y)Ep(v)||f(v∗y)− f(v)||2

+ 2Ep(y)(Ep(vy|y)||f(vy)− f(v∗y)|| · ||f(v∗y)− f(v)||)
≤ L2ϵ21 + L2ϵ22 + 2L2ϵ1ϵ2

= L2(ϵ1 + ϵ2)
2,

where v∗y could be any node of class y, and ϵ1 = Ep(v,y)||vy − v∗y ||, ϵ2 = Ep(y)Ep(v)||v − v∗y ||.

L̂CE ≥ LNCE − 3δ2aug − 2δaug − log
M

K
− 1

2
Var(f(v−)|y)−

√
Var(f(v0)|y)−O(M− 1

2)− eVar(µy)

≥ LNCE − 3δ2aug − 2δaug − log
M

K
− 1

2
(δaug +

√
Var(f(v0y)|y))2 −

√
Var(f(v0y)|y)−O(M− 1

2)− eL2(ϵ1 + ϵ2)
2

= LNCE − 3δ2aug − 2δaug − log
M

K
− 1

2
δ2aug − (δaug + 1)

√
Var(f(v0y)|y))

− 1

2
Var(f(v0y)|y))−O(M− 1

2)− eL2(ϵ1 + ϵ2)
2

= LNCE − g(δaug)− log
M

K
−O(M− 1

2),

where g(δaug) = 23
6 δ2aug + 1

2L
2ϵ20 + eL2(ϵ1 + ϵ2)

2 + 2δaug + 2
3δaugLϵ0 + (δaug +

1)
√

2
3δ

2
aug +

4
3δaugLϵ0 + L2ϵ20.

According to Oord et al. (2018), we get,
I(f(v1i), f(v

2
i)) ≥ log(M)− LNCE,

LNCE ≥ log(M)− I(f(v1i), f(v
2
i)).

Therefore, we can reformulate Theorem 2.5 as below:

L̂CE ≥ log(M)− I(f(v1i), f(v
2
i))− g(δaug)− log

M

K
−O(M− 1

2)

= log(K)− I(f(v1i), f(v
2
i))− g(δaug)−O(M− 1

2).

A.4 PROOF OF COROLLARY 3.3

Corallary 3.3 could be simply proved below:
Ep(v1

i ,v
2
i)
||f(v1i)− f(v2i)||2 = Ep(v1

i ,v
2
i)
[(f(v1i)

T − f(v2i)
T)(f(v1i)− f(v2i))]

= Ep(v1
i ,v

2
i)
[2− 2f(v1i)

T f(v2i)]

= 2− 2

N
tr((H1)TH2)

(1)
= 2− 2

N

∑
i

θiλ
′
iλ

′′
i .

So (Ep(v1
i ,v

2
i)
||f(v1i) − f(v2i)||)2 ≤ Ep(v1

i ,v
2
i)
||f(v1i) − f(v2i)||2 = 2 − 2

N

∑
i θiλ

′
iλ

′′
i , then

Ep(v1
i ,v

2
i)
||f(v1i)− f(v2i)|| ≤

√
2− 2

N

∑
i θiλ

′
iλ

′′
i .

(1) is suggested by Liu et al. (2022), tr((H1)TH2) could be represented as
∑

i θiλ
′
iλ

′′
i .

As we know that,
Ep(v1

i ,v
2
i)
||f(v1i)− f(v2i)|| ≤ Ep(v1

i ,v
2
i)
(||f(v1i)− f(v0i)||+ ||f(v0i)− f(v2i)||) ≤ 2δaug.

Then, we can get:

2δaug ≥ Ep(v1
i ,v

2
i)
||f(v1i)− f(v2i)|| ≥

√
2− 2

N

∑
i

θiλ′
iλ

′′
i . (8)

17

Under review as a conference paper at ICLR 2024

A.5 PROOF OF LEMMA B.1

From Stewart (1990), we know the following equation:

∆λi = λ
′

i − λi = uT
i ∆Aui − λiu

T
i ∆Dui +O(||∆A||).

