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ABSTRACT

Diffusion models have emerged as a promising choice for learning robot skills from demonstrations.
However, they face three problems: diffusion models are not sample-efficient, data is expensive to
collect in robotics, and the space of tasks is combinatorially large. The established method to train
diffusion models on skill demonstrations borrow from the literature on image generation, and results
in a conditional distribution of robot actions given the visual, proprioceptive and other observations.
However, they have little room to accommodate solutions for the aforementioned challenges, in ad-
dition to scaling the model size and paired observation-action data. In this work, we propose a novel
method for training diffusion models termed ‘Composable Diffusion Guidance’ CoDiG to com-
positionally learn diffusion policies for robot skills. CoDiG decouples the observation modalities
allowing the residual learning of one modality with respect to the others. While presenting a more
intuitive modeling paradigm, CoDiG also enables the scaling of modalities such as robot motions
independently. Our preliminary results show that visual CoDiG with motion-priors outperforms the
conventional way of learning visuomotor policies using diffusion models on skills with relatively
low-diversity of robot motion. Further experimentation is needed to evaluate the performance and
robustness of CoDiG for different observation modalities, and on different classes of skills, such as
long-horizon and precise manipulation.

1 INTRODUCTION

Diffusion models have emerged as a promising choice for learning robot skills from demonstrations Chi et al. (2023).
However, diffusion models are not sample efficient and require the collection of large amounts of demonstration
data. Unfortunately, data collection in robotics is not easy due to the coupling of various modalities such as robot
actions, vision, tactile, text etc. Prior work Chi et al. (2023) has used diffusion models to learn the conditional
distribution of action with respect to visual, proprioceptive and other observations. However, this forces the collection
of paired action, visual, tactile and other modality data as demonstrations, which can be restrictive and difficult to
scale. Instead, we propose a novel method CoDiG ‘Composable Diffusion Guidance’ utilizing Bayes’ theorem to split
the distribution of the robot actions conditioned on different observation modalities. For instance, the existing way
to train visuo-motor diffusion policies is to learn a conditional distribution of actions with respect to the visual and
proprioceptive observations. Instead, CoDiG learns a diffusion ‘motion-model’ on the action distribution of skills and
a visual-‘guidance model’, that when composed with the motion-model results in generation of the action conditioned
on the visual observations.

Recent efforts to exploit compositionality through diffusion models have yielded promising results Du et al. (2023);
Wang et al. (2024). For instance, POCO Wang et al. (2024) composes multi-task conditional and unconditional
policies to show better generalization over using a single multi-task policy for tool use. Wang et al. (2024) emphasize
the heterogeneous nature of data collection in robotics and showcase composition of policies trained on different data
modalities such as vision-action and tactile-action. However, the candidate policies are learned independently and
require manual tuning of their compositional weights. Moreover, these methods are limited to the combination of
pre-learned policies, requiring a careful consideration of the candidate tasks and data collection.

Critically, CoDiG enables the training of models conditioned on one observational modality with respect to the rest so
that data collection efforts can be concentrated on the cheaper modality and consequent models learn on the residual
rather than in an isolated manner. Consequently, CoDiG does not require manual tuning of the compositional weights.
Specifically, we showcase this by training a ‘motion-model’ on the action distribution of a task, and learning a vision
’guidance-model’ relative to it on vision-action coupled demonstration data. Through our experiments, we show that
not all tasks are created equal, and policy learning using our method can benefit from further collection of only the
robot motion data corresponding to the task, while reducing the requirement of collecting coupled vision-action data.
Ultimately, CoDiG is a general policy learning method that can be flexibly used with different modalities of data
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and shows better scaling properties for decoupled task-specific data collection. Further experiments are needed to
validate the efficacy of CoDiG, especially for long-horizon tasks and for its scaling properties. Our contributions are
as follows-

• We present a novel method to train diffusion models on robot demonstration data called CoDiG, abbreviated
for ‘Composable Diffusion Guidance’. Conventional diffusion policies Chi et al. (2023) learn a conditional
distribution of actions with respect to the all observational modalities. In contrast, CoDiG decouples the
observational modalities allowing the residual learning of one modality with respect to the others.

• CoDiG allows data collection to focus on the cheapest modality, removing the necessity of collecting paired
modality data together. Our experiments show that not all skills are created equal, and some skills are less
reliant on visual observations for their motions. We use this insight to show that CoDiG benefits from motion-
only data collection for such skills, while limiting the collection of paired visual-action data.

• Our results show that visual CoDiG with a motion-model performs favorably with respect to the conventional
diffusion models on several RLBench tasks. Further experimentation is required to validate the efficacy and
robustness of CoDiG for long horizon tasks and precise manipulation. Our initial results also show that
CoDiG scales better with additional motion data.

2 BACKGROUND

2.1 DIFFUSION MODELS

Gaussian diffusion models Sohl-Dickstein et al. (2015) learn the reverse diffusion kernel pθ(xt−1|xt) for a fixed
forward kernel that adds Gaussian noise at each step q(xt|xt−1) = N (xt;

√
αtxt−1, (1 − αt)I), such that q(xT ) ≈

N (0, I). Here, t <= T represents the diffusion time-step and αt the noise schedule. To generate trajectories from
the learned data distribution pθ(x0), we sample at time step T from N (0, I) and apply the reverse diffusion kernel
pθ(xt−1|xt) at each time step. For training the model, maximization of the evidence lower bound derived from
the log-likelihood of the data distribution log q(x0) yields the commonly used loss function in Equation 1 Ho et al.
(2020).

