
Position: Ignoring Hyperparameter Tuning Costs
Misleads the Development of Efficient RL Algorithms

Anonymous Author(s)
Affiliation
Address
email

Abstract

The performance of reinforcement learning (RL) algorithms is often benchmarked1

without accounting for the cost of hyperparameter tuning, despite its significant2

practical impact. In this position paper, we argue that such practices distort the3

perceived efficiency of RL methods and impede meaningful algorithmic progress.4

We formalize this concern by proving a lower bound showing that tuning m5

hyperparameters in RL necessarily induces an exponential exp(m) blow-up in6

the sample complexity or regret, in stark contrast to the linear O(m) overhead7

observed in supervised learning. This highlights a fundamental inefficiency unique8

to RL. To address this, we propose evaluation protocols that account for the number9

and cost of tuned hyperparameters, enabling fairer comparisons across algorithms.10

Surprisingly, we find that once tuning cost is included, elementary algorithms can11

outperform their successors with more sophisticated design. These findings call for12

a shift in how RL algorithms are benchmarked and compared, especially in settings13

where efficiency and scalability are critical.14

1 Introduction15

While lacking a universally agreed definition, hyperparameters are broadly considered parameters16

that are set prior to running an algorithm and remain fixed throughout its execution. Examples17

include the step size in optimization, regularization coefficients, neural network architecture choices18

(e.g., depth, width), and activation functions. Although theoretical guidelines exist for some of these19

parameters (e.g., Θ(1/
√
T) step size in stochastic gradient descent), practical deployments typically20

require manual or automated hyperparameter optimization (HPO) to identify the problem-specific21

optimal values. Due to the non-differentiable and sometimes discrete nature of this search space,22

HPO is usually done via grid search or derivative-free optimization over a combinatorial search space.23

When it comes to reinforcement learning (RL), algorithm performance is notoriously sensitive to24

hyperparameter choices [Patterson et al., 2023, Eimer et al., 2023, Adkins et al., 2024, Obando-Ceron25

et al., 2024]. Alarmingly, some studies have even reported practices of tuning random seeds as26

hyperparameters to overfit to public benchmarks[Henderson et al., 2018]. Over the past decades, the27

number of hyperparameters in RL algorithms has steadily increased. For example, the original DQN28

algorithm [Mnih et al., 2015] required selecting 16 hyperparameters, while Rainbow [Hessel et al.,29

2018] introduced 25. This rising trend is illustrated in Figure 1. Numerous works have acknowledged30

this phenomenon and provided practical guidelines for selecting and evaluating hyperparameters in31

RL [Franke et al., 2021, Eimer et al., 2022, 2023, Patterson et al., 2024].32

In this paper, we take on a more quantitative perspective and pose the following central question:33

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

N
um

be
r o

f
hy

pe
rp

ar
am

et
er

s

41

34

Q-learning
Actor critic R-learning

LSPI
NFQ

Linear Dyna

A3C

DQN

PER

PPO
SAC

Rainbow

DynaQ+
DynaQ

Actor Critic with
 eligibility traces

Agent57

DreamerV3

DreamerV2
DreamerV1

16

3

24

1983 1993 20232003 2013
Year

Figure 1: The number of hyperparameters in reinforcement learning algorithms proposed over the
last decades [Adkins et al., 2024].

What is the statistical cost of HPO in online RL, and how should it be quantified?34

We define this statistical cost as the additional sample complexity or regret incurred during HPO.35

In Section 3, we show that tuning m hyperparameters results in a sample complexity overhead of36

Θ(exp(m)) in RL—a stark contrast to the O(m) overhead typically observed in supervised learning37

(SL). This exponential cost is especially problematic in settings where real-world interaction is38

expensive, simulators are unavailable, or large-scale offline datasets are lacking.39

Building on this analysis, we propose evaluation protocols that explicitly account for HPO overhead.40

These enable fairer comparisons across algorithms and support practical questions such as:41

• Is Algorithm A truly more data-efficient than Algorithm B?42

• Which hyperparameters are worth tuning in a given deployment?43

We explore these use cases in Section 4. Ultimately, we advocate for a new goal in RL research: the de-44

velopment of parameter-free RL algorithms that minimize or eliminate the need for hyperparameter45

tuning.46

2 Related work47

Early works such as Henderson et al. [2018], Machado et al. [2018] emphasized reproducibility48

challenges in RL, attributing much of the variance to opaque or inconsistent hyperparameter settings.49

