© ® N O o AW N =

Position: Ignoring Hyperparameter Tuning Costs
Misleads the Development of Efficient RL Algorithms

Anonymous Author(s)
Affiliation
Address
email

Abstract

The performance of reinforcement learning (RL) algorithms is often benchmarked
without accounting for the cost of hyperparameter tuning, despite its significant
practical impact. In this position paper, we argue that such practices distort the
perceived efficiency of RL methods and impede meaningful algorithmic progress.
We formalize this concern by proving a lower bound showing that tuning m
hyperparameters in RL necessarily induces an exponential exp(m) blow-up in
the sample complexity or regret, in stark contrast to the linear O(m) overhead
observed in supervised learning. This highlights a fundamental inefficiency unique
to RL. To address this, we propose evaluation protocols that account for the number
and cost of tuned hyperparameters, enabling fairer comparisons across algorithms.
Surprisingly, we find that once tuning cost is included, elementary algorithms can
outperform their successors with more sophisticated design. These findings call for
a shift in how RL algorithms are benchmarked and compared, especially in settings
where efficiency and scalability are critical.

1 Introduction

While lacking a universally agreed definition, hyperparameters are broadly considered parameters
that are set prior to running an algorithm and remain fixed throughout its execution. Examples
include the step size in optimization, regularization coefficients, neural network architecture choices
(e.g., depth, width), and activation functions. Although theoretical guidelines exist for some of these
parameters (e.g., O(1/ VT ) step size in stochastic gradient descent), practical deployments typically
require manual or automated hyperparameter optimization (HPO) to identify the problem-specific
optimal values. Due to the non-differentiable and sometimes discrete nature of this search space,
HPO is usually done via grid search or derivative-free optimization over a combinatorial search space.

When it comes to reinforcement learning (RL), algorithm performance is notoriously sensitive to
hyperparameter choices [Patterson et al., 2023} [Eimer et al.|, [2023| |Adkins et al.,[2024} (Obando-Ceron
et al.l 2024]. Alarmingly, some studies have even reported practices of tuning random seeds as
hyperparameters to overfit to public benchmarks[Henderson et al.,[2018]]. Over the past decades, the
number of hyperparameters in RL algorithms has steadily increased. For example, the original DQN
algorithm [Mnih et al., 2015]] required selecting 16 hyperparameters, while Rainbow [Hessel et al.,
2018]] introduced 25. This rising trend is illustrated in Figure[I] Numerous works have acknowledged
this phenomenon and provided practical guidelines for selecting and evaluating hyperparameters in
RL [Franke et al.,2021| [Eimer et al., {2022, 2023, |Patterson et al., 2024].

In this paper, we take on a more quantitative perspective and pose the following central question:
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Figure 1: The number of hyperparameters in reinforcement learning algorithms proposed over the
last decades [[Adkins et al., [2024].

What is the statistical cost of HPO in online RL, and how should it be quantified?

We define this statistical cost as the additional sample complexity or regret incurred during HPO.
In Section 3] we show that tuning m hyperparameters results in a sample complexity overhead of
O(exp(m)) in RL—a stark contrast to the O(m) overhead typically observed in supervised learning
(SL). This exponential cost is especially problematic in settings where real-world interaction is
expensive, simulators are unavailable, or large-scale offline datasets are lacking.

Building on this analysis, we propose evaluation protocols that explicitly account for HPO overhead.
These enable fairer comparisons across algorithms and support practical questions such as:

* Is Algorithm A truly more data-efficient than Algorithm B?
* Which hyperparameters are worth tuning in a given deployment?

We explore these use cases in Section 4. Ultimately, we advocate for a new goal in RL research: the de-
velopment of parameter-free RL algorithms that minimize or eliminate the need for hyperparameter
tuning.

2 Related work

Early works such as |[Henderson et al.| [2018]], Machado et al.[[2018]] emphasized reproducibility
challenges in RL, attributing much of the variance to opaque or inconsistent hyperparameter settings.
Subsequent studies examined hyperparameter sensitivity more systematically across benchmark
environments, introducing new sensitivity metrics and evaluation methods [Eimer et al., 2022|2023,
Adkins et al.| 2024]]. Others advocated for AutoML solutions to automate HPO in RL [Franke et al.,
2021}, [Eimer et al., [2023]], or proposed benchmarks requiring shared hyperparameter configurations
across tasks [[Patterson et al.l 2024]. However, these works primarily focus on empirical sensitivity or
tuning practices. None explicitly quantify the statistical cost of HPO in RL or examine its impact on
algorithm comparison. Our paper fills this gap, offering a theoretical framework that complements
these empirical efforts.