Lt(θ) = Eq(x0)N (ϵ0;0,I)
[
λt[||ϵ0 − ϵ̂θ(xt, t)||22]

]
(1)

Here, λt, a function of αt is the weighting parameter for different time-steps, usually taken as 1. We train our model
to predict the noise ϵ0 added to the data sample x0 to generate the noisy sample xt taken as input to the network. The
Tweedie formula Efron (2011) can be used to show that ϵ0, and consequently ϵθ are proportional to the score of the
diffused data distribution q(xt) =

∫
q(xt|x0)q(x0)dx0 Luo (2022).

−1√
1− ᾱt

ϵ̂θ(xt, t) ≈
−1√
1− ᾱt

ϵ0 = ∇xlog q(xt) (2)

2.2 ENERGY BASED MODELS (EBMS)

EBMs are a class of probabilistic models of the form pθ(x) = efθ(x)

Z where Z(θ) =
∫
efθ(x)dx is the normal-

izing constant. Denoising score matching (DSM) Vincent (2011) used to train EBMs Song and Kingma (2021)
minimizes the Fisher divergence between the model pθ(x) and the Gaussian-smoothed data distribution q(x̃) =∫
q(x)N (x̃;x, σ2

t I)dx at various noise scales σt.

Jσt(θ) = Eq(x,x̃)

[
1

2
||∇x̃log q(x̃|x)−∇x̃log pθ(x̃)||22

]
(3)

This circumvents the normalizing constant by evaluating the gradient of the log-probability of the model ∇xpθ(x̃) =
∇xfθ(x̃) at different noise scales. Equation 3 simplifies to the following when q(x|x̃) = N (x̃;x, σ2

t I) Vincent
(2011):

Jσt
(θ) = Eq(x)N (ϵ;0,I)

[
|| ϵ
σt

+∇xfθ(x+ σtϵ)||22
]

(4)

Once trained, MCMC methods such as Langevin Andrieu et al. (2003) can be used to sample from EBMs since they
only depend on the score of the data distribution. This approach is also known in the literature as score-based modeling
Song and Ermon (2020).
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2.3 SAMPLING FROM THE POLICY

Song et al. (2020) show that score-based and denoising diffusion models can be considered as discretizations of a
family of stochastic differential equations (SDE) that slowly add noise to the data distribution. For the generation
process, the time-reversal of this SDE was given by Anderson (1982) dx =

[
f(x, t)− g(t)2∇x log qt(x)

]
dt +

g(t)dw̄, where w̄ is a standard Wiener process for reverse time, g(t) is the scalar diffusion coefficient, and f(·, t)
is the drift coefficient. Some manifestations of the reverse SDE equation are ancestral sampling Song et al. (2020)
proposed by Ho et al. (2020), shown in Equation 5, and Langevin dynamics Andrieu et al. (2003).

xt−1 ∼ N
(
xt;

1
√
αt

[xt + (1− αt)∇xt
log q(xt)] ,

√
1− αtI

)
(5)

Equation 3 is then used to obtain an estimate of the score of the perturbed data distribution ∇x log qt(x),
where the transition kernel q(x̃|x) varies between approaches. Diffusion models use a forward transition ker-
nel of N (xt;

√
ᾱtxt−1, (1 − ᾱt)I), yielding the same loss as Equation 1, while score-based model typically use

N (xt;xt−1, σ
2
t I), where αt and σt are respective noise scales.

2.4 CLASSIFIER GUIDED DIFFUSION

Classifier guided diffusion Dhariwal and Nichol (2021a) has received considerable attention due to its ability to reuse
existing diffusion models to sample images conforming to specific classes. To sample from a class y, Equation 6 as a
result of Bayes’ theorem allows us to decompose the conditional score at time-step t into the gradient of the classifier
and the unconditional score.

∇xt
log p(xt|y;θ,ϕ) = ∇xt

log p(y|xt;ϕ) +∇xt
log p(xt;θ) (6)

Classifier guided-diffusion requires a classifier trained on noisy samples to get accurate estimate of the gradients
∇xt log p(y|xt;ϕ). Sampling from the class y can then be achieved for diffusion models by substituting a re-weighted
version of Equation 6 for ∇xt log q(xt) in the ancestral sampling Equation 5.

3 METHODOLOGY

3.1 THEORETICAL RESULTS

Assume that we have robot demonstrations D = {(x,y)i} where i = 1..N , consisting of actions x and different
observation modalities yk such as camera images, task description and proprioception data. We are interested in
learning p(x|y) from the data, such that given a task description, current camera images, state of the robot and other
observations, we can sample an action x with a high likelihood in the demonstration data distribution.

Most treatments of diffusion models have considered distributions of a single entity such as images Ho et al. (2020);
Luo (2022); Song et al. (2022). This formulation has been directly adopted by the robotics community Chi et al.
(2023) leading to the popular optimization objective shown in Equation 7.

