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Abstract

The objective of this project is to address
concerns regarding the reliability of large
neural networks in the field of Natural
Language Processing (NLP), despite their
impressive performance in recent years. The
primary goal is to develop more resilient
algorithms that can enhance the ability of NLP
systems to resist data drifts and adversary
attacks. While cutting-edge models can
perform exceptionally well on input data that
is similar to their training datasets, they can
become ineffective in NLP scenarios due to
the continuously changing nature of languages
and distributional shifts. To tackle this chal-
lenge, the project proposes a methodology for
measuring and identifying distributional shifts
in different corpus/sentences by analyzing the
latent representations of tokens. This analysis
can be carried out using classical discrepancy
measurement tools, which are tailored to
the high-dimensional nature of transformers
layers. This research is crucial for promoting
the responsible application of promising NLP
methods in critical systems, where robustness
is a crucial consideration. In this project,
the focus is on exploring the usefulness of
incorporating information from all the layers
to improve Out of Distribution detectors.

All our experiments and figures can be re-
produced thanks to our code provided in our
GitHub 1

1 Introduction

The rise of large language models has revolu-
tionized the field of Natural Language Process-
ing (NLP) in recent years, enabling breakthroughs
in tasks such as machine translation, sentiment

1https://github.com/BenJMaurel/NLP_
project

analysis, and question answering. However, con-
cerns about the ethical implications of these mod-
els have also grown in parallel with their success.
Specifically, there are increasing worries about the
potential for large language models to perpetuate
biases and discrimination (Colombo et al., 2021,
2022b), leading to calls for greater attention to
fairness in NLP. In addition, the threat of adver-
sarial attacks, which aim to manipulate the out-
put of machine learning models, has become more
pronounced in recent times. This is especially
concerning given the potential consequences of
attacks (Picot et al., 2023a,b) on NLP models,
such as the spread of misinformation or even the
manipulation of democratic processes. To com-
bat these challenges, researchers have developed
various methods for detecting and mitigating ad-
versarial attacks and Out-of-Distribution (OOD)
samples in large language models (Darrin et al.,
2023a,b; Gomes et al.).

These approaches aim to improve the robust-
ness and fairness of these models and are becom-
ing increasingly important in promoting the re-
sponsible and ethical use of NLP technology. This
research paper aims to provide an overview of
the latest developments in fairness, adversarial at-
tack detection, and OOD detection for large lan-
guage models, with the goal of identifying promis-
ing avenues for future research in this critical area
(Colombo, 2021).

In this paper, we choose to work on Out-of-
Distribution (OOD) detection which is essential
because it is a critical challenge that large lan-
guage models face. OOD samples are input data
that are significantly different from the training
data used to develop a model. These samples
can cause NLP models make incorrect predic-
tions, leading to unreliable or even harmful out-
puts. Overall, OOD detectors are crucial to de-
veloping more reliable and trustworthy NLP mod-
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els, ensuring their suitability for real-world appli-
cations and promoting the responsible adoption of
NLP technology.

1.1 Problem Framing

In this section, we formalize the problem of out-
of-distribution (OOD) detection in natural lan-
guage processing (NLP). Let Strain denote a train-
ing dataset, consisting of n samples, where each
sample is represented as a tuple (xi, yi), where xi
is an input sentence and yi is its corresponding la-
bel.

The goal of OOD detection in NLP is to iden-
tify whether a new input sentence xnew is in-
distribution regarding the training data (ID) or rep-
resents a novel or OOD sample. To accomplish
this, we assume the availability of a separate val-
idation dataset Strain = (xj , yj)j=1,m and a test
dataset Stest = (xk, yk)k=1,l, both drawn from
different distributions Ptrain(x, y) and Ptest(x, y),
respectively.

Mathematically, we can represent the OOD de-
tection problem as a binary classification task,
where the input is a sentence xi and the output is
a label yi ∈ {0, 1}, where yi = 0 if xi is an ID
sample and yi = 1 if xi is an OOD sample.

In the context of OOD detection in NLP, two
metrics are commonly used for evaluating the per-
formance of a model: FPR and AUROC.

FPR (False Positive Rate at 95%) is a metric that
measures the rate of false positives (FP) at a fixed
true negative rate (TNR) of 95%. In other words, it
measures the percentage of ID samples that are in-
correctly classified as OOD samples. A lower FPR
indicates better performance, as it means that the
model is correctly identifying a higher proportion
of ID samples.

AUROC (Area Under the Receiver Operating
Characteristic Curve) is a metric that measures the
overall performance of a binary classifier. It plots
the true positive rate (TPR) against the false pos-
itive rate (FPR) at different classification thresh-
olds and calculates the area under the resulting
curve. In OOD detection, AUROC measures how
well the model can distinguish between ID and
OOD samples2.