So we can calculate the difference between λ′
i, λ

′′
i and λi,

∆λi =
∑
m

(
∑
n

ui [n] ∆A [m] [n])ui [m]− λi

∑
m

ui [m] ∆D [m]ui [m] +O(||∆A||)

=
∑
m,n

ui [m]ui [n] ∆A [m] [n]− λi

∑
m,n

ui [m] ∆A [m] [n]ui [m] +O(||∆A||).

And we can directly calculate λ′
i − λ′′

i as below:

λ′
i − λ′′

i = ∆λ′
i −∆λ′′

i

=
∑
m,n

ui [m]ui [n] ∆Â [m] [n]− λi

∑
m,n

ui [m] ∆Â [m] [n]ui [m]

=
∑
m,n

ui [m] ∆Â [m] [n] (ui [n]− λiui [m]).

B GCL METHODS WITH SPATIAL AND SPECTRAL AUGMENTATION

B.1 SPATIAL AUGMENTATION

Most augmentation methods are applied to explicitly or implicitly increase mutual informa-
tion while maintain high positive pair difference. GRACE simply adjusts this by changing
the drop rate of features and edges. AD-GCL (Suresh et al., 2021) directly uses the opti-
mization objective min{aug}max{f∈F}I(f(v), f(aug(v))) to search for a stronger augmentation.

Figure 4: influence of pτ on Cora (all the data are
normalized for better visualization)

And GCA (Zhu et al., 2021) could always per-
form better than random drop. This is mainly
because GCA calculates node importance and
masks those unimportant to increase mutual in-
formation. Also they use pτ as a cut-off proba-
bility, so for those unimportant features/edges,
all of them share the same drop probability
pτ . By setting a large pτ , GCA can reduce
the drop probability for the least important fea-
tures/edges and drop more relatively important
ones to achieve a trade-off between mutual in-
formation and positive pair difference.

From Figure 4, we could clearly see that, as
pτ increases, positive pair difference and LNCE

are increasing, and leads to a better downstream
performance, than when pτ becomes too large,
we got a trivial solution. And in the code pro-
vided by the author, pτ is set to 0.7. So GCA performances well on downstream tasks not only
because its adaptive augmentation, but also its modification on positive pair difference.

B.2 SPECTRAL AUGMENTATION

Furthermore, we can demonstrate that lots of spectral augmentations follow this schema to improve
downstream performance. Liu et al. (2022) proposes that increasing the number of high-frequency
drops leads to better performance. This is because high-frequency parts are associated with higher
coefficients λi, so increasing the number of high-frequency drops can have a stronger increasement
on δaug , resulting in better performance.

18

Under review as a conference paper at ICLR 2024

Lemma B.1 (Change of Spectrum). if we assume that A′ = A+∆A1, A′′ = A+∆A2, λ′
i, λ

′′
i is the

ith eigenvalue of A′ and A′′, respectively. ∆Â = A′ −A′′, and ui is the corresponding eigenvector.

λ′
i − λ′′

i =
∑
m,n

ui [m] ∆Â [m] [n] (ui [n]− λiui [m]).

Lemma B.1 is proved in Appendix A.5. Lin et al. (2022) propose to maximize the spectral difference
between two views, but Lemma B.1 shows that difference between spectrum is highly correlated
with the original magnitude, so it is actually encouraging more difference in large |λi|. But rather
than just drop information, they try to improve the spectrum of first view, and decrease the other
view. if we simply assume λ′

i = λi + n, λ′′
i = λi − n, then λ′

iλ
′′
i = λ2

i − n2 ≤ λ2
i , so this could

also be explained by positive pair difference increasement.

C EXPERIMENTS

C.1 DATASETS AND EXPERIMENTAL DETAILS

We choose the six commonly used Cora, CiteSeer, PubMed, DBLP, Amazon-Photo and Amazon-
Computer for evaluation. The first four datasets are citation networks (Sen et al., 2008; Yang et al.,
2016; Bojchevski & Günnemann, 2017), where nodes represent papers, edges are the citation re-
lationship between papers, node features are comprised of bag-of-words vector of the papers and
labels represent the fields of papers. In Amazon-Photos and Amazon-Computers (Shchur et al.,
2018), nodes represent the products and edges means that the two products are always bought to-
gether, the node features are also comprised of bag-of words vector of comments, labels represent
the category of the product.