Subsequent studies examined hyperparameter sensitivity more systematically across benchmark50

environments, introducing new sensitivity metrics and evaluation methods [Eimer et al., 2022, 2023,51

Adkins et al., 2024]. Others advocated for AutoML solutions to automate HPO in RL [Franke et al.,52

2021, Eimer et al., 2023], or proposed benchmarks requiring shared hyperparameter configurations53

across tasks [Patterson et al., 2024]. However, these works primarily focus on empirical sensitivity or54

tuning practices. None explicitly quantify the statistical cost of HPO in RL or examine its impact on55

algorithm comparison. Our paper fills this gap, offering a theoretical framework that complements56

these empirical efforts.57

On the theoretical side, the cost of tuning has been explored under the lens of online model selection,58

where the goal is to choose the best base algorithm from a finite set [Agarwal et al., 2017, Abbasi-59

Yadkori et al., 2020, Ghosh et al., 2020, Chatterji et al., 2020, Bibaut et al., 2020, Foster et al.,60

2020, Lee et al., 2020, Wei et al., 2022]. Since tuning m hyperparameters often corresponds to61

evaluating M = O(exp(m)) configurations, HPO effectively reduces to a model selection problem62

over an exponentially large set. Approaches include FTRL-based methods (e.g., EXP4 [Odalric and63

Munos, 2011], Corral [Agarwal et al., 2017], Tsallis-INF [Arora et al., 2020]) and regret-balancing64

schemes [Pacchiano et al., 2020, Cutkosky et al., 2021]. A common limitation is the requirement for65

known regret bounds for each base algorithm—a barrier in real-world RL where such guarantees are66

unavailable.67
2

A recent exception is Dann et al. [2024], who propose an algorithm that competes against the68

realized regret of the best base model without requiring candidate regret bounds. They achieve regret69

Õ(d⋆TM
√
T + (d⋆T)

2
√
MT), where d⋆T

√
T is the presumed regret of the best base model. On the70

other hand, the best known lower bound takes the form of Ω((d⋆T)
2
√
T) [Marinov and Zimmert,71

2021], implying that recovering the regret rate of the best base learner is in general not possible.72

Interestingly, prior work in this community has emphasized dependence on d⋆ over M—in contrast73

to our focus on the exponential dependence in M arising from HPO.74

Designing parameter-free algorithms directly is an alternative. This goal has been extensively75

pursued in optimization [Defazio and Mishchenko, 2023, Carmon and Hinder, 2022, Ivgi et al., 2023,76

Cutkosky et al., 2024, Khaled and Jin, 2024] and online learning [Orabona and Pál, 2018, Cutkosky77

and Orabona, 2018, van der Hoeven et al., 2020]. In RL, however, work on parameter-free algorithms78

is scarce. Recent theoretical contributions include algorithms that adapt to unknown reward scales79

or state-space sizes [Chen and Zhang, 2023, 2024, Chen et al., 2024]. Empirical studies like Yu80

et al. [2021] also explore adaptive hyperparameter schemes, though without the explicit goal of81

parameter-free design.82

3 The Statistical Cost of Hyperparameter Optimization (HPO)83

Historically, HPO has received minimal attention in both algorithm design and theoretical analysis84

because its cost is modest in classic settings like SL. In those domains, data splitting strategies such85

as cross-validation yield efficient HPO procedures. We begin by formalizing this baseline in SL and86

contrast it with the RL setting.87

3.1 HPO Cost in Supervised Learning88

Let D = {(x, y)i}Ni=1 be an i.i.d. dataset sampled from a distribution P . Assume a supervised89

learning algorithm Aθ is parameterized by hyperparameter θ and returns a predictor in a hypothesis90

class F .91

Definition 3.1 (PAC-learner in SL). A learner A is a PAC-learner if, for all δ ∈ (0, 1), with92

probability at least 1− δ over draw of dataset D, we have:93

E(x,y)∼P [(A(D)(x)− y)2]−min
f∈F

E[(f(x)− y)2] ≤ ϵ(N, δ).

where ϵ(N, δ) denotes the optimality gap.94

Many SL algorithms achieve an optimality gap of the form:95

ϵ(N, δ) = O

(√
CF log(1/δ)