Lt(θ) = Eq(x0,y)N (ϵ0;0,I)
[
[||ϵ0 − ϵ̂θ(xt,y, t)||22]

]
(7)

xt−1 ∼ N
(
xt;

1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵ̂θ(xt,y, t)

)
,
√
1− αtI

)
(8)

Here, the network ϵθ is also parametrized with y for the conditional prediction of the noise added to the action x.
Once the network ϵ̂θ(xt,y, t) is trained, ancestral sampling shown in Equation 8 can be used to sample actions
given the observations y. However, while prior work assumes that ϵθ learns the score of the conditional distribution
p(x|y), there is no formal proof provided for the same. Hence, we present our first result, where we show that a
conditional diffusion process as defined by Dhariwal and Nichol (2021a) does indeed result in the loss of Equation 7
Chi et al. (2023) being a maximizer of the evidence lower bound (ELBO) of the log-likelihood of the conditional data
distribution log q(x|y).
Theorem 3.1. The diffusion loss function Lt(θ) as defined in Equation 7, in expectation over the time-steps 1 ≤ t ≤ T ,
is equivalent to maximizing the ELBO of the log-likelihood of the conditional data distribution log q(x|y), under a
conditional Markovian noising process q̂(xt|xt−1) and the reverse transition kernel as q̂(xt−1|xt,y).

The proof for Theorem 3.1 can be found in the Appendix A.1. We now proceed to our main result. We would like
to decouple different observational modalities yk, 1 ≤ k ≤ M , so that we can prioritize their collection based on
cost. Assume that we have trained a diffusion policy with k observational modalities and we collect N additional
demonstrations with the (k + 1)th modality in conjunction with the existing k. The score of the new conditional
distribution p(x|y1:k,yk+1), where y1:k ≡ y1, ..,yk, can be written using Bayes’s theorem along the lines of Equation
6 at diffusion time-step t as follows:

∇xt
log p(xt|y1:k,yk+1;θ,ϕ) = ∇xt

log p(yk+1|xt,y
1:k;ϕ) +∇xt

log p(xt|y1:k;θ) (9)
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Here ∇xt log p(xt|y1:k;θ) is the score of the model trained on the original k observational modalities, while
∇xt log p(y

k+1|xt,y
1:k;ϕ) corresponds to the score of the classifier for the modality yk+1. The method proposed by

classifier guided-diffusion Dhariwal and Nichol (2021a) to explicitly train a classifier p(yk+1|xt,y
1:k) on the noisy

samples of xt and y1:k does not apply due to continuous and high-dimensional observation modalities such as images,
rather than simple classes such as cats or dogs.

The central idea of this work is to instead directly parametrize the gradient of the classifier ∇xt
log p(yk+1|xt,y

1:k;ϕ)
using a neural network, which we refer to as the guidance model πg , rather than to learn a classifier and then obtain its
gradients. To learn the guidance model, following the suit of Equation 3, we minimize the Fisher divergence between
the guidance model and the true score of the classifier.

DF (pϕ(ỹ
k+1|xt, ỹ

1:k)||pα,τ (ỹk+1|xt, ỹ
1:k)) = Epα,τ (xt,ỹ1:k+1)

[
1

2
||∇xt

log pϕ(ỹ
k+1|xt, ỹ

1:k)−∇xt
log pα,τ (ỹ

k+1|xt, ỹ
1:k)||22

]
(10)

Here, observation modalities y1:k+1 can be noised with a Gaussian kernel N (ỹ;y, τ2I) of variance τ2 that is small
enough such that pτ (ỹi) ≈ p(yi). Robot action x is noised with the diffusion transition kernel of N (xt;

√
αtx, (1−

αt)I). However, Equation 10 is difficult to use in it’s current form as estimation of the true score is difficult for large
datasets. Chao et al. (2022) derive the denoising likelihood score matching (DLSM) objective from the denoising
score matching of Equation 3 for conditional distributions, which forms the basis of our next result.
Theorem 3.2. Denoising score matching for the guidance model πg: ∇xt

log pϕ(ỹ
k+1|xt, ỹ

1:k), as expressed in
Equation 10 is equal up to a constant to the following loss:

Lt
DLSM (ϕ) = Epα,τ (x,xt,y1:k+1,ỹ1:k+1)

[
1

2
||∇xt

log pϕ(ỹ
k+1|xt, ỹ

1:k) +∇xt
log pθ(xt|ỹ1:k)−∇xt

log pα(xt|x)||22
]

(11)

For diffusion models, we take the forward transition kernel as pα(xt|x) = N (xt;
√
αtx, (1 − αt)I). We noise the

observations y1:k+1 with a Gaussian kernel N (ỹ;y, τ2I) of variance τ2 that is small enough such that pτ (ỹi) ≈
p(yi).

The proof for Theorem 3.2 is a conditional variant of the one derived by Chao et al. (2022), and is presented in
Appendix A.2. Equation 53 can now be used in practice to learn the guidance model. Simplifying ∇xt

log pα(xt|x)
to −ϵ0/

√
1− ᾱt, where ϵ0 ∼ N (0, I), and using Equation 2, we obtain:

LDLSM (ϕ) = Epτ (x,y1:k+1,ỹ1:k+1)Eϵ0∼N (0,I)

[
1

2
||ϵ̂ϕ(ỹk+1,xt, ỹ

1:k) + ϵθ(xt, ỹ
1:k)− ϵ0||22

]
(12)

Here, ϵθ is frozen and known from prior training with observational modalities y1:k, while ϵϕ is learned in expectation
over the new data collected in conjugation with modality yk+1. Equation 12 is very similar to the diffusion loss
Equation 7, except the model is expected to learn a residual of the noise added to the action sample xt taken as
the input. Once, ϵϕ is learned, actions can be sampled from the conditional distribution p(x|y1:k+1) using ancestral
sampling and Equation 9:

xt−1 ∼ N
(
xt;

1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵ(xt,y
1:k+1, t)

)
,
√
1− αtI

)
(13)

ϵ(xt,y
1:k+1, t) = ϵ̂ϕ(xt,y

1:k+1, t) + ϵ̂θ(xt,y
1:k, t) (14)

Note that the score of the prior distribution ϵ̂θ(xt,y
1:k, t) or ∇xt log p(xt|y1:k;θ) can further be decomposed with

respect to observational modalities as shown above. However, data collection for subsequent modalities yk+1 must be
done in conjunction with existing ones y1:k.