We use 2 layers of GCNConv as the backbone of encoder, we use feature/edge drop as data aug-
mentation, the augmentation is repeated randomly every epoch, and InfoNCE loss is conducted and
optimized by Adam. After performing contrastive learning, we use logistic regression for down-
stream classification the solver is liblinear, and in all 6 datasets we randomly choose 10% of nodes
for training and the rest for testing.

Table 2: Dataset statistics
Dataset Nodes Edges Features Classes

Cora 2,708 5,429 1,433 7
Citeseer 3,327 4,732 3,703 6
Pubmed 19,717 44,338 500 3
DBLP 17,716 105,734 1,639 4

Amazon-Photo 7,650 119,081 745 8
Amazon-Computers 13,752 245,861 767 10

Table 3: Dataset download links
Dataset Download Link

Cora https://github.com/kimiyoung/planetoid/raw/master/data
Citeseer https://github.com//kimiyoung/planetoid/raw/master/data
Pubmed https://github.com/kimiyoung/planetoid/raw/master/data
DBLP https://github.com/abojchevski/graph2gauss/raw/master/data/dblp.npz

Amazon-Photo https://github.com/shchur/gnn-benchmark/raw/master/data/npz/amazon electronics photo.npz
Amazon-Computers https://github.com/shchur/gnn-benchmark/raw/master/data/npz/amazon electronics computers.npz

And the publicly available implementations of Baselines can be found at the following URLs:

• GCN: https://github.com/tkipf/gcn
• GAT: https://github.com/PetarV-/GAT

19

https://github.com/kimiyoung/planetoid/raw/master/data
https://github.com//kimiyoung/planetoid/raw/master/data
https://github.com/kimiyoung/planetoid/raw/master/data
https://github.com/abojchevski/graph2gauss/raw/master/data/dblp.npz
https://github.com/shchur/gnn-benchmark/raw/master/data\/npz/amazon_electronics_photo.npz
https://github.com/shchur/gnn-benchmark/raw/master/data/npz/amazon_electronics_computers.npz
https://github.com/tkipf/gcn
https://github.com/PetarV-/GAT

Under review as a conference paper at ICLR 2024

Figure 5: sim+ represents the positive pair similarity f(v1i)
T f(v2i), and sim− is negative pair

similarity f(v1i)
T f(v−i), the x-axis stands for dropout rate on edges

• GRACE: https://github.com/CRIPAC-DIG/GRACE

• GCA: https://github.com/CRIPAC-DIG/GCA

• AD-GCL: https://github.com/susheels/adgcl

• GCS: https://github.com/weicy15/GCS

• SpCo: https://github.com/liun-online/SpCo

C.2 CHANGE ON POSITIVE/NEGATIVE PAIR SIMILARITY

The InfoNCE loss LNCE can be written as LNCE =

Ep(v1
i ,v

2
i)
Ep(v−

i)

[
− log

exp(f(v1
i)

T f(v2
i))∑

{v−
i

}
exp(f(v1

i)
T f(v−

i))

]
, and when we perform stronger augmenta-

tion, f(v1i)
T f(v2i) would be hard to maximize, and the model will try to minimize f(v1i)

T f(v−i)
harder. From Figure 5, when the augmentation gets stronger, negative and positive pair similarity
both decreases, so the class separating performance is enhanced.

C.3 HYPERPARAMETER SETTING

Table 4: Hyperparameters settings
Dataset Learning rate Weight decay num layers τ Epochs Hidden dim Activation

Cora 5−4 10−6 2 0.4 200 128 ReLU
Citeseer 10−4 10−6 2 0.9 200 256 PReLU
Pubmed 10−4 10−6 2 0.7 200 256 ReLU
DBLP 10−4 10−6 2 0.7 200 256 ReLU

Amazon-Photo 10−4 10−6 2 0.3 200 256 ReLU
Amazon-Computers 10−4 10−6 2 0.2 200 128 RReLU

20

https://github.com/CRIPAC-DIG/GRACE
https://github.com/CRIPAC-DIG/GCA
https://github.com/susheels/adgcl
https://github.com/weicy15/GCS
https://github.com/liun-online/SpCo

Under review as a conference paper at ICLR 2024

Figure 6: Percentage of positive θ

The hyperparameter settings is shown in Table 4, other hyperparameter correlated to only one algo-
rithm are set the same as the original author. The hyperparameter in our methods retain rate ξ and
spectrum change magnitude α, we select them from 0.05 to 0.45 and from -0.1 to 0.01, respectively.

