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ABSTRACT

High computational complexity hinders the widespread usage of Convolutional
Neural Networks (CNNs), especially in mobile devices. Hardware accelerators
are arguably the most promising approach for reducing both execution time and
power consumption. One of the most important steps in accelerator development
is hardware-oriented model approximation. In this paper we present Ristretto,
a model approximation framework that analyzes a given CNN with respect to
numerical resolution used in representing weights and outputs of convolutional
and fully connected layers. Ristretto can condense models by using fixed point
arithmetic and representation instead of floating point. Moreover, Ristretto fine-
tunes the resulting fixed point network. Given a maximum error tolerance of 1%,
Ristretto can successfully condense CaffeNet and SqueezeNet to 8-bit. The code
for Ristretto is available.

1 INTRODUCTION

The annually held ILSVRC competition has seen state-of-the-art classification accuracies by deep
networks such as AlexNet by [Krizhevsky et al.| (2012), VGG by |Simonyan & Zisserman| (2015),
GoogleNet (Szegedy et al.l 2015) and ResNet (He et al.,|2015). These networks contain millions of
parameters and require billions of arithmetic operations.

Various solutions have been offered to reduce the resource-requirement of CNNs. Fixed point arith-
metic is less resource hungry compared to floating point. Moreover, it has been shown that fixed
point arithmetic is adequate for neural network computation (Hammerstrom, [1990). This observa-
tion has been leveraged recently to condense deep CNNs. (Gupta et al.| (2015)) show that networks
on datasets like CIFAR-10 (10 images classes) can be trained in 16-bit. Further trimming of the
same network uses as low as 7-bit multipliers (Courbariaux et al., 2014)). Another approach by
Courbariaux et al.| (2016) uses binary weights and activations, again on the same network.

The complexity of deep CNNs can be split into two parts. First, the convolutional layers contain
more than 90% of the required arithmetic operations. By turning these floating point operations into
operations with small fixed point numbers, both the chip area and energy consumption can be sig-
nificantly reduced. The second resource-intense layer type are fully connected layers, which contain
over 90% of the network parameters. As a nice by-product of using bit-width reduced fixed point
numbers, the data transfer to off-chip memory is reduced for fully connected layers. In this paper,
we concentrate on approximating convolutional and fully connected layers only. Using fixed point
arithmetic is a hardware-friendly way of approximating CNNs. It allows the use of smaller process-
ing elements and reduces the memory requirements without adding any computational overhead
such as decompression.

Even though it has been shown that CNNs perform well with small fixed point numbers, there exists
no thorough investigation of the delicate trade-off between bit-width reduction and accuracy loss. In
this paper we present Ristretto, which automatically finds a perfect balance between the bit-width
reduction and the given maximum error tolerance. Ristretto performs a fast and fully automated
trimming analysis of any given network. This post-training tool can be used for application-specific
trimming of neural networks.
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2 MIXED FIXED POINT PRECISION

In the next two sections we discuss quantization of a floating point CNN to fixed point. Moreover,
we explain dynamic fixed point, and show how it can be used to further decrease network size while
maintaining the classification accuracy.
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Figure 1: Data path of quantized convolutional and fully connected layers.

The data path of fully connected and convolutional layers consists of a series of MAC operations
(multiplication and accumulation), as shown in Figure[I] The layer activations are multiplied with
the network weights, and the results are accumulated to form the output. As shown by |Qiu et al.
(2016), it is a good approach to use mixed precision, i.e., different parts of a CNN use different
bit-widths.

In Figure[I] m and n refer to the number of bits for layer outputs and layer weights, respectively.
Multiplication results are accumulated using an adder tree which gets thicker towards the end. The
adder outputs in the first level are m + n + 2 bits wide, and the bit-width grows by 1 bit in each level.
In the last level, the bit-width is m + n + lg, z, where z is the number of multiplication operations
per output value. In the last stage, the bias is added to form the layer output. For each network layer,
we need to find the right balance between reducing the bit-widths (m and n) and maintaining a good
classification accuracy.

3 DyNAMIC FIXED POINT

The different parts of a CNN have a significant dynamic range. In large layers, the outputs are the
result of thousands of accumulations, thus the network parameters are much smaller than the layer
outputs. Fixed point has only limited capability to cover a wide dynamic range. Dynamic fixed point
(Williamson, [1991} |Courbariaux et al.,[2014) is a solution to this problem.

