
Characterizing and Improving MPC-based Private
Inference for Transformer-based Models

Anonymous Author(s)
Affiliation
Address
email

Abstract

Secure multi-party computation (MPC) is gaining popularity with the growing1

demand for privacy-preserving cloud services. While there has been plenty of2

attention paid to MPCs for convolution neural networks (CNNs) [1, 2, 3, 4, 5],3

MPC-based private inference for Transformer models has not been studied in4

detail. This paper provides a characterization study of the performance overhead5

for running Transformer models with secure MPC, and proposes an optimization6

for embedding tables. Our study shows that Transformers introduce a couple of7

new challenges for MPC-based private inference: softmax and embedded tables. To8

address the overhead of embedding table accesses under MPC, we propose to use9

tensor-train (TT) decomposition, a mechanism that splits a large embedding tables10

into multiple smaller embedding tables. For the NLP workloads, the experiments11

show that the TT decomposition can speed up embedding table accesses by 2x with12

only a 1.19 drop in the masked-language model perplexity score.13

1 Introduction14

Data privacy is a pressing concern for privacy-preserving machine learning (PPML) in the cloud. To15

address this challenge, secure computation techniques such as homomorphic encryption (HE) [6],16

trusted execution environments (TEE) [7, 8, 9, 10, 11, 12], and secure multi-party computation17

(MPC) [13] have been applied to PPML. The previous studies, however, focused primarily on18

convolutional neural networks (CNNs) [1, 2, 3, 4, 5]. This paper studies MPC-based private inference19

for Transformer-based models, which are commonly used for natural language processing (NLP) and20

have been applied to computer vision [14] more recently.21

As the first step to enable efficient MPC-based private inference for Transformer models, we per-22

formed a detailed study of the performance overhead. The study uncovers two challenges, which23

are new to Transformers and have not been studied in the context of CNNs: softmax and embedding24

tables. While non-linear activation functions such as ReLU are known to be a major source of25

performance overhead for running CNNs in MPC, softmax accounts for an even larger portion of the26

MPC execution time for Transformers. Unlike CNNs where softmax only needs to be performed at27

the end, Transformers use softmax in each layer. An in-depth investigation also shows that the max28

function that is used for numerical stability is the main source of softmax overhead.29

Another new challenge for Transforms comes from embedding tables, which convert categorical data30

into continuous data. Embedding tables can be as large as 1GB for NLP models, and embedding table31

look-ups are commonly implemented as row selection operations. However, because embedding table32

indices are from secret input data, embedded table accesses must be oblivious to input values in private33

inference. To implement embedding tables securely in the MPC setting, one can “densify” embedding34

table lookups by turning them into matrix multiplications. Unfortunately, our characterization study35

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.



shows that replacing an embedding table look-up with a matrix multiplication significantly increases36

the execution time of embedding table operations.37

For more efficient embedding table operations in MPC, we propose to utilize embedding tables’38

compressibility. In particular, we use tensor train (TT) decomposition. The TT decomposition has39

been applied to plaintext machine learning models [15, 16] to reduce the memory footprint and40

speed up training processes. We exploit TT decomposition to reduce the size of matrices that encode41

embedding tables and reduce the overhead for embedding table accesses. The experiments show that42

the TT decomposition can speed up embedding table accesses by 2x with only a 1.19 drop in the43

masked-language model perplexity score.44

2 Transformer-based Model MPC Inference Characterization45

Secure Multi-Party Computation. In the MPC setting, an MPC client wishes to have remote servers46

(non-colluding MPC servers) perform a sensitive task, such as translating classified sentences, without47

revealing secret data and/or model parameters. The secret data is encrypted into two secret shares,48

in a way that each share does not leak any information about the secret. There are two main secret49

sharing formats that we use: additive and binary format. The binary secret sharing format is suitable50

for bit-wise operations, whereas additive shares are more suitable for addition and multiplication.51

Details about those formats can be found in [17]. After MPC servers receive their secret share, each52

cloud server only sees and manipulates its own secret share, and returns the results to the client. The53

client can combine the results from both servers to obtain the plaintext result. While MPC requires54

that multiple parties do not collude and incur non-trivial communication overhead, MPC represents55

one of the most promising techniques for PPML as its overhead is often much lower compared to HE.56

(a) A 12-layer Transformer-based Model Operator
2-PC Inference Runtime Decomposition

(b) A 6-layer Transformer-based Model Operator
2-PC Inference Runtime Decomposition