3.2 VISUAL CODIG WITH MOTION-MODEL

We now provide a concrete implementation of the method proposed in Section 3.1. Existing diffusion models trained
as visuo-motor polices learn the score for the conditional distribution p(x|yr,yc), where yr corresponds to the pro-
prioceptive observations and yc correspond to the visual observations from cameras. We propose to decouple these
observational modalities, and instead learn the scores for a ‘motion-model’ p(x|yr) and a vision ‘guidance-model’
p(yc|x,yr). This implies that for certain tasks, we can collect a larger set of pure motions of the robot performing the
specific skill, and fewer visual demonstrations of the robot actually performing the task. We learn the motion-model
using diffusion loss of Equation 7 and the guidance model using DLSM loss of Equation 12.

LMM (θ) = Eq(x0,yr)N (ϵ0;0,I)
[
[||ϵ0 − ϵ̂θ(xt,y

r, t)||22]
]

(15)
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LG(ϕ) = Epτ (x,yr,yc,ỹr,ỹc)Eϵ0∼N (0,I)

[
1

2
||ϵ0 − ϵ̂ϕ(ỹ

c,xt, ỹ
r, t)− ϵθ(xt, ỹ

r, t)||22
]

(16)

In Section 4, we showcase that this approach has a distinct advantage for skills that are heavily dependent on propri-
oception, while performing comparably on others. We hypothesize that the existing way to train visuomotor policies
using diffusion models do not learn the right dependencies when presented with all the observational modalities to-
gether. Moreover, CoDiG allows us to tailor the collection of data to suit the task and costs.

4 RESULTS

4.1 ENVIRONMENTS AND BASELINES

We use 9 randomly-picked tasks from RLBench James et al. (2019) and the low-dimensional Franka-Kitchen envi-
ronment Gupta et al. (2019) to evaluate our performance. RLBench has a wide variety of tasks and an inbuilt planner
that enables collection of demonstrations. We train visuomotor policies on RLBench with a 5 camera setup recording
96x96 RGB images that use joint position as the action modality. Franka-Kitchen uses joint velocity as the action
modality with a 30-dimensional observational state that includes the position of the robot joints and the objects in the
kitchen, along with the goal states encoding the target objects to manipulate. There are three versions of the dataset-
complete, partial and mixed. The complete version is a smaller part of the dataset where all the demonstrations
correspond to a fixed set of objects (microwave, kettle, light and slider) that are manipulated in the same order.

Since we propose an alternative to the existing way of training diffusion models, our baseline is a model that takes in
all the observations and predicts the robot action, learning the conditional distribution. We choose DiT-small (∼90M)
Peebles and Xie (2023) as our model architecture, which is kept the same for both the baseline and CoDiG. Since
CoDiG uses two separate models for motion and guidance, we also include DiT-base (∼190M) in the baseline. All
models are trained for 2000 epochs for RLBench tasks and 3000 epochs for Franka-Kitchen. We use Adam optimizer
Kingma and Ba (2017) and a learning rate of 1e− 4, in accordance to Peebles and Xie (2023).

In this work, we present two types of results. In the first, we train both the baseline and our method using only 10
visual demonstrations from RLBench to compare how CoDiG fares relative to the existing way of learning visuomotor
policies. For Franka-Kitchen we train all models, including the motion-model only on the ‘complete’ version of the
dataset. In the second, we collect an additional ‘motions’ of the robot performing the skill and record the evolution of
the action and the proprioceptive states. In simulation, the motions are collected using the same planner used to collect
visual demonstration in the environment. Our objective for the second set of results is to understand how collection of
additional motion data can benefit CoDiG in comparison to directly learning the conditional distribution. In addition
to these, we also show results for the motion-model that does not use any visual information. All our results for
RLBench are reported as the mean of the success rates over 50 rollouts for 3 different seeds (total of 150 rollouts).
For Franka-Kitchen we report the mean task-completion rate out of 4 tasks. We leave real-world experiments and
evaluation on play-motion data for future work.

4.2 LEARNING VISUOMOTOR POLICIES

For RLBench, we train the DiT-small and DiT-base baselines on 10 visual demonstrations using the loss defined in
Equation 7. For CoDiG, we train the motion model πmm on only the proprioception-action data using the loss defined
in Equation 15 and the vision guidance-model relative to the motion model using Equation 16. We also report the
mean success rate for the motion-model πmm. The results for RLBench and Franka-Kitchen (complete) are shown in
Table 1.

CoDiG performs comparably with the baselines, and shows strong improvements when the motion of the robot is
heavily dependent on the robot proprioception. An indicator of this is the performance of the motion model (MM),
since it is only trained on the proprioception of the robot and does not use any visual information. CoDiG outperforms
the baselines on the tasks of OpenBox and CloseBox by large margins, which can be corroborated by the better
performance of the motion-model on them, as compared to the other tasks.