Since a high AUROC score does not necessarily
mean that the classifier has a low FPR it is crucial
to consider both the AUROC and FPR when de-

2An AUROC score of 1 indicates perfect classification
performance, while a score of 0.5 indicates random guessing.

signing an OOD detector.
In order to identify whether a given input be-

longs to the in-distribution or out-of-distribution
(OOD) category we follow (Colombo et al.,
2022a) and we rely on two models that incor-
porate the concept of data depth3. Specifically,
the depth score of a given input is compared to
the depth scores of samples in the training dis-
tribution to determine whether the input is in-
distribution or OOD. The two models we employ
are the Integrated Rank-Weighted Depth model
(Ramsay et al., 2019) and the Mahalanobis-based
score model (Mahalanobis, 1936). Both of them
are measures of the distance between a point and
a distribution.

Let X be a random variable and PX the law
of X . The IRW depth of x ∈ Rd w.r.t. to a
probability distribution PX is DIRW (x, PX) =∫
Sd−1 min{Fu(⟨ u, x⟩), 1 − Fu(⟨ u, x⟩)} du with
Fu(l) = PX(⟨ u,X⟩ ≤ l) and Sd−1 is the unit
sphere.

The Mahalanobis-based score model uses the
Mahalanobis distance that can be seen as a data
depth function (Liu et al., 1999). The Mahalanobis
depth is DM (x, PX) = (1+(x−E(X))TΣ−1(x−
E(X)))−1 where Σ−1 is the precision matrix of
X .

2 Experiments Protocol

2.1 Context

Traditionally, OOD detectors are based on the out-
put of the last layer of the neural network. How-
ever, recent research has shown that using all lay-
ers in the network can improve the performance of
OOD detectors. The Avg-Avg (Chen et al., 2022)
and TRUSTED (Colombo et al., 2022a) detectors
are two examples of OOD detectors that use all
layers of the network and achieve state-of-the-art
performances. Both of them aggregate the infor-
mation throughout the layers in the most simple
way: they create a new embedding which is the
mean of the embeddings over all the layers.

The goal of this project is to further investigate
the advantages of using all layers of the network
for OOD detection. The project aims to under-
stand why taking into account all intermediate lay-
ers can be beneficial and in which cases.

3Data depth is a measure of how deep a data point is in a
dataset, or how central it is relative to the other data points.



2.2 Dataset and model selection
When evaluating a method for detecting out-
of-distribution data in natural language process-
ing, it’s essential to select an appropriate dataset.
Given the lack of consensus on which benchmark
to use for evaluating OOD detection methods in
NLP, we choose to rely on a conventionally used
benchmark (Chen et al., 2022).

We selected the SST-2 dataset as the training
distribution and opted to evaluate the OOD de-
tection performance on three different datasets,
namely 20news, TREC, and WMT16.

Furthermore, we opted to work with the pre-
trained encoder Roberta (Liu et al., 2019) in our
study.

3 Results

3.1 Visualisation through Uniform Manifold
Approximation and Projection

In this particular study, we are interested in ana-
lyzing the embedding of data both in distribution
(i.e., data that is similar to the training data) and
out of distribution (i.e., data that is dissimilar to
the training data) across the layers of a neural net-
work (here ROBERTA).

By visualizing the evolution of data embedding
across the layers of the network using Uniform
Manifold Approximation and Projection (UMAP),
we can gain insight into how the network is pro-
cessing and transforming the input data. Specif-
ically, we are interested in whether the data be-
comes more separable (i.e., easier to distinguish
between out and in distribution) as it passes
through the layers of the network.

In order to make this visualisation, we used
UMAP (McInnes et al., 2018), that achieved bet-
ter performance for manifold visualisation than t-
SNE that is more commonly used. UMAP is a
dimensionality reduction technique that is based
on the idea of preserving the local structure of the
high-dimensional data in a low-dimensional space.
UMAP has become increasingly popular in the
machine learning community due to its ability to
capture both global and local structure of the data,
making it an effective tool for visualising complex
datasets. In this section, we will briefly describe
how UMAP works before presenting our results
using this technique.

UMAP is a nonlinear dimensionality reduction
technique that starts by constructing a weighted
graph representing the high-dimensional data. The

Figure 1: UMAP visualisation of the last layer with
OOD dataset news20. Blue : OOD, Yellow: InD y = 1,
Purple: InD y = 0

graph is constructed by connecting nearby points
in the high-dimensional space with edges that are
weighted according to a kernel function that mea-
sures the distance between the points.

UMAP then optimises a low-dimensional em-
bedding of the data that preserves both the global
and local structure of the graph. This is achieved
by minimising a cost function that balances the
preservation of pairwise distances in the high-
dimensional space with the preservation of the
weighted graph structure in the low-dimensional
space.

In practice, UMAP works by first randomly ini-
tialising a low-dimensional embedding of the data,
and then iteratively refining it using stochastic gra-
dient descent to minimise the cost function. The
resulting embedding is a compressed representa-
tion of the original data that can be visualised in
two or three dimensions.