C.4 VALUE OF θS

As defined by Liu et al. (2022), θs are actually linear combination of the eigenvalues of adjacency
matrix A. To demonstrate what θs actually are, we first focus on the assumption below.
Assumption C.1 (High-order Proximity). M = w0 + w1A+ w2A

2 + · · ·+ wqA
q , where M =

X1W · WT (X2)T , Ai means matrix multiplications between i As, and wi is the weight of that
term.

Where X1, X2 indicates the feature matrix of graph G1,G2, W stands for the parameter of the
model, so M = X1W ·WT (X2)T means embedding similarity between two views, and could be
roughly represented by the weighted sum of different orders of A. Furthermore, we have that:


w0 + w1λ1+ · · ·+ wqλ

q
1 = θ1

w0 + w1λ2+ · · ·+ wqλ
q
2 = θ2

. . .

w0 + w1λN+ · · ·+ wqλ
q
N = θN ,

where λ1, ..., λN is N eigenvalues of the adjacency matrix A.

So we know that θs are actually linear combination of λs. As the model is trained to minimize LNCE,
θs are expected to increase, and we can simply set w0, w2, ..., w2(q/2) to be positive and other wi to
0, then we can get θs that are all positive, and the model would easily find better ws.

Therefore, we can say that in the training process, θs are mostly positive, and the experiments shown
in Figure 7 indicate it to be true.

C.5 CHANGES ON THE SPECTRUM

From Figure 7(a), we can see that, when the algorithm is training, θs are mostly increasing gradually,
and when we perform spectrum augmentation, θs will not increase as before, increasing number of
θ is close even smaller to decreasing ones. Then we take a step back on those decreasing ones, result
in increasing θs again in the next epoch. Therefore, what we do is actually perform augmentation to
maximize positive pair difference first, then maximize the mutual information after spectrum aug-
mentation. The idea is actually similar AD-GCL, but we use θs to indicate whether the augmentation
is too much, so we get a more reasonable result. Figure 7(b) and (c) shows that as the training goes,
the change on larger magnitude eigenvalues are also more significant, causing the spectrum to be
smoother.

Also there is one thing to notice that when we perform spectrum smoothen method, we are indirectly
changing the edge weights, causing the augmentation being weaker or stronger as drop an edge with

21

Under review as a conference paper at ICLR 2024

Figure 7: As we perform spectrum augmentation each 10 epochs, the x-axis is epoch/10, the y-axis
of the left figure is number of decreasing λs minus number of increasing λs; for the middle one,
y-axis stands for how much λs averagely decreases; and the right one is the average value of λ.

Figure 8: similarity of nodes between its positive center and negative center, GRACE stands for the
pure GRACE, GRACEI stands for GRACE with information augmentation, and GRACES stands
for GRACE with spectrum augmentation

weight of 1 is different than drop an edge with weight 1+noise. To reduce its influence, we conduct
extra augmentation or recovery based on the average weight change.

C.6 CENTER SIMILARITY

As we mentioned earlier, GCL mainly contributes to downstream tasks by decreasing the negative
center similarity while maintaining a relatively high similarity to the positive center. We propose two
methods: one that increases mutual information between two views while keeping a high positive
pair difference by masking more unimportant edges or features. This allows the model to learn more
useful information, which forces nodes close to its positive center. The other method tries to increase
positive pair difference while maintaining a relatively high mutual information, so it may not learn
as much useful information. However, by increasing the positive pair difference, it forces the model
to separate nodes from different classes further apart. In summary, the first method brings nodes
of the same class closer together, while the second method separates nodes from different classes
further apart just as shown in Figure 8.