4.3 PERFORMANCE WITH ADDITIONAL MOTION DEMONSTRATIONS

To understand how the performance of the model scales with independent modalities, we collect 40 and 90 additional
motions of the robot performing the task in simulation. The implication on training CoDiG is that the guidance-
models learn (with only 10 visual demonstrations) relative to the motion-models trained on different number of motion
demonstrations (40 and 90). The results are shown in Table 2.

Although pre-training DiT with additional motion data does help improve the performance for tasks such as OpenBox
and CloseBox, it still falls short of CoDiG even without any additional motion demonstrations. We see performance
gains for CoDiG with increasing the available task-specific robot motions, for skills that are not heavily dependent on
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Tasks DiT DiT x2 CoDiG MM
Demonstrations 10 10 10 (50)

Open Box 18 20 39.33 17.33
Open Door 24 27.33 20.67 7.33
Open Microwave 2 1.33 1.33 0
Open Fridge 0.66 1.33 2 0
Close Box 29.33 18 52 33.33
Close Door 2 1.33 0.67 0.67
Close Microwave 49.33 49.33 36 24
Close Fridge 53.33 52 54 46
Basketball in Hoop 0.66 2 10 2

Kitchen (complete) 1.2 1.12 1.22 1.06

Table 1: Performance comparison of different models across various tasks on RLBench and Franka-Kitchen (com-
plete). All the models on RLBench are trained using 10 visual demonstrations, except the motion-model which is
trained on 50 motions of the robot performing the task. DiT x2 denotes a DiT-base model that is twice the size of the
smaller variant, and comparable to CoDiG.

Task CoDiG CoDiG CoDiG MM DiT x2 Pt.
Visual(+Motion) Demos 10(10) 10(50) 10(100) 0(50) 10(50)

Open Box 39.33 31.33 44.6 17.33 22
Open Door 20.67 18 18.67 7.33 3.33
Open Microwave 1.33 0.67 2 0 6
Open Fridge 2 0 0 0 2
Close Box 52 50.67 56.67 33.33 38.67
Close Door 0.67 2 2.67 0.67 2.67
Close Microwave 36 36.67 33.34 24 38.67
Close Fridge 54 58.67 44 46 54
Basketball in Hoop 10 9.33 9.33 2 3.33

Table 2: Performance comparison on scaling the collection of robot motions specific to the task. All the models except
MM use only 10 visual demonstrations, and further robot motions as indicated in brackets. DiT x2 Pt. refers to DiT-
base that has been pre-trained using the motion data and then fine-tuned on the visual demonstrations.

visual observations. However, the magnitude of improvement is small, indicating that there is scope to improve the
interaction between the motion and guidance models.

5 CONCLUSION

We present CoDiG, a novel compositional method to train diffusion models by decoupling different observational
modalities such as proprioception, vision and tactile. CoDiG yields a loss function that is simple to use, while also
presenting a more intuitive modeling paradigm. Our experiments show that not all tasks are equal, and some tasks
depend heavily on certain observational modalities than others. CoDiG allows us to tailor the data collection for tasks
based on their dependence on observational modalities and costs. We find that visual CoDiG with a motion-model
performs strongly over its baselines for visuomotor tasks that rely more on the proprioception. More experiments are
needed to validate the efficacy, robustness and scaling properties of CoDiG.
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A METHODOLOGY

A.1 PROOF FOR THEOREM 3.1
Theorem A.1. The diffusion loss function Lt(θ) as defined in Equation 7, in expectation over the time-steps 1 ≤ t ≤
T , is equivalent to maximizing the ELBO of the log-likelihood of the conditional data distribution log q(x|y), under a
conditional Markovian noising process q̂(xt|xt−1) and the reverse transition kernel as q̂(xt−1|xt,y).

Here, we derive the diffusion loss function for the conditional distribution p(x|y) instead of only p(x). A par-
allel derivation for conditional variational auto-encoders can be found in Doersch (2016). Following Dhariwal
and Nichol (2021b), we start with a conditional Markovian noising forward process q̂ similar to q(xt|xt−1) =
N (xt;

√
αtxt−1, (1− αt)I), and define the following:

q̂(x0) := q(x0) (17)
q̂(xt+1|xt,y) := q(xt+1|xt) (18)

q̂(x1:T |x0,y) :=
T∏

t=1

q̂(xt|xt−1,y) (19)

We now reproduce some results that will be used later in the derivation of diffusion loss for conditional distributions.
Dhariwal and Nichol (2021b) also show that

q̂(y|xt,xt+1) = q̂(xt+1|xt,y)
q̂(y|xt)

q̂(xt+1|xt)
(20)

= q̂(xt+1|xt)
q̂(y|xt)

q̂(xt+1|xt)
(21)

= q̂(y|xt) (22)

Moreover, the unconditional reverse transition kernels can be shown to be equal using Bayes theorem, given Equations
17 and 18: q̂(xt|xt+1) = q(xt|xt+1). Dhariwal and Nichol (2021b) use the result from Equation 22 to show the
following for conditional reverse transition kernels.

q̂(xt|xt+1,y) =
q̂(xt,xt+1,y)

q̂(xt+1,y)
(23)

=
q̂(xt,xt+1,y)

q̂(y|xt+1)q̂(xt+1)
(24)

=
q̂(xt|xt+1)q̂(y|xt,xt+1)q̂(xt+1)

q̂(y|xt+1)q̂(xt+1)
(25)

=
q̂(xt|xt+1)q̂(y|xt,xt+1)

q̂(y|xt+1)
(26)

=
q(xt|xt+1)q̂(y|xt)

q̂(y|xt+1)
(27)

