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Abstract

Variational quantum algorithms (VQAs) are the quantum
analog of classical neural networks (NNs). A VQA consists
of a parameterized quantum circuit (PQC) which is composed
of multiple layers of ansatzes (simpler PQCs, which are an
analogy of NN layers) that differ only in selections of pa-
rameters. Previous work has identified the alternating layered
ansatz as potentially a new standard ansatz in near-term quan-
tum computing. Indeed, shallow alternating layered VQAs
are easy to implement and have been shown to be both train-
able and expressive. In this work, we introduce a training
algorithm with an exponential reduction in training cost of
such VQAs. Moreover, our algorithm uses classical shadows
of quantum input data, and can hence be run on a classical
computer with rigorous performance guarantees. We demon-
strate 2–3 orders of magnitude improvement in the training
cost using our algorithm for the example problems of finding
state preparation circuits and the quantum autoencoder.

Introduction
The past several years have seen tremendous progress in
quantum hardware and one of the state-of-the-art quantum
processors—IBM Osprey—now has 433 qubits (Gambetta
2022). However, it is widely believed that general-purpose
fault-tolerant quantum computers are unlikely to happen
soon. With a limited number of (noisy) qubits and non-
perfect gates, near-term quantum devices like IBM Osprey
can only run quantum circuits with small depth. One may
wonder if quantum advantage can still be demonstrated in
practical applications using these near-term quantum de-
vices. Variational Quantum Algorithms (VQAs) are the most
promising proposal for this purpose. VQAs encode a task
in a parametrized quantum circuit (PQC), evaluate it using
a near-term quantum computer, and optimize the parame-
ters with a classical optimizer. For almost all applications
for which quantum computers are desired, VQAs have been
proposed. We refer the readers to Cerezo et al. (2021a) for
an excellent survey of VQAs.

VQAs can be regarded as the quantum analog of classi-
cal neural networks (NNs). A VQA is composed of mul-
tiple layers of ansatzes, which are smaller PQCs with a
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fixed architecture. An ansatz is analogous to a classical NN
layer, and a VQA uses ansatzes that have the same archi-
tecture and differ only in selections of parameters. Many
different ansatzes have been proposed in the literature. Pop-
ular choices include the Hardware Efficient Ansatz (Kan-
dala et al. 2017), Quantum Alternating Operator Ansatz
(QAOA) (Hadfield et al. 2019), etc.

Similar to classical NNs, recent works show that VQAs
also have the problem of trainability. Indeed, vanishing gra-
dients, also called barren plateaus, were first theoretically
demonstrated for deep PQCs by McClean et al. (2018) and
then for shallow PQCs by Cerezo et al. (2021b). We may
need to impose restrictions on the ansatz and/or the cost
function to avoid this barren plateaus issue. One such so-
lution is proposed by Cerezo et al. (2021b) using the al-
ternating layered ansatz, which has a brick-like structure
and its two-qubit gates act on alternating pairs of neighbor-
ing qubits (see Fig. 1 for a simple example). It is proved
that barren plateaus can be avoided for alternating layered
VQAs provided that the depth of the PQC is O(log n),
where n is the number of qubits, and the cost function is
defined with local observables. Surprisingly, Nakaji and Ya-
mamoto (2021) recently proved that the shallow alternating
layered ansatz is almost as expressive as the Hardware Ef-
ficient Ansatz. Thus the alternating layered ansatz is both
expressive and trainable. In addition, this ansatz has been
investigated or implemented in works such as Hinsche et al.
(2021), Wu et al. (2021), Arrasmith et al. (2021), Slattery,
Villalonga, and Clark (2022). In particular, Cerezo et al.
(2021b) has shown that quantum autoencoders can be opti-
mized without any barren plateaus for up to 100 qubits using
the alternating layered ansatz.

This work introduces a training algorithm with an expo-
nential improvement in the number of copies of input states
consumed during training an alternating layered VQA with
shallow depth and local observables, where, and in the re-
mainder of this paper, the number of copies of the input
state equals the number of executions of the quantum device.
The reason is, during each execution, we have to measure
the quantum systems which inevitably destroy the quantum
states. Thus a fresh copy of the input state is needed for each
iteration. Moreover, the training can be done entirely on a
classical computer efficiently (with computational cost de-
pending only polynomially on n) without the need to imple-
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Figure 1: An illustration of alternating layered ansatzes
where the parameterized sub-circuit S(θ32) is applied on the
first and the last qubits. Here, θ is an order 3 tensor with each
θij being vectors of real parameters.

ment the PQC on a quantum device. This result is achieved
by using the recently proposed classical shadow technique
(Aaronson 2018; Huang et al. 2021b) for quantum state to-
mography, and working in the Heisenberg picture rather than
the Schröndinger model.

