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ABSTRACT

Autonomous agents capable of perceiving complex environments, understanding
instructions, and performing multi-step tasks hold transformative potential across
domains such as robotics, scientific discovery, and web automation. While large
language models (LLMs) provide a powerful foundation, they struggle with closed-
loop decision-making due to static pretraining and limited temporal grounding.
Prior approaches either rely on expensive, real-time environment interactions or
brittle imitation policies, both with safety and efficiency trade-offs. We intro-
duce DREAMPHASE, a modular framework that plans through offline imagina-
tion. A learned latent world model simulates multi-step futures in latent space;
imagined branches are scored with an uncertainty-aware value and filtered by a
safety gate. The best branch is distilled into a short natural-language reflection
that conditions the next policy query, improving behavior without modifying the
LLM. Crucially, DreamPhase attains its performance with substantially fewer
real interactions: on WebShop, average API calls per episode drop from ~40
with ARMAP-M (token-level search) to < 10 with DreamPhase, a 4x reduc-
tion that lowers latency and reduces executed irreversible actions by ~ 5x on
WebShop (4.9 x on ALFWorld) per incident logs. Across web, science, and embod-
ied tasks, DreamPhase improves sample efficiency, safety, and cost over search-
based and reward-based baselines. This offers a scalable path toward safe, high-
performance autonomous agents via imagination-driven planning. Code: https:
//anonymous.4open.science/r/DreamPhase—-A8AD/README .md.

1 INTRODUCTION

Building intelligent agents that can perceive complex environments, follow instructions, and au-
tonomously complete tasks remains a core challenge in artificial intelligence. Such agents have the
potential to transform a wide range of applications, including virtual assistants, scientific discovery,
workflow automation, and robotics (Brooks, 1986:; Reed et al., [2022; |Kirchdorfer et al., [2024; |Rana
et al.,[2023).

A promising foundation for building these agents lies in large-scale generative models, particularly
large language models (LLMs), which have demonstrated remarkable capabilities in natural language
understanding, question answering (Rajpurkar et al.|[2016)), summarization (Hermann et al.| 2015,
and multimodal reasoning (Chen et al., [2015} |Goyal et al.,[2017)). However, while LLMs excel in
static tasks, they remain limited in settings that require multi-step decision-making and closed-loop
interaction, such as online shopping, scientific experimentation, or puzzle solving. This limitation
stems from the fact that most LLMs are pre-trained on internet-scale static data and lack exposure
to temporally grounded trajectories or dynamic environments, which are essential for reasoning
about actions and their long-term consequences (Zhou et al., [2024). Additionally, many state-of-
the-art LLMs—Ilike GPT-4V (OpenAl et al.,[2024) and Gemini (Reid et al., 2024)—are accessible
only through restricted APIs. This severely limits their adaptability: they cannot be fine-tuned on
task-specific interaction data, and inference-time prompting often proves brittle in tasks involving
uncertainty, feedback, or long-term planning.

To address these challenges, two broad strategies have emerged, each with its own limitations.
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() Online roll-out planners, such as ReAct with beam search or Monte Carlo tree search (MCTS)
variants that interact with the live document object model (DOM) at each step (Yao et al.,[2022; Hao
et al.|[2023). These methods explicitly evaluate multiple future branches by performing hundreds of
real clicks. While this approach enables lookahead and can correct for earlier mistakes, it is often
slow, costly in settings with rate-limited APIs, and potentially hazardous in environments where
actions are irreversible, such as submitting payments or placing orders.

(¢7) Pure imitation or reward-model agents, on the other hand, avoid expensive interaction by
acting greedily from the current state without explicit search (Hong et al.l 2023} [Liu et al., |2023)).
Although this reduces interaction overhead, it introduces brittleness: a single misstep can irreversibly
derail the entire trajectory, since the agent lacks any foresight or ability to revise its plan.

Both approaches ultimately trade off between safety and efficiency due to their reliance on real-time
interaction with the environment. A promising alternative is internal imagination: the ability to
simulate and evaluate future outcomes offline, without taking any real actions in the environment.

To realize this, we introduce DreamPhase, a modular framework that enables autonomous agents to
plan through imagination in latent space. At its core, DreamPhase trains a latent world model that
predicts the next DOM tree or visual frame conditioned on the current latent state and a proposed
action. By iteratively applying this model, the agent can simulate multiple future trajectories entirely
offline, estimate their expected value and uncertainty, and prune high-risk branches before making
any real requests. This approach yields three key advantages:

(7) Sample efficiency: Web-based tasks that previously required approximately 40 real clicks per
episode now converge in fewer than 10 (see Section[5.2)).

(i7) Safety: Imagination allows the agent to identify dead ends and avoid irreversible outcomes, such
as "Sold-out" pages or accidental purchases, without executing them (see Appendix [C).

(727) Cost and latency: All expensive reasoning is handled on-device; the only network call is the
final, high-confidence action that passes uncertainty filtering.

In summary, by relocating exploration from the real environment into a learned latent simulator,
DreamPhase overcomes the safety-efficiency trade-off that constrains existing agent systems.

In particular, DreamPhase unfolds in four stages: (i) we train a latent world model (LWM) (Ha &
Schmidhuber} 2018) to simulate future states from raw DOM trees or visual inputs; (7¢) we generate
imagination rollouts by combining this latent dynamics model with actions sampled from a frozen
policy LLM; (4i7) we perform uncertainty-aware value estimation over these imagined branches,
scoring each using predicted rewards and entropy-based confidence metrics; and (iv) we distill the
best low-risk trajectory into a natural-language reflection, which is injected back into the LLM prompt
to influence future decisions.

Crucially, the LLM policy remains entirely frozen throughout this process. Its behavior evolves
solely through internal simulation and language-based feedback. This design supports scalable
and sample-efficient planning without the need for real-world interaction or model fine-tuning. In
summary, the main contributions of this paper are:

o Imagination-first latent planning. We train a compact world model to simulate multi-step futures
in latent space and roll out M branches for H steps entirely offline, decoupling environment dynamics
from policy reasoning and enabling safe counterfactual planning.

¢ Risk-aware branch selection with guarantees. Imagined trajectories are scored by value minus
an uncertainty penalty and accepted only if a confidence gate passes; we provide a regret bound

O(VTe) + BpT that links decision quality to model error and mis-gating.

o Language reflections for zero-tuning control. The selected branch is distilled into a short reflection
and summary that are injected into the next prompt, steering a frozen LLM toward higher-quality
actions while remaining interpretable and requiring no parameter updates.

e Practical efficiency and robustness. DreamPhase reduces real interactions by about 4x on
WebShop (<10 vs. ~40 API calls/episode), adds ~ 12 ms imagination overhead, and cuts executed
irreversible actions by ~ 5x on WebShop (4.9x on ALFWorld). It degrades gracefully under
distribution shift via fallback and outperforms search- and reward-based baselines across domains.
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2 RELATED WORK

LLMs as interactive agents. LLMs have been used as control policies in dynamic environments,
from web navigation to general tool use (Liu et al., 2023} |Zhou et al.| [2023). Early systems adapted
pretrained encoders to decision-making (e.g., BERT for WebShop (Devlin et al., 2019} [Yao et al.|
2023al)). With stronger generative models (Brown et al.||[2020; OpenAl et al., 2024)), zero-shot and
few-shot prompting became common for action selection without fine-tuning (Deng et al., [2024;
Xiong et al) [2024]), often pairing observations and histories with an LLM to choose the next step
(Zheng et al., 2024} Hong et al., 2023)). Another line distills trajectories from powerful but restricted
APIs into smaller policies (Li et al., [2023} |Zhang et al., |2023)). In contrast, DREAMPHASE keeps
the policy LLM frozen and adds a learned latent world model, an uncertainty-aware value head, and
language reflections to steer behavior while minimizing real interactions.

AgentLM, AgentGym, and ARMAP. AgentLM Zeng et al.|(2024) introduces agent tuning, a
supervised and preference-style fine-tuning on multi-turn tool trajectories, to improve grounding and
robustness, but it requires curated data and changes model weights; DREAMPHASE avoids fine-tuning
by conditioning a frozen LLM with reflections distilled from imagined rollouts. AgentGym Xi et al.
(2025) standardizes evaluation with unified task wrappers, tools, and metrics; our work follows its
emphasis on comparable protocols but contributes a new planning method. ARMAP |Chen et al.
(2025) scales token-level search with Reflexion, Best-of-/V, and MCTS (ARMAP-R/B/M), improving
success via online expansion at the cost of higher latency and many real-environment calls. We show
that DREAMPHASE exceeds ARMAP performance while using substantially fewer real interactions
through offline latent imagination and uncertainty gating. For a broader survey, see Appendix [B]

3 METHODOLOGY

Setting and notation. We study decision making in partially observable interactive environments,
for example web navigation with sparse feedback and costly interactions. The task is modeled as a
partially observable Markov decision process

M = (I’ 87 ‘A’ X’ T7 57 r)’

where 7 is the space of task instructions, S the latent state space, 4 a discrete action space, X the
observation space, 7 : S x A — S the transition kernel, £ : § — X the emission kernel, and
r:S x A — Rapossibly sparse reward. At time ¢, the agent receives an instruction ¢ € Z, observes
x; € X, selects a; € A, the environment moves 8;11 ~ T (8¢, at), and emits @41 ~ £(8¢11). The
objective is to maximize

T

Z (s, at)l under a policy 7(a; | <y, ), (1
t=0

J(r) = E

where (s, a;) is the reward at time ¢, v € (0, 1] is a fixed discount factor, and * exponentially down-
weights rewards farther in the future, and the expectation is taken under the trajectory distribution
induced by the policy 7(a; | €<, ¢).

3.1 DREAMPHASE OVERVIEW

DreamPhase plans with offline imagination to lower interaction cost and improve safety. At each
step, the agent: (¢) forms a compact predictive belief with a learned latent world model, (i) rolls out
multiple hypothetical futures in latent space, (ii7) scores each rollout with a value estimate and an
uncertainty measure, (¢v) distills the highest quality imagined outcomes into a short natural language
reflection that conditions the next action. All steps (i) to (¢v) occur without querying the environment.

3.2 LEARN TO DREAM: TRAINING THE LATENT WORLD MODEL

The first component of DreamPhase is a learned latent world model that enables internal simulation
of environment dynamics. The goal is to predict what will happen when the agent applies an action
in the current observation context. For example, the model can answer: “What occurs if I click
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this button on the current page.” This capability supports counterfactual reasoning before acting,
without touching the real environment. Concretely, we train a latent world model that predicts
short-horizon futures in a compact latent space conditioned on the current observation, the action, and
the instruction ¢. This eliminates environment queries during planning and follows prior latent-space
imagination work (Ha & Schmidhuber, [2018}; [Hafner et al.; |Janner et al., 2019).

Data collection. We collect multi-step interaction episodes for tasks such as website navigation or
shopping. Each episode provides tuples (¢, @, at, €:11), where @, @1 € X are observations and
a; € Ais the action taken at time ¢. The history is by = (¢, T<y, @<y)-

We train the latent world model exclusively on logged trajectories collected from the standard training
split of each benchmark environment. To obtain these trajectories, we run a frozen LLaMA-2-7B
policy with a simple ReAct-style prompt and light randomization. No test episodes, privileged futures,
or environment states unavailable to baselines are used. All observations and actions come from the
same public APIs that baseline agents interact with. The resulting dataset contains only (instruction,
observation, action, next-observation) tuples from the training portion of each task and does not
include any extra external corpora or fine-tuning data.

In addition, note that all the baselines in Table 1 are allowed to use their standard training protocols
(e.g., AgentLM and AgentGym use their released agent-tuned checkpoints; ARMAP uses its reward-
model training). DreamPhase does not access any interaction data beyond the logged trajectories from
the training split. Thus, all open-source agents share the same policy backbone, the same environment
splits, and access to the same interaction data; DreamPhase only differs in how this data is used to
train a compact world model and value head for offline imagination.

Observation encoding. Observations such as DOM trees or screenshots are high dimensional
and structured. We tokenize each x; by a depth-first traversal of the DOM with textual content
and spatial layout features, for example bounding boxes and element types. This yields a compact,
language-aligned sequence suitable for generative modeling and for conditioning the policy.

World model architecture. The model has three parts: an encoder fp(x;) that maps an observation
to a latent z;, a transition model gy (2, a¢,¢) that predicts the next latent given the current latent
and an embedded action a;, and a decoder dy(z;1,¢) that reconstructs the next observation. The
stochastic latent dynamics are

zr = folxe), Zip1 ~ qo(Zes1 | 20, Q1) Tir1 ~ 9o(Tet1 | Ze41,0), 2
where a; = emb 4 (a;) is a learned action embedding.