Further, we can show the following using Equations 18 and 19 and the Markovian noising process. It states that the
joint distribution of the noised samples conditioned on y and x0 are the same for both q̂ and q.

q̂(x1:T |x0,y) =
T∏

t=1

q̂(xt|xt−1,y) (28)

=
T∏

t=1

q(xt|xt−1) (29)

= q(x1:T |x0) (30)

We adapt the derivation of diffusion loss from Luo (2022) to work with conditional distributions by maximizing the
log-likelihood of the conditional data distribution log p(x|y) leading to evidence lower bound (ELBO).

log p(x|y) = log

∫
p(x0:T |y)dx1:T (31)

= log

∫
p(x0:T |y)q̂(x1:T |x0,y)

q̂(x1:T |x0,y)
dx1:T (32)

= logEq̂(x1:T |x0,y)

[
p(x0:T |y)

q̂(x1:T |x0,y)

]
(33)

8



Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

≥ Eq̂(x1:T |x0,y)

[
log

p(x0:T |y)
q̂(x1:T |x0,y)

]
(34)

The ELBO can be further simplified as follows

log p(x|y) ≥ Eq̂(x1:T |x0,y)

[
log

p(x0:T |y)
q̂(x1:T |x0,y)

]
(35)

= Eq̂(x1:T |x0,y)

[
log

p(xT |y)
∏T

t=1 pθ(xt−1|xt,y)∏T
t=1 q̂(xt|xt−1,y)

]
(36)

= Eq̂(x1:T |x0,y)

[
log

p(xT |y)pθ(x0|x1,y)
∏T

t=2 pθ(xt−1|xt,y)

q̂(x1|x0,y)
∏T

t=2 q̂(xt|xt−1,y)

]
(37)

= Eq̂(x1:T |x0,y)

[
log

p(xT |y)pθ(x0|x1,y)
∏T

t=2 pθ(xt−1|xt,y)

q̂(x1|x0,y)
∏T

t=2 q̂(xt|xt−1,x0,y)

]
(38)

= Eq̂(x1:T |x0,y)

[
log

p(xT |y)pθ(x0|x1,y)

q̂(x1|x0,y)
+ log

T∏
t=2

pθ(xt−1|xt,y)

q̂(xt|xt−1,x0,y)

]
(39)

= Eq̂(x1:T |x0,y)

log p(xT |y)pθ(x0|x1,y)

q̂(x1|x0,y)
+ log

T∏
t=2

pθ(xt−1|xt,y)
q̂(xt−1|xt,x0,y)q̂(xt|x0,y)

q̂(xt−1|x0,y)

 (40)

= Eq̂(x1:T |x0,y)

log p(xT |y)pθ(x0|x1,y)

q̂(x1|x0,y)
+ log

T∏
t=2

pθ(xt−1|xt,y)
q̂(xt−1|xt,x0,y)q̂(xt|x0,y)

q̂(xt−1|x0,y)

 (41)

= Eq̂(x1:T |x0,y)

[
log

p(xT |y)pθ(x0|x1,y)

q̂(x1|x0,y)
+ log

q̂(x1|x0,y)

q̂(xT |x0,y)
+ log

T∏
t=2

pθ(xt−1|xt,y)

q̂(xt−1|xt,x0,y)

]
(42)

= Eq̂(x1:T |x0,y)

[
log

p(xT |y)pθ(x0|x1,y)

q̂(xT |x0,y)
+

T∑
t=2

log
pθ(xt−1|xt,y)

q̂(xt−1|xt,x0,y)

]
(43)

= Eq̂(x1:T |x0,y) [log pθ(x0|x1,y)] + Eq̂(x1:T |x0,y)

[
log

p(xT |y)
q̂(xT |x0,y)

]
+

T∑
t=2

Eq̂(x1:T |x0,y)

[
log

pθ(xt−1|xt,y)

q̂(xt−1|xt,x0,y)

]
(44)

= Eq̂(x1|x0,y) [log pθ(x0|x1,y)] + Eq̂(xT |x0,y)

[
log

p(xT |y)
q̂(xT |x0,y)

]
+

T∑
t=2

Eq̂(xt,xt−1|x0,y)

[
log

pθ(xt−1|xt,y)

q̂(xt−1|xt,x0,y)

]
(45)

= Eq̂(x1|x0,y) [log pθ(x0|x1,y)]︸ ︷︷ ︸
reconstruction term

−DKL(q̂(xT |x0,y) ∥ p(xT |y))︸ ︷︷ ︸
prior matching term

−
T∑

t=2

Eq̂(xt|x0,y) [DKL(q̂(xt−1|xt,x0,y) ∥ pθ(xt−1|xt,y))]︸ ︷︷ ︸
denoising matching term

(46)

The prior matching term does not contain any trainable parameters. We further simplify the denoising matching term
using Equation 27 further conditioned on x0.