Specifically, for an alternating layered ansatz U(θ), an in-
put state ρ and an observable O, the VQAs of our interest
estimate each evaluation of functions of the form

fρ,O(θ) = tr(OU(θ)ρU(θ)†) (1)

using quantum computers. In contrast, our method can ef-
ficiently compute this classically on classical shadows of ρ.
But note that all VQAs that uses alternating layered ansatzes
need not have this specific form.

Our method, called Alternating Layered Shadow Opti-
mization, or simply ALSO, outperforms standard alternating
layered VQA in two aspects:

1. Exponential savings on input state copies. Note that the
number of copies of the input state needed in the standard
VQA scales linearly in the total number of function eval-
uations required. In contrast, to achieve a similar preci-
sion, ALSO only uses logarithmically many copies. This
allows for more iterations and better approximations in
the classical optimization algorithm for a given PQC. In
addition, it allows for more hyperparameter tuning with
very few copies of the input state, and the same set of
shadows can be used for multiple similar optimization
problems and alternating layered ansatzes.

2. Easy implementation on quantum hardware. ALSO only
requires the quantum device to be able to carry out
single-qubit Pauli basis measurements on the input states.
But standard VQA requires the ability to apply CNOT
gates and rotation gates on them, and measurement also.

We demonstrate the practical efficacy of our result with
two important examples: finding state preparation circuits
and quantum data compression using a quantum autoen-
coder. In both cases, we demonstrate that ALSO can match
the results of the impossible ideal VQA that uses infinite
copies, using a comparatively small number of copies of the
input quantum state. We also show that, with the same num-
ber of copies of the input state, ALSO outperforms the stan-
dard VQA significantly.

Related Works
The idea of using classical algorithms, specifically classi-
cal machine learning algorithms, on classical shadows of
quantum states, has been considered in Huang et al. (2021a),
Huang et al. (2021b), where popular classical machine learn-
ing algorithms such as Support Vector Machines and Convo-
lutional Neural Networks are trained on classically loaded
shadows to solve certain important problems in quantum
many-body physics. In comparison, the post-processing of
classical shadows in ALSO aims to implement a VQA in a
more resource-efficient manner.

Studying alternating layered VQAs as optimizations
of local parameterized observables is already considered
in Okada et al. (2022). Here, the locality of WO (cf. Fig-
ure 3) is leveraged to implement variational quantum eigen-
solvers. ALSO can be seen as a generalization of this
method because the input state can be arbitrary in our set-
ting (due to the use of classical shadows).

Fontana et al. (2022) have experimentally shown that in
certain cases, the quantum alternating operator ansatz (Farhi,
Goldstone, and Gutmann 2014) and the Hamiltonian vari-
ataionl ansatz (Wiersema et al. 2020) can be trained by es-
timations in the Fourier basis (Schuld, Sweke, and Meyer
2021), with O(poly(n)) copies of the input state and
O(poly(n)) classical computational cost. Similarly, Yao,
Bukov, and Lin (2020) showed that reinforcement learning
can be used to optimize the learning process of variational
parameters in the former ansatz. In our work, we focus on
the alternating layered ansatz and prove theoretically the ex-
istence of sample efficient training methods for this ansatz.

In Stokes et al. (2020), Boyd and Koczor (2022)
and Wierichs, Gogolin, and Kastoryano (2020), new clas-
sical optimization algorithms are introduced and analyzed
(the latter also uses classical shadows) and are shown to con-
verge using much fewer iterations compared to the standard
gradient descent. But since ALSO is agnostic towards the
choice of the classical optimizer, our method can be used to
boost the performance of these methods by significantly re-
ducing the number of state copies used. Variational shadow
quantum circuits, developed by Li, Song, and Wang (2021),
extract local classical features by focusing on a series of lo-
cal subcircuits. Although inspired by the classical shadow
work, the approach itself does not use classical shadows.

Background
This section recalls background in quantum computing, va-
rational quantum algorithms and classical shadows.