On the theoretical side, the cost of tuning has been explored under the lens of online model selection,
where the goal is to choose the best base algorithm from a finite set [Agarwal et al.,[2017| |Abbasi
Yadkori et al.| 2020, |Ghosh et al.| 2020, (Chatterji et al., 2020l Bibaut et al.l 2020, [Foster et al.,
2020, [Lee et al.l 2020l Wei et al., [2022]. Since tuning m hyperparameters often corresponds to
evaluating M = O(exp(m)) configurations, HPO effectively reduces to a model selection problem
over an exponentially large set. Approaches include FTRL-based methods (e.g., EXP4 [Odalric and
Munos), 2011], Corral [[Agarwal et al.|[2017]], Tsallis-INF [Arora et al.,[2020]) and regret-balancing
schemes [[Pacchiano et al., [2020, |Cutkosky et al.}[2021]]. A common limitation is the requirement for
known regret bounds for each base algorithm—a barrier in real-world RL where such guarantees are
unavailable. 5
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A recent exception is |Dann et al. [2024], who propose an algorithm that competes against the
realized regret of the best base model without requiring candidate regret bounds. They achieve regret

é(d}M VT + (d%)?V/MT), where d%+/T is the presumed regret of the best base model. On the

other hand, the best known lower bound takes the form of Q((d%)?v/T) [Marinov and Zimmert,
2021]], implying that recovering the regret rate of the best base learner is in general not possible.
Interestingly, prior work in this community has emphasized dependence on d* over M —in contrast
to our focus on the exponential dependence in M arising from HPO.

Designing parameter-free algorithms directly is an alternative. This goal has been extensively
pursued in optimization [Defazio and Mishchenkol [2023| |(Carmon and Hinder} 2022] [Ivgi et al.| [2023]
Cutkosky et al., 2024] [Khaled and Jin, |2024] and online learning [Orabona and Pal, 2018| |Cutkosky
and Orabonal, 2018| [van der Hoeven et al.,|[2020|]. In RL, however, work on parameter-free algorithms
is scarce. Recent theoretical contributions include algorithms that adapt to unknown reward scales
or state-space sizes [[Chen and Zhang| 2023 2024 |Chen et al., 2024]]. Empirical studies like |Yu
et al.[[2021] also explore adaptive hyperparameter schemes, though without the explicit goal of
parameter-free design.

3 The Statistical Cost of Hyperparameter Optimization (HPO)

Historically, HPO has received minimal attention in both algorithm design and theoretical analysis
because its cost is modest in classic settings like SL. In those domains, data splitting strategies such
as cross-validation yield efficient HPO procedures. We begin by formalizing this baseline in SL and
contrast it with the RL setting.

3.1 HPO Cost in Supervised Learning

Let D = {(z,y);}}¥, be an i.i.d. dataset sampled from a distribution P. Assume a supervised
learning algorithm Ay is parameterized by hyperparameter 6 and returns a predictor in a hypothesis
class F.

Definition 3.1 (PAC-learner in SL). A learner A is a PAC-learner if, for all 56 € (0,1), with
probability at least 1 — § over draw of dataset D, we have:

E(e y)~p[(AD)(x) —y)*] - min E[(f(z) - y)*] < e(N,9).
where (N, §) denotes the optimality gap.

Many SL algorithms achieve an optimality gap of the form:

C;log(l/é))

e(N,8) = O < = M

where C'r denotes the complexity of F. An alternative metric to quantify learning efficiency is the
sample complexity, i.e. the number of samples it requires to reach a certain optimality gap. For
instance, (1) would translate to a sample complexity of

Cr 1og(1/5)) ' ?)