−
T∑

t=2

Eq̂(xt|x0,y) [DKL(q̂(xt−1|xt,x0,y) ∥ pθ(xt−1|xt,y))] (47)

= −
T∑

t=2

Eq̂(xt|x0,y)

[
Eq̂(xt−1|xt,x0,y) [log q̂(xt−1|xt,x0,y)− log pθ(xt−1|xt,y)]

]
(48)

= −
T∑

t=2

Eq̂(xt|x0,y)

[
Eq̂(xt−1|xt,x0,y)

[
log q̂(xt−1|xt,x0) + log

q̂(y|xt−1,x0)

q̂(y|xt,x0)
− log pθ(xt−1|xt,y)

]]
(49)

= −
T∑

t=2

Eq̂(xt|x0,y) [DKL(q̂(xt−1|xt,x0) ∥ pθ(xt−1|xt,y))]−
T∑

t=2

Eq̂(xt|x0,y)

[
Eq̂(xt−1|xt,x0,y)

[
log

q̂(y|xt−1,x0)

q̂(y|xt,x0)

]]
(50)
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Using the result of Equation 50, Equation 46 can be rewritten as

Eq̂(x1|x0,y) [log pθ(x0|x1,y)]−DKL(q̂(xT |x0,y) ∥ p(xT |y))−
T∑

t=2

Eq̂(xt|x0,y) [DKL(q̂(xt−1|xt,x0,y) ∥ pθ(xt−1|xt,y))]

(51)

=Eq̂(x1|x0,y) [log pθ(x0|x1,y)]︸ ︷︷ ︸
reconstruction term

−DKL(q̂(xT |x0,y) ∥ p(xT |y))︸ ︷︷ ︸
prior matching term

−
T∑

t=2

Eq̂(xt|x0,y) [DKL(q̂(xt−1|xt,x0) ∥ pθ(xt−1|xt,y))]︸ ︷︷ ︸
denoising matching term

(52)

−
T∑

t=2

Eq̂(xt|x0,y)

[
Eq̂(xt−1|xt,x0,y)

[
log

q̂(y|xt−1,x0)

q̂(y|xt,x0)

]]
︸ ︷︷ ︸

label consistency term

The expression derived from the ELBO for conditional distribution introduces an additional term for label consistency.
This minimizes the difference in the likelihood of the labels between consecutive denoising steps. However, since it
does not have trainable parameters along with the prior matching term, we will ignore it. Moreover, it is easy to see
from Luo (2022)that the reconstruction term and the denoising matching term when developed further lead to the
diffusion loss of Equation 7, with the additional parametrization of the model with y. Note that the expectation is
calculated over the same distributions, since q̂(x1:T |x0,y) = q(x1:T |x0), as shown in Equation 30.

A.2 PROOF FOR THEOREM 3.2
Theorem A.2. Denoising score matching for the guidance model πg: ∇xt

log pϕ(ỹ
k+1|xt, ỹ

1:k), as expressed in
Equation 10 is equal up to a constant to the following loss:

LDLSM (ϕ) = Epα,τ (x,xt,y1:k+1,ỹ1:k+1)

[
1

2
||∇xt

log pϕ(ỹ
k+1|xt, ỹ

1:k) +∇xt
log pθ(xt|ỹ1:k)−∇xt

log pα(xt|x)||22
]

(53)

For diffusion models, we take the forward transition kernel as pα(xt|x) = N (xt;
√
αtx, (1 − αt)I). We noise the

observations y1:k+1 with a Gaussian kernel N (ỹ;y, τ2I) of variance τ2 that is small enough such that pτ (ỹi) ≈
p(yi).

Chao et al. (2022) in their insightful work show that the following two losses differ only by a constant.-

DF (pϕ(ỹ
k+1|xt)||pα,τ (ỹk+1|xt)) = Epα,τ (xt,ỹk+1)

[
1

2
||∇xt

log pϕ(ỹ
k+1|xt)−∇xt

log pα,τ (ỹ
k+1|xt)||22

]
(54)

LDLSM (ϕ) = Epα,τ (x,xt,yk+1,ỹk+1)

[
1

2
||∇xt

log pϕ(ỹ
k+1|xt) +∇xt

log pθ(xt)−∇xt
log pα(xt|x)||22

]
(55)

We extend their proof for multiple conditionals below. The Fisher divergence between the guidance model and the
true score of the classifier (Equation 10) can be further expanded as:

DF (pϕ(ỹ
k+1|xt, ỹ

1:k)||pα,τ (ỹk+1|xt, ỹ
1:k)) (56)

= Epα,τ (xt,ỹ1:k+1)

[
1

2
||∇xt

log pϕ(ỹ
k+1|xt, ỹ

1:k)−∇xt
log pα,τ (ỹ

k+1|xt, ỹ
1:k)||22

]
(57)

= Epα,τ (xt,ỹ1:k+1)

[
1

2
||∇xt log pϕ(ỹ

k+1|xt, ỹ
1:k)||22

]
+ Epα,τ (xt,ỹ1:k+1)

[
1

2
||∇xt log pα,τ (ỹ

k+1|xt, ỹ
1:k)||22

]
− Epα,τ (xt,ỹ1:k+1)

[
⟨∇xt

log pϕ(ỹ
k+1|xt, ỹ

1:k),∇xt
log pα,τ (ỹ

k+1|xt, ỹ
1:k)⟩

]
(58)

= Epα,τ (xt,ỹ1:k+1)

[
1

2
||∇xt

log pϕ(ỹ
k+1|xt, ỹ

1:k)||22
]
+ Epα,τ (xt,ỹ1:k+1)

[
1

2
||∇xt

log pα,τ (ỹ
k+1|xt, ỹ

1:k)||22
]

− Epα,τ (xt,ỹ1:k+1)

[
⟨∇xt

log pϕ(ỹ
k+1|xt, ỹ

1:k),∇xt
log pα,τ (xt|ỹ1:k, ỹk+1)−∇xt

log pα,τ (xt|ỹ1:k)⟩
]

(59)

= Epα,τ (xt,ỹ1:k+1)