Quantum Computing
We use ‘ket’ notation such as |ψ⟩ to represent complex col-
umn vectors. For any |ψ⟩ ∈ Cd, ⟨ψ|, called ‘bra’, is its com-
plex conjugated transpose. For any i ∈ {0, 1, . . . , d − 1},
|i⟩ ∈ Cd is the ith standard basis vector. Denote by L(Cd)
the set of all linear operators acting on Cd.

A qubit is the fundamentally implementable entity in
quantum computing. A state is defined as any positive semi-
definite operator ρ ∈ L(Cd) such that tr(ρ) = 1 (all the diag-
onal elements sum up to 1). A qubit can admit any quantum
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state ρ ∈ L(C2) as its value, similar to how a bit in clas-
sical computing can admit any value in {0, 1}. A quantum
system or register is an array of qubits. To describe the state
of a system of two qubits, [q1, q2], we use states that act on
the tensor product of the two 2-dimensional vector spaces,
denoted as C2 ⊗ C2 ∼= C4. So, a system of n-qubits can be
in any state in L(C2n). A state ρ is called a pure state if its
rank is 1. In this case, ρ, as well as its dynamics, can be fully
characterized by any normalized eigenvector associated with
the eigenvalue 1.

An n-qubit quantum gate is defined as a unitary operator
U ∈ L(C2n). The application of such a quantum gate on
a system in a state ρ ∈ L(C2n) transforms the state of the
system from ρ to another state UρU †. Some important gates
that feature extensively in this work are

H =
1√
2

[
1 1
1 −1

]
, S =

[
1 0
0 i

]
, CNOT =

[
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]
.

Let Z = |0⟩ ⟨0| − |1⟩ ⟨1|, X = HZH , and Y = iXZ.
These single-qubit gates are called Pauli operators. For P ∈
{X,Y, Z} and θ ∈ R, the P -rotation gate RP (θ) is the gate
cos(θ/2)1+ i sin(θ/2)P , where 1 is the identity operator.

An n-qubit observable is defined as any Hermitian oper-
ator O ∈ L(C2n). To “observe” information from a system
prepared in a state ρ, we measure ρ using O. The measure-
ment result is probabilistic and its expected value is tr(Oρ).

An n-qubit operator V ∈ L(C2n) on register I =
[q1, . . . , qn] is k-local if there is a k-qubit sub-register A =

[qi1 , qi2 , . . . , qik ] such that V = Ṽ ⊗ 1, where Ṽ ∈ L(C2k)
acts on qubits in A and 1 is the identity operator on I \ A.
For simplicity, we often write V as Ṽ [A] and say that V acts
non-trivially on qubits only in A.

Classical Shadows Using Pauli Basis Measurements
Let ρ be an n-qubit quantum state and let O1, O2, . . . , OM
be arbitrary n-qubit observables the classical descriptions
of which are given. Using conventional quantum tomogra-
phy techniques, O(2n) copies of ρ are required to estimate
tr(Oiρ) for each Oi.

The classical shadow technique (Huang, Kueng, and
Preskill 2020), developed from shadow tomography (Aaron-
son 2018), provides succinct classical descriptions of quan-
tum states. Using this technique, tr(Oiρ) can be collectively
predicted by consuming only O(logM) copies of ρ. More-
over, when these observables belong to certain classes, the
dependency on n is polynomial or constant.

When the observables are all local (with locality k ≪ n),
the classical shadow method reduces to a very simple proto-
col. The first step is to measure the individual qubits of ρ on
a random Pauli basis. To this end, for each qubit i, we apply a
gate Ui uniformly randomly chosen from

{
1, H,HS†}, and

then measure it in the computational basis. Let the measure-
ment outcome be ui ∈ { 0, 1 }. Then a single-qubit classical
shadow of ρ is calculated (classically) as

ρ̂ = F (U †
1 |u1⟩ ⟨u1|U1)⊗· · ·⊗F

(
U†
n |un⟩ ⟨un|Un

)
, (2)

where F (V ) = 3V −1. As a fully separable matrix, ρ̂ can be
stored efficiently as n 2 × 2 matrices. Furthermore, ρ̂ gives
an unbiased estimation of the unknown state ρ and hence
tr(Oiρ̂) is an unbiased estimator of tr(Oiρ) for all i.