€2

N@&O(

In supervised learning, HPO can be implemented using a simple data-splitting approach (Algorithm/[T)),
where models are trained on the training data and hyperparameters are selected based on losses on
the validation data:

Theorem 3.2 (PAC Guarantee of SL HPO). With probability 1 — 6, Algorithm returns f satisfying:

BI(f(x) ~ u)?) ~ minEl(f () - "] < 2min co(N/2,6/10)) = O (grgg V “””f?J”) |

In other words, Algorithm [T]is itself a PAC-learner with no hyperparameter and a sample complexity
log |©| times that of the best base learner. This log |©| comes from a union bound over © and is
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Algorithm 1 HPO via Data Splitting in SL

Input: Dataset D of size IV, hyperparameter set ©, learning algorithm .4y
Split D into Dyyqip, and D, of size N/2
for 6 € © do

Train fﬁ = A@ (Dtrain)

Evaluate e = & >, ,yep.., (fo(z) —¥)
end for
Return @ = arg mingy.g €9, model f;

2

A A i

negligible in the big data regime (N > log |©]). This benign scaling is possible mainly due to data
sharing across different hyperparameters, i.e. Ag, and Ay, can use the same training and validation
data. As a result, Algorithm[T]is modular — it only requires black-box access to the learner, making
it applicable to any learner .A. As a result of how effortless HPO is in SL, modern deep learning has
evolved under nearly no selection pressure towards having fewer hyperparameters. However, it turns
out to be catastrophic for HPO in reinforcement learning.

3.2 HPO Cost in Online Reinforcement Learning

In RL, we no longer have fixed datasets nor trivial validation procedures. Consider an online PAC-RL
setting, where the agent interacts with an unknown environment with the goal of finding a near-optimal
policy in as few episodes as possible.

Definition 3.3 (PAC-agent in Online RL). Given an MDP M, a PAC-agent is defined as a learning
agent that, with probability at least 1 — 0, after interacting with M for T episodes, returns a policy
7 that satisfies

max VT — Vi < €(T,9),

for some function € : N x (0,1) — RT,

Naively adapting Algorithm [I]to RL involves training a policy for each € © using T'/|©| episodes
(since data can no longer be shared seamlessly across different agents and will instead be split evenly),
then evaluating each and selecting the best. This yields the following result:

Theorem 3.4 (PAC Guarantee in RL). With probability 1 — 0, this procedure returns T satisfying:

T t . i~ . |®‘CT-9
V™ — VT < ~ £\ —Z .
HIT?JX I9Téln€9(N/|@|,6/|®D O <19réln

The exponential size of |©| :== M = O(exp(m)) implies that tuning m hyperparameters incurs
an Q(exp(m)) overhead. To make things worse, we can in fact show that the above is not just a
weakness of this naive algorithm but rather a necessary cost for any black-box hyperparameter tuning
algorithm:

Theorem 3.5 (Black-box HPO is inefficient in RL). Given any base agent A with a hyperparameter
set © and denote €y(T,0) the optimality gap function corresponding to hyperparameter 0. No
black-box HPO algorithm can return a policy 7 that satisfies

T — VT < minep(2T 1/2
max V"™ -V 71&%1({)169( /1©1,1/2)

s

with probability greater than 1/2.

This lower bound builds on two key observations: First, no data sharing between base agents is
possible in online RL without algorithm specific structures, which is unobtainable in the black-
box setting. Thus, the total budget of T episodes must be split between |O| different base agents.
Second, no base agents can be dropped prematurely without additional assumption on €4 (7', §) beyond
monotonicity, e.g. a base agent that starts off perform poorly could potentially catch up and becomes
the best after some time. Therefore, there is in fact no strategy that guarantees to be better than
spending T'/|©| episodes on each base agent in the worst case.

Subsequently, the regret to sample complexity reduction implies a similar lower bound on the regret:
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Figure 2: A typical comparison between different RL algorithms based on the performance with the
best hyperparameter configuration for each algorithm. A plausible conclusion one may draw from a
plot like this is PPO+GAE > vanilla PPO > GRPO.

Corollary 3.6 (Regret Lower Bound). Given any base agent A with a hyperparameter set © and
denote Regy(T,0) the regret corresponding to hyperparameter 0, where regret is defined as the

cumulative optimality gap during the execution of the algorithm, Z;‘ll (max, V™ — V7)., Then, no
black-box HPO algorithm can achieve a regret bound better than

6]
min —"Regy(21/16],1/2)

with probability more than 1/2.