In dynamic fixed point, each number is represented as follows: (—1)%-2~f. Z?:_OQ 2¢. ;. Here
B donates the bit-width, s the sign bit, fI is the fractional length, and « the mantissa bits. The
intermediate values in a network have different ranges. Therefor it is desirable to assign fixed point
numbers into groups with constant fl, such that the number of bits allocated to the fractional part is
constant within that group. Each network layer is split into two groups: one for the layer outputs,
one for the layer weights. This allows to better cover the dynamic range of both layer outputs and
weights, as weights are normally significantly smaller. On the hardware side, it is possible to realize
dynamic fixed point arithmetic using bit shifters.

Different hardware accelerators for deployment of neural networks have been proposed (Motamedi
et al.| 2016} |Qiu et al.| 2016} Han et al.| [2016a). The first important step in accelerator design is the
compression of the network in question. In the next section we present Ristretto, a tool which can
condense any neural network in a fast and automated fashion.
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4 RISTRETTO: APPROXIMATION FRAMEWORK IN CAFFE

From Caffe to Ristretto

According to Wikipedia, Ristretto is "a short shot of espresso coffee made with the normal amount
of ground coffee but extracted with about half the amount of water’. Similarly, our compressor
removes the unnecessary parts of a CNN, while making sure the essence — the ability to predict
image classes — is preserved. With its strong community and fast training for deep CNNs, Caffe (Jia
et al.,[2014) is an excellent framework to build on.

Ristretto takes a trained model as input, and automatically brews a condensed network version.
Input and output of Ristretto are a network description file (prototxt) and the network parameters.
Optionally, the quantized network can be fine-tuned with Ristretto. The resulting fixed point model
in Caffe-format can then be used for a hardware accelerator.
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Figure 2: Network approximation flow with Ristretto.

Quantization flow

Ristretto’s quantization flow has five stages (Figure [2) to compress a floating point network into
fixed point. In the first step, the dynamic range of the weights is analyzed to find a good fixed
point representation. For the quantization from floating point to fixed point, we use round-nearest.
The second step runs several thousand images in forward path. The generated layer activations
are analyzed to generate statistical parameters. Ristretto uses enough bits in the integer part of fixed
point numbers to avoid saturation of layer activations. Next Ristretto performs a binary search to find
the optimal number of bits for convolutional weights, fully connected weights, and layer outputs. In
this step, a certain network part is quantized, while the rest remains in floating point. Since there
are three network parts that should use independent bit-widths (weights of convolutional and fully
connected layers as well as layer outputs), iteratively quantizing one network part allows us to find
the optimal bit-width for each part. Once a good trade-off between small number representation and
classification accuracy is found, the resulting fixed point network is retrained.

Fine-tuning

In order to make up for the accuracy drop incurred by quantization, the fixed point network is fine-
tuned in Ristretto. During this retraining procedure, the network learns how to classify images with
fixed point parameters. Since the network weights can only have discrete values, the main chal-
lenge consists in the weight update. We adopt the idea of previous work (Courbariaux et al., [2015)
which uses full precision shadow weights. Small weight updates Aw are applied to the full precision
weights w, whereas the discrete weights w’ are sampled from the full precision weights. The sam-
pling during fine-tuning is done with stochastic rounding. This rounding scheme was successfully
used by [Gupta et al.|(2015)) for weight updates of 16-bit fixed point networks.

Ristretto uses the fine-tuning procedure illustrated in Figure [3] For each batch, the full precision
weights are quantized to fixed point. During forward propagation, these discrete weights are used
to compute the layer outputs y;. Each layer [ turns its input batch x; into output y;, according to its
function f; : (27, w’) — y;. Assuming the last layer computes the loss, we donate f as the overall
CNN function.
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Figure 3: Fine-tuning with shadow weights. The left side shows the training process with full-
precision shadow weights. On the right side the fine-tuned network is benchmarked on the validation
data set. Fixed point values are represented in orange.