C.7 HYPERPARAMETER SENSITIVITY

Analysis of retain rate. Retain rate controls how many important features/edges we kept, and
how many unimportant ones dropped. We can see from Figure 9 that AD-GCL benefits from a
larger retain rate as it is designed to minimize the mutual information, and lots of vital structures

22

Under review as a conference paper at ICLR 2024

Figure 9: accuracy on downstream tasks with different α

Figure 10: accuracy on downstream tasks with different retain rate

are dropped. And large datasets like PubMed, DBLP benefits less, it is mainly because a graph
with more edges are more likely to maintain enough information than graph with little edges. For
example, after a 30% dropout on edges, a graph with 1000 edges would still kept enough information
for downstream tasks, but a graph with 10 edges would probably lose some vital information.

Analysis of α. α controls how much |λ| will decrease, as we take a step back when the |λ| decreases
too much, the hyperparameter α does not matter so much. But as shown in Figure 10, it still performs
more steady on large graphs as a wrong modification on a single λ matters less than on small graphs.

23

Under review as a conference paper at ICLR 2024

Figure 11: More experiments on PCS and NCS, the settings follow Figure 1, but the detailed data is
slightly different because of randomness, but it shows similar tendency

C.8 PCS, NCS AND DOWNSTREAM PERFORMANCE

Table 5: results on image datasets
dataset item 0.2 0.4 0.6 0.8 1.0

stl10
PCS 0.48 0.47 0.43 0.47 0.47
NCS 0.11 0.09 0.05 0.04 0.04
Acc 0.68 0.69 0.71 0.73 0.73

cifar10
PCS 0.4 0.39 0.37 0.41 0.42
NCS 0.029 0.031 0.027 0.025 0.021
Acc 0.71 0.71 0.75 0.77 0.77

More experiments are conducted
on various of datasets to show
that our finding could be gener-
alized rather that limited to few
datasets. It is worth noticing that
we conduct two identical exper-
iments, and they are both aver-
age of 10 runs, so Figure 11 may
slightly differ from Figure 1, but
they show similar tendency that
with the dropout rate increas-
ing, the downstream accuracy in-
creases first and decreases when
the augmentation is too strong. The accuracy of some datasets like CiteSeer, PubMed and Amazon-
Computers seems to keep decreasing, this is mainly because we start the dropout rate with 0.05,
and when the dropout rate changes from 0.00 to 0.05 in Figure 12, we can also observe increasing
tendency. And those experiments show that when the downstream accuracy increases, the positive
center similarity are sometimes decreasing, and the better downstream performance is mainly caused
by the decreasing similarity of negative center.

Figure 13: relationship of PCS, NCS and downstream perfor-
mance on images, the data is normalized

We also conduct experiments
on images to verify our the-
ory, we control the magni-
tude of augmentation by adjust-
ing the color distortion strength,
and the results are normal-
ized by Min-Max normalization.
From Figure 13, we can ob-
serve that the downstream per-
formance is also closely corre-
lated with negative center simi-
larity especially when the color
distortion strength changes from
0.2 to 0.6 the positive center sim-
ilarity decreases while downstream performance is increasing, but when color distortion is greater

24

Under review as a conference paper at ICLR 2024

Figure 12: More experiments on PCS and NCS, but the drop rate is set to 0.01-0.05.

than 0.6 the positive center similarity also tends to increase. This aligns with our finding in Theo-
rem 2.3 that with the augmentation gets stronger the negative center similarity is decreasing while
the positive center similarity does not change in specific pattern. Also the color distortion is not
strong enough to change the label information, so the downstream performance keeps increasing
with stronger augmentation.

C.9 CHANGE OF δaug AND LABEL CONSISTENCY

Figure 14: relationship between δaug , KL divergence and aug-
mentation

To verify how is δaug changing
with stronger augmentation, we
use drop rate of edges/features
as data augmentation, and find
that when the drop rate increases,
δaug also tends to increase. Also
to verify the view invariance as-
sumption, we first train a well
conditioned model and use its
prediction as p(vi), then we
change the drop rate and calcu-
late new p′(vi), then we can ob-
serve from Figure 14 that though
the KL divergence is increasing
with drop rate, it remains quite small magnitude, so the label is consistent with data augmentation.