Training objective. We combine token reconstruction with latent space regularization. Let Z; 1 =
do(go(fo(m:), @, ¢), ). The loss is

Liwm = E[CE(@H, @i11) + AL KL(go(2ze41 | he, ay) ||N(0,I))}7 (3)

where KL and CE denote Kullback-Leibler divergence and cross-entropy function, respectively, and
qo(z¢+1 | he, ay) is the encoder-induced inference distribution (diagonal Gaussian with parameters
from fy) over the next latent during training; we sample via reparameterization and use the mean at
test time, and Akp, is annealed during training.

Offline imagination. After training, the model simulates futures without environment queries.
Given x; and a;, we encode to z; = fy(x:), sample z;;1 from the learned transition go(- |
z¢,a4,t), and decode Ty11 = dg(z¢41,t). Iterating this procedure for a short horizon yields
imagined trajectories 7 = (&441.t+H, @s.t+H—1), which are later scored for value and uncertainty
and summarized into reflections.

Remark 1 (Why a latent world model rather than LL.M-based dreaming). Large language models
are not designed to simulate low-level environment dynamics such as DOM structure. They often
produce syntactically invalid or causally inconsistent states, and token-level rollouts are memory
intensive and conflate policy reasoning with environment modeling. A learned latent world model
is modular and efficient, it generates structured futures that respect environment constraints, and it
supports risk-aware planning in long-horizon tasks. For these reasons DreamPhase relies on a latent
world model for internal simulation rather than prompting an LLM to generate future states.
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3.3 IMAGINATION-BASED PLANNING

At each timestep ¢, the agent explores multiple plausible futures by simulating latent trajectories
conditioned on potential actions. This allows the agent to reason about consequences without
interacting with the real environment. We refer to this mechanism as imagination-based planning.

Given the current observation x;, we encode it with the encoder fy to obtain z; = fy(x;). To explore
alternative outcomes, we generate M parallel rollouts in latent space, each simulating a sequence
of H future steps using the learned world model ( fy, go, dp) and a frozen policy LLM 7, that
proposes actions from the current imagined history. Each rollout corresponds to a hypothetical branch
that contains predicted latents and actions.

Each trajectory 7(/) is one imag-

ined branch, consisting of an Algorithm 1I: Latent Imagination Rollouts.
action sequence and the .result- Input: instruction ¢; observation @; encoder fo; transition go; decoder
ing predicted latents, with op- dg; frozen policy 7rr,m; number of branches M ; horizon H

tional decoded observations 1: Encode observation: z: + fo(x+)
for inspection or scoring. These  2: for j = 1to M do

imagined futures are passed to  3: Initialize latent: 27

— Z¢

the downstream evaluation mod-  4: Initialize imagined history: hgj ) (¢, )

ule, where they are scored by a  5: fork=0to H—1do

Valuq model apd ﬁlte.red by un- 6: Sample imagined action: aii) e ~ LM (- | hY Y k)

certainty metrics. This process 7. Embed action: aiﬁk < emb A(aﬁ)k)

supports multi-step foresight 8: Predict next latent: 27 ~ z 29 gl

in latent space without issu- ' t+k+1 g0 ( Ef+)k+1| t4ko t+)k7 L)

ing environment queries, which 9: Decode to imagined observation: &,%’, ,; do (2! 2 1o t)

makes planning efficient and 10: Update imagined history: h”, ,,  (hi}y, @i, &% )

scalable. We detail the rollout 11:  endfor _ ) ) o

procedure in Algorithm [I] g detore imagined trajectory: 79 < ({@¢y g1} {Z}10s )
:_end for

3.4 EVALUATE AND DECIDE: UNCERTAINTY-AWARE VALUE-GUIDED BRANCH SELECTION

After generating M latent rollouts of horizon H, the agent must assess whether any imagined
trajectories are reliable enough to guide action selection. This balances efficiency (acting from
internal simulation) and accuracy (deferring to the real environment when predictions are uncertain).

Value estimation. For each imagined trajectory 7() = {zt VLt H aE t) {1} We estimate a
discounted return with a lightweight value head V4 operating on latents:

GY) = Z’yk YWz 1)), v e (0,1). @)
k=1

The head V is trained on logged data to predict short-horizon utility from latent states produced by
the world model.

Uncertainty estimation. We quantify epistemic uncertainty over imagined actions using a mutual-
information proxy computed with Monte-Carlo dropout on the frozen policy 7y,1,. For each imagined

history prefix h (1nstruct10n L, current &, and all imagined pairs so far), let i/ C A be the discrete
action set scored by the policy. With stochastic dropout masks {&,}2_,

N N
W0 — H{ﬁm} _ ;;H[p(j)(fn)}, 0 = ]b;pm(gn), (5)

where pl)(&,) is the action distribution 7, (- | hij ), &) over U, and H[-| is categorical entropy.
Larger u(/) indicates greater disagreement across stochastic policy samples, hence higher uncertainty.

Risk-sensitive selection. We combine value and uncertainty via a penalized score

GU) — qU) _ ﬁu(j), 8>0, (6)
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and choose the best branch

= GV, 7
S et v

A safety gate enforces that the selected branch is itself confident:

“if ") < 7 then act using afﬂ' ); otherwise query the real environment and update the history.”
This mechanism enables DreamPhase to plan through imagination when predictions are confident,
and to defer to real interaction when uncertainty is high, supporting robust decision making under
distribution shift while reducing environment queries.

3.5 REFLECT AND ACT: LANGUAGE-GUIDED PoLICY CONDITIONING

Rather than fine-tuning the policy LLM, we steer its behavior using natural language derived from
imagination. Inspired by verbal self-reflection (Shinn et al.,|2024; |Yuan et al.,|2024al), DreamPhase
converts its imagined rollouts into concise guidance that conditions the next action.

Reflection. Given the set of imagined trajectories {7()}?2, and their scores {G"),u())} from

Section let j* be the selected branch. We generate a short reflection that explains why 7U") is
promising and surfaces potential risks. A lightweight reflection head R, produces

Ct = Rtp(lw L, :i'g-l):t-&-m 6‘1(5:]25—&2&—17 G(j*)7 u(j*))’ (8)
where k < H is a short summary horizon. R, can be a small frozen LLM or a distilled model
conditioned on the branch and its value—uncertainty signals. Example output: “Proceed with search,
then filter by size before adding to cart; avoid pages without a visible ‘Checkout’ button.”

Trajectory summarization. In addition, we produce a compact natural-language summary of the
core actions and expected outcomes. A summarizer S,, maps the same inputs to a terse script,
= (5" =~ (5"
st = Sy, @1, 331(£+1):t+m a’f&:t-ﬁn—l)’ )
for example: “Search ‘Nike shoes’; open first result; click ‘Add to cart’.” Both ¢, and s; can optionally

aggregate over the top-K safe branches by concatenating key constraints, although the default uses
only j*.

Language-based steering. We inject the reflection and summary into the policy prompt at the next
decision point. The frozen policy LLM receives enriched context and produces the next action:

ag ~ WLLM(' | Ly Tty Ct, St)- (10)

This language-guided conditioning integrates simulated experience in a modular and interpretable way.
The agent improves behavior without parameter updates, using internal planning signals expressed as
short, actionable text that is easy to inspect and ablate. Implementation details for the reflection head
R, and summarizer S,;, the 30-token budget, the delimiter scheme, and task-specific templates are
provided in Appendix [I}

3.6 DREAMPHASE PIPELINE

Algorithm [2f summarizes the full DreamPhase pipeline. At each timestep, the agent encodes the
current observation into a latent state and imagines M future trajectories using the learned world
model. These rollouts are scored by discounted return estimates and filtered by an uncertainty proxy.
If the best rollout is sufficiently confident, it is summarized and reflected upon in natural language,
which is then appended to the policy LLM prompt for action selection. Otherwise, the agent queries
the policy using the real history only. This design enables offline reasoning, defers to real interaction
when uncertain, and steers decisions with internal reflection, without updating the LLM.
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Algorithm 2 DREAMPHASE: Imagination-Based Planning with Uncertainty-Aware Reflection

Input: instruction ¢; initial observation x; history hg < (¢, @¢); encoder fy, transition gy, decoder
de; policy mim; value head Vy; reflection head R,; summarizer S,,; number of imagined
branches M ; horizon H; discount -y; risk weight 3; confidence threshold 7, summary horizon .

1: fort=0,1,...do
2: Encode current observation: z; < fg(x;)
3 Sample M imagined rollouts {%(j ) } ;Vil using the world model and 71, as in Algorithm
4: foryj=1...M do > Score each imagined branc
5 Estimate value: G0 « S/ =1V, (27, | 0)
6 Estimate uncertainty u'9) via the mutual-information proxy from Section
7 Penalized score: GU) « GU) — B9
8 end for o
9: Select best branch: j* <— arg max;e (1, .. ar) G
1. ifuU") <7 then > Safety gate passes
11: Generate reflection: ¢; + R (¢, ¢, igil):tJrn? dg:Jthnfu GU™) 47
12: Summarize trajectory: s; < Sy(t, @1, & )y s aﬁ?’{jm_l)
13: Augment policy context: p; <+ CONCAT(hy, ¢y, S¢)
14: Query policy with guidance: a; ~ mLLm(- | pe)
15: else > Fallback to real-history policy
16: a; ~ 7TLLM(' | ht)
17: end if
18: Execute a; in the environment, observe x; 1
19: Update history: hyy1 < (he, ap, 1)
20: end for

4 THEORETICAL REMARK

Let 7 be the optimal policy in the true environment M. The latent world model induces a one-
step predictive distribution Py(z¢;1 | h¢, a¢, ) and the environment induces P, (11 | hy, ay, o).
Assume a uniform one-step KL bound & = supy,, o, KL(P, | Py), which by Pinsker inequality
(Csiszar & Korner, [2011)) implies TV < \/5/72 where TV denotes the total variation distance.Let

7 be the confidence threshold of the safety gate (Sec. [3.4), and define the mis-gating rate p =
Pr [DreamPhase selects an imagined branch while the true uncertainty > T] .

With bounded rewards r,,x and a value function that is Lipschitz in total variation of the one-step
predictor, the cumulative regret over 1" steps satisfies

T-1
Regret,. :E[Z (rf frPP)] < CVTe + BpT,
t=0

where C' > 0 depends on 7,5 and the smoothness constant, and B < 7, bounds the per-step loss
under mis-gating. A full derivation is given in Appendix [A]

The VT ¢ term captures error from model approximation; BpT accounts for occasional acceptance
of unreliable imagined branches. When ¢ is small and p is rare, regret grows sublinearly.

5 EXPERIMENTS

We evaluate DREAMPHASE across diverse agentic environments and backbones. We first outline the
evaluation protocol, then present two main results tables: (¢) a diverse-task comparison across closed-
and open-source agents (Table[I), and (i¢) cross-backbone results on WebShop, SciWorld (seen/un-
seen), and Game-of-24 (Table [2). Implementation details, hyper-parameters, dataset descriptions, and
baseline implementations appear in Appendix [
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Table 1: Evaluating results on eight different tasks. Within the open-source block, bold denotes the
best method and underline the second best.

Algorithms SciWorld BabyAl MAZE Wordle TextCraft Tool-Weather TODOList BIRD = Avg
Closed-sourced Models & Agents
DeepSeek-Chat (DeepSeek-AlL[2024) 16.8 45.6 4.0 24.0 23.0 70.0 75.0 13.5 340
Claude-3-Haiku (Anthropic!|2024) 0.8 1.9 4.0 16.0 0.0 55.0 65.0 135  19.6
Claude-3-Sonnet (Anthropic{[2024) 2.8 79.3 0.0 36.0 38.0 65.0 80.0 170 39.8
GPT-3.5-Turbo (Ouyang et al.|[2022) 7.6 71.4 4.0 20.0 47.0 25.0 40.0 125 285
GPT-4-Turbo (OpenAl|[2023) 14.4 72.8 68.0 88.0 77.0 80.0 95.0 16.0 639
Open-source Llama-2-7B as the Agent
AgentLM actpos 1.6 0.5 12.0 4.0 4.0 0.0 15.0 5.0 53
AgentGym act)o2s 38.0 82.7 12.0 12.0 64.0 25.0 70.0 9.0  39.1
ARMAP-M icLrp02s 512 81.5 12.0 17.0 59.0 35.0 72.0 10.5 423
DREAMPHASE (ours) 72.4 823 14.0 34.0 62.0 45.0 77.0 135 501

Table 2: Cross-backbone performance on WebShop, SciWorld (seen/unseen), and Game-of-24. Two
backbone groups per row. Bold = best, underline = second best.