N

)
, (1)

where CF denotes the complexity of F . An alternative metric to quantify learning efficiency is the96

sample complexity, i.e. the number of samples it requires to reach a certain optimality gap. For97

instance, (1) would translate to a sample complexity of98

N(ϵ, δ) = O

(
CF log(1/δ)

ϵ2

)
. (2)

In supervised learning, HPO can be implemented using a simple data-splitting approach (Algorithm 1),99

where models are trained on the training data and hyperparameters are selected based on losses on100

the validation data:101

Theorem 3.2 (PAC Guarantee of SL HPO). With probability 1− δ, Algorithm 1 returns f̂ satisfying:102

E[(f̂(x)− y)2]−min
f∈F

E[(f(x)− y)2] ≤ 2min
θ∈Θ

ϵθ(N/2, δ/|Θ|) ≈ Õ

(
min
θ∈Θ

√
log |Θ|CFθ

N

)
.

In other words, Algorithm 1 is itself a PAC-learner with no hyperparameter and a sample complexity103

log |Θ| times that of the best base learner. This log |Θ| comes from a union bound over Θ and is104

3

Algorithm 1 HPO via Data Splitting in SL

1: Input: Dataset D of size N , hyperparameter set Θ, learning algorithm Aθ

2: Split D into Dtrain and Dval of size N/2
3: for θ ∈ Θ do
4: Train fθ = Aθ(Dtrain)
5: Evaluate ϵθ = 2

N

∑
(x,y)∈Dval

(fθ(x)− y)2

6: end for
7: Return θ̂ = argminθ∈Θ ϵθ, model fθ̂

negligible in the big data regime (N ≫ log |Θ|). This benign scaling is possible mainly due to data105

sharing across different hyperparameters, i.e. Aθ1 and Aθ2 can use the same training and validation106

data. As a result, Algorithm 1 is modular — it only requires black-box access to the learner, making107

it applicable to any learner A. As a result of how effortless HPO is in SL, modern deep learning has108

evolved under nearly no selection pressure towards having fewer hyperparameters. However, it turns109

out to be catastrophic for HPO in reinforcement learning.110

3.2 HPO Cost in Online Reinforcement Learning111

In RL, we no longer have fixed datasets nor trivial validation procedures. Consider an online PAC-RL112

setting, where the agent interacts with an unknown environment with the goal of finding a near-optimal113

policy in as few episodes as possible.114

Definition 3.3 (PAC-agent in Online RL). Given an MDP M, a PAC-agent is defined as a learning115

agent that, with probability at least 1− δ, after interacting with M for T episodes, returns a policy116

π̂ that satisfies117

max
π

V π
M − V π̂

M ≤ ϵ(T, δ),

for some function ϵ : N× (0, 1) → R+.118

Naively adapting Algorithm 1 to RL involves training a policy for each θ ∈ Θ using T/|Θ| episodes119

(since data can no longer be shared seamlessly across different agents and will instead be split evenly),120

then evaluating each and selecting the best. This yields the following result:121

Theorem 3.4 (PAC Guarantee in RL). With probability 1− δ, this procedure returns π̂ satisfying:122

max
π

V π − V π̂ ≤ min
θ∈Θ

ϵθ(N/|Θ|, δ/|Θ|) ≈ Õ

(
min
θ∈Θ

√
|Θ|CFθ

T

)
.

The exponential size of |Θ| := M = O(exp(m)) implies that tuning m hyperparameters incurs123

an Ω(exp(m)) overhead. To make things worse, we can in fact show that the above is not just a124

weakness of this naive algorithm but rather a necessary cost for any black-box hyperparameter tuning125

algorithm:126

Theorem 3.5 (Black-box HPO is inefficient in RL). Given any base agent A with a hyperparameter127

set Θ and denote ϵθ(T, δ) the optimality gap function corresponding to hyperparameter θ. No128

black-box HPO algorithm can return a policy π̂ that satisfies129

max
π

V π − V π̂ ≤ min
θ∈Θ

ϵθ(2T/|Θ|, 1/2)

with probability greater than 1/2.130

This lower bound builds on two key observations: First, no data sharing between base agents is131

possible in online RL without algorithm specific structures, which is unobtainable in the black-132

box setting. Thus, the total budget of T episodes must be split between |Θ| different base agents.133

Second, no base agents can be dropped prematurely without additional assumption on ϵθ(T, δ) beyond134

monotonicity, e.g. a base agent that starts off perform poorly could potentially catch up and becomes135

the best after some time. Therefore, there is in fact no strategy that guarantees to be better than136

spending T/|Θ| episodes on each base agent in the worst case.137

Subsequently, the regret to sample complexity reduction implies a similar lower bound on the regret:138

4

Figure 2: A typical comparison between different RL algorithms based on the performance with the
best hyperparameter configuration for each algorithm. A plausible conclusion one may draw from a
plot like this is PPO+GAE > vanilla PPO > GRPO.