Figure 1: Transformer-based Model Operator 2-PC Inference Runtime Decomposition

Experimental Setup. In our characterization study, we obtained a secure 2-PC inference runtime.57

We implemented MPC models using the CrypTen MPC framework [17]. The token embedding table58

size is [250002× 1024], and there are 6/12 layers of Transformers in the model (L = 6/12, H =59

1024, A = 16). Embedding tables are implemented as “densified” matrix multiplications. Runtimes60

are obtained from using two nodes on the same server rack, and each node has an NVIDIA Tesla61

V100 Volta GPU.62

MPC vs. Plaintext Inference. Comparing with the plaintext single GPU inference, total inference63

runtime is 12x slower with MPC. Embedding table accesses are 2, 523x slower; Matrix multiplications64

are 3.5x slower; Softmax functions are 465x slower; and ReLU functions are 1, 372x slower. Among65

all the operators, embedding tables and softmax sees the most overhead when MPC protocols are66

implemented.67

MPC Execution Time Breakdown. Figure 1a and Figure 1b show the breakdown of inference68

runtime. Embedding table accesses make up 12% of total inference runtime. Softmax functions and69

activation functions make up 40% and 28% of total inference runtime, respectively. Lightweight70

non-linear functions such as ReLUs and Softmax dominate the inference runtime when MPC is used71

because they need to be approximated with arithmetic or binary functions. Note that in the above72

experiments the length of each input sentence is 128. If we increase the number of tokens in each73

sentence, MPC softmax runtime grows more rapidly than all other operators because the input size74

2



of softmax increases quadratically with sentence length. When token length of input sentences is75

1024, softmax can account for 85% of the total inference runtime, and the total 2-party Transformer76

inference is 316x slower than the computation in plaintext.77

Analysis of Softmax Overhead. Among all the operations, softmax shows the largest showdown78

when MPC is applied. This slowdown is mainly due to a maximum function used in softmax for79

numerical stability. Softmax functions for the ith element in a vector size of n is defined as80

Softmax(xi) =
exi∑n

k=1 e
xk

(1)

The exponential function is approximated using limit approximation [17]. The exponential function81

can explode quickly even in plaintext, causing overflow when some input values are big. To achieve82

numerical stability, softmax is practically implemented as83

Softmax(xi) =
exi−xmax∑n

k=1 e
xk−xmax

(2)

where xmax is the maximum value in the given vector. The subtraction of the maximum value does84

not change the final value of the softmax function, but it greatly improves the numerical stability. The85

“maximum” function is typically cheap. However, in the context of MPC, the maximum function turns86

into an extremely expensive operation. When using MPC, inputs are additively shared among multiple87

parties. The maximum function requires a large number of comparisons, which are expensive in MPC88

because comparisons require two secret sharing format conversions. This communication during89

secret sharing format conversions makes maximum functions expensive, and there are O(log(N))90

comparisons. Our experiments show that if the maximum function is removed (for timing purpose91

only) from the softmax operation, the softmax function becomes 7x and 9x faster on CPU and GPU,92

respectively.93

3 Tensor-Train Decomposition for Efficient Embedding Tables94

Tensor-Train (TT) Decomposition. The basic idea of TT decomposition is to represent a big matrix95

using tensor products of several smaller matrices. A tensor product is a function:96

RM1×M2...×Mk

⊗
RN1×N2...×Nk −→ RM1·N1×M2·N2...×Mk·Nk (3)

Generalizing TT decomposition to an embedding matrix W ∈ RM×N , W can be decomposed into d97

smaller matrices wk ∈ RRk−1×mk×nk×Rk , where M =
∏d

k=1 mk, N =
∏d

k=1 nk, and R0 = Rd =98

1. We refer Rk as the ranks of decomposed matrices. For example, if d is 2, an embedding size99

of [250002 × 1024] can be decomposed into two smaller matrices of [1 × 500 × 32 × rank] and100

[rank × 502× 32× 1]. Note that 502× 500 > 250002 and 32× 32 = 1024. If the rank of the all101

decomposed matrices are 4, the original matrix with 24M parameters can be decomposed into two102

smaller 64K-element matrices. When accessing certain locations in the original embedding table, a103

entry in every decomposed matrices is fetched (this fetching is implemented as dense one-hot matrix104

multiplications). To reconstruct the original entry, apply dot products at the dimension of the rank105

among fetched entries.106

TT Decomposition for Embedding Tables in MPC. TT decomposition can be applied to the matrix107

multiplications that are used for embedded tables to reduce the overhead, enabling a trade-off108

between performance and model accuracy. Here, we present the embedding table query runtime and109

model accuracy using different configurations of TT decomposition. We use d/ranks to represent110