Specifically, we have:
Theorem 1. (Sack et al. 2022) Let ρ ∈ C2n be a quan-
tum state. Suppose O1, O2, . . . , OM ∈ C2n are M k-local
observables. For any δ, ϵ ∈ (0, 1), let T be any integer not
smaller than 4k+1

ϵ2 ·log( 2Mδ )maxi ∥Oi∥2∞ and define shadow
state ρ̂T as ρ̂T = 1

T

∑T
j=1 ρ̂

(j), where ρ̂(j) are single-qubit
classical shadows as in Eq. (2). Then, with probability at
least 1− δ and for all i, we have |tr(Oiρ̂T )− tr(Oiρ)| ≤ ϵ.

Note that the original version of this theorem required
∥Oi∥∞ ≤ 1 for all i. However, this can be relaxed by divid-
ing every matrix by maxi ∥Oi∥∞ and then estimating with
precision ϵ/maxi ∥Oi∥∞.

Moreover, each estimation tr(Olρ̂T ) can be classically
computed very efficiently. Let Al = [ql1 , . . . , qlk ] be the
sub-register that Ol acts non-trivially on and Ol = Õl ⊗ 1

with Õl ∈ L(C2k). For the shadow ρ̂ in Eq. (2), we only
need to use the k 2 × 2 matrices corresponding to the sub-
register Al. Denote by ρ̂T

∣∣
Al

the classical shadow obtained
by taking average of T such reduced shadows. Then we have
tr(Olρ̂T ) = tr(Õlρ̂T

∣∣
Al
) and hence it can be computed with

cost exponential only in k and independent of n.

Variational Quantum Algorithms
A VQA encodes the task under consideration as a parame-
terized quantum circuit (PQC), which is typically composed
of multiple layers of ansatzes, i.e., smaller PQCs with the
same architecture. Write U(θ) for the PQC, where θ is a
real-valued vector of parameters. The VQA uses U(θ) to
estimate a target function’s value and gradient at some point
in its domain, and then optimizes the parameters of the PQC
by feeding the circuit’s output to a classical optimizer.

In this paper, we focus on the basic function as speci-
fied in Eq. (1) and aim to find the parameters which max-
imize it. Note that fρ,O(θ) can be estimated through multi-
ple measurements. Using techniques such as the parameter
shift rule (Mitarai et al. 2018), finite differences, etc, one
can also estimate the gradient of fρ,O using a quantum com-
puter. With this, we can find the optimum values of θ by
using any classical optimization method. Many tasks such
as variational quantum eigensolver, finding state preparation
circuits, quantum autoencoder, etc can be reduced to finding
the best θ which maximizes some fρ,O(θ).

Alternating Layered Shadow Optimization
In this section, we explain the key idea and theoretical re-
sults behind ALSO. Following Cerezo et al. (2021b), we re-
quest the observables to be k-local or linear combinations
of a small number (polynomially dependent on n) of k-local
observables for some k ≪ n.

Alternating Layered Ansatz
The Alternating Layered Ansatz is the brick-like circuit
structure presented in Fig. 1, where each S(θij) is a param-
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RX(γ0) RY (γ1) RX(γ2) RX(γ3) RY (γ4) RX(γ5)

RX(γ6) RY (γ7) RX(γ8) RX(γ9) RY (γ10) RX(γ11)

Figure 2: The structure of S(γ) used in the simulation. The
two-qubit gate used here is the CNOT gate.

Figure 3: The structure of WO(θ) = U(θ)†OU(θ) where
the blue box is a 1-local observable, and all other boxes are
S sub-circuits. Except for the red ones, all other sub-circuits
cancel each other out, resulting in WO(θ) being 2d-local.

eterized circuit acting on a small number of qubits. A simple
example of S is given in Fig. 2. This work assumes that each
S acts on two qubits and has p real parameters, but our idea
can be easily extended to the general case. In Fig. 1, the to-
tal number of vertical blocks of S gates, written d, is called
the depth of the ansatz. The circuit depicted in the figure has
d = 3. In a specific vertical block j, each circuit S(θij) acts
on qubits 2(i− 1)⊕ j and its neighbor 2(i− 1)⊕ j ⊕ 1. So,
the final form of the circuit is given as

U(θ) =
d∏
j=1

n/2∏
i=1

S(θij)[2(i− 1)⊕ j, 2(i− 1)⊕ j ⊕ 1], (3)

where ⊕ denotes addition modulo n, θ ∈ Rn
2 ×d×p is a ten-

sor of real parameters where θij is a p-dimensional real vec-
tor of parameters and S(θij)[k, l] means S(θij) acting on
qubits k and l.