Corollary 3.6 (Regret Lower Bound). Given any base agent A with a hyperparameter set Θ and139

denote Regθ(T, δ) the regret corresponding to hyperparameter θ, where regret is defined as the140

cumulative optimality gap during the execution of the algorithm,
∑T

t=1(maxπ V
π − V π̂t). Then, no141

black-box HPO algorithm can achieve a regret bound better than142

min
θ∈Θ

|Θ|
2

Regθ(2T/|Θ|, 1/2)

with probability more than 1/2.143

Notice that the lower bound in Theorem 3.5 matches with the upper bound in Theorem 3.4, implying144

that the naive strategy of splitting data equally across all hyperparameters is in fact optimal for the145

pure exploration problem. When it comes to regret, Corollary 3.6 complements the existing lower146

bound of Marinov and Zimmert [2021]. Yet, there is still a gap between the best known upper bound147

of Dann et al. [2024] and both lower bounds left for future research to resolve. Nevertheless, our148

lower bounds are sufficient to show that, unlike SL, the cost of hyperparameter tuning in RL is149

multiplicative rather than logarithmic.150

However, most RL papers ignore this cost in reporting algorithm performance, often presenting151

results for the best-tuned hyperparameter configuration while omitting the number of trials or total152

samples used. An example of such practices is given in Figure 2. Such practices give an unfair153

advantage to complex algorithms with more tunable hyperparameters. A model with twice the154

learning speed but ten times the tuning burden may still be presented as superior. This dynamic155

skews empirical comparisons and hampers progress toward scalable, real-world RL. In the following156

sections, we show how incorporating HPO cost into evaluation can reshape algorithm rankings, and157

how elementary algorithms can outperform sophisticated baselines when tuning is properly accounted158

for.159

4 Proposed Metrics160

Despite the lack of an optimal hyperparameter optimization (HPO) algorithm for RL (in terms of161

regret), it remains essential to measure and compare the learning efficiency of RL algorithms in a162

way that fairly incorporates the cost of tuning. In this section, we adopt an optimistic yet principled163

approach: we use the theoretical lower bounds established in Section 3 as a guideline to construct164

practical evaluation metrics. These metrics serve to assess the performance of RL algorithms while165

explicitly penalizing for the number of hyperparameters being tuned.166

We introduce two core metrics: Effective Sample Complexity and Effective Area Under the Curve.167

These metrics aim to mirror real-world deployment scenarios where tuning is costly, and help168

distinguish algorithms that are truly efficient from those that merely perform well under exhaustive169

hyperparameter search.170

5

Figure 3: An illustration of the Effective AUC, represented by the shaded area under the curve.

Definition 4.1 (Effective Sample Complexity (SC)). Let A be a reinforcement learning algorithm171

with a hyperparameter set Θ and let θ ∈ Θ be given. The Effective Sample Complexity required to172

reach an optimality threshold ϵ is defined as:173

|Θ| × Tθ(ϵ), (3)

where Tθ(ϵ) is the number of episodes needed for Aθ to produce a policy π̂ such that maxπ V
π −174

V π̂ ≤ ϵ.175

This metric captures the cost of HPO in the number of environment interactions to find a near-optimal176

policy. Notice that (3) resembles the matching upper and lower bounds of Theorem 3.5 and Theorem177

3.4 and the multiplicative |Θ| factor reflects the fundamental inefficiency identified in our theoretical178

analysis. Importantly, we assume the best configuration is selected in hindsight, making this a lower179

bound on true tuning cost. In our experiments, the threshold ϵ corresponds to the 90th percentile of180

episodic returns aggregated over all configurations and algorithms.181

While sample complexity measures the data needed to achieve competent performance, many real-182

world applications also care about cumulative reward during the learning process. Thus, we introduce183

a regret-based metric:184

Definition 4.2 (Effective Area Under the Curve (AUC)). Let A be an RL algorithm with hyperpa-185

rameter set Θ and let θ ∈ Θ be given. The Effective AUC over T episodes is defined as:186

|Θ| ×
T/|Θ|∑
t=1

V πθ,t , (4)

where V πθ,t is the expected reward of the policy at episode t when using configuration θ.187