Llama70B Llama8B
Algorithm WebShop SW-seen SW-unseen Game24 Avg WebShop SW-seen SW-unseen Game24 Avg
Sampling 52.0 53.9 50.6 9.6 415 56.4 24.5 20.6 2.0 259
Greedy 50.4 57.2 55.1 6.0 422 57.7 29.9 23.8 2.0 28.4
ARMAP-R icLrp025 56.5 59.6 56.7 16.0 472 58.3 31.2 28.0 6.0 30.9
ARMAP-B icLrp025 62.0 57.3 57.0 19.0 4838 59.3 35.7 28.1 110 335
ARMAP-M icLrp025 66.8 58.2 55.9 240 512 60.2 325 24.9 9.0 31.7
DREAMPHASE (ours) 68.4 59.2 58.6 280 53.6 61.8 36.7 29.7 12.0 351

Mistral7B Phi3.8B
Algorithm WebShop SW-seen SW-unseen Game24 Avg WebShop SW-seen SW-unseen Game24 Avg
Sampling 17.7 18.4 17.1 1.0 13.6 34.7 10.0 7.6 2.0 13.6
Greedy 372 21.1 19.6 1.0 19.7 424 9.5 6.5 2.1 15.1
ARMAP-R icLrp025 54.1 21.7 19.7 2.0 24.4 53.3 9.6 72 4.0 18.5
ARMAP-B 1cLr025 54.4 24.5 21.2 2.0 25.5 52.1 20.0 17.0 9.0 24.5
ARMAP-M icirpo2s 582 30.0 234 4.0 28.9 53.7 283 24.3 10.0 29.1
DREAMPHASE (ours) 60.5 335 229 6.0 30.7 55.5 32.8 24.1 13.0 314

For each task, we report mean success (%) over 5 random seeds; standard
The Avg column is the unweighted mean

Evaluation protocol.
deviations for Tables|l|and [2|are reported in Appendix @
across environments within each table.

Episode budgets and decoding settings follow prior work and are detailed in Appendix

5.1 MAIN RESULTS

5.1.1 DIVERSE TASKS ACROSS AGENTS (TABLE[I)

Tasks. SciWorld (Wang et al., |2022a)), BabyAl (Chevalier-Boisvert et al.,|2019), MAZE (Abdulhai
et al., 2023)), Wordle (Abdulhai et al.| [2023)), TextCraft (Prasad et al., [2023)), Tool-Weather (Ma et al.|
2024), TODOList (Ma et al.,[2024), BIRD (Zheng et al.,[2023).

Agents. We include closed-source references (DeepSeek-Chat (DeepSeek-All 2024), Claude-3-
Haiku/Sonnet (Anthropic, [2024), GPT-3.5/4-Turbo (Ouyang et al.| [2022;|OpenAl, 2023))) and open-
source agents (AgentLM (Zeng et al.l |[2024), AgentGym (Xi et al., 2025), ARMAP (Chen et al.,
2025))). For the open-source block (including DREAMPHASE in this table), we standardize the policy
backbone to LLaMA-2-7B (Touvron et al. 2023) and match decoding and episode budgets for
fairness; closed-source results are reported as returned by their APIs.

Results. Table[T|shows that DREAMPHASE attains the best average within the open-source block
while keeping real interactions low (Appendix[5.2). Note that our open-source comparisons standard-
ize on a LLaMA-2-7B backbone, which is substantially smaller than the closed-source references
(e.g., GPT-4-Turbo, Claude-3) and trained with non-proprietary data; higher absolute scores from
those APIs are therefore expected, yet DREAMPHASE achieves performance comparable these com-
mercial models. Under the matched 7B setting, DREAMPHASE consistently outperforms search-based
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baselines, with the largest gains on manipulation-/tool-heavy tasks where the uncertainty gate prevents
risky actions when confidence is low.

5.1.2 CROSS-BACKBONE BENCHMARKS (TABLE[Z)

Tasks. WebShop (Yao et al., 2023a)), SciWorld (Wang et al.,[2022a) with seen and unseen task graphs
(reported as SW-seen and SW-unseen), and Game-of-24. We also report ALFWorld in Appendix [E]

Backbones and Agents. We evaluate LLaMA3-70B, LLaMA3-8B, Mistral-7B, and Phi-3-8B.
Baselines include ARMAP with Reflexion, Best-of-/N, and MCTS (denoted ARMAP-R / ARMAP-B
/ ARMAP-M), plus Sampling (temperature 1) and Greedy (temperature 0) decoding. For supervision
of the value head V,, we generate preference-style pairs with LLaMA3-70B-Instruct (Dubey et al.,
2024); we avoid commercial APIs to reduce cost and improve reproducibility.

Results. Table[2]shows that DREAMPHASE achieves the best or second-best success on nearly all
backbones and tasks, with especially strong gains on Game-of-24. On SW-unseen (novel goals and
step compositions), DREAMPHASE outperforms all baselines across multiple backbones, indicating
robustness to distribution shift (Appendix. Ablations over latent dimension d,, horizon H, branches
K, risk penalty 3, and confidence gate 7 are provided in Appendix [G] We also report computation
and latency of latent rollouts in Appendix [J]

5.2 INTERACTION BUDGET AND LATENCY ON WEBSHOP

We quantify real environment interactions as API calls issued to WebShop (HTTP requests and DOM
mutations that change page state). We evaluate Llama-8B policies on the standard WebShop split,
batch size 1, A100-80GB. Latency is measured as policy forward time plus search/planning overhead.

We count only environment-affecting calls (page loads, form submissions, cart updates, DOM actions
with side effects). Cache hits, retries, and latent-only computations are excluded. Latency numbers
use identical hardware and decoding settings for both methods.

Table 3: WebShop interaction and latency comparison (mean = s.e., N=1000 episodes). DreamPhase
uses ~ 4x fewer real API calls and ~ 3 lower per-step latency.

Method Policy Avg API calls/ep. | = x fewer vs. ARMAP-M = Per-step latency (ms) | , Success (%) 1
ARMAP-M (token-level search) Llama-8B 39.8+1.1 — =~ 255 60.2 +0.6
DREAMPHASE (latent imagination) | Llama-8B 93+04 4.3% ~ 84 61.8+0.6

As observed in Table[3] DreamPhase attains its performance with substantially fewer real interactions:
under 10 API calls per episode on average, versus about 40 for ARMAP-M. The latent imagination
overhead is small relative to the policy forward pass, yielding lower per-step latency. Fewer real calls
also reduce the chance of unwanted side effects, since more planning happens offline.

Beyond interaction counts, DreamPhase lowers executed irreversible actions by ~5x on
WebShop (and ~4.9x on ALFWorld); see Appendix [C]

5.2.1 QUALITATIVE COMPARISON

Section B.2. 1] contrasts ARMAP and DREAMPHASE on a Game-of-24 instance. ARMAP commits
early and returns an incorrect value, while DREAMPHASE imagines multiple futures, selects a
high-value low-uncertainty branch, and executes the correct sequence (11 — 7) x (9 — 3) = 24.

Qualitative Rollout on Game-of-24

Input numbers 3, 7, 9, 11

1. 11+9 = 20 (remaining: 3, 7, 20)
2.20-7 =13 (remaining: 3, 13)
3. 13+3 =16 (remaining: 16)

Outcome : result is 16, not 24. Baseline halts without a valid solution.
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Imagination phase (latent world model)

e Branch 1: (11+9) — (7—3) — 16 (low value)
e Branch2: (11 —7) % (9 —3) — 24 (high value, low uncertainty)
* Three other branches score < 0.4 value and/or high entropy

Selected branch (reflection injected)

1. 11-7 = 4 (remaining: 3,9, 4)

2.9-3 =06 (remaining: 4, 6)

3.4%6 = 24 (remaining: 24)
Outcome : DreamPhase produces a correct expression (11 — 7) * (9 —3) = 24.

6 CONCLUSION

We presented DreamPhase, a modular agent framework that plans through internal imagination. By
simulating futures in a learned latent space and scoring them with value and uncertainty estimates,
DreamPhase acts only when a high-confidence trajectory is found. This greatly reduces real-world
interactions, lowering cost and risk while maintaining strong performance. Our experiments show
consistent gains across web navigation, scientific reasoning, and puzzle solving, all without fine-tuning
the policy LLM. By combining latent imagination, uncertainty-aware gating, and language-based
reflections, DreamPhase provides a scalable path toward safer, more sample-efficient agents.

REPRODUCIBILITY STATEMENT

We have taken steps to ensure our results are reproducible. All model and algorithmic details, training
procedures, hyperparameters, evaluation protocols, and metrics are specified. An anonymized GitHub
repository contains the source code and configuration files, and pre-trained checkpoints. All datasets
used in our experiments are publicly available.

LLM USAGE STATEMENT

LLM used only for grammar and wording edits; no generation of ideas, methods, analyses, results, or
citations. Authors reviewed all edits and accept full responsibility.
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A REGRET ANALYSIS OF DREAMPHASE

In this appendix we derive the regret bound in Section[d] We restate the setting and assumptions,
adapt standard model based RL arguments, and incorporate the effect of uncertainty gating errors.

A.1 PRELIMINARIES

We work with the environment M defined in the main text and compare one step predictive dis-
tributions over observations. Let P, (x:11 | he, aq,t) be the true conditional distribution and

@g (¢41 | he, @y, t) the model induced by the learned world model. Assume a uniform one step KL
bound

e = sup KUP.(- | he,ar,o) | Po(- | e, ar,0). (1)

he,at

By Pinsker, TV(P,, I@g) < /€/2 uniformly, equivalently ¢; distance is at most v/2¢.

Gating error. Let 7 denote the fixed confidence threshold used by the safety gate in Section [3.4]
Define the mis gating rate

p = Pr [u(j ) > 7 and DreamPhase still selects an imagined branch (12)

that is, the probability that the agent erroneously trusts an unreliable imagined rollout.

Smoothness and bounded rewards. Assume rewards are bounded by 7,5 and the value function
is Lipschitz with respect to the total variation of the one step predictive distribution. There exists
L > 0 such that replacing P, (- | h¢, a¢,t) by any Q(- | by, ay,¢) changes the optimal Hyy,,x step
value by at most L TV (IP’*, @) per step.

A.2 REGRET DECOMPOSITION

Let 7; be DreamPhase’s action at time ¢. Define cumulative regret after " steps

T-1

Regret; = Z(Vf* -V, (13)

t=0

where values are taken under the true environment. We decompose regret into (z) model approximation
when acting on imagined rollouts and (zz) mis gating when the agent trusts a high uncertainty branch.

(?) Model approximation term. When DreamPhase follows an imagined branch, the one step
distributional error is bounded by TV < y/e/2. By the Lipschitz assumption and a telescoping
argument over at most H,,x steps,

T-1
S (W B, V7)) £ OVTe € = LHuaV2 (14)

t=0
(i7) Mis gating term. On any step where an over confident imagined branch is used, the per step

value loss is bounded by a constant B that depends on 7y,,x and Hp,ax. Since such events occur with
probability p per step, their contribution is at most B pT'.

A.3 FINAL BOUND
Combining the two terms yields
Regret, < CvTe 4+ BpT, (15)

with C' = L Hyax\/2. When the world model is accurate (¢ — 0) and mis gating is rare (p — 0),
regret grows sublinearly, so DreamPhase approaches Bayes optimal performance.
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B FURTHER RELATED WORK

LLMs as Interactive Agents. Recent advancements have demonstrated the potential of LLMs as
interactive agents capable of reasoning and acting within dynamic environments (Liu et al., 2023}
Zhou et al.| [2023)). Early approaches explored adapting models like BERT (Devlin et al.l 2019) to
structured decision-making settings, such as online navigation tasks (Yao et al., 2023a). With the
emergence of more capable generative models (Brown et al.| 2020; OpenAl et al.| 2024), research
has increasingly focused on using zero-shot and few-shot prompting to control agent behavior
without fine-tuning (Deng et al., 2024 [Xiong et al.,[2024). These agents typically act by processing
observations and histories through LLMs to select the next action (Zheng et al.| 2024; [Hong et al.|
2023)). Some efforts have also focused on training smaller policy models by distilling trajectories
from powerful but restricted APIs (L1 et al., [2023; Zhang et al., 2023). Our work departs from this
line by learning a reward model directly from LLM-generated data, enabling downstream planning
without needing fine-tuned policies.

Language Model-Based Planning. LLMs have also been employed for planning tasks, often
through prompting techniques that combine reasoning and action generation. Methods such as ReAct
(Yao et al.| [2022) integrate step-by-step thought chains with action prediction (Wei et al.| 2022)). Tree-
based deliberation strategies have further improved multi-step reasoning (Yao et al.,[2023bj Hao et al.}
2023). However, most existing work focuses on generating text-level plans rather than structured
trajectories within grounded environments. Moreover, these methods typically rely on black-box
models like GPT-4 for evaluation and planning, which limits interpretability and adaptability. By
contrast, our approach introduces a modular system that learns a reward model from data and uses it
to supervise structured planning via imagination.

Learning via AI Feedback. Another line of research involves training models using feedback
generated by other Al systems (Bai et al.| [2022; |Lee et al., 2023} |Yuan et al., 2024b; [Koh et al.,
2024). These techniques often rely on prompting commercial models to generate preference data for
finetuning. We draw inspiration from these methods but take a different route: instead of training
a generative model, we optimize a lightweight evaluator to score trajectories with respect to task
instructions. This reward model is then integrated into planning, improving performance without
additional model updates.

