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ABSTRACT

Building on recent advances in image generation, we present a fully data-driven
approach to rendering markup into images. The approach is based on diffusion
models, which parameterize the distribution of data using a sequence of denois-
ing operations on top of a Gaussian noise distribution. We view the diffusion
denoising process as a sequential decision making process, and show that it ex-
hibits compounding errors similar to exposure bias issues in imitation learning
problems. To mitigate these issues, we adapt the scheduled sampling algorithm
to diffusion training. We conduct experiments on four markup datasets: math-
ematical formulas (LaTeX), table layouts (HTML), sheet music (LilyPond), and
molecular images (SMILES). These experiments each verify the effectiveness of
the diffusion process and the use of scheduled sampling to fix generation issues.
These results also show that the markup-to-image task presents a useful controlled
compositional setting for diagnosing and analyzing generative image models.

1 INTRODUCTION

Recent years have witnessed rapid progress in text-to-image generation with the development and
deployment of pretrained image/text encoders (Radford et al., 2021; Raffel et al., 2020) and pow-
erful generative processes such as denoising diffusion probabilistic models (Sohl-Dickstein et al.,
2015; Ho et al., 2020). Most existing image generation research focuses on generating realistic im-
ages conditioned on possibly ambiguous natural language (Nichol et al., 2021; Saharia et al., 2022;
Ramesh et al., 2022). In this work, we instead study the task of markup-to-image generation, where
the presentational markup describes exactly one-to-one what the final image should look like.

While the task of markup-to-image generation can be accomplished with standard renderers, we
argue that this task has several nice properties for acting as a benchmark for evaluating and analyzing
text-to-image generation models. First, the deterministic nature of the problem enables exposing and
analyzing generation issues in a setting with known ground truth. Second, the compositional nature
of markup language is nontrivial for neural models to capture, making it a challenging benchmark
for relational properties. Finally, developing a model-based markup renderer enables interesting
applications such as markup compilers that are resilient to typos, or even enable mixing natural and
structured commands (Glennie, 1960; Teitelman, 1972).

We build a collection of markup-to-image datasets shown in Figure 1: mathematical formulas, table
layouts, sheet music, and molecules (Nienhuys & Nieuwenhuizen, 2003; Weininger, 1988). These
datasets can be used to assess the ability of generation models to produce coherent outputs in a
structured environment. We then experiment with utilizing diffusion models, which represent the
current state-of-the-art in conditional generation of realistic images, on these tasks.

The markup-to-image challenge exposes a new class of generation issues. For example, when gen-
erating formulas, current models generate perfectly formed output, but often generate duplicate or
misplaced symbols (see Figure 2). This type of error is similar to the widely studied exposure bias
issue in autoregressive text generation (Ranzato et al., 2015). To help the model fix this class of
errors during the generation process, we propose to adapt scheduled sampling (Bengio et al., 2015).
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Figure 1: Markup-to-Image suite with generated images. Tasks include mathematical formulas
(LaTeX), table layouts (HTML), sheet music (LilyPond), and molecular images (SMILES). Each
example is conditioned on a markup (bottom) and produces a rendered image (top). Evaluation
directly compares the rendered image with the ground truth image.

Specifically, we train diffusion models by using the model’s own generations as input such that the
model learns to correct its own mistakes.

Experiments on all four datasets show that the proposed scheduled sampling approach improves
the generation quality compared to baselines, and generates images of surprisingly good quality for
these tasks. Models produce clearly recognizable images for all domains, and often do very well at
representing the semantics of the task. Still, there is more to be done to ensure faithful and consistent
generation in these difficult deterministic settings. All models, data, and code are publicly available
at https://github.com/da03/markup2im.

2 MOTIVATION: DIFFUSION MODELS FOR MARKUP-TO-IMAGE
GENERATION

Task We define the task of markup-to-image generation as converting a source in a markup
language describing an image to that target image. The input is a sequence of M tokens x =
x1, · · · , xM ∈ X , and the target is an image y ∈ Y ⊆ RH×W of height H and width W (for
simplicity we only consider grayscale images here). The task of rendering is defined as a mapping
f : X → Y . Our goal is to approximate the rendering function using a model parameterized by
θ fθ : X → Y trained on supervised examples {(xi, yi) : i ∈ {1, 2, · · · , N}}. To make the task
tangible, we show several examples of x, y pairs in Figure 1.

Challenge The markup-to-image task contains several challenging properties that are not present
in other image generation benchmarks. While the images are much simpler, they act more dis-
cretely than typical natural images. Layout mistakes by the model can lead to propagating errors
throughout the image. For example, including an extra mathematical symbol can push everything
one line further down. Some datasets also have long-term symbolic dependencies, which may be
difficult for non-sequential models to handle, analogous to some of the challenges observed in non-
autoregressive machine translation (Gu et al., 2018).

2

https://github.com/da03/markup2im


Published as a conference paper at ICLR 2023

850

750

650

550

450

350

250

0

Figure 2: The generation process of diffusion (left) versus diffusion+schedule sampling (right).
The numbers on the y-axis are the number of diffusion steps (t). The ground truth LaTeX is
\gamma_{n}ˆ{\mu}=\alpha_{n}ˆ{\mu}+\tilde{\alpha}_{n}ˆ{\mu},˜˜˜n\neq0.