Intuitively, (4) measures the cumulative rewards achieved by each configuration over a period of188

T/|Θ| episodes, then multiplying it by |Θ|, as illustrated in Figure 3. This is derived directly from189

our lower bound in Corollary 3.6, and should be viewed as optimistic, in the sense that this is the least190

amount of regret one would suffer by calling an online model selection algorithm for hyperparameter191

tuning. Notice that the naive data splitting framework in Algorithm 1 would incur a O(T) regret in192

the worst case, because there is no guarantee on how much more regret a suboptimal hyperparameter193

would incur comparing to the optimal one.194

Taken together, these metrics allow us to rethink what it means for an RL algorithm to be efficient.195

Rather than asking "how well does this algorithm perform after tuning?", we ask "how much reward196

and performance is achievable if we must account for the tuning effort?"197

5 Experiment198

We evaluate the proposed metrics on a suite of continuous control tasks from the MuJoCo benchmark,199

including Hopper, Ant, Swimmer, HalfCheetah, and Walker2d. Our goal is twofold: (1) guide200

practitioners in making tuning decisions under practical constraints, and (2) assess how tuning201

overhead alters algorithm comparisons.202

6

Algorithm Actor LR Critic LR Entropy Coef (τ) GAE λ M

GRPO {1e-5, 3e-5, 1e-4} NA {1e-3, 1e-2, 1e-1} NA 32

Vanilla PPO {1e-5, 3e-5, 1e-4} {1e-4, 3e-4, 1e-3} {1e-3, 1e-2, 1e-1} NA 33

PPO+GAE {1e-5, 3e-5, 1e-4} {1e-4, 3e-4, 1e-3} {1e-3, 1e-2, 1e-1} {0.5, 0.7, 0.9} 34

PPO+ADVN {1e-5, 3e-5, 1e-4} {1e-5, 1e-4, 1e-3} {1e-3, 3e-3, 1e-2} {0.3, 0.5, 0.7} 34

Table 1: Hyperparameter set for each algorithm.

Number of HPs tuned 4 3 2 1
PPO+GAE (AUC) actorlr, criticlr, τ , λ criticlr, τ , λ τ , λ λ
PPO+ADVN (AUC) actorlr, criticlr, τ , λ criticlr, τ , λ criticlr, λ λ
PPO+GAE (SC) actorlr, criticlr, τ , λ actorlr, τ , λ τ , λ λ
PPO+ADVN (SC) actorlr, criticlr, τ , λ actorlr, τ , λ actorlr, λ λ

Table 2: Hyperparameters tuned for PPO+GAE and PPO+ADVN.

Algorithms We focus on four policy gradient algorithms: Group Relative Policy Optimiza-203

tion (GRPO), vanilla Proximal Policy Optimization (PPO), PPO+Generalised Advantage Estimator204

(PPO+GAE), and a variant of PPO that performs Advantage per-minibatch zero-mean normalization205

(PPO+ADVN).206

All algorithms optimize the same clipped surrogate PPO objective:207

L(θ) = Êt

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
, (5)

Each algorithm differs in how Ât is computed.208

• GRPO: ÂGRPO
t = Rt−mean(Rt)

std(Rt)
209

• Vanilla PPO: ÂPPO
t = Rt − V (st)210

• PPO+GAE: ÂGAE
t = δt + (γλ)δt+1 + · · ·+ (γλ)T−t+1δT−1, where δt = rt + γV (st+1)− V (st).211

• PPO+ADVN: ÂADVN
t =

ÂGAE
t −mean(ÂGAE

t)

std(ÂGAE
t)

212

In particular, GRPO does not use a value network and therefore only has two hyperparameters: actor213

learning rate (LR) and entropy regularizer coefficient (τ). Vanilla PPO uses a value network to help214

with the estimation of the advantage function and thus have the critic learning rate (LR) as an addi-215

tional hyperparameter. Both PPO+GAE and PPO+ADVN additionally have the GAE hyperparameter (λ).216