Method
We first explain our approach in a simpler model, with 1-
local observables and alternating layered ansatzes built with
2-local circuits, and then extend the results to circuits and
observables with arbitrary localities. The detailed proof of
our results can be found in the Technical Appendix.

We start with a lemma that forms the backbone of ALSO.

Lemma 1. Let d, S and U be defined as in Eq. (3), and
θ ∈ Rn

2 ×d×p. For any n-qubit 1-local observable O, de-
fine WO(θ) = U(θ)†OU(θ). Then we have ∥WO(θ)∥∞ =

∥O∥∞ andWO(θ) is 2d-local, that is,WO(θ) = W̃O(θ)[A]
for some sub-register A of 2d qubits.

Moreover, from Figure 3, we can see that for any θ,
W̃Oi(θ) can be computed with cost exponential only in d
using tensor contractions of the observable with all the S
gates marked in red.

Let U(θ) be the alternating layered ansatz defined as in
Eq. (3), andO =

∑M
i=1Oi be the observable, where eachOi

is 1-local. Assume that we are using an iterative optimiza-
tion algorithm, one that takes as input a target function and
outputs its optimizer, to find the maximizer of Eq. (1), and
the whole optimization procedure requires C function eval-
uations of the form fρ,O(θ

(1)), fρ,O(θ
(2)), . . . , fρ,O(θ

(C)).
Lemma 1 says that each function evaluation can be seen as
estimating the expectation of 2d-local observables, because
fρ,O(θ) =

∑
i tr(OiU(θ)ρU(θ)†) =

∑
i tr(WOi

(θ)ρ).
Now using Theorem 1, we can estimate all the C function

evaluations and the whole ALSO algorithm goes as follows:

1. Load T = O(log(C) · poly(n)) classical shadows of ρ.
Let ρ̂T be the shadow state (cf.Theorem 1).

2. For all i, compute ρ̂T
∣∣
Ai

, where Ai is the sub-register
that WOi acts non-trivially on.

3. Use the iterative optimization algorithm to optimize the
target function f̂ρ,O(θ) =

∑
i tr(W̃Oi

(θ)ρ̂T
∣∣
Ai
).

Note that the cost of classical computation is dominated
by the computation of

∑
i tr(W̃Oi

(θ)ρ̂T
∣∣
Ai
) and so it scales

exponentially only in d. Hence, when d = O(log n), the
classical computational cost scales polynomially on n.

Sample Complexity
In this section, we discuss the sampling complexity of the
protocol, that is, the range of values of T that guaran-
tee good estimations of all the function evaluations. We
show that when d = O(log n), the sample complexity is
O(log(C) · poly(n)).
Theorem 2. Let d, S and U be defined as in Eq. (3). Sup-
pose ρ is an arbitrary n-qubit state and O =

∑M
i=1Oi,

where each Oi is an n-qubit 1-local observable. Then,
for any δ, ϵ ∈ (0, 1) and any C parameter tensors
θ(1),θ(2), . . . , θ(C), all values fρ,O(θ

(c)) can be estimated
using f̂ρ,O(θ

(c)) := tr(WO(θ
(c))ρ̂T ) with the guarantee

Prob

(
C⋂
c=1

[∣∣∣fρ,O(θ(c)
)
−f̂ρ,O

(
θ(c)

)∣∣∣ ≤ ϵ
])

≥ 1− δ (4)

where

T ≥M2 log

(
2MC

δ

)
· 4

2d+1

ϵ2
max
i

∥Oi∥2∞.

This is remarkable as, without using classical shadows,
we may need to estimate fρ,O(θ) for any parameter tensor
θ through measurements. Suppose K copies of ρ are con-
sumed to estimate each of these values. Then we end up con-
suming CK copies of ρ, which can be exponentially larger
than the number consumed by ALSO.

In our method, the measurements that we have to make
are solely for computing the classical shadows and hence are
independent of all θ(c). Moreover, each measurement out-
come can be reused multiple times. In the standard method
of training VQAs, we are not able to reuse the measurement
outcomes that are made as part of the optimization, because
each measurement outcome is dependent on the input pa-
rameter θ(c). This is a crucial reason as to why ALSO is
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a much more appealing option to optimize these functions,
especially from a practical perspective where one has to do
hyperparameter tuning, find the right classical optimizer, etc.