The goal of back propagation is to compute the error gradient ¢ f /dw with respect to each fixed point
parameter. For parameter updates we use the Adam rule by Kingma & Bal(2015). As an important
observation, we do not quantize layer outputs to fixed point during fine-tuning. We use floating point
layer outputs instead, which enables Ristretto to analytically compute the error gradient with respect
to each parameter. In contrast, the validation of the network is done with fixed point layer outputs.

To achieve the best fine-tuning results, we used a learning rate that is an order of magnitude lower
than the last full precision training iteration. Since the choice of hyper parameters for retraining is
crucial (Bergstra & Bengiol 2012), Ristretto relies on minimal human intervention in this step.

Fast fine-tuning with fixed point parameters

Ristretto brews a condensed network with fixed point weights and fixed point layer activations. For
simulation of the forward propagation in hardware, Ristretto uses full floating point for accumula-
tion. This follows the thought of |Gupta et al.| (2015) and is conform with our description of the
forward data path in hardware (Figure [2). During fine-tuning, the full precision weights need to be
converted to fixed point for each batch, but after that all computation can be done in floating point
(Figure [3). Therefore Ristretto can fully leverage optimized matrix-matrix multiplication routines
for both forward and backward propagation.

Thanks to its fast implementation on the GPU, a fixed point CaffeNet can be tested on the ILSVRC
2014 validation dataset (50k images) in less than 2 minutes (using one Tesla K-40 GPU).

5 RESULTS

In this section we present the results of approximating 32-bit floating point networks by condensed
fixed point models. All classification accuracies were obtained running the respective network on
the whole validation dataset. We present approximation results of Ristretto for five different net-
works. First, we consider LeNet (LeCun et al., {1998)) which can classify handwritten digits (MNIST
dataset). Second, CIFAR-10 Full model provided by Caffe is used to classify images into 10 different
classes. Third, we condense CaffeNet, which is the Caffe version of AlexNet and classifies images
into the 1000 ImageNet categories. Fourth, we use the BVLC version of GoogLeNet (Szegedy et al.,
2015) to classify images of the same data set. Finally, we approximate SqueezeNet (landola et al.,
2016)), a recently proposed architecture with the classification accuracy of AlexNet, but >50X fewer
parameters.

Impact of dynamic fixed point

We used Ristretto to quantize CaffeNet (AlexNet) into fixed point, and compare traditional fixed
point with dynamic fixed point. To allow a simpler comparison, all layer outputs and network
parameters share the same bit-width. Results show a good performance of static fixed point for as
low as 18-bit (Figure EI) However, when reducing the bit-width further, the accuracy starts to drop
significantly, while dynamic fixed point has a stable accuracy.
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Figure 4: Impact of dynamic fixed point: The figure shows top-1 accuracy for CaffeNet on ILSVRC
2014 validation dataset. Integer length refers to the number of bits assigned to the integer part of
fixed point numbers.

We can conclude that dynamic fixed point performs significantly better for such a large network.
With dynamic fixed point, we can adapt the number of bits allocated to integer and fractional part,
according to the dynamic range of different parts of the network. We will therefore concentrate on
dynamic fixed point for the subsequent experiments.

Quantization of individual network parts

In this section, we analyze the impact of quantization on different parts of a floating point CNN.
Table [I] shows the classification accuracy when the layer outputs, the convolution kernels or the
parameters of fully connected layers are quantized to dynamic fixed point.

In all three nets, the convolution kernels and layer activations can be trimmed to 8-bit with an
absolute accuracy change of only 0.3%. Fully connected layers are more affected from trimming to
8-bit weights, the absolute change is maximally 0.9%. Interestingly, LeNet weights can be trimmed
to as low as 2-bit, with absolute accuracy change below 0.4%.

Table 1: Quantization results for different parts of three networks. Only one number category is cast
to fixed point, and the remaining numbers are in floating point format.