C.10 TIME COMPLEXITY AND ERROR BAR

Table 6: The time consumption (seconds) of algorithms
Cora CiteSeer PubMed DBLP Amazon-P Amazon-C

GRACE 8.02 10.08 62.37 56.89 19.05 28.71
GRACE+I 10.74 13.49 68.97 62.8 22.67 29.61
GRACE+S 9.61 12.46 78.11 69.44 21.13 36.94

From Table 6, we can observe that the information augmentation method achieve better performance
with only few more time consuming, this is mainly because we do not calculate the importance of
features/edges every epoch like GCS (Wei et al., 2023), we only calculate it once and use the same

25

Under review as a conference paper at ICLR 2024

Figure 15: The error bar of algorithms

importance for the following training. However, the spectrum augmentation method consumes more
time on large graphs like PubMed and DBLP, this is mainly we explicitly change the spectrum and
calculate the new adjacency matrix, which could be replaced by some approximation methods but to
prevent interference from random noise and show that Theorem 3.2 is meaningful, we still conduct
eigen decomposition, but it is worth mentioning that the time complexity could be reduced by some
approximation methods (Liu et al., 2022).

The error bar is reported in Figure 15, the experiments are conducted repeatedly for 10 times, we can
observe that both the information augmentation and spectrum augmentation achieve better results,
and they performs stably.

D RELATED WORK

Graph Contrastive Learning. Graph Contrastive Learning has shown its superiority and lots of
researcher are working on it. DGI (Veličković et al., 2018) contrasts between local node embeddnig
and the global summary vector; GRACE (Zhu et al., 2020), GCA (Zhu et al., 2021) and GraphCL
(You et al., 2020) randomly drop edges and features; AD-GCL (Suresh et al., 2021) and InfoGCL
Xu et al. (2021) learn an adaptive augmentation with the help of different principles. In theoretical
perspective, Liu et al. (2022) correlates the InfoNCE loss with graph spectrum, and propose that
augmentation should be more focused on high frequency parts. Guo et al. (2023) further discuss
that contrastive learning in graph is different with images. Lin et al. (2022) thinks that augmentation
maximize the spectrum difference would help, and Yuan et al. (2022) analyse GCL with information
theory.

Contrastive Learning Theory. By linking downstream classification and contrastive learning ob-
jectives, Arora et al. (2019) propose a theoretical generalization guarantee. Ash et al. (2021) further
explore how does the number of negative samples influence the generalization. And Tian et al.
(2020); Wang et al. (2022a) further discuss what kind of augmentation is better for downstream
performance. Then Wang & Isola (2020) propose that perfect alignment and uniformity is the key
to success while Wang et al. (2022b) argues augmentation overlap with alignment helps gathering
intra-class nodes by stronger augmentation. However, Saunshi et al. (2022) show that augmentation
overlap is actually quite rare while the downstream performance is satisfying. So the reason why
contrastive learning helps remains a mystery, in this paper we propose that the stronger augmentation
mainly helps contrastive learning by separating inter-class nodes, and different from previous works
(Wang et al., 2022b; Wang & Isola, 2020; Huang et al., 2021), we do not treat perfect alignment as
key to success, instead a stronger augmentation that draw imperfect alignment could help.

26

	Introduction
	augmentation and generalization
	Preliminaries
	how augmentation infect downstream performance
	augmentation and generalization

	Finding better augmentation
	information theory perspective
	graph spectrum perspective

	experiments
	positive pair difference
	over-smooth

	Conclusion
	theoretical Proof
	proof of Lemma 2.3
	Proof of Theorem 2.5
	Proof of Corollary 3.1
	proof of Corollary 3.3
	proof of Lemma B.1

	GCL methods with spatial and spectral augmentation
	spatial augmentation
	spectral augmentation

	experiments
	datasets and experimental details
	change on positive/negative pair similarity
	hyperparameter setting
	value of s
	changes on the spectrum
	center similarity
	hyperparameter sensitivity
	PCS, NCS and downstream performance
	change of aug and label consistency
	time complexity and error bar

	related work