One important point to note is that even though the con-
stants look large, in practice, we need not necessarily require
this many copies (classical shadows) of ρ. This is illustrated
in our experimental results, where we are able to match the
results of ideal VQA simulations (simulations that use infi-
nite copies of the input state ρ) by using a number of copies
of ρ orders of magnitude fewer than the number suggested
by Theorem 2.
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Figure 4: Plot showing time (in seconds) taken for a single
function evaluation using ALSO.

The space complexity of the protocol is dominated by the
storage of the matrices ρ̂T

∣∣
Ai

. Since the dimension of each
of these matrices is 4d, we need 16dM complex numbers to
store all of them. For example, let n,M = 50, d = 5. Then
we see that if we are using 128 bits to store each complex
number, then we only require 838MB to store all matrices
ρ̂T
∣∣
Ai

. Time taken for single function evaluations is plotted
in Figure 4. On the x-axis, we have the number of qubits,
and on the y-axis, we have the time (in seconds) taken to
compute a single function evaluation, averaged over 5 cases.
In each case, d = ⌊log n⌋ and the observable O is a 1-local
observable, with S being the circuit in Figure 2. We plot
the results showing a polynomial dependence of time on the
number of qubits for both ‘complex128’ and ‘complex64’
being used as datatypes in Python. The simulation was car-
ried out on a laptop with 16GB RAM and 2.6GHz Intel i7
processor.

One can easily generalize Theorem 2 for arbitrarily local
observables and circuits. In a similar setting, if we use k0-
local parameterized circuits and an observable that is a sum
of k1-local observables, then we can carry out an iterative
optimization algorithm with all function evaluations satisfy-
ing Eq. (4) using

T ≥ M2

ϵ2
· log

(
2MC

δ

)
· 4k1+(2k0−2)d−1 ·max

i
∥Oi∥2∞

copies of the input state. This is because for each increment
in depth, the locality ofWOi(θ) increases by at most 2k0−2,
starting from k1.

Applications
Here we discuss two practical applications of ALSO in the
field of quantum information.

The State Preparation Problem
Let ρ = |ψ⟩ ⟨ψ| ∈ L(C2n) be an n-qubit pure quantum
state. The state preparation problem of ρ intends to find the
parameters of an alternating layered ansatz which best ap-
proximates (heuristically) the state |ψ⟩. That is, we would
like to find a parameter tensor such that 1−

∣∣⟨ψ|U(θ)† |0⟩
∣∣2

is minimized over all θ, where |0⟩ ∈ C2n . This quantity is
called the infidelity between the states U(θ)† |0⟩ and |ψ⟩. In-
fidelity measures how “different” two states are and admits
values in the range [0, 1], with an infidelity of 0 implying
that U(θ)† |0⟩ = |ψ⟩.

Hence, the problem can be framed as an objective
function as minθ

(
1 − f|ψ⟩⟨ψ|,|0⟩⟨0|(θ)

)
(or equivalently,

maxθ f|ψ⟩⟨ψ|,|0⟩⟨0|(θ)), with |0⟩ ⟨0| being the observable
and θ ∈ Rn

2 ×d×p. However, since |0⟩ ⟨0| acts on all
n-qubits, it does not fit into our framework. Motivated
by Cerezo et al. (2021b), we take minθ(1 − f|ψ⟩⟨ψ|,J (θ))

as the objective function, where J = 1
n

∑n
i=1 |0⟩i ⟨0| and

|0⟩i ⟨0| is a 1-local operator that applies |0⟩ ⟨0| ∈ L(C2)
on the ith qubit only and 1 on all other qubits. In this case,
the observable J is a sum of 1-local observables Oi =
1
n |0⟩i ⟨0|. Hence, this problem fits in our framework and we
can use ALSO to optimize it.