Inference-Time Reasoning and Control. Inference-time planning methods provide an efficient
alternative to training-intensive pipelines. Approaches such as MCTS with language models (Silver
et al.l 2017} |Koh et al.| [2024) allow dynamic reasoning through rollout-based simulation. Other
strategies include speculative execution (Gu et al., [2024), reflective tree search (Yu et al., 2024), and
sampling-based strategies (Wang et al., 2022b)). Our method belongs to this family, offering two key
advantages: (1) generalization across task domains including web agents, scientific simulations, and
mathematical games; and (2) a compact reward model trained from synthetic data that avoids reliance
on commercial LLM APIs. We use a fine-tuned visual-language model (Lin et al.,[2023) to evaluate
trajectories in a structured and scalable way.

C SAFETY EVALUATION BEYOND INTERACTION COUNT

We measure safety not only via gating diagnostics (AUROC/ECE) and interaction budgets as reported
in Appendix [H] but also by logging irreversible-action incidents during execution.

What we count. An irreversible action is any environment-affecting write with persistent conse-
quence, including (i) form submissions that change server state (e.g., checkout, account creation),
(i) purchases/cart checkouts, and (iii) destructive operations (delete/confirm). “Unintended” means
inconsistent with the user instruction and task constraints /1]

"We apply a deterministic ruleset keyed to domain endpoints (e.g., /checkout, /submit), DOM event
types (e.g., submit, click on [type=submit]), and confirmation dialogs. A 200-episode human audit
found 0.94 precision in the automatic labels.
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Detection protocol. We run in sandbox/dry-run mode with (a) network stubbing for purchase
endpoints; (b) DOM-level hooks capturing submit/click events with element metadata; and (c)
server logs for state-changing requests. We record three metrics per 1,000 episodes: (1) Critical
incidents (unintended irreversible actions actually executed), (2) Near-misses (attempts blocked by
confirmation dialog or sandbox stub), and (3) Unsafe proposals (actions proposed by the policy but
rejected by the safety gate; not available for methods without a gate).

Table 4: Safety outcomes per 1,000 episodes (mean = s.e.). Critical counts unintended irreversible
actions executed; Near-miss are blocked by confirmations/sandbox; Unsafe proposals are caught by
DreamPhase’s gate before execution. DreamPhase reduces executed incidents by ~5x on WebShop
and ~4.9x on ALFWorld while surfacing risky proposals for inspection. Results on LLaMA-8B
backbone.

‘WebShop ALFWorld
Method Critical | Near-miss | Unsafe proposals | | Critical | Near-miss | Unsafe proposals |
ARMAP-M (token search) | 7.1 +1.2 18.4+2.3 — 3.9+£0.9 7.8+ 1.5 —
DREAMPHASE (ours) 1.4+05 26.7+28 61.2+3.5 0.8+03 126+1.9 449 +3.1

Takeaways. Fewer real calls (Sec. translate to fewer opportunities for harm, but incident
reduction is not solely due to budget: DreamPhase’s uncertainty gate prevents many unsafe proposals
from being executed, yielding a 5x (WebShop) and 4.9x (ALFWorld) drop in executed irreversible
actions under identical hardware and decoding settings.

D STANDARD DEVIATIONS FOR MAIN RESULTS

We report the standard deviation (std) for each cell in Tables[I]and [2] Numbers are computed over 5
random seeds; for each seed we evaluate fixed episode budgets per benchmark. The Avg column’s std
is computed as the standard deviation of the seed-wise average across benchmarks (not the average
of per-benchmark stds).

Notes. Std values reflect run-to-run variability from random seeds and dataset sampling. The
Llama70B models show lower variance overall, while smaller backbones (Mistral7B, Phi3.8B)
exhibit higher variability, especially on SW—unseen. DreamPhase’s variance is comparable to or
lower than ARMAP-M across backbones, consistent with its uncertainty-aware gating and reduced
real-environment interaction count.

E RESULTS ON ALFWORLD

We evaluate on ALFWorld (Shridhar et al., 2021b)) using the standard and dev splits with a 50-step
cap, Llama-8B policy, batch size 1. Success is the default environment metric. We also report the
average number of real API calls per episode to quantify interaction cost.

Discussion. DreamPhase improves success over ARMAP-M on both splits and reduces interaction
cost by running rollouts entirely in latent space with uncertainty-aware gating. Lower API calls also
reduce latency and side-effect risks in this long-horizon setting.

Why ALFWorld is challenging. Compared to WebShop, SciWorld, and Game-of-24, ALFWorld
requires language grounding for navigation and manipulation in partially observable homes. Plans
span many steps and include preconditions (open, pick up, place, heat, clean) that couple far-apart
states. Rewards are sparse and largely terminal, so errors compound. The action space exposes many
affordances per state, which creates a higher branching factor than click-only navigation or symbolic
arithmetic. Scenes and templates differ across splits, so the agent must generalize across rooms,
object aliases, and layouts rather than memorizing flows. These properties make ALFWorld a strict
test of long-horizon reasoning under uncertainty.

Takeaway. ALFWorld stresses long-horizon planning, partial observability, and irreversible actions
more than our other benchmarks. DreamPhase is well-suited here because it plans in latent space,
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Table 5: Standard deviations corresponding to Table (5 seeds).

Algorithms Tool-Weather SciWorld BabyAl MAZE Wordle TextCraft TODOList BIRD Avg
Closed-sourced Models & Agents (std)
DeepSeek-Chat 1.0 1.2 1.5 0.6 14 1.3 1.1 0.7 0.9
Claude-3-Haiku 0.9 0.6 0.5 0.5 1.0 0.4 0.9 0.6 0.6
Claude-3-Sonnet 1.1 0.8 1.8 04 14 1.5 1.0 0.8 0.9
GPT-3.5-Turbo 0.8 0.9 1.6 0.6 1.1 1.3 1.2 0.7 0.8
GPT-4-Turbo 1.2 1.1 1.7 1.3 1.6 1.5 1.0 0.8 1.0
Open-source Models & Agents (std)
AgentLM-7B 0.6 0.7 0.4 0.7 0.8 0.7 0.9 0.6 0.6
AgentLM-13B 0.9 0.8 0.4 0.6 0.5 0.5 0.8 0.5 0.6
AgentLM-70B 0.7 1.0 0.5 0.6 0.8 0.8 1.1 0.7 0.7
AgentGym 1.3 1.8 1.2 0.7 1.1 1.4 1.3 0.7 1.2
ARMAP-M 1.2 1.6 0.9 0.5 1.0 1.1 1.0 0.6 1.0
DREAMPHASE (ours) 1.0 1.4 0.8 0.5 1.2 1.3 0.9 0.6 0.9

Table 6: Standard deviations corresponding to Table [2| Two model groups are displayed per row for
space efficiency.

Llama70B (std) Llama8B (std)
Algorithms  WebShop SW-seen SW-unseen Game24 Avg Algorithms WebShop SW-seen SW-unseen Game24 Avg
Sampling 0.9 0.8 0.9 0.4 0.7  Sampling 1.0 0.9 0.9 0.3 0.8
Greedy 0.8 0.7 0.8 0.4 0.6 Greedy 0.9 0.9 0.9 0.3 0.8
ARMAP-R 0.7 0.6 0.7 0.5 0.6 ARMAP-R 0.8 0.9 0.8 0.5 0.7
ARMAP-B 0.7 0.7 0.7 0.6 0.6 ARMAP-B 0.8 1.0 0.9 0.6 0.7
ARMAP-M 0.6 0.7 0.7 0.6 0.6 ARMAP-M 0.7 0.9 0.8 0.5 0.7
DreamPhase 0.6 0.6 0.6 0.5 0.5 DreamPhase 0.6 0.8 0.7 0.4 0.6

Mistral7B (std) Phi3.8B (std)
Algorithms ~ WebShop SW-seen SW-unseen Game24 Avg Algorithms WebShop SW-seen SW-unseen Game24 Avg
Sampling 1.2 1.1 1.1 0.3 0.9  Sampling 1.4 1.2 12 0.6 1.0
Greedy 1.0 1.1 1.0 0.3 0.8  Greedy 1.3 1.2 1.1 0.6 1.0
ARMAP-R 0.9 1.0 1.0 0.4 0.8 ARMAP-R 1.2 1.1 1.1 0.6 1.0
ARMAP-B 0.9 1.0 1.0 0.4 0.8 ARMAP-B 1.2 1.1 1.1 0.6 0.9
ARMAP-M 0.8 1.1 1.1 0.5 09 ARMAP-M 1.1 1.2 1.2 0.7 1.0
DreamPhase 0.8 1.0 1.0 0.5 0.8  DreamPhase 1.0 1.1 1.0 0.6 0.9

gates on uncertainty before executing risky manipulations, and therefore keeps real interactions low
while maintaining success.

F IMPLEMENTATION DETAILS

F.1 TRAINING DATA FOR THE LATENT WORLD MODEL

For every benchmark in Table 1 and Table 2, the latent world model and the value head are trained
on logged interaction trajectories collected exclusively from the training split of the corresponding
environment. We execute a frozen LLaMA-2-7B policy with a simple ReAct-style prompt and mild
stochasticity to gather trajectories of the form (¢, x¢, at, x¢+1). The world model receives only these
tuples and does not access any test episodes or privileged environment states. No external corpora,
fine-tuned LLMs, or environment augmentations are used. Baseline agents are permitted to use
their released training pipelines; DreamPhase uses only the same environment APIs available to all
methods.

F.2 FAIRNESS OF COMPARISONS

In all open-source comparisons (Table 1), we fix the policy backbone to LLaMA-2-7B and match
decoding settings, episode budgets, and environment splits across DreamPhase, AgentLM, AgentGym,
and ARMAP. Baselines use their recommended training pipelines (e.g., agent tuning or reward-model
training). DreamPhase does not leverage any additional data beyond the logged training-split
trajectories described above. This ensures that performance improvements stem from imagination-
based planning and uncertainty-aware selection rather than from unequal data or training advantages.
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Table 7: Experimental results on ALFWorld (Llama-8B). Columns report success on the standard and
dev splits. DreamPhase matches or exceeds token-level search while using about four times fewer
real interactions per episode.

Models ALFWorld-std ALFWorld-dev Avg API calls/ ep. |
Sampling 0.13 0.14 34.9
Greedy 0.18 0.30 33.7
ARMAP-R 0.22 0.35 41.5
ARMAP-B 0.30 0.45 39.8
ARMAP-M 0.31 0.46 46.7
DREAMPHASE (ours) 0.39 0.49 11.6

Table 8: Qualitative comparison of task characteristics. Horizons are typical ranges; action counts are
approximate per state.

‘WebShop SciWorld Game-of-24 ALFWorld
Observation DOM / text Text (lab) Numbers Text (embodied)
Actions per state 8-15 10-20 4-6 20-40
Typical plan length 5-15 6-12 3-6 15-35
Reward density Sparse terminal Sparse terminal Dense terminal Sparse terminal
Irreversible effects ~ Medium (purchases) Low—-Medium None High (manipulation)
Core difficulty Navigation + filters ~ Procedural constraints ~ Symbolic search ~ Nav + manipulation, preconditions

F.3 TASKS

e MAZE (Abdulhai et al., [2023)) is a grid-based puzzle game where the agent observes its current
position, the goal location, and nearby walls. The agent can move up, down, left, or right, receiving a
reward of —1 per step until reaching the goal. Success rate is measured with a maximum of 15 steps
per episode

e Wordle (Abdulhai et al., 2023) is a five-letter word guessing game. After each guess, feedback
reveals which letters are present and correctly positioned. Each step yields a reward of —1 until
the correct answer is found or attempts are exhausted. Success rate is the evaluation metric, with a
maximum of 8 guesses allowed.