[
1

2
||∇xt

log pϕ(ỹ
k+1|xt, ỹ

1:k)||22
]
+ Epα,τ (xt,ỹ1:k+1)

[
1

2
||∇xt

log pα,τ (ỹ
k+1|xt, ỹ

1:k)||22
]

+ Epα,τ (xt,ỹ1:k+1)

[
⟨∇xt log pϕ(ỹ

k+1|xt, ỹ
1:k),∇xt log pα,τ (xt|ỹ1:k)⟩

]
−Epα,τ (xt,ỹ1:k+1)

[
⟨∇xt

log pϕ(ỹ
k+1|xt, ỹ

1:k),∇xt
log pα,τ (xt|ỹ1:k, ỹk+1)⟩

]︸ ︷︷ ︸
Term 1

(60)
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Simplifying the Term 1 further:

− Epα,τ (xt,ỹ1:k+1)

[
⟨∇xt

log pϕ(ỹ
k+1|xt, ỹ

1:k),∇xt
log pα,τ (xt|ỹ1:k+1)⟩

]
= −

∫
xt

∫
ỹ1:k+1

pτ (ỹ
1:k+1)pα,τ (xt|ỹ1:k+1)⟨∇xt log pϕ(ỹ

k+1|xt, ỹ
1:k),

∇xt
pα,τ (xt|ỹ1:k+1)

pα,τ (xt|ỹ1:k+1)
⟩dỹ1:k+1dxt

= −
∫
xt

∫
ỹ1:k+1

pτ (ỹ
1:k+1)⟨∇xt log pϕ(ỹ

k+1|xt, ỹ
1:k),∇xt

∫
x0

p0,τ (x0|ỹ1:k+1)pα,τ (xt|x0, ỹ
1:k+1)dx0⟩dỹ1:k+1dxt

= −
∫
xt

∫
ỹ1:k+1

pτ (ỹ
1:k+1)⟨∇xt log pϕ(ỹ

k+1|xt, ỹ
1:k),∇xt

∫
x0

∫
y1:k+1

p0,τ (x0|ỹ1:k+1)pα,τ (xt|x0, ỹ
1:k+1,y1:k+1)p(y

1:k+1|x0, ỹ
1:k+1)dy1:k+1dx0⟩dỹ1:k+1dxt

= −
∫
xt

∫
ỹ1:k+1

∫
x0

∫
y1:k+1

pτ (x0,xt,y
1:k+1, ỹ1:k+1)⟨∇xt log pϕ(ỹ

k+1|xt, ỹ
1:k),∇xt log pα,τ (xt|x0, ỹ

1:k+1,y1:k+1)⟩dy1:k+1dx0dỹ
1:k+1dxt

= −Epα,τ (x0,xt,y1:k+1,ỹ1:k+1)

[
⟨∇xt

log pϕ(ỹ
k+1|xt, ỹ

1:k),∇xt
log pα(xt|x0)⟩

]
Plugging this back into Equation 60, we get-

DF (pϕ(ỹ
k+1|xt, ỹ

1:k)||pα,τ (ỹk+1|xt, ỹ
1:k))

= Epα,τ (xt,ỹ1:k+1)

[
1

2
||∇xt log pϕ(ỹ

k+1|xt, ỹ
1:k)||22

]
+ Epα,τ (xt,ỹ1:k+1)

[
1

2
||∇xt log pα,τ (ỹ

k+1|xt, ỹ
1:k)||22

]
+ Epα,τ (xt,ỹ1:k+1)

[
⟨∇xt

log pϕ(ỹ
k+1|xt, ỹ

1:k),∇xt
log pα,τ (xt|ỹ1:k)⟩

]
− Epα,τ (x0,xt,y1:k+1,ỹ1:k+1)

[
⟨∇xt log pϕ(ỹ

k+1|xt, ỹ
1:k),∇xt log pα(xt|x0)⟩

]
(61)

Here, Epα,τ (xt,ỹ1:k+1)

[
1

2
||∇xt

log pα,τ (ỹ
k+1|xt, ỹ

1:k)||22
]

is a constant. Further, adding the constant

Epα,τ (xt,ỹ1:k)

[
1

2
||∇xt log pα,τ (xt|ỹ1:k)−∇xt log pα(xt|x0)||22

]
to Equation 61, we get:

DF (pϕ(ỹ
k+1|xt, ỹ

1:k)||pα,τ (ỹk+1|xt, ỹ
1:k))

= Epα,τ (xt,ỹ1:k+1)

[
1

2
||∇xt

log pϕ(ỹ
k+1|xt, ỹ

1:k)||22
]
+ Epα,τ (xt,ỹ1:k+1)

[
⟨∇xt

log pϕ(ỹ
k+1|xt, ỹ

1:k),∇xt
log pα,τ (xt|ỹ1:k)⟩

]
+ C

− Epα,τ (x0,xt,y1:k+1,ỹ1:k+1)

[
⟨∇xt log pϕ(ỹ

k+1|xt, ỹ
1:k),∇xt log pα(xt|x0)⟩

]
+ Epα,τ (xt,ỹ1:k)

[
1

2
||∇xt

log pα,τ (xt|ỹ1:k)−∇xt
log pα(xt|x0)||22

]
(62)

= Epα,τ (x,xt,y1:k+1,ỹ1:k+1)

[
1

2
||∇xt

log pϕ(ỹ
k+1|xt, ỹ

1:k) +∇xt
log pθ(xt|ỹ1:k)−∇xt

log pα(xt|x)||22
]
+ C (63)
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