Quantum Autoencoder
Autoencoder is a popular dimensionality reduction tech-
nique in classical machine learning (Hinton and Zemel
1993). Using deep neural networks, autoencoders learn low
dimensional representations of high dimensional input data,
which should ideally keep hold of the original characteris-
tics of the data. This can also be seen as a form of data
compression. Recently, there have been numerous works on
extending this concept to quantum data (Romero, Olson,
and Aspuru-Guzik 2017; Wan et al. 2017; Verdon, Pye, and
Broughton 2018; Pepper, Tischler, and Pryde 2019; Lamata
et al. 2018). We focus on the version presented in Romero,
Olson, and Aspuru-Guzik (2017), more specifically, its im-
plementation using alternating layered ansatzes described
in Cerezo et al. (2021b).

The idea behind this version of quantum autoencoder is to
compress n-qubit quantum states into nB < n qubit states.
Consider an ensemble of n-qubit states Z = {(pi, |ψi⟩)}
with each state being prepared in registers A and B hav-
ing nA and nB qubits respectively, where n = nA + nB .
Let ρZ =

∑
i pi |ψi⟩ ⟨ψi|. As a measure of the compres-

sion effect, we consider 1 − fρZ ,1[A]⊗J[B](θ), where J =
1
nB

∑nB

i=1 |0⟩i ⟨0| is defined, as in the state preparation prob-
lem, to be a sensible cost function that not only forces the
population of all the states to be in the qubits in the register
B, but also involves the same 1-local observables that we
have used for state preparation. Again, this cost function has
been used in Cerezo et al. (2021b).

Simulation Results
In this section, we discuss the experimental results compar-
ing the performance of ALSO and the standard VQA in the
two use cases discussed above.
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Figure 5: Simulation results for state preparation.
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Figure 6: Simulation results for quantum autoencoder.

Experiments Set-Up
For all experiments, each brick-like sub-circuit S(θij)
(cf. Fig. 1) has the form given in Fig. 2. The simulation re-
sults presented in this section (except for Table 1) have used
Simultaneous Perturbation Stochastic Approximation (Spall
1992) (SPSA), where the converging sequences used for
state preparation and quantum autoencoder are, respectively,
cr = ar = r−0.5 and cr = ar = r−0.3.

In the following, we denote by ALSO-T the ALSO algo-
rithm that uses T shadows and by VQA-K the VQA algo-
rithm that consumes per function evaluation K state copies
(for state preparation) or K samples from Z = {(pi, |ψi⟩)}
(for quantum autoencoder). In addition, we write VQA-
infinite for the VQA algorithm which has access to an in-
finite number of state copies.

Let R be the total number of iterations of SPSA. Since
SPSA requires 2 function evaluations per iteration, for state
preparation and quantum autoencoder, VQA-K will con-
sume 2KRn and 2KRnB state copies respectively.

State Preparation Experiments
For the state preparation problem, we first consider the case
when n = 8, i.e., the target state is an 8-qubit state. In each
experiment, the target state is compatible with an alternating
layered ansatz. We repeat the experiments for five different
target states and our results are shown in Fig. 5(a,b), where
each plot corresponds to five different instances of a prob-
lem. At any value on the x-axis, we plot the mean of infi-
delity/cost values across the five different experiments that

were carried out. The coloured area of the plot is marked
on top and bottom by the mean plus and minus the standard
deviation of the 5 values at each point respectively.

In Fig. 5(a), VQA-10 consumes 2KRn = 2×10×3000×
8 = 4.8 × 105 state copies and in a similar manner, the
other VQA algorithms consume 2.4 × 106 and 4.8 × 106

state copies, which are 4.8x, 24x, and 48x of that ALSO
consumes. Furthermore, from Fig. 5(b), we can see that
ALSO closely matches the outcome of VQA-infinite with
only 5× 105 state copies.

Moving on from the 8-qubit scenario, we then carry out
similar experiments for 30-qubit systems. Fig. 5(c) shows
the results, where, as in Cerezo et al. (2021b), all states in-
volved are computational basis states.

We note in this case, VQA-10 consumes 2× 10× 9000×
30 = 5.4 × 106 state copies while ALSO-T remains un-
changed with the change of n from 8 to 30. From the figure,
it is clear that the similar conclusion for 8-qubit state prepa-
ration also applies to 30-qubit state preparation. In particu-
lar, ALSO (with 5× 105 samples) significantly outperforms
VQA with 100x more samples.