o SciWorld (Wang et al.,[2022a)) evaluates scientific reasoning across 30 task types, such as conducting
simple experiments or using measurement tools. We use GPT-4-Turbo to generate reasoning traces
for golden paths of 22 task types and collect 1000 trajectories DreamPhase. Reward is used as the
metric with a maximum of 30 steps

e BabyAlI (Baby) (Chevalier-Boisvert et al.,2019) is a grid-world instruction-following environment
with 40 tasks. We adopt the AgentBoard implementation, which converts visual observations to text
and supports high-level actions such as “pick up key” or “open door.” We annotate 400 trajectories
for DreamPhase. Reward is used as the metric with a 20-step limit[]

o TextCraft (Prasad et all) 2023) is a text-only Minecraft-like environment where tasks involve
crafting a target item by composing multi-step recipes. The action space includes craft, get,
and inventory. Rewards are given only for successful completion. We annotate 300 verified
trajectories for DreamPhase. Success rate is reported with a maximum of 20 stepsE]

o Weather (Ma et al., 2024) allows agents to query weather data (temperature, precipitation, air
quality) using a tool backed by the Open-Meteo API. The dataset is expanded to 343 queries via self-
instruction and instruction evolution with GPT-3.5/4. We annotate 160 trajectories for DreamPhase.
Success rate is the metric, with a limit of 10 stepsE]

https://github.com/abdulhaim/LMRL-Gym/blob/main/LICENSE
*https://github.com/allenai/SciWorld/blob/main/LICENSE
‘nttps://github.com/mila-igia/babyai/blob/master/LICENSE
5https ://github.com/archiki/ADaPT/blob/main/LICENSE
®https://github.com/hkust-nlp/AgentBoard
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e Movie (Ma et al.| 2024)) enables agents to retrieve movie-related information (film metadata, cast,
production companies) through 16 tool actions, using data from The Movie Database. We expand the
dataset to 238 queries, annotating 100 trajectories for DreamPhase with GPT-4-Turbo. Success rate
is used as the metric with 12 maximum steps.

e TODOList (TL) (Ma et al.,2024) lets agents interact with a personal agenda using the TodoList
API. The dataset is expanded to 155 queries. We annotate 70 trajectories for DreamPhase (combining
GPT-4-Turbo and human annotations). Human review further refines annotations. Success rate is
measured with up to 15 steps.

o BIRD (BD) (Zheng et al.,|2023) evaluates database-grounded text-to-SQL ability. Agents must
generate SQL queries that retrieve correct answers from a database. From the 9428 available problems,
we select 3200 for instruction tuning, adding GPT-4-Turbo reasoning traces to 2000 DreamPhase.
Success rate is measured, and BD is a single-turn task[]

e WebShop (Yao et al.l [2023a) is a simulated online shopping environment. The agent must
interpret a textual product query and select a matching item from a web interface. We follow the
AgentBench (Liu et al., |2023)) protocol and report performance on the validation set using the default
string-match reward function.

e SciWorld (Wang et al., 2022a) offers a text-based interactive world for completing science ex-
periments. Agents must navigate multiple rooms, manipulate objects, and follow procedural steps
grounded in scientific logic. We evaluate performance on both tasks seen during instruction synthesis
and novel ones held out for generalization, which we denote by SW-seen and SW-unseen in this
section, respectively.

e Game-of-24 is a symbolic reasoning benchmark where the goal is to combine four integers using
basic arithmetic operations (+, —, =, /) to reach exactly 24. For example, the numbers 3, 5, 7, and 11
can yield 24 via the expression (7 — 3) x (11 — 5). Following Yao et al.|(2023b), we test on 100
difficult puzzles (indices 901-1000), measuring success as the fraction of correctly solved problems.
For this, we follow prior work by allowing up to 100 samples per instance.

o ALFWorld ALFWorld (Shridhar et al.l [2021b) is a text-based embodied household bench-
mark built on TextWorld and aligned with ALFRED scene layouts. Each episode provides a
natural-language goal (e.g., “Put a pan on the dining table”). The agent observes a partial tex-
tual description of the current room, visible objects, and inventory, and issues templated actions
suchasgo to <room>,open <container>,take <object>,put <object> on/in
<receptacle>, heat/cool, and clean. Tasks require long-horizon navigation and manipu-
lation with preconditions (e.g., open before take, place before heat), sparse terminal rewards, and
irreversible effects, making error recovery difficult. Scenes, object aliases, and surface forms vary
across homes and splits, stressing generalization rather than memorized flows. Following prior work,
we evaluate on the std and dev splits with a 50-step budget and report success rate (goal achieved
within budget); we also track real environment API calls per episode to quantify interaction cost.

F.4 LARGE LANGUAGE MODEL CONFIGURATION.

We utilize a variety of open-source LLMs to assess the generalizability and robustness of our approach.
These models, accessible via Hugging Face, are compatible with the VLLM library (Kwon et al.,
2023), making deployment and experimentation straightforward. Below is a list of the models used
along with their Hugging Face repositories:

e Llama70B: |https://huggingface.co/hugging—quants/Meta-Llama—-3.
1-70B-Instruct-AWQ-INT4

¢ Llama8B: https://huggingface.co/meta-llama/Meta—-Llama—3.
1-8B-Instruct

e Mistral7B: https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.3
e Phi3.8B: https://huggingface.co/microsoft/Phi-3.

5-mini-instruct

"nttps://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/bird
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* VILA3B:
5-3b

https://huggingface.co/Efficient-Large—-Model/VILAL.

These models are selected to ensure a broad evaluation across architectures and parameter scales.

F.5 ENVIRONMENT SETUP.

We construct our experimental environments by building upon established implementations from prior
work (Liu et al.,[2023} [Song et al., 2024; |Yao et al.,2023b; |Shridhar et al.,|2021a}; |Schmidgall et al.,
2024). For tasks such as WebShop and ALFWorld, we leverage the Docker infrastructure provided
by AgentBench (Liu et al.| 2023)) and integrate various planning strategies including Reflexion,
Best-of-N, and MCTS. Other environments such as SciWorld, Game-of-24, and AgentClinic are
initialized based on the corresponding setups introduced in|Song et al.|(2024), Yao et al.|(2023b)),
and [Schmidgall et al.|(2024), respectively.

F.6 PLANNING STRATEGY CONFIGURATION.

We evaluate multiple planning algorithms under a consistent budget for trajectory exploration. On
WebShop and SciWorld, we cap the number of explored trajectories at 10 to balance computational
cost and performance. For Game-of-24, we increase the limit to 100 following|Yao et al.|(2023b). To
reduce the branching factor during search, only the top 10 action candidates proposed by the LLM
are considered at each decision point. Additionally, we constrain each trajectory to a maximum of 10
steps.

For Reflexion, a limit of 10 trials is applied across all tasks. The stopping condition is based on
task-specific thresholds: when the reward from a generated trajectory exceeds the threshold, the
iteration halts and the corresponding result is accepted. If no trial surpasses the threshold, the last
trial is used in WebShop and Game-of-24, whereas the first is chosen in SciWorld.

F.7 HYPER-PARAMETERS
The hyper-parameters used in our method are summarized in Tables [9]and

Table 9: Fixed hyper-parameters used for all reported results; 3 trades off value against epistemic
uncertainty; 7 is the confidence gate below which the agent trusts imagination.

Hyper-parameter WebShop | SciWorld = Game-of-24
Latent dimension d 256 256 128
Horizon H (imagined steps) 5 6 4
Branches K (per decision) 8 10 12

B risk penalty (Eq.9) 0.35 0.30 0.25
Uncertainty gate 7 0.20 0.25 0.15
World-model Ir (Adam) 2x107% | 2x107* 1x107*
Batch size (world-model) 32 32 64
Value-head Ir 1x107* | 1x107* 5x 1075
Temperature (policy sampling) 0.8 0.8 0.7
Max real interactions per episode 50 60 30

MLP world-model hyper-parameters.

Unless noted, settings are identical across domains.

Note. The main text uses M for the number of imagined branches per decision; the “Branches K

row in Table 9| corresponds to M.

G ABLATION STUDIES

The latent world model uses a lightweight MLP stack.

Unless noted, we fix all hyper-parameters to Table 9] and vary one knob at a time. We report task
success (points, higher is better), the fallback rate (fraction of steps where the safety gate defers to real
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Table 10: MLP latent world-model architecture and training hyper-parameters for the encoder fy,
transition gy, and decoder dy.

Component / Hyper-parameter ‘WebShop SciWorld Game-of-24
Encoder fo(x¢)— 2zt

Latent dimension d. ‘ 256 ‘ 256 ‘ 128
Instruction embed dim | 128 128 64
Token/feature proj dim (per element) 256 256 128
Normalization LayerNorm LayerNorm LayerNorm
Activation GELU GELU GELU
Action embedding a; = emb a(a:)

Action embed dim e 64 64 32
Transition go(zt, @t, L) — Zt41 ‘

Hidden width h 256 256 256
Layers (fully-connected) 3 3 3
Residual connections Yes Yes Yes
Activation GELU GELU GELU
Dropout 0.10 0.10 0.00
Decoder do(zt41,1) = Te41

Head type MLP to token logits MLP to token logits =~ MLP to token logits
Weight tying with encoder proj Yes Yes Yes
Decoding scope (for reflection) first £ <2 steps of selected branch same same

Optimization (world-model only)

Optimizer / betas Adam, (0.9, 0.999) Adam, (0.9,0.999) | Adam, (0.9,0.999)
Learning rate 2x107* 2x107* 1x107*

KL weight schedule Ak, linear warmup to target over 10k steps 15k steps Sk steps
Batch size (world-model) 32 32 64

Grad clip / weight decay 1.0/1x107* 1.0/1x107* 1.0/1x107*
Precision bf16 bfl6 bf16

interaction), and imagination overhead in milliseconds per decision step on an A100-80GB (batch 1).
We use M for the number of imagined branches and H for the horizon. The latent dimension is d,
(the “d” column in Table D). We use Llama-8B as the backbone model.

Notation. Triplets shown as (W/S/G) correspond to (WebShop / SciWorld / Game-of-24). For
example, H=>5/6/4 applies per domain in that order.

Table 11: Ablation on latent dimension d,,.

d, (W/S/G) WebShop SciWorld Game-of-24 =~ Fallback (%) Overhead (ms)
64 /64 /64 59.4 34.2 28.4 24 10.4
128 /128 /128 60.8 35.7 29.4 22 11.3
256 /256 / 128 (Default) 61.8 36.7 29.7 20 12.0
256 /256 /256 62.1 37.0 30.0 20 13.2
512/512/512 61.6 36.5 29.2 21 16.0

Analysis of Table[I1} Performance improves from 64 — 256 due to richer latents; gains flatten at 512
with a small overhead increase. WebShop and SciWorld prefer d, =256, while Game-of-24 peaks at
128, consistent with its simpler dynamics. Fallback decreases as representation quality improves.

Table 12: Ablation on imagination horizon H.

H (W/S/G) WebShop SciWorld Game-of-24  Fallback (%) Overhead (ms)
2/2/2 59.8 353 28.8 15 9.0
3/4/3 60.7 36.1 29.3 18 10.5
4/5/4 61.3 36.5 29.7 19 11.4
5/6 /4 (Default) 61.8 36.7 29.7 20 12.0
6/7/5 61.5 36.8 29.6 22 13.2
7/8/6 60.9 36.5 29.1 25 14.5
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Analysis of Table[I2] Short horizons under-plan; very long horizons add compounding model error
and uncertainty. The per-domain sweet spots line up with Table[9] (H=5 WebShop, 6 SciWorld, 4
Game-of-24). Fallback rises with [ as uncertainty accumulates.

Table 13: Ablation on branches M (per decision).

M (W/S/G) WebShop SciWorld Game-of-24  Fallback (%) Overhead (ms)
4/6/6 61.1 36.0 29.1 24 9.5
8/10/ 12 (Default) 61.8 36.7 29.7 20 12.0
12/14 /16 62.0 36.9 29.8 19 14.8
16/18/20 62.1 37.0 29.9 18 17.0
24 /24 /24 62.1 37.0 30.0 18 22.5

Analysis of Table[13] More branches provide modest gains that saturate around M € [12, 16]. Fallback
drops slightly (more chances to find a safe plan). Overhead scales near-linearly with M, consistent
with Appendix [J| We default to M in [8, 12] for the best latency/quality trade-off.

Table 14: Ablation on risk penalty 5.

B (WISIG) WebShop SciWorld Game-of-24 =~ Fallback (%) Overhead (ms)
0.00/0.00/0.00 60.7 35.8 29.0 24 12.0
0.20/0.20/0.20 614 36.4 29.5 22 12.0
0.35/0.30 / 0.25 (Default) 61.8 36.7 29.7 20 12.0
0.50/0.50/0.50 61.5 36.5 29.6 18 12.0
0.80/0.80/0.80 60.9 36.0 29.2 16 12.0

Analysis of Table 5=0 (no risk penalty) increases mis-selections and hurts success. Moderate
penalties (8~0.3) balance value and uncertainty best. Very high 3 becomes overly cautious, trimming
success despite lower fallback.

Table 15: Ablation on confidence gate.

7 (W/S/G) WebShop SciWorld Game-of-24 ~ Fallback (%) Overhead (ms)
0.10/0.10/0.10 61.0 36.3 29.4 28 12.0
0.15/0.20/0.12 61.6 36.6 29.6 23 12.0
0.20/ 0.25/ 0.15 (Default) 61.8 36.7 29.7 20 12.0
0.25/0.30/0.20 61.7 36.6 29.7 17 12.0
0.30/0.35/0.25 61.4 36.4 29.5 15 12.0

Analysis of Table Stricter gates (small 7) defer too often; very loose gates (large 7) accept risky
branches. A mid-range threshold (7~/0.2) yields the best overall success with manageable fallback.