Notice that the lower bound in Theorem [3.5|matches with the upper bound in Theorem [3.4] implying
that the naive strategy of splitting data equally across all hyperparameters is in fact optimal for the
pure exploration problem. When it comes to regret, Corollary [3.6 complements the existing lower
bound of Marinov and Zimmert|[2021]. Yet, there is still a gap between the best known upper bound
of Dann et al.|[[2024] and both lower bounds left for future research to resolve. Nevertheless, our
lower bounds are sufficient to show that, unlike SL, the cost of hyperparameter tuning in RL is
multiplicative rather than logarithmic.

However, most RL papers ignore this cost in reporting algorithm performance, often presenting
results for the best-tuned hyperparameter configuration while omitting the number of trials or total
samples used. An example of such practices is given in Figure 2] Such practices give an unfair
advantage to complex algorithms with more tunable hyperparameters. A model with twice the
learning speed but ten times the tuning burden may still be presented as superior. This dynamic
skews empirical comparisons and hampers progress toward scalable, real-world RL. In the following
sections, we show how incorporating HPO cost into evaluation can reshape algorithm rankings, and
how elementary algorithms can outperform sophisticated baselines when tuning is properly accounted
for.

4 Proposed Metrics

Despite the lack of an optimal hyperparameter optimization (HPO) algorithm for RL (in terms of
regret), it remains essential to measure and compare the learning efficiency of RL algorithms in a
way that fairly incorporates the cost of tuning. In this section, we adopt an optimistic yet principled
approach: we use the theoretical lower bounds established in Section 3 as a guideline to construct
practical evaluation metrics. These metrics serve to assess the performance of RL algorithms while
explicitly penalizing for the number of hyperparameters being tuned.

We introduce two core metrics: Effective Sample Complexity and Effective Area Under the Curve.
These metrics aim to mirror real-world deployment scenarios where tuning is costly, and help
distinguish algorithms that are truly efficient from those that merely perform well under exhaustive
hyperparameter search.
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Figure 3: An illustration of the Effective AUC, represented by the shaded area under the curve.

Definition 4.1 (Effective Sample Complexity (SC)). Let A be a reinforcement learning algorithm
with a hyperparameter set © and let 0 € © be given. The Effective Sample Complexity required to
reach an optimality threshold e is defined as:

|©] x Tp(e), 3)

where Ty(€) is the number of episodes needed for Ay to produce a policy # such that max, V™ —
VT <e

This metric captures the cost of HPO in the number of environment interactions to find a near-optimal
policy. Notice that (3) resembles the matching upper and lower bounds of Theorem [3.5|and Theorem
and the multiplicative |©| factor reflects the fundamental inefficiency identified in our theoretical
analysis. Importantly, we assume the best configuration is selected in hindsight, making this a lower
bound on true tuning cost. In our experiments, the threshold € corresponds to the 90th percentile of
episodic returns aggregated over all configurations and algorithms.

While sample complexity measures the data needed to achieve competent performance, many real-
world applications also care about cumulative reward during the learning process. Thus, we introduce
a regret-based metric:

Definition 4.2 (Effective Area Under the Curve (AUC)). Let A be an RL algorithm with hyperpa-
rameter set © and let § € O be given. The Effective AUC over T episodes is defined as:

/18|

O] x Y VT, 4

t=1
where V™0t is the expected reward of the policy at episode t when using configuration 0.

Intuitively, (@) measures the cumulative rewards achieved by each configuration over a period of
T'/|©] episodes, then multiplying it by |©)], as illustrated in Figure[3] This is derived directly from
our lower bound in Corollary 3.6} and should be viewed as optimistic, in the sense that this is the least
amount of regret one would suffer by calling an online model selection algorithm for hyperparameter
tuning. Notice that the naive data splitting framework in Algorithm would incur a O(T) regret in
the worst case, because there is no guarantee on how much more regret a suboptimal hyperparameter
would incur comparing to the optimal one.

Taken together, these metrics allow us to rethink what it means for an RL algorithm to be efficient.
Rather than asking "how well does this algorithm perform after tuning?", we ask "how much reward
and performance is achievable if we must account for the tuning effort?"