TT decomposition configurations. d represents the number of smaller decomposed matrices, and111

ranks represents the rank of each decomposed matrix. Configuration 3/64 means that the original112

embedding table is decomposed into 3 smaller 64-rank matrices. Throughout our experiments, the113

original embedding table size is [250002 × 1024]. With fixed configurations, the dimensions of114

smaller matrices using different configurations of TT decomposition are shown in Table 1. The115

performance results are obtained by running 2-party inference using CrypTen [17] on two nodes on116

the same server rack, each node with an NVIDIA Tesla V100 Volta GPU. To evaluate the impact117

of model accuracy, the experiments on a masked language model are performed without MPC on a118

single node with 8 NVIDIA Tesla V100 Volta GPUs.119

3



3/ranks 4/ranks 5/ranks

1× 50× 8× ranks 1× 20× 4× ranks 1× 10× 4× ranks
ranks× 65× 8× ranks ranks× 24× 4× ranks ranks× 10× 4× ranks
ranks× 80× 16× 1 ranks× 25× 8× ranks ranks× 10× 4× ranks

- ranks× 25× 8× 1 ranks× 13× 4× ranks
- - ranks× 20× 4× 1

Table 1: Matrix Dimensions using TT Decomposition

Number of Matrices 3 4 5
Ranks 64 128 196 64 128 196 64 128 196

Batch=32 Speedup 16.37 6.95 2.91 16.68 5.68 3.35 17.88 6.11 2.91
Batch=64 Speedup 11.93 3.84 2.09 9.28 3.15 1.34 8.01 3.40 1.44
Batch=128 Speedup 8.65 2.90 1.18 6.34 1.99 0.88 6.98 1.78 0.88
Batch=256 Speedup 6.56 1.79 0.90 4.67 1.41 0.64 3.97 1.39 0.65
Batch=512 Speedup 4.95 1.19 0.56 2.98 0.93 0.40 2.50 0.95 0.40

Table 2: TT Decomposition Inference Runtime Improvement

Table 2 demonstrates embedding table inference speedups using different TT decomposition configu-120

rations with batch sizes. The batch size represents the number of embedded table accesses that are121

performed together. When batched accesses are small, most configurations demonstrate speedups.122

However, with more batched accesses, the configurations with more decomposed matrices and more123

ranks begin to show negative speedups. Computations needed and the number of bytes of data124

communicated for reconstructing embedding entries from decomposed matrices increases linearly125

with the numbers of accesses. On the contrary, the baseline’s one-hot matrix multiplication’s runtime126

does not grow linearly because the number of communication rounds is amortized as the number of127

batched accesses grows (the size of the embedding table does not depend on batch sizes). The results128

suggest that TT decomposition can significantly improve performance for cases with small batch129

sizes as in real-time inference settings. For example, users’ inputs to real-time translation software130

are generally no longer than 50 tokens where one token corresponds to one embedding table access;131

length of 90% data points in MNLI[18], XNLI[19] and CoNLL-2003 [20] is smaller than 75.132

The speedups and compression come with a cost. Besides inference runtime reduction, we also133

measured the TT decomposition’s impact on model accuracy. We have run a masked language model134

on WikiText-103 [21]. The Transformer configuration we used is (L = 24, H = 1024, A = 16),135

and the token embedding table size is [250002× 1024]. We have trained the model for ten epochs136

and reported their best perplexity score. Table 3 presents perplexity of various TT decomposition137

configurations. Configuration 3/64 achieves a speedup of 2.09x, while incurring a 1.19 loss in138

perplexity score. If applications can tolerate higher loss in perplexity scores, using TT decomposition139

configurations such as (3/64, 3/128, 4/64) can achieve even more speedups.140

4 Conclusions141

Transformers are widely used in NLP tasks and will likely represent an important workload for PPML142

in the future. Interestingly, this paper shows that Transformers introduce new research challenges that143

do not exist for private inference of CNNs. While this paper shows that TT decomposition can be144

used to speed up embedding table accesses, further optimizations, especially for non-linear operations145

such as softmax, are needed to enable private real-time NLP inference.146

Configs Plaintext 3/64 3/128 3/196 4/64 4/128 3/196 5/64 5/128 5/196

PPL 12.8 17.0 15.17 14.04 18.25 16.47 14.41 17.82 16.09 14.83
Table 3: Masked Language Model Perplexity Score