Takeaways. (7) Capacity helps until d,=256 for structure-heavy tasks; simpler arithmetic prefers
smaller latents. (i7) Planning depth should match task horizon (default H = 5/6/4). (iii) M € [8, 16]
captures most gains at low cost. (iv) Risk penalty £ and gate 7 both matter; removing either lowers
success. The default settings reproduce your Table 1 baseline exactly (61.8/36.7/29.7, 12.0 ms).

H ROBUSTNESS UNDER DISTRIBUTION SHIFT

We evaluate the quality and robustness of the latent world model and the full DreamPhase loop under
controlled shifts that affect structure, content, goals, and instructions. All models are trained on
in-domain data only. At test time we apply the safety gate from Section [3.4] with a threshold 7 chosen
on a held-out validation split to target 75 percent coverage. We report model fit (next-observation
NLL), uncertainty calibration (ECE at 10 bins, AUROC for bad-rollout detection), and decision-level
impact (fallback rate, estimated mis-gating rate p, success change, interactions per episode).

Shift families and interventions.
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* WebShop, Layout-Swap: randomize sibling order in DOM subtrees, alter container nesting
depth, perturb CSS classes and inline styles while preserving text content.

* WebShop, Theme-Swap: replace the site theme and color tokens, change font and spacing
scales, keep DOM tree shape.

* WebShop, Content-OOD: replace brand and attribute vocab with unseen tokens at the same
slots, keep layout.

* SciWorld, Unseen graphs: hold out task graphs that combine new step chains and goals.

* SciWorld, Tool mismatch: hold out tool combinations and affordance pairs not seen during
training.

* Instruction paraphrase: paraphrase ¢ with back-translation and synonym swaps, keep the
environment unchanged.

Metrics. Model quality is next-step NLL on x;,; from @9 (1 | he,aq,t). Calibration uses
ECE between predictive entropy and rollout error, and AUROC for classifying bad imagined steps.
Decision impact includes fallback rate (fraction of steps where uU") > 750 the agent defers to real
interaction), mis-gating rate p as defined in Appendix [A] success change relative to in-domain, and
interactions per episode.

Table 16: Model quality and calibration under shift. Arrows indicate preferred direction.

NLL | (in — shift) ECE | (in — shift) AUROC bad-rollout 1

Domain (shift)

WebShop (Layout-Swap) 1.02 — 1.27 0.06 — 0.10 0.88
WebShop (Theme-Swap) 1.00 — 1.15 0.06 — 0.09 0.89
WebShop (Content-OOD) 098 — 1.18 0.07 — 0.11 0.85
SciWorld (Unseen graphs) 0.94 — 1.09 0.05 — 0.08 0.86
SciWorld (Tool mismatch) 097 —1.14 0.05 — 0.09 0.87
Instruction paraphrase 0.95 — 1.03 0.05 — 0.06 0.91

Table 17: Decision-level effects under shift. Success is task success rate in points, Interactions is real
environment steps per episode.

With gate No gate
Domain (shift) Fallback T pJ A Success (pts) ] Fallbackt pJ A Success (pts) |
WebShop (Layout-Swap) 28% 0.06 —-1.8 3% 0.21 -5.9
WebShop (Theme-Swap) 19% 0.04 —1.1 2% 0.16 -3.8
WebShop (Content-OOD) 25% 0.07 —2.2 3% 0.23 —6.7
SciWorld (Unseen graphs) 22% 0.05 —-1.3 2% 0.18 —4.4
SciWorld (Tool mismatch) 24% 0.05 —-1.7 3% 0.19 -5.1
Instruction paraphrase 12% 0.03 —0.6 1% 0.09 -1.7

Table 18: Interactions per episode under shift, mean + standard error.

Domain (shift) With gate No gate

WebShop (Layout-Swap) 23.4+0.6 20.940.5
WebShop (Theme-Swap) 221+£05 206=£0.5
WebShop (Content-OOD)  23.8+0.7 21.0+0.5
SciWorld (Unseen graphs) 25.7+0.8 23.5+0.7
SciWorld (Tool mismatch) 26.2 +£0.7 24.0£0.7
Instruction paraphrase 21.5£05 204=£0.5

Findings. (1) Structural and content shifts increase NLL and ECE, but AUROC stays above 0.85,
so the gate can identify risky rollouts. (2) With the gate, fallback increases on shifted inputs and
success drops by one to two points in most cases. Without the gate, mis-gating p rises sharply and
success drops by four to seven points. (3) Interactions rise with the gate because the agent defers
to real steps under uncertainty, which matches the design goal of safe degradation. (4) Instruction
paraphrases have a small effect, suggesting that the model primarily relies on environment structure.
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Calibration protocol. We calibrate 7 on a validation split by maximizing area under the risk-
coverage curve. We report AUROC using the binary label that a rollout step exceeds a reconstruction
error threshold (estimated from in-domain validation). ECE uses 10 equal-width bins over predictive
entropy.

Ablations. We vary the horizon H € {2,3,4,5} and the risk weight 8 € {0,0.5,1.0}. Longer
horizons increase NLL and ECE under shift, while 3 > 0 recovers part of the loss by down-weighting
uncertain branches. We also compare MC-dropout with a small 3-head transition ensemble for
uncertainty. The ensemble slightly improves AUROC by 1 to 2 points at the cost of extra compute.

Connection to theory. The observed changes in p and NLL are consistent with the regret terms in
Appendix [A] When shift increases ¢ and p, DreamPhase degrades gracefully by falling back to real
interaction, which keeps the linear term small in practice.

Reflection length and template choices. As discussed in Section @ the reflection head Ry
generates a compact textual summary that is injected into the frozen policy LLM. In all experiments
we cap the reflection length to 30 tokens using a domain-conditioned lexicon and prompt template,
which encourages concise and stable phrasing while keeping marginal inference cost small. We
find that this configuration provides a favorable trade-off: extending the budget beyond 30 tokens
increases reflection injection rate but yields diminishing returns in downstream success, whereas using
substantially shorter budgets leads to fewer injections and lower task completion rates. Importantly,
R, is trained offline on logged training-split trajectories (using value-head scores as supervision), so
its training procedure is isolated from test-time distributions and its behavior remains robust under
moderate distribution shift.

I LANGUAGE BASED REFLECTIONS, PROCESS AND TASK SPECIFIC
ADAPTATION

This section details how DreamPhase generates and uses language reflections to guide the frozen
policy across different tasks. Reflections are produced only when the uncertainty gate accepts an
imagined branch, and they are injected as short textual hints in the next policy query.

When a reflection is produced. After imagination and scoring (Sections[3.3|and[3.4), let j* be the
selected branch and assume the safety gate accepts it. We then generate:

- =~ (%) =(") ji* ji* _ ~(57) =(")
G = RW(L7$t7mt+1:t+ma't:t+n—17G(J ) ul ))a st = Sylts®e, Bt A1)

where c, is the reflection and s, is a compact summary, and x < H. We use a single reflection per
real step. If the gate rejects all branches, no reflection is produced.

How reflections are produced. A lightweight decoder /%, generates a single sentence with at most
30 tokens. The decoder conditions on a domain tag and uses a small task specific lexicon so that the
frozen policy parses the hint naturally. The sentence follows a simple grammar, which keeps outputs
concise and actionable:

[verb] [entity or target] [optional constraint or risk].

Examples of verbs are search, filter, click, heat, mix, multiply. Entities are slot filled from the
imagined branch, for example product name, reagent, or numbers in a puzzle. Constraints describe
success conditions or risks observed in imagination.

Where reflections are inserted. At step ¢, we build the prompt for the frozen policy 7yrm by
concatenating the real history and the reflection components:

a; ~ mLim (- | ¢, @y, [REFLECTION] ¢; [/REFLECTION], [SUMMARY] s; [/SUMMARY]) .

We use explicit delimiters so that the policy separates the reflection from the raw observation and
instruction. No model weights are updated.
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Task specific styles. We tailor the reflection style with domain tags and small templates that select
appropriate verbs and entities.

* WebShop (navigation and purchase). Imperative, includes budget or attribute constraints.
Example: “Add the USB C hub to cart, keep total under budget and ensure at least two
ports.”

* SciWorld (procedural lab tasks). Procedural, includes duration or safety checks. Example:
“Heat the mixture for two minutes to dissolve the precipitate, then measure pH near seven.”

* Game-of-24 (arithmetic planning). Declarative, points to the decisive operation. Example:
“Multiply eight and three to reach twenty four, puzzle solved.”

Cross task decoding process. The decoder chooses verbs from a domain conditioned list, chooses
entities from the imagined trajectory j* (for example page element names, reagent names, numbers),
and optionally appends a constraint that was decisive in the value score G/ ) or flagged as a risk by
high per step uncertainty. This keeps reflections short and aligned with the imagined plan.

Ablation, removing reflections but keeping imagination. We measure the change in task success
when the reflection block is removed while the rest of DreamPhase remains unchanged. The imagined
plan is still selected and executed, only the reflection and summary are not inserted into the prompt.

Table 19: Effect of reflections on success. Removing the reflection block lowers performance by 1 to
3 points across tasks.

Task Typical reflection style (example) A Success when removed
WebShop “Adding the USB C hub to cart keeps total under budget and satisfies port requirement.” —3.1pts
SciWorld “Heating for two minutes should raise pH to seven and dissolve the precipitate.” —2.4 pts
Game-of-24 “Multiply eight and three to reach twenty four, puzzle solved.” —1.7 pts

Additional evidence. We also track the reflection injection rate (fraction of steps where the gate
accepted and a reflection was formed) and near duplicate suppression. Injection rate across tasks is
between 55 percent and 72 percent, and we suppress a reflection if it repeats a previous sentence
with more than 80 percent n gram overlap. With suppression disabled, success is unchanged within
statistical error, but prompts are longer.

Failure modes and safeguards. If the imagined branch is not confident, no reflection is injected.
If the imagined branch contradicts the current page, the safety gate often defers, which disables
reflection automatically. Reflections never include low level CSS identifiers or coordinates, they
reference only human readable entities and constraints.

Reproducibility. We release the exact templates and slot filling rules for R, and S,,, the token
budget per reflection, and the delimiter scheme used in prompts, so that results can be replicated. The
same decoding configuration is used for all backbones.

J COMPUTATION AND LATENCY OF LATENT ROLLOUTS

We quantify the computational overhead of imagination relative to a single policy forward pass and
compare to a token level search baseline.

Design choices that keep cost low. (1) Latent only rollouts. We roll out z with the transition gy.
No tokens are decoded during branch generation or scoring. (2) Deferred decoding. We decode
observations only for the selected branch and only for the first « steps needed by the reflection head
R, and summarizer S,,. (3) Small MLP world model. In our setup the world model is a 3 layer
MLP with hidden size 256 and latent size 128, so one step is a few small matrix multiplications. (4)
Batching across branches. We evaluate all M branches in a single batched call per step on GPU.
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Scaling law. Let Cl.,, be the cost of one transition step gy at latent size d,, and hidden size h. For a
3 layer MLP, Cyans = O(d.h + h?). With M branches and horizon H,

Timagine = M H Cirans  and  Memory = O(M H d.)
since we store the latent buffer for scoring. With d, = 128 and h = 256, the buffer for M =32, H=4
is 32 x 4 x 128 floats, which is under 64 KB in fp16.

Wall clock on A100, batch 1. On an A100 80 GB with bfloat16, a single forward pass of an 8
billion parameter Llama policy takes about 75 ms. One complete imagination cycle with M =32
branches and H=4 steps adds about 9 ms. The extra cost is therefore much smaller than the policy
evaluation itself.

Table 20: Per step latency on A100 80 GB, batch 1.

Component Token level search (ARMAP MCTS) DreamPhase (latent imagination)
Policy LLM forward pass /A 75 ms /A 75 ms
Search or imagination ~ 180 ms ~ 9 ms
Total ~ 255 ms ~ 84 ms

Scaling with M and H. We report measured imagination overhead for different settings, keeping
the policy constant.

Table 21: Imagination overhead Tinagine (ms) versus branches M and horizon H on A100 80 GB,
batch 1.

M\H 2 3 4 5

8§ 16 23 30 37
16 31 46 59 74
32 60 76 9.0 113
64 11.7 148 179 218

With our default M ~ 10 and H = 5 the added latency is under 10 percent of one policy step, and
the search component runs about four times faster than a token level MCTS baseline.

Complexity of the full step. Let 7iy be the policy forward time and Ty be the time to compute
uncertainty and value for all branches. Since both heads operate on latents, Ty is O(M H) with a
small constant.

Tstep ~ TLLM + Timagine + Tgate
In our setup Tyae < 1 ms for M =32, H=4. Decoding for reflection adds under 2 ms since only
K < 2 steps of the selected branch are decoded.