S Experiment

We evaluate the proposed metrics on a suite of continuous control tasks from the MuJoCo benchmark,
including Hopper, Ant, Swimmer, HalfCheetah, and Walker2d. Our goal is twofold: (1) guide
practitioners in making tuning decisions under practical constraints, and (2) assess how tuning
overhead alters algorithm comparisons.
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Algorithm Actor LR Critic LR Entropy Coef (1) GAE )\ M

GRPO {le-5, 3e-5, le-4} NA {1e-3, 1e-2, le-1} NA 32
Vanilla PPO  {le-5, 3e-5, le-4} {le-4, 3e-4, le-3} {le-3, le-2, le-1} NA 33
PPO+GAE {le-5, 3e-5, le-4} {le-4, 3e-4, 1e-3} ({le-3, le-2, le-1} {0.5,0.7,0.9} 3%
PPO+ADVN {1e-5, 3e-5, le-4}  {le-5, le-4, le-3} {le-3,3e-3, le-2} {0.3,0.5,0.7} 3*

Table 1: Hyperparameter set for each algorithm.

Number of HPs tuned | 4 | 3 | 2 | 1
PPO+GAE (AUC) actorlr, criticlr, 7, A | criticlr, 7, A | 7, A A
PPO+ADVN (AUC) actorlr, criticlr, 7, A | criticlr, 7, A | criticlr, A | A
PPO+GAE (SC) actorlr, criticlr, 7, A | actorlr, 7, A | 7, A A
PPO+ADVN (SC) actorlr, criticlr, 7, A | actorlr, 7, A | actorlr, A | \

Table 2: Hyperparameters tuned for PPO+GAE and PPO+ADVN.

Algorithms We focus on four policy gradient algorithms: Group Relative Policy Optimiza-
tion (GRPO), vanilla Proximal Policy Optimization (PP0), PPO+Generalised Advantage Estimator
(PPO+GAE), and a variant of PPO that performs Advantage per-minibatch zero-mean normalization
(PPO+ADVN).

All algorithms optimize the same clipped surrogate PPO objective:
L(0) = By [min (r(0) Ay, clip(ry(6),1— €, 1+ )4, )|, )

Each algorithm differs in how Ay is computed.

. . AGRPO __ R;—mean(R;)
GRPO: A; = wa(Ry) t

« Vanilla PP0: APPO = R, — V(s;)
» PPO+GAE: AtGAE =6+ (YN)bp1 + -+ (YN T 501, where §; = 7 + YV (8441) — V(s¢).

AtGAE —mean(AtGAE)
std(AGAE)

* PPO+ADVN: AAPVN —

In particular, GRPO does not use a value network and therefore only has two hyperparameters: actor
learning rate (LR) and entropy regularizer coefficient (7). Vanilla PPO uses a value network to help
with the estimation of the advantage function and thus have the critic learning rate (LR) as an addi-
tional hyperparameter. Both PPO+GAE and PPO+ADVN additionally have the GAE hyperparameter ().
The corresponding hyperparameters and their values are listed in Table[I] For each hyperparameter
configuration, we run 10 independent trials per environment, with each trial consisting of 3,000,000
timesteps.

Preprocessing Since raw reward scales differ across environments, we normalize each trajectory’s
return R(7) to the range [0, 1] using per-environment quantile normalization:

5y _ BUT) = ps(e)

R(r) = Pos(e) — p5(€)’ ©

where ps(e) and pgs(e) are the 5% and 95% quantiles of returns in environment e. This ensures fair
metric comparison across tasks. We then average the reward-vs-T curve across 10 trials to get a single
curve per (environment, algorithm, hyperparameter) tuple and calculate the effective SC and effective
AUC using these curves.

5.1 Use Case I: Choosing Hyperparameters to Tune

Consider a practitioner deploying RL in a new task similar to MuJoCo. They face a practical
question: which hyperparameters should be tuned, and which can be fixed based on prior knowledge
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Figure 4: Normalized effective AUC&SC vs. number of tuned hyperparameters.

or auxiliary environments? Tuning all hyperparameters may yield the best result in hindsight, but
it also incurs exponential cost. We simulate this setting using PPO+GAE and PPO+ADVN, both with 4
hyperparameters.

For each value m = 0, 1, 2, 3, 4, we search over all combinations of hyperparameters where m of
them can vary across environments while the other (4 — m) are fixed across all environments. This
procedure results in a sequence of hyperparameter spaces of increasing size: M = 1, 3!, 32, 3% and
3%, corresponding to zero, one, two, three, and four tunable hyperparameters.