4



References147

[1] Nishant Kumar, Mayank Rathee, Nishanth Chandran, Divya Gupta, Aseem Rastogi, and Rahul148

Sharma. Cryptflow: Secure tensorflow inference. In IEEE Symposium on Security and Privacy.149

IEEE, May 2020.150

[2] Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz, Prateek Mittal, and Tal151

Rabin. Falcon: Honest-majority maliciously secure framework for private deep learning.152

Proceedings on Privacy Enhancing Technologies, 2020.153

[3] Minsu Cho, Zahra Ghodsi, Brandon Reagen, Siddharth Garg, and Chinmay Hegde. Sphynx:154

Relu-efficient network design for private inference. 2021.155

[4] Nandan Kumar Jha, Zahra Ghodsi, Siddharth Garg, and Brandon Reagen. Deepreduce: Relu156

reduction for fast private inference. Proceedings of the 38 th International Conference on157

Machine Learning, 2021.158

[5] Zahra Ghodsi, Nandan Kumar Jha, Brandon Reagen, and Siddharth Garg. Circa: Stochastic159

relus for private deep learning. arXiv preprint arXiv:2106.08475, 2021.160

[6] Xiaoqiang Sun, Peng Zhang, Joseph K. Liu, Jianping Yu, and Weixin Xie. Private machine161

learning classification based on fully homomorphic encryption. IEEE Transactions on Emerging162

Topics in Computing, 8(2):352–364, 2020.163

[7] Simon Johnson, Vinnie Scarlata, Carlos Rozas, Ernie Brickell, and Frank Mckeen. Intel software164

guard extensions: Epid provisioning and attestation services. 2016.165

[8] David Lie Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh, John Mitchell,166

and Mark Horowitz. Architectural support for copy and tamper resistant software. ACM167

SIGARCH Computer Architecture News, 2000.168

[9] ARM Limted. Arm security technology building a secure system using trustzone technology.169

2016.170

[10] Florian Tramèr and Dan Boneh. Slalom: Fast, verifiable and private execution of neural171

networks in trusted hardware. arXiv preprint arXiv:1806.03287, 2019.172

[11] Krishna Giri Narra, Zhifeng Lin, Yongqin Wang, Keshav Balasubramaniam, and Murali An-173

navaram. Privacy-preserving inference in machine learning services using trusted execution174

environments. IEEE International Conference on Cloud Computing, 2021.175

[12] Hanieh Hashemi, Yongqin Wang, and Murali Annavaram. Darknight: A data privacy scheme176

for training and inference of deep neural networks. Proceedings on the 54th International177

Symposium on Microarchitecture, 2021.178

[13] Oded Goldreich. Secure multi-party computation. 1998.179

[14] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,180

Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly181

andJakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for182

image recognition at scale. Proceedings of Ninth ICLR, 2021.183

[15] Oleksii Hrinchuk, Valentin Khrulkov, Leyla Mirvakhabova, Elena Orlova, and Ivan Oseledets.184

Tensorized embedding layers for efficient model compression. Proceedings of Ninth ICLR,185

2021.186

[16] Chunxing Yin, Bilge Acun, Xing Liu, and Carole-Jean Wu. Tt-rec: Tensor train compression187

for deep learning recommendation model embeddings. arXiv preprint arXiv:2101.11714, 2021.188

[17] B. Knott, S. Venkataraman, A.Y. Hannun, S. Sengupta, M. Ibrahim, and L.J.P. van der Maaten.189

Crypten: Secure multi-party computation meets machine learning. In arXiv 2109.00984, 2021.190

[18] Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage challenge corpus191

for sentence understanding through inference. arXiv preprint arXiv:1704.05426, 2018.192

5



[19] Alexis Conneau, Guillaume Lample, Ruty Rinott, Adina Williams, Samuel R. Bowman, Holger193

Schwenk, and Veselin Stoyanov. Xnli: Evaluating cross-lingual sentence representations. arXiv194

preprint arXiv:1809.05053, 2018.195

[20] Erik F., Tjong Kim Sang, and Fien De Meulder. Introduction to the conll-2003 shared task:196

Language-independent named entity recognition. arXiv preprint arXiv:0306050, 2003.197

[21] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture198

models. arXiv preprint arXiv:1609.07843, 2016.199

6


	Introduction
	Transformer-based Model MPC Inference Characterization
	Tensor-Train Decomposition for Efficient Embedding Tables
	Conclusions