Quantum Autoencoder Experiments
For quantum autoencoder, similar experiments are carried
out for both 8- and 30-qubit systems. Ensembles containing
two pure states |ψ1⟩ and |ψ2⟩ are chosen with p1 = 1/3
and p2 = 2/3, and nB is set as 4 and 10, respectively, for
8- and 30-qubit systems. We repeat the experiments for five
different ensembles. The results are summarised in Fig. 6,
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which have the same explanation as those in Fig. 5. Note
that the cost values plotted here are the actual cost fρ,O(θ)
and not their estimations. From the figure, we can see similar
conclusion we have obtained for state preparation also holds
for quantum autoencoder. It seems that in this case ALSO
with 105 samples significantly outperforms VQA with 48×
105 samples and ALSO with 5× 105 samples can often beat
VQA-infinite!

Resource Consumption for the Same Objective
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Figure 7: Resource requirement for the same objectives.

In above, we compared the performance of ALSO and
VQA algorithms with predetermined resources. The effi-
ciency of ALSO over VQA can also be illustrated by com-
paring the resource consumption required for the same ob-
jective. Given an objective, which can be either the average
lowest infidelity or the average lowest cost, we carry out ex-
periments to check how many state copies or samples are
required for ALSO or VQA to achieve the objective. The
results are presented in Fig. 7, where each point represents
the average of five instances. It is clear that ALSO achieves
a huge advantage in the number of state copies or samples
that were required to achieve the specific levels of quality.

More Iterations by Using Powell’s Method
All the simulation results discussed above have used SPSA
to find the optimal parameters. In each case, we set the max-
imum iterations to be the same for ALSO and VQA. From
a practical point of view, this is unfair as ALSO can carry
out more iterations with the given number of state copies or
samples.

To further demonstrate this advantage of ALSO, we turn
to Powell’s method (Powell 1964) to optimize the parame-
ters. We carry out 8-qubit state preparation as well as quan-
tum autoencoder optimizations and the results are presented

state preparation quantum autoencoder
#copies infidelity #samples cost

VQA-102 5× 105 0.921 5.6× 105 0.494
VQA-103 1.3× 107 0.348 4.6× 106 0.408
VQA-104 3.3× 108 0.094 108 0.250
VQA-105 4× 109 0.069 2.1× 109 0.188

ALSO 5× 105 0.004 5× 105 0.117

Table 1: Results under a different classical optimizer (Pow-
ell’s method).

in Table 1. In the infidelity (cost) columns, each entry is an
average optimal infidelity (cost) of 5 instances of the prob-
lem, and we give an approximation of the average number of
copies consumed (except for ALSO where exactly 5 × 105

copies are consumed) to achieve these values in the #copies
(#samples) columns.

We set 5 × 104 as an upper limit on the total number of
function evaluations for VQA. But, since ALSO does not
consume any copies for more iterations, we don’t set any
limit in the case of ALSO. As we can see, our approach
greatly outperforms VQA in this case. Interestingly, in the
case of VQA, the optimizers terminated in 5×103−3×104

function evaluations in most cases. Only for the state prepa-
ration problem and with 105 copies consumed per function
evaluation, we saw the optimizer exceeding the 5×104 limit.
We also observe that VQA with Powell’s method performs
very poorly compared to VQA with SPSA when K is small,
which is possibly due to the inherent ability of SPSA to deal
with noisy functions.

Conclusion and Future Direction
In this work, we proposed ALSO — an efficient method to
train alternating layered VQAs that is exponentially better
than the standard way of training VQAs in terms of the num-
ber of copies of input state consumed (or, in some other ap-
plications, number of executions of the quantum computer).
The saving of state copies is especially useful when multi-
ple rounds of the same optimization algorithm are required
for various choices of hyperparameters, or when one has to
experiment with different algorithms altogether. Moreover,
ALSO is implementable using fewer and simpler quantum
operations; in fact, only single-qubit measurements accord-
ing to Pauli bases (in the classical shadow preparation stage)
are required in ALSO. Another interesting benefit of the
classical shadow technique, and so ALSO in particular, is
that the produced classical shadows can be reused in differ-
ent (independent) tasks. For example, the same set of classi-
cal shadows can be used in both finding the state preparation
circuits and building quantum autoencoders.

In terms of future directions, we are trying to design sim-
ilar resource efficient protocols for other trainable ansatzes
such as the Quantum CNN ansatz (Cong, Choi, and Lukin
2019; Pesah et al. 2021). Another topic of interest would be
to extend this method to techniques in other areas of quan-
tum information that use large amounts of copies or execu-
tions such as device calibration and error correction.
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