For each combination, we measure the effective AUC (respectively SC) in each environment. To
compare across different environments, we normalize all effective AUC (respectively SC) values using
their quantiles among the full-grid configurations in each environment, similar to how rewards are
normalized, ensuring that easy environment and hard environment are weighted equally. Considering
that the effective SC can vary significantly across configurations within the same environment, we
apply a different normalization scheme for it:

AUC — ps.auc(e)

Normalized effective AUC = 7)
P95,AUC(€) - P5,AUC(€)
. . SC
Normalized effective SC = —— ®)
P5,SC(€)

We then calculate the average normalized effective AUC (respectively SC) across all five environments.
The hyperparameter configuration that achieves the highest average normalized effective AUC
(respectively SC) is chosen as the optimal setup for its specific m. In other words, the optimal
configuration for each m tells us which hyperparameter should be fixed across environments and at
what value, while the other hyperparameters should be tuned per environment. The hyperparameters
that are tuned for each m is shown in Table[2] The performances of the best configuration for each
m is shown in figure 4] across both algorithms and metrics. The dashed line represents the mean
normalized effective AUC across environments at each M, highlighting overall trends.

Figure [] shows a consistent trend: allowing more tunable hyperparameters does not always improve
performance. In fact, both effective AUC and SC typically degrade with additional tuning flexibility.
This suggests that in practice, a judicious selection of one or two hyperparameters to tune can
outperform more complex tuning setups, particularly when the tuning budget is constrained.



254

255
256
257

264

266

267
268

270

271

272
273
274
275

276

277

278
279

281
282
283

284

285
286

1.0 "R
\\
o 08 o o ~
=} bl S
<< ~
o ~
¢ 06 = ~
= Pl k] N v °
G PRI 2 v ~ :
- k= 1 ~
t 04 - w 10 ~ —_——
5 - k] o Nmmm————
2 ° - ~ 2
N - ~ = *
= 0.21 @ hopper Py A ] e hopper
g halfcheetah 1S halfcheetah *
5 A walker2d =} walker2d
S 00f , o = ® ant
v swimmer 10° v swimmer
0.2 === Mean across envs = Mean Y
GRPO vanilla PPO PPO+GAE GRPO vanilla PPO PPO+GAE
(a) Effective AUC (b) Effective SC

Figure 5: Normalized Effective AUC/SC vs different algorithms.

5.2 Use Case II: Fair Comparison between RL Algorithms

Next, we use our metrics to reevaluate algorithm comparisons. We focus on three algorithms of
increasing complexity: GRPO (2 hyperparameters), vanilla PP0O (3 hyperparameters), and PPO+GAE (4
hyperparameters).

In standard RL benchmarking, algorithms are often compared based on the performance of their best
hyperparameter configuration. As shown in Figure 2} this naive evaluation favors PPO+GAE in both
AUC and sample complexity.

However, once we adjust for tuning cost via normalized effective AUC and SC (Figure[5)), the ranking
changes dramatically. Vanilla PPO consistently outperforms both GRPO and PPO+GAE, achieving
a better balance between performance and tuning overhead. Interestingly, GRPO, despite having
the fewest hyperparameters, performs the worst under both metrics and even fails to meet the 90%
performance threshold in two environments, leading to infinite sample complexity.

6 Conclusion and Discussion

This work draws attention to a pervasive blind spot in reinforcement learning research: the statistical
and computational cost of hyperparameter optimization. While supervised learning tolerates a modest
log(]©]) tuning overhead, RL suffers an exponential penalty, both in theory and in practice. Our
results show that ignoring this cost leads to misleading conclusions in algorithm comparisons and
suboptimal design decisions.

To address this, we introduce two metrics—Effective Sample Complexity and Effective AUC—that
quantify an algorithm’s learning efficiency while accounting for the cost of hyperparameter tuning.
These metrics, grounded in theoretical lower bounds, reveal that many popular RL algorithms are
less efficient than simpler alternatives once tuning cost is considered.

Empirical findings on MuJoCo tasks demonstrate that:

e Many hyperparameters are not worth tuning; their cost outweighs their benefit.

* Algorithms with more complex design do not always outperform simpler baselines when fair
comparisons are made.

We advocate for a shift in evaluation practices. RL research should routinely include HPO-aware
metrics and prioritize the development of parameter-free algorithms that minimize or eliminate
tuning altogether. Only then can we build RL systems that are scalable, robust, and ready for
real-world deployment.
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