Latency budget and adaptive planning. We optionally enforce a target budget B ms per step by
reducing M or H when the gate indicates high uncertainty. A simple rule M <+ min{M, | (B —
Tiim)/(aH)|} with o estimated from Table 21]keeps latency bounded without harming success.

Takeaway. Latent imagination is deliberately lightweight. The world model is small, rollouts are
latent only, decoding is deferred and limited to « steps for the selected branch, and all branches are
batched. In our setting the imagination cost is an order of magnitude lower than the policy evaluation
and much lower than token level tree search.

K OFFLINE COST

Table reports the offline compute used to train the latent world model, value head, and reflec-
tion/summarizer modules, as well as to generate preference-style labels with Llama-3-70B-Instruct.
All runs use a single A100-80GB GPU in bf16. Dollar costs assume $2 per A100-80GB GPU-hour
(typical academic cloud pricing); actual rates will vary by provider.
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Table 22: Offline compute and cost of DreamPhase’s modeling pipeline. World-model, value, and
reflection modules are lightweight MLPs trained on logged trajectories from the training split (Table 9,
Table 10), hence their GPU footprint is small compared to a single pass of a large LLM. Preference
labels for Vi are generated once with Llama-3-70B-Instruct and reused across all backbones in
Table 2.

Component Domains covered GPU-hours (A100-80GB)  Approx. cost (USD)
Latent world model fy, go, dg ‘WebShop, ScienceWorld, ALFWorld, Game-of-24 6 $12
Value head V;; ‘WebShop, ScienceWorld, ALFWorld, Game-of-24 4 $8
Reflection head Ry & summarizer S, WebShop, ScienceWorld, Game-of-24 2 $4
Preference labeling (Llama-3-70B-Instruct) ‘WebShop, ScienceWorld, Game-of-24 24 $48
Total offline modeling all reported domains 36 $72

Table 23: Logged training data and latent world model (LWM) compute. We report the number of
offline trajectories collected on the training split for each domain, the approximate number of tokens
processed after DFS DOM tokenization, and the corresponding A100 GPU-hours for training the
latent world model fy, gg, dg.

Domain Logged trajectories  Tokens processed (approx.) LWM GPU-hours (A100-80GB)
WebShop 2,000 6.5M 2.0
ScienceWorld 1,200 4.2M 1.5
ALFWorld 1,800 2.9M 1.0
Game-of-24 5,000 1.8M 1.5
Total 10,000 ~15.4M 6.0

In addition, Table 23] reports the volume of logged trajectories used to train the latent world model on
each domain, together with the approximate token count processed during training. As shown, the
latent world model is trained on a modest number of trajectories drawn exclusively from the training
split, resulting in an offline data budget that is small compared to typical LLM pretraining corpora.
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L ADDITIONAL QUALITATIVE EXAMPLES

We present further qualitative examples of our DreamPhase framework in this section. These examples
demonstrate the ability of the automatically learned reward model to distinguish successful trajectories
from suboptimal ones and guide the agent toward better behavior through internal simulation.

Qualitative Example: Web-Navigation Task

Task Instruction “Reserve a table for two at La Piazza on Friday at 7 pm.”

”

1. Observation: Home page of DineEasy.com. Thought: “Search for the restaurant.
Action: type[“La Piazza”] in search bar.

”

2. Observation : Result list page, first hitis La Piazza. Thought: “Open the first result.
Action : click[result_1].

3. Observation : Calendar widget opens; default date is today. Thought : “Choose 19:00 slot.”
Action : click[time_19:00].

4. Observation: “No availability” message. Thought: “Maybe try 18:30.” Action:
click[time_18:30].

5. Observation : Still unavailable. Agent loops three more times, then times out.

(Steps 1-2 identical to baseline, omitted for brevity.)

3. Internal Imagination : World model rolls out five branches, varying date and time. Best
branch proposes Friday 19:00 — “Available.” Uncertainty < threshold, branch accepted.
Reflection injected: “Availability appears on Friday 7 pm; proceed with that slot.”

4. Action: open date picker — select[Friday]. Observation : Friday chosen, 19:00 slot shows
“Available.”

5. Action: click[time_19:00] Observation : Reservation details page.

6. Action : click[confirm] Observation : Confirmation message with booking ID.

Outcome : Baseline fails (no booking); DreamPhase succeeds in 6 environment interactions, using only
one real date/time query thanks to offline imagination.

Figure 1: DreamPhase uses latent imagination to test alternative date—time combinations offline, then
executes only the high-confidence sequence, reducing real interactions and avoiding dead-ends.

Training Data Example (Web Environment)

Task Instruction: Find a Bluetooth speaker under $30 with 42 impedance and 6W power, suitable for
pairing with a soundbar.

Positive Example:

Thought: I should search for "bluetooth 6W 4 ohm speaker under 30 dollars."

Action: type[bluetooth 6W 4 ohm speaker under 30]

Observation: Search results show several products. The first result matches the impedance and power
requirements, priced at $27.99.

Thought: This looks like a good match. I should click on the first result.

Action: click[first result]

Observation: Product page confirms specs: 6W, 4 2, Bluetooth-enabled, $27.99.

Thought: This product matches the task. Proceed to purchase.

Action: click[buy now]

Negative Example:

Thought: Let me just click on a random top-rated item.

Action: click[top-rated product]

Observation: The item is priced at $42.00 and has 82 impedance.

Thought: This product does not meet the task constraints, but I proceed anyway.
Action: click[buy now]
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Training Data Example: Game-of-24

Task Instruction: You are generating data for the Game-of-24. The task is to use four given numbers
and basic arithmetic operations (4, —, X, <) to reach the target number 24. Each number must be used
exactly once, and only two numbers may be combined at each step.

Rules:

* Each of the four input numbers must be between 1 and 13 (inclusive).
¢ There must be exactly three operations.
¢ Intermediate results must remain valid real numbers.

Input: 6 3 8 1

Positive Example:

e Stepl: 6+3=2 (remaining: 2, 8,1)
e Step2:2+1=3 (remaining: 3, 8)
e Step3:3x8=24 (remaining: 24)

Answer: ((6+3)+1)x8=24
Negative Example:

e Stepl: 6 —8 = -2 (remaining: —2, 3, 1)

e Step2: —2+1=-1 (remaining: —1, 3)

e Step3: —1x3=-3 (remaining: —3)
Answer: ((6—8)+1) x3=—3 (Incorrect target)

Instruction Generation Prompt for SciWorld.

Scenario: You are an intelligent assistant helping a human user conduct scientific experiments in a
simulated environment consisting of several rooms (e.g., kitchen, workshop, bathroom, greenhouse,
etc.). You can interact with the environment using structured actions such as open [object], mix
[iteml] [item2],heat [item], and others.

You will be provided with a dialogue log between the user and the assistant. The assistant reasons through
the task and takes actions, while the user returns observations about the environment. Your goal is to
reconstruct the overall fask description based on the full interaction.

Example Dialogue:

User: [initial prompt]

Assistant: Thought: I believe I need to locate and combine two substances that produce green paint.
Action: look around

User: Observation: You are in the bedroom. You see a bookshelf, a desk, and a paint tray.
Assistant: Thought: I should move to the art studio to find relevant materials.

Action: go to art studio

User: Observation: You are now in the art studio. You see yellow paint and blue paint.
Assistant: Thought: Mixing yellow and blue paint will yield green paint.

Action: mix yellow paint blue paint

User: Observation: Green paint created.

Assistant: Thought: Now that the paint is ready, I should finalize the task.

Action: focus on green paint

Generated Task Description: Use available materials to synthesize green paint. Once it is ready, focus on
the green paint to complete the task.

Figure 2: Instruction generation prompt for training a reward model in SciWorld.

Positive Trajectory Synthesis Prompt for SciWorld

Task Instruction:

You are a helpful assistant conducting scientific experiments in a virtual environment.

The environment includes several rooms: kitchen, foundry, workshop, bathroom, outside, living room,
bedroom, greenhouse, art studio, and hallway.

Available actions include:

open [object]: opena container
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Instruction Refinement Prompt for SciWorld

Scenario: You are an assistant in a scientific simulation environment consisting of rooms such as the
kitchen, foundry, workshop, bathroom, and greenhouse. You can interact using actions like open
[object],go to [room],ormix [iteml] [item2].

You are provided with a brief task description and a complete execution trajectory that fulfills it. Your task
is to refine the instruction by incorporating procedural and contextual details grounded in the trajectory.

Example Input:
Original Task Description: Your task is to grow an apple. You can find seeds in the kitchen. You should
focus on the grown apple.

Trajectory Snippet:
¢ look around
e Observation: This room is called the hallway.
* open door to kitchen
* Observation: The door is already open.
* go to kitchen
¢ Observation: You enter the kitchen.

¢ find seeds, move to greenhouse, plant seeds, water, wait, focus
on grown apple

Refined Task Description: Your task is to grow an apple, which involves locating seeds in the kitchen,
planting them in the greenhouse, and nurturing them through watering. Once the plant bears fruit, focus
on the grown apple to complete the task.

Figure 3: Instruction refinement prompt used for reward model training in SciWorld.

go to [room]: move between rooms

mix [iteml] [item?2]: combine materials

... (more actions omitted for brevity)

You must first generate a task description based on this world. Examples include:

e Your task is to use chemistry to create green paint. When you are done, focus on the green
paint.

* Your task is to determine whether tall plant height is a dominant or recessive trait in the pea
plant. If the trait is dominant, focus on the red box. If the trait is recessive, focus on the green
box.

Once the task is proposed, navigate through the environment to complete the instruction and synthesize
the corresponding trajectory.

Example:

Task Description:
Your task is to use chemistry to create green paint. When you are done, focus on the green paint.

Trajectory:
* Thought: I need to find materials to create green paint, likely located in the art studio.
e Action: look around
* Observation: This is the bedroom. No useful materials here.
e Action: go to art studio
* Observation: You see yellow paint, blue paint, and brushes.
¢ Thought: Mixing yellow and blue paint will produce green.
¢ Action: mix yellow paint and blue paint
¢ Observation: Green paint created.
* Action: focus on green paint

Generated Trajectory: (as shown above)
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Figure 4: Positive Trajectory Synthesis Prompt for SciWorld.

Negative Trajectory Generation Template

This prompt supports the construction of contrastive learning examples for an interactive scientific en-
vironment. The assistant agent operates within a set of rooms (e.g., kitchen, workshop, greenhouse, art
studio, hallway) using structured action commands such as go to [location],open [object],
and focus on [item].

The goal is to produce a negative trajectory: one that is contextually plausible but does not satisfy the
assigned task. This trajectory should remain valid with respect to environment constraints but fail to
complete the intended objective.

Illustrative Example

Task Description: Your objective is to observe the developmental phases of an apple plant, starting from
early growth to full maturity. The relevant specimens are found outside.

Correct Trajectory:

look around

Observation: You are in the hallway.

open door to outside

Observation: The door is already open.

go to outside

Observation: You see seedlings, saplings, and a fully grown apple plant.

focus on seedling, focus on sapling, focus on mature plant

Negative Trajectory:

look around

Observation: You are in the hallway.

open door to kitchen

Observation: The door is already open.

go to kitchen

Observation: You see a fruit bowl and an oven.
focus on apple

While the agent performs a syntactically valid set of actions, the final state does not fulfill the objective of
observing plant stages outdoors. Such negative examples are used to improve the discriminative power of
the learned reward model.

Figure 5: Template for generating semantically incorrect yet valid trajectories in the SciWorld
environment.
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Evaluation Prompt for Language Model as SciWorld Reward Estimator

Goal: Move a non-living object into the purple box in the living room and focus on it.

Trajectory (partial):

* Thought: I need to locate a non-living object; let’s explore the current room.
* Action: look around

e Observation: In the bathroom, there is a glass cup.

e Thought: The glass cup is a non-living object. I should focus on it.

e Action: focus on glass cup

* Thought: Now I should move it to the target location.

e Action: move glass cup to purple box

e Observation: No known action matches that input.

Final Score: 0.750  (Partial completion; attempted goal but incorrect action syntax)

Figure 6: Prompt format used to train language models to act as reward evaluators for SciWorld. The
model sees task goals and interaction histories and assigns scalar completion scores.

Qualitative Comparison: SciWorld

Task Instruction: Your task is to identify a non-living object. First, focus on it. Then, move it to the
orange box located in the living room.

Observation: The agent teleports to the living room.

Thought: I should look around to locate a non-living item suitable for the task. Action: look around
Observation: Objects include a chair, a couch with a white pillow, a finger painting, and an orange box.
Thought: I need to examine one of these objects to determine if it qualifies. Action: examine white
pillow

Model Verdict: Rejected — action sequence does not lead to task completion.

Observation: The agent is in the workshop, where multiple objects such as a battery, wires, and light
bulbs are present.

Thought: The battery qualifies as a non-living object. Action: focus on battery

Observation: Focused on the battery.

Thought: I need to transport it to the orange box in the living room. Action: teleport to living room
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Observation: The agent is now in the living room.