The corresponding hyperparameters and their values are listed in Table 1. For each hyperparameter217

configuration, we run 10 independent trials per environment, with each trial consisting of 3,000,000218

timesteps.219

Preprocessing Since raw reward scales differ across environments, we normalize each trajectory’s220

return R(τ) to the range [0, 1] using per-environment quantile normalization:221

R̄(τ) =
R(τ)− p5(e)

p95(e)− p5(e)
, (6)

where p5(e) and p95(e) are the 5% and 95% quantiles of returns in environment e. This ensures fair222

metric comparison across tasks. We then average the reward-vs-T curve across 10 trials to get a single223

curve per (environment, algorithm, hyperparameter) tuple and calculate the effective SC and effective224

AUC using these curves.225

5.1 Use Case I: Choosing Hyperparameters to Tune226

Consider a practitioner deploying RL in a new task similar to MuJoCo. They face a practical227

question: which hyperparameters should be tuned, and which can be fixed based on prior knowledge228

7

(a) Effective AUC for PPO+GAE (b) Effective AUC for PPO+ADVN

(c) Effective SC for PPO+GAE (d) Effective SC for PPO+ADVN

Figure 4: Normalized effective AUC&SC vs. number of tuned hyperparameters.

or auxiliary environments? Tuning all hyperparameters may yield the best result in hindsight, but229

it also incurs exponential cost. We simulate this setting using PPO+GAE and PPO+ADVN, both with 4230

hyperparameters.231

For each value m = 0, 1, 2, 3, 4, we search over all combinations of hyperparameters where m of232

them can vary across environments while the other (4−m) are fixed across all environments. This233

procedure results in a sequence of hyperparameter spaces of increasing size: M = 1, 31, 32, 33 and234

34, corresponding to zero, one, two, three, and four tunable hyperparameters.235

For each combination, we measure the effective AUC (respectively SC) in each environment. To236

compare across different environments, we normalize all effective AUC (respectively SC) values using237

their quantiles among the full-grid configurations in each environment, similar to how rewards are238

normalized, ensuring that easy environment and hard environment are weighted equally. Considering239

that the effective SC can vary significantly across configurations within the same environment, we240

apply a different normalization scheme for it:241

Normalized effective AUC =
AUC − p5,AUC(e)

p95,AUC(e)− p5,AUC(e)
(7)

Normalized effective SC =
SC

p5,SC(e)
(8)

We then calculate the average normalized effective AUC (respectively SC) across all five environments.242

The hyperparameter configuration that achieves the highest average normalized effective AUC243

(respectively SC) is chosen as the optimal setup for its specific m. In other words, the optimal244

configuration for each m tells us which hyperparameter should be fixed across environments and at245

what value, while the other hyperparameters should be tuned per environment. The hyperparameters246

that are tuned for each m is shown in Table 2. The performances of the best configuration for each247

m is shown in figure 4, across both algorithms and metrics. The dashed line represents the mean248

normalized effective AUC across environments at each M , highlighting overall trends.249

Figure 4 shows a consistent trend: allowing more tunable hyperparameters does not always improve250

performance. In fact, both effective AUC and SC typically degrade with additional tuning flexibility.251

This suggests that in practice, a judicious selection of one or two hyperparameters to tune can252

outperform more complex tuning setups, particularly when the tuning budget is constrained.253

8

(a) Effective AUC (b) Effective SC

Figure 5: Normalized Effective AUC/SC vs different algorithms.

5.2 Use Case II: Fair Comparison between RL Algorithms254

Next, we use our metrics to reevaluate algorithm comparisons. We focus on three algorithms of255

increasing complexity: GRPO (2 hyperparameters), vanilla PPO (3 hyperparameters), and PPO+GAE (4256

hyperparameters).257

In standard RL benchmarking, algorithms are often compared based on the performance of their best258

hyperparameter configuration. As shown in Figure 2, this naive evaluation favors PPO+GAE in both259

AUC and sample complexity.260

However, once we adjust for tuning cost via normalized effective AUC and SC (Figure 5), the ranking261

changes dramatically. Vanilla PPO consistently outperforms both GRPO and PPO+GAE, achieving262

a better balance between performance and tuning overhead. Interestingly, GRPO, despite having263

the fewest hyperparameters, performs the worst under both metrics and even fails to meet the 90%264

performance threshold in two environments, leading to infinite sample complexity.265