Fixed point bit-width ~ 16-bit  8-bit 4-bit 2-bit
LeNet, 32-bit floating point accuracy: 99.1%

Layer output 9.1% 99.1% 98.9% 85.9%
CONYV parameters 9.1% 99.1% 99.1% 98.9%
FC parameters 99.1% 99.1% 98.9% 98.7%
Full CIFAR-10, 32-bit floating point accuracy: 81.7%

Layer output 81.6% 81.6% 79.6% 48.0%
CONYV parameters 81.7% 81.4% T759% 19.1%
FC parameters 81.7% 80.8% 79.9% 77.5%
CaffeNet top-1, 32-bit floating point accuracy: 56.9 %

Layer output 56.8% 56.7% 06.0% 00.1%
CONYV parameters 56.9% 56.7% 00.1% 00.1%
FC parameters 56.9% 563% 00.1% 00.1%

Fine-tuning of all considered network parts

Here we report the accuracy of five networks that were condensed and fine-tuned with Ristretto.
All networks use dynamic fixed point parameters as well as dynamic fixed point layer outputs for
convolutional and fully connected layers. LeNet performs well in 2/4-bit, while CIFAR-10 and
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the three ImageNet CNNs can be trimmed to 8-bit (see Table [2). Surprisingly, these compressed
networks still perform nearly as well as their floating point baseline. The relative accuracy drops of
LeNet, CIFAR-10 and SqueezeNet are very small (<0.6%), whereas the approximation of the larger
CaffeNet and GoogLeNet incurs a slightly higher cost (0.9% and 2.3% respectively). We hope we
will further improve the fine-tuning results of these larger networks in the future.

The SqueezeNet architecture was developed by [landola et al.[(2016) with the goal of a small CNN
that performs well on the ImageNet data set. Ristretto can make the already small network even
smaller, so that its parameter size is less than 2 MB. This condensed network is well-suited for
deployment in smart mobile systems.

All five 32-bit floating point networks can be approximated well in 8-bit and 4-bit fixed point. For a
hardware implementation, this reduces the size of multiplication units by about one order of magni-
tude. Moreover, the required memory bandwidth is reduced by 4-8X. Finally, it helps to hold 4-8X
more parameters in on-chip buffers. The code for reproducing the quantization and fine-tuning re-
sults is availabldl]

Table 2: Fine-tuned networks with dynamic fixed point parameters and outputs for convolutional
and fully connected layers. The numbers in brackets indicate accuracy without fine-tuning.

Layer = CONV FC 32-bit floating  Fixed point

outputs parameters parameters point baseline accuracy
LeNet (Exp 1) 4-bit 4-bit 4-bit 99.1% 99.0% (98.7%)
LeNet (Exp 2) 4-bit 2-bit 2-bit 99.1% 98.8% (98.0%)
Full CIFAR-10 8-bit 8-bit 8-bit 81.7% 81.4% (80.6%)
SqueezeNet top-1  8-bit 8-bit 8-bit 57.7% 57.1% (55.2%)
CaffeNet top-1 8-bit 8-bit 8-bit 56.9% 56.0% (55.8%)
GoogLeNet top-1  8-bit 8-bit 8-bit 68.9% 66.6% (66.1%)

Some previous work concentrated on training with fixed point arithmetic from scratch (Courbariaux
et al.} 2014) and shows little performance decline for as short as 7-bit fixed point numbers on LeNet.
Our approach is different in that we train with high numerical precision, then quantize to fixed point,
and finally fine-tune the fixed point network. Our condensed model achieves superior accuracy with
as low as 4-bit fixed point, on the same data set.

While more sophisticated data compression schemes could be used to achieve higher network size
reduction, our approach is very hardware friendly and imposes no additional overhead such as de-
compression.

6 CONCLUSION AND FUTURE WORK

In this work we presented Ristretto, a Caffe-based approximation framework for deep convolutional
neural networks. The framework reduces the memory requirements, area for processing elements
and overall power consumption for hardware accelerators. A large net like CaffeNet can be quan-
tized to 8-bit for both weights and layer outputs while keeping the network’s accuracy change below
1% compared to its 32-bit floating point counterpart. Ristretto is both fast and automated, and we
release the code as an open source project.

Ristretto is in its first development stage. We consider adding new features in the future: 1. Shared
weights: Fetching cookbook indices from off-chip memory, instead of real values (Han et al.,
2016b). 2. Network pruning as shown by the same authors. 3. Network binarization as shown
by |Courbariaux et al.| (2016) and Rastegari et al. (2016). These additional features will help to
reduce the bit-width even further, and to reduce the computational complexity of trimmed networks.

'https://github.com/pmgysel/caffe
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