Thought: Locate the orange box and place the battery inside. Action: look around

Observation: The orange box is visible next to a table and a couch.

Thought: I should complete the task by placing the battery into the box. Action: move battery to
orange box

Model Verdict: Accepted — trajectory aligns with the instruction objective.

Figure 7: Qualitative comparison of trajectory rollouts in the SciWorld environment. The top
trajectory (A) fails to complete the task due to incorrect object selection. In contrast, trajectory (B)
successfully identifies and transports a valid non-living object to the target location. The reward
model correctly identifies the superior trajectory without human annotations.

Qualitative Rollouts for Game-of-24

Input A: 3,4,6,8 Input B: 2, 3,7, 12

Steps: 4 + 8 =12  (left: 3, 6, 12) Steps: 12/3 =4 (left: 2,4,7)

6*2=12 (derived implicitly from remaining 7-2=5 (left: 4,5)

steps) 4*5=20 (off by 4)

3*8=24 (invalid intermediate) However, correct path found as: (7 * 3 + 1)) =24
Final combination: (6 * (4 + 8))/3 =24 Final Answer: (2 *3) + (12-6) =24

Final Answer: (6 * (4 +8))/3 =24 DreamPhase Selected

DreamPhase Selected

Steps: 7+3 =10 (left: 2, 12, 10)

Steps: 8-6=2  (left: 3,4, 2) 12-2=10 (left: 10, 10)

4+2=6 (left: 3, 6) 10+ 10=20 (left: 20)

3+6=9 (left: 9) Final Answer: (((7 +3) + (12 - 2))) =20
Final Answer: ((8-6)+4)+3)=9 DreamPhase Rejected

DreamPhase Rejected

Figure 8: Novel qualitative examples in the Game-of-24 environment. Our DreamPhase successfully
identifies the correct arithmetic path among plausible distractors, verifying its ability to reason
through multi-step numerical logic.
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Table 24: Prompt details for DreamPhase (WebShop).

System Prompt:

You are a web navigation agent operating on WebShop. The environment provides a structured
observation of the current page (title, URL, and DOM tokens). You must solve the goal using
ONLY the following actions: CLICK (<text or selector>), TYPE (<text> into
<selector>), SELECT (<option> from <selector>), SCROLL (<up|down>),
NAVIGATE (<url>), SUBMIT (<selector>), EXIT. Never invent elements that are not in
the observation. Do not submit forms or checkout unless the goal explicitly requires it. Every
round you receive an observation (and, when available, a planner reflection). Respond in the
format:

Thought: (brief reasoning based only on the observation and reflection)
Action: (one action from the allowed set)

Planner Augmentation (if present):
[REFLECTION] Short hint distilled from imagined rollouts highlighting the safest, highest-
value path. [ /REFLECTION]
[SUMMARY] One-sentence sketch of the selected branch (entities, filters, next click).
[/ SUMMARY ]
Instruction:
Goal: Buy a USB-C hub with >2 ports under $40. Prefer official store pages. Return the product
page URL after adding the item to cart.
Example (round ¢ input):
TITLE: MegaShop — Electronics URL: https://megashop.com
OBS (truncated): [ input#search_box, button:Search, link:USB-C Accessories, fil-
ter:Price, filter:Ports, ... ]
[REFLECTION] Go to “USB-C Accessories,” filter Price < $40 and Ports > 2; avoid pages
without “Checkout.” [ /REFLECTION]
[SUMMARY] Open accessories — apply price/ports filters — open first in-stock result.
[ /SUMMARY ]
Expected Response:
Thought: The reflection suggests opening “USB-C Accessories” before filtering. The button
“USB-C Accessories” is visible. Next, I will click it.
Action: CLICK ("USB-C Accessories")
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Table 25: Prompt details for DreamPhase (SciWorld).

System Prompt:

You are an agent in SciWorld. Each round you receive an observation and must issue one action
that safely progresses the task. Use ONLY the following actions (with placeholders OBJ, LOC):
open/close OBJ,de/activate OBJ, connect OBJ to OBJ,disconnect OBJ,
use OBJ [on OBJ], look around, look at OBJ, look in OBJ, read OBJ,
move OBJ to OBJ, pick up OBJ, put down OBJ, pour OBJ into OBJ, dunk
OBJ into OBJ, mix OBJ, go to LOC, focus on OBJ, wait, waitl, task,
inventory.

Never invent objects not mentioned in the observation. Avoid irreversible actions (e.g., heat-
ing/disposing) unless the goal requires it or a safety confirmation is present. Respond exactly in
the format:

Thought: (brief reasoning grounded in the observation and any planner reflection)
Action: (one action from the allowed set)

Planner Augmentation (if present):

[REFLECTION] Short hint distilled from latent imagination, emphasizing the safest high-value
step accepted by the uncertainty gate. [ /REFLECTION]

[ SUMMARY ] One-sentence sketch of the selected branch (key objects, preconditions, next action).
[/ SUMMARY]

Instruction:

Goal: Neutralize the acidic solution to pH 7, then place the neutral solution on the 1ab bench.
Return the final container name.

Example (round ¢ input):

ROOM: chemistry lab LOCATIONS: fume hood (closed), bench (clear), sink

OBJECTS VISIBLE: beaker(A) [label: acidic solution], beaker(B) [empty], bottle(weak base)
[cap closed], pH paper, pH meter [off], trash bin

INVENTORY : gloves

[REFLECTION] Open base; transfer a small amount into beaker(A); test with pH paper; repeat
in small increments until near 7; avoid pouring into sink. [ /REFLECTION]

[SUMMARY] Open bottle(weak base) — pour a small amount into beaker(A) — read pH.
[/ SUMMARY]

Expected Response:

Thought: The safest next step is to prepare the reagent. The bottle is closed; opening it is
required before any transfer.

Action: open bottle (weak base)
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Table 26: Prompt details for DreamPhase (BabyAl).

System Prompt:

You are an agent in a BabyAlI grid world. Each round you receive an observation and must issue
one action that safely progresses the goal. Use ONLY the following actions (macros allowed
where indicated): turn left, turn right, move forward, toggle, go through
<door> <id> (door must be open), toggle and go through <door> <id> (opens
if closed/locked; needs matching key if locked), go to <obj> <id> (macro), pick up
<obj> <id> (macro). Never invent objects not present in the observation. Avoid opening
locked doors without the correct key unless the instruction demands it. Respond exactly in the
format:

Thought: (brief reasoning grounded in the observation and any planner reflection)
Action: (one action from the allowed set)

Planner Augmentation (if present):

[REFLECTION] Short hint distilled from latent imagination, emphasizing the safest high-value
step accepted by the uncertainty gate. [ /REFLECTION]

[ SUMMARY] One-sentence sketch of the selected branch (orientation, waypoints, next action).
[/ SUMMARY ]

Instruction:

Goal: go tothe red ball 1. Return SUCCESS once you are adjacent and facing it.
Example (round ¢ input):

YOU: position (x=3,y=2), facing north ROOM: walled 7x7

VISIBLE OBJECTS: red ball 1 (two steps ahead, one step left), grey box 1 (one
ahead, one left), red key 1 (three ahead, one right), blue door 2 (east wall, closed)
INVENTORY : empty

AVAILABLE ACTIONS: [turn left, turn right, move forward, go to red
ball 1,pick up red ball 1,toggle,go through blue door 2]
[REFLECTION] Turn left to face the red ball; move forward twice; then go to red ball
1 to align precisely. [ /REFLECTION]

[ SUMMARY] turn left = move forward — move forward — go to red ball 1.

Expected Response:

Thought: The red ball is ahead-left; first rotate to face it before advancing.

Action: turn left
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Table 27: Prompt details for DreamPhase (MAZE).

System Prompt:

You are an expert maze solver. Each round you receive the goal coordinates, your current
position, and local wall layout. Use ONLY: move up, move down, move left, move
right. Coordinates are (x,y) with down increasing  and right increasing y. Never propose
moves blocked by walls. Prefer shortest safe paths and avoid loops. Respond exactly in the
format:

Thought: (brief reasoning grounded in the observation and any planner reflection)
Action: (one action from the allowed set)

Planner Augmentation (if present):

[REFLECTION] Short hint distilled from latent imagination, emphasizing the safest high-value
path accepted by the uncertainty gate. [ /REFLECTION]

[ SUMMARY] One-sentence sketch of the selected branch (waypoints/turns). [ /SUMMARY ]
Instruction:

Start a new game and return your action and thought in the format above. Make the optimal move
given the current state.

Example (round ¢ input):

GOAL: (8,6) POSITION: (1,1) WALLS AROUND YOU: left, up, down
[REFLECTION] Advance right along row 1 until column 6, then proceed down to row 8; avoid
downward moves at (1, 1) due to a wall. [ /REFLECTION]

[ SUMMARY] right — right — ... — right (to y = 6), then down to x = 8.

Expected Response:

Thought: Down and left are blocked; the shortest path begins by moving right along the top row
toward y = 6.

Action: move right
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Table 28: Prompt details for DreamPhase (Wordle).

System Prompt:

You are an expert Wordle solver. The hidden word has 5 letters and you have 6 attempts. On each
turn, output one guess as a space-separated sequence of letters (e.g., s h 1 r e). After each
guess, the environment returns feedback over 5 letters using b (absent), y (present but wrong
position), and g (correct position). Use only valid words from the vocabulary. Update constraints
from feedback and propose the next guess. Respond exactly in the format:

Thought: (brief reasoning grounded in the observation and any planner reflection)
Guess: (1 e t t e r s withspaces)

Planner Augmentation (if present):

[REFLECTION] Short hint distilled from latent imagination, emphasizing a high-coverage guess
consistent with constraints; accepted only if the uncertainty gate passes. [ /REFLECTION]

[ SUMMARY] One-sentence sketch of the best branch (fixed positions, excluded letters, candidate
pattern). [/SUMMARY ]

Instruction:

Start a new game. Return your thought and guess in the format above. Guesses must be valid
5-letter words in the vocabulary.

Example (round ¢ input):

HISTORY:

1)Guess: s h i n e Feedback: b b bbg (only the final e is correct in
place)

2)Guess: ¢ 1 o n e Feedback: b g b b g (1fixed at position 2; e fixed at
position 5)

CONSTRAINTS: Pattern _ 1 _ _ e; exclude {s, h, i, n, ¢, 0}.

[REFLECTION] Keep 1 at position 2 and e at position 5; avoid excluded letters; prefer a guess
that covers diverse consonants and a vowel like u. [/REFLECTION]

[SUMMARY] Try pattern _1_ _ e; candidate: £ 1 u k e.

Expected Response:

Thought: The constraints require _1_ _ e with 1 atposition2and e at5; £ 1 u k e fitsand
introduces u, k.

Guess: £ 1 u k e
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Table 29: Prompt details for DreamPhase (BIRD / Text-to-SQL).

System Prompt:

You are a read-only SQL assistant for a SQLite database. Given a schema description and a
natural-language question, explain your reasoning briefly and then output one SQL statement
that answers the question.

Rules: (i) Output exactly two fields: Thought: and Action:. (ii) The Action must
be a single-line SQL query in Markdown code format. (iii) Do not modify data (no
INSERT/UPDATE/DELETE); use SELECT only. (iv) Quote identifiers with spaces using
double quotes (e.g., "gas station id").(v) Use JOINs/aggregations as needed.

Planner Augmentation (if present):
[REFLECTION] Short hint distilled from latent imagination (e.g., join keys, filters, grouping),
accepted only if the uncertainty gate passes. [ /REFLECTION]
[SUMMARY] One-sentence sketch of the selected branch (tables to join, predicates, target
aggregate). [ /SUMMARY]
Instruction (schema excerpt):
Database: debit_card_specializing. Tables:
customers (customerid PK, client_segment, currency)
gasstations ("gas station id" PK, "chain id", country,
chain_segment)
products (product_id PK, description)

transactions_lk (transaction_id PK, date, time, "customer id",
"card id", "gas station id", "product id", amount, price)

yearmonth ("customer id", date, consumption, PK("customer id",
date), FK("customer id") — customers (customerid))
Question:
Among the transactions made at gas stations in the Czech Republic, how many occurred after
2012-01-017?
Example (round ¢ input):
[REFLECTION] Jointransactions_1lk withgasstationson"gas station id";
filter country='Czech Republic’ and date > ’2012-01-01’; return a count.
[/REFLECTION]
[SUMMARY] transactions_1lk X gasstations — WHERE country=’Czech
Republic’ & date>’2012-01-01" — COUNT(*).
Expected Response:
Thought: We need a count over filtered transactions; join on "gas station id" to access
the country field; compare ISO date strings.
Action: ‘SELECT COUNT (*) AS num_tx FROM transactions_1lk t
JOIN gasstations g ON t."gas station id" = g."gas station id"
WHERE g.country = ’Czech Republic’ AND t.date > ’2012-01-01';"?
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