6 Conclusion and Discussion266

This work draws attention to a pervasive blind spot in reinforcement learning research: the statistical267

and computational cost of hyperparameter optimization. While supervised learning tolerates a modest268

log(|Θ|) tuning overhead, RL suffers an exponential penalty, both in theory and in practice. Our269

results show that ignoring this cost leads to misleading conclusions in algorithm comparisons and270

suboptimal design decisions.271

To address this, we introduce two metrics—Effective Sample Complexity and Effective AUC—that272

quantify an algorithm’s learning efficiency while accounting for the cost of hyperparameter tuning.273

These metrics, grounded in theoretical lower bounds, reveal that many popular RL algorithms are274

less efficient than simpler alternatives once tuning cost is considered.275

Empirical findings on MuJoCo tasks demonstrate that:276

• Many hyperparameters are not worth tuning; their cost outweighs their benefit.277

• Algorithms with more complex design do not always outperform simpler baselines when fair278

comparisons are made.279

We advocate for a shift in evaluation practices. RL research should routinely include HPO-aware280

metrics and prioritize the development of parameter-free algorithms that minimize or eliminate281

tuning altogether. Only then can we build RL systems that are scalable, robust, and ready for282

real-world deployment.283

References284

Yasin Abbasi-Yadkori, Aldo Pacchiano, and My Phan. Regret balancing for bandit and rl model285

selection. arXiv preprint arXiv:2006.05491, 2020.286

9

Jacob Adkins, Michael Bowling, and Adam White. A method for evaluating hyperparameter287

sensitivity in reinforcement learning. Advances in Neural Information Processing Systems, 37:288

124820–124842, 2024.289

Alekh Agarwal, Haipeng Luo, Behnam Neyshabur, and Robert E Schapire. Corralling a band of290

bandit algorithms. In Conference on Learning Theory, pages 12–38. PMLR, 2017.291

Raman Arora, Teodor V Marinov, and Mehryar Mohri. Corralling stochastic bandit algorithms. arXiv292

preprint arXiv:2006.09255, 2020.293

Aurélien F Bibaut, Antoine Chambaz, and Mark J van der Laan. Rate-adaptive model selection over294

a collection of black-box contextual bandit algorithms. arXiv preprint arXiv:2006.03632, 2020.295

Yair Carmon and Oliver Hinder. Making sgd parameter-free. In Conference on Learning Theory,296

pages 2360–2389. PMLR, 2022.297

Niladri Chatterji, Vidya Muthukumar, and Peter Bartlett. Osom: A simultaneously optimal algorithm298

for multi-armed and linear contextual bandits. In International Conference on Artificial Intelligence299

and Statistics, pages 1844–1854, 2020.300

Mingyu Chen and Xuezhou Zhang. Improved algorithms for adversarial bandits with unbounded301

losses. arXiv preprint arXiv:2310.01756, 2023.302

Mingyu Chen and Xuezhou Zhang. Scale-free adversarial reinforcement learning. arXiv preprint303

arXiv:2403.00930, 2024.304

Mingyu Chen, Aldo Pacchiano, and Xuezhou Zhang. State-free reinforcement learning. Advances in305

Neural Information Processing Systems, 37:117708–117736, 2024.306

Ashok Cutkosky and Francesco Orabona. Black-box reductions for parameter-free online learning in307

banach spaces. In Conference On Learning Theory, pages 1493–1529. PMLR, 2018.308

Ashok Cutkosky, Christoph Dann, Abhimanyu Das, Claudio Gentile, Aldo Pacchiano, and Manish309

Purohit. Dynamic balancing for model selection in bandits and rl. In Proceedings of the 38th310

International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning311

Research, pages 2276–2285. PMLR, 2021.312

Ashok Cutkosky, Aaron Defazio, and Harsh Mehta. Mechanic: A learning rate tuner. Advances in313

Neural Information Processing Systems, 36, 2024.314

Chris Dann, Claudio Gentile, and Aldo Pacchiano. Data-driven online model selection with regret315

guarantees. In International Conference on Artificial Intelligence and Statistics, pages 1531–1539.316

PMLR, 2024.317

Aaron Defazio and Konstantin Mishchenko. Learning-rate-free learning by d-adaptation. In Interna-318

tional Conference on Machine Learning, pages 7449–7479. PMLR, 2023.319

Theresa Eimer, Carolin Benjamins, and Marius Lindauer. Hyperparameters in Contextual RL are320

Highly Situational. CoRR, abs/2212.10876, 2022.321

Theresa Eimer, Marius Lindauer, and Roberta Raileanu. Hyperparameters in reinforcement learning322

and how to tune them. In International conference on machine learning, pages 9104–9149. PMLR,323