As shown in Figure 1 and Appendix A, we ob-
served that the distribution of test data becomes
increasingly bimodal as we move through the lay-
ers of the network. This is a critical point in the
analysis of OOD detector performance since all
the models does not performing equaly when the
probability distribution that we want to compare to
are multimodals.

For example, using only the last layer with the
IRW-based model would lead to poor results since
the IRW distance is a poor estimator of the dis-
tance between a point and a distribution when the
distribution is multimodal.

3.2 Metrics

We also computed the metrics (AUROC and FPR)
evolution throughout the layers of the model and
we compared them to the metrics computed on



Figure 2: MAHALANOBIS: Evolution of the metrics
throughout the layers. The dotted line represents the
metric values calculated using the average of the em-
beddings

the mean of the embedding (as in (Colombo et al.,
2022a) or in (Chen et al., 2022)) showned dashed
in the figures 2 and 3. Our findings align with
those of the authors: when facing challenging
tasks, it is preferable to use the average of em-
beddings instead of relying solely on the last
layer. Nevertheless, our investigation suggests that
adopting the average approach may not always
yield the best results. In fact, the optimal choice
of layers varies depending on the model’s type of
underlying distance metric employed.

Figure 3: IRW: Evolution of the metrics throughout the
layers. The dotted line represents the metric values cal-
culated using the average of the embeddings

Figure 3 reveals a surprising finding: when

we examine the false positive rate (FPR) for the
20news dataset, we observe poor performance
across nearly all layers. However, the metric
dashed, representing the metric computed on the
mean of the embeddings across all layers stands
exhibits strong performance. This show that aver-
aging the embeddings other the whole layers help
the model gain information other the initial distri-
bution of the sentence.

The performance of the IRW model gradually
declines as we move through the network lay-
ers, as indicated by the visualizations, particularly
from layer 8 onwards. Meanwhile, the Maha-
lanobis model experiences a decrease in perfor-
mance during the last layer, although it appears
to be more stable overall. Interestingly, for diffi-
cult task (wm16 dataset) the Mahalanobis model
shows an increase in AUROC and a decrease in
FPR throughout the layers, indicating that the ag-
gregated information in the early layers negatively
impacts the model’s performance. In summary,
while the IRW model’s performance can be im-
proved by averaging the embeddings of the layers,
it is most effective in the early layers, whereas the
Mahalanobis model’s performance benefits from
averaging over the last layers.

To gain insight into the behavior of the IRW
model around the eight layer, we can examine the
false positive rates using visualization techniques.
In this study, we will use the TREC dataset to il-
lustrate our findings. As shown in figure 4, the
false positive rates are plotted in red, revealing that
the model’s performance deteriorates significantly
when the distribution becomes bimodal.

Figure 4: Embeddings of layer 6,7,8 and 9. Red: False
Positive, Green: True Negative

The IRW distance is a powerful tool for measur-



ing the similarity between data points, but it also
has its limitations. One weakness of the IRW dis-
tance is that it relies on the halfspace depth (Tukey,
1975), which can lead to inaccurate metrics when
there is no hyperplane to separate the OOD sam-
ples from the ID samples. In such cases, when
the OOD samples are ”in the middle” of the dif-
ferent modes, it is difficult to obtain reliable met-
rics. This limitation highlights the need for a ro-
bust choice of the layer that can avoid this kind of
behaviour of the target distribution.

Based on the same idea, we can explain the high
value of FPR for the dataset news20 (red) for layer
4 in Figure 5. The croissant shape induces much
more miss classification because no hyperplane
can separate OOD samples from ID samples.

Figure 5: IRW: Embedding of layer 4 for dataset
news20. Red: False Positive, Green: True Negative

4 Discussion/Conclusion

In conclusion, this study developed and evaluated
two OOD detectors that incorporated all layers of a
network, utilizing data depth models Mahalanobis
and IRW. The research demonstrated the signifi-
cance of visualizing the latent spaces of each layer
to gain insight into the distribution characteristics
that impact detector effectiveness. The findings re-
vealed that it is disadvantageous for an IRW-type
detector to consider layers where the distribution
is bimodal and starts to resemble the output dis-
tribution. These insights offer valuable guidance
for enhancing OOD detector performance in real-
world applications.

.
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A Appendix A : 20news Dataset, UMAP Embedding of several layers

Figure 6: Embeddings of layer from 1 to 12. Blue: OOD, Yellow: In Distribution label = 1, Purple: In Distribution,
label = 0



B Appendix B : TREC Dataset, UMAP Embedding of several layers

Figure 7: Embeddings of layer from 1 to 12. Blue: OOD, Yellow: In Distribution label = 1, Purple: In Distribution,
label = 0



C Appendix C : WM16 Dataset, UMAP Embedding of several layers

Figure 8: Embeddings of layer from 1 to 12. Blue: OOD, Yellow: In Distribution label = 1, Purple: In Distribution,
label = 0