2023.324

Dylan Foster, Claudio Gentile, Mehryar Mohri, and Julian Zimmert. Adapting to misspecification in325

contextual bandits. In Advances in Neural Information Processing Systems, 2020.326

Jörg KH Franke, Gregor Köhler, André Biedenkapp, and Frank Hutter. Sample-Efficient Automated327

Deep Reinforcement Learning. In International Conference on Learning Representations (ICLR),328

2021.329

Avishek Ghosh, Abishek Sankararaman, and Kannan Ramchandran. Problem-complexity adaptive330

model selection for stochastic linear bandits. arXiv preprint arXiv:2006.02612, 2020.331

10

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.332

Deep reinforcement learning that matters. In Proceedings of the AAAI conference on artificial333

intelligence, volume 32, 2018.334

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,335

Dan Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David Silver. Rainbow: Combining336

Improvements in Deep Reinforcement Learning. In Conference on Artificial Intelligence (AAAI),337

2018.338

Maor Ivgi, Oliver Hinder, and Yair Carmon. Dog is sgd’s best friend: A parameter-free dynamic step339

size schedule. In International Conference on Machine Learning, pages 14465–14499. PMLR,340

2023.341

Ahmed Khaled and Chi Jin. Tuning-free stochastic optimization. arXiv preprint arXiv:2402.07793,342

2024.343

Jonathan N Lee, Aldo Pacchiano, Vidya Muthukumar, Weihao Kong, and Emma Brunskill. On-344

line model selection for reinforcement learning with function approximation. arXiv preprint345

arXiv:2011.09750, 2020.346

Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and Michael347

Bowling. Revisiting the arcade learning environment: Evaluation protocols and open problems for348

general agents. Journal of Artificial Intelligence Research, 61:523–562, 2018.349

Teodor Vanislavov Marinov and Julian Zimmert. The pareto frontier of model selection for general350

contextual bandits. Advances in Neural Information Processing Systems, 34:17956–17967, 2021.351

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-352

mare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Petersen,353

Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,354

Shane Legg, and Demis Hassabis. Human-Level Control through Deep Reinforcement Learning.355

Nature, 518:529–533, 2015.356

Johan Obando-Ceron, João GM Araújo, Aaron Courville, and Pablo Samuel Castro. On the consis-357

tency of hyper-parameter selection in value-based deep reinforcement learning. arXiv preprint358

arXiv:2406.17523, 2024.359

Maillard Odalric and Rémi Munos. Adaptive bandits: Towards the best history-dependent strategy.360

In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics,361

pages 570–578. JMLR Workshop and Conference Proceedings, 2011.362

Francesco Orabona and Dávid Pál. Scale-free online learning. Theoretical Computer Science, 716:363

50–69, 2018.364

Aldo Pacchiano, Christoph Dann, Claudio Gentile, and Peter Bartlett. Regret bound balancing and365

elimination for model selection in bandits and rl. arXiv preprint arXiv:2012.13045, 2020.366

Andrew Patterson, Samuel Neumann, Martha White, and Adam White. Empirical Design in Rein-367

forcement Learning. CoRR, abs/2304.01315, 2023.368

Andrew Patterson, Samuel Neumann, Raksha Kumaraswamy, Martha White, and Adam M White.369

The Cross-Environment Hyperparameter Setting Benchmark for Reinforcement Learning. In370

Reinforcement Learning Conference (RLC), 2024.371

Dirk van der Hoeven, Ashok Cutkosky, and Haipeng Luo. Comparator-adaptive convex bandits.372

Advances in Neural Information Processing Systems, 33:19795–19804, 2020.373

Chen-Yu Wei, Christoph Dann, and Julian Zimmert. A model selection approach for corruption374

robust reinforcement learning. In International Conference on Algorithmic Learning Theory, pages375

1043–1096. PMLR, 2022.376

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.377

Combo: Conservative offline model-based policy optimization. Advances in neural information378

processing systems, 34:28954–28967, 2021.379

11

	Introduction
	Related work
	The Statistical Cost of Hyperparameter Optimization (HPO)
	HPO Cost in Supervised Learning
	HPO Cost in Online Reinforcement Learning

	Proposed Metrics
	Experiment
	Use Case I: Choosing Hyperparameters to Tune
	Use Case II: Fair Comparison between RL Algorithms

	Conclusion and Discussion