Generation with Diffusion Models Denoising diffusion probabilistic models (DDPM) (Ho et al.,
2020) parameterize a probabilistic distribution P (y0|x) as a Markov chain P (yt−1|yt) with an initial
distribution P (yT ). These models conditionally generate an image by sampling iteratively from the
following distribution (we omit the dependence on x for simplicity):

P (yT ) = N (0, I)

P (yt−1|yt) = N (µθ(yt, t);σ
2
t I)

where y1, y2, · · · , yT are latent variables of the same size as y0 ∈ Y , µθ(·, t) is a neural network
parameterizing a map Y → Y .

Diffusion models have proven to be effective for generating realistic images (Nichol et al., 2021;
Saharia et al., 2022; Ramesh et al., 2022) and are more stable to train than alternative approaches
for image generation such as Generative Adversarial Networks (Goodfellow et al., 2014). Diffusion
models are surprisingly effective on the markup-to-image datasets as well. However, despite gener-
ating realistic images, they make major mistakes in the layout and positioning of the symbols. For
an example of these mistakes see Figure 2 (left).

We attribute these mistakes to error propagation in the sequential Markov chain. Small mistakes
early in the sampling process can lead to intermediate yt states that may have diverged significantly
far from the model’s observed distribution during training. This issue has been widely studied in the
inverse RL and autoregressive token generation literature, where it is referred to as exposure bias
(Ross et al., 2011; Ranzato et al., 2015).

3 SCHEDULED SAMPLING FOR DIFFUSION MODELS

In this work, we adapt scheduled sampling, a simple and effective method based on DAgger (Ross
et al., 2011; Bengio et al., 2015) from discrete autoregressive models to the training procedure of
diffusion models. The core idea is to replace the standard training procedure with a biased sampling
approach that mimics the test-time model inference based on its own predictions. Before describing
this approach, we first give a short background on training diffusion models.

Background: Training Diffusion Models Diffusion models maximize an evidence lower bound
(ELBO) on the above Markov chain. We introduce an auxiliary Markov chain Q(y1, · · · , yT |y0) =
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∏T
t=1 Q(yt|yt−1) to compute the ELBO:1

logP (y0) ≥ Ey1,··· ,yT∼Q log
P (y0, · · · , yT )
Q(y1, · · · , yT )

= EQ

[
logP (y0|y1)−

T∑
t=2

DKL(Q(yt−1|yt, y0)∥P (yt−1|yt))−DKL(Q(yT |y0)∥P (yT ))

]
. (1)

Diffusion models fix Q to a predefined Markov chain:

Q(yt|yt−1) = N (
√
1− βtyt−1, βtI) Q(y1, · · · , yT |y0) =

T∏
t=1

Q(yt|yt−1),

where β1, · · · , βT is a sequence of predefined scalars controlling the variance schedule.

Since Q is fixed, the last term −EQDKL(Q(yT |y0)∥P (yT )) in Equation (1) is a constant, and we
only need to optimize

EQ

[
logP (y0|y1)−

T∑
t=2

DKL(Q(yt−1|yt, y0)∥P (yt−1|yt))

]

= EQ(y1|y0) logP (y0|y1)−
T∑

t=2

EQ(yt|y0)DKL(Q(yt−1|yt, y0)∥P (yt−1|yt)).

With large T , sampling from Q(yt|y0) can be made efficient since Q(yt|y0) has an analytical form:

Q(yt|y0) =
∫
y1,··· ,yt−1

Q(y1:t|y0) = N (
√
ᾱty0,

√
1− ᾱtI),

where ᾱt =
∏t

s=1 αs and αt = 1− βt.

To simplify the P (yt−1|yt) terms. Ho et al. (2020) parameterize this distribution by defining
µθ(yt, t) through an auxiliary neural network ϵθ(yt, t):

µθ(yt, t) =
1
√
αt

(yt −
βt√
1− ᾱt

ϵθ(yt, t)).

With P in this form, applying Gaussian identities, reparameterization (Kingma & Welling, 2013),
and further simplification leads to a final MSE training objective,

max
θ

T∑
t=1

Eyt∼Q(yt|y0)

∥∥∥∥yt −√ᾱty0√
1− ᾱt

− ϵθ(yt, t)

∥∥∥∥2 , (2)

where yt is the sampled latent, ᾱt is a constant derived from the variance schedule, y0 is the training
image, and ϵθ is a neural network predicting the update to yt that leads to yt−1.

Scheduled Sampling Our main observation is that at training time, for each t, the objective func-
tion in Equation (2) takes the expectation with respect to a Q(yt|y0). At test time the model instead
uses the learned P (yt) leading to exposure bias issues like Figure 2.

Scheduled sampling (Bengio et al., 2015) suggests alternating sampling in training from the standard
distribution and the model’s own distribution based on a schedule that increases model usage through
training. Ideally, we would sample from

P (yt) =

∫
yt+1,··· ,yT

P (tT )

T∏
s=t+1

P (ys−1|ys).

1For a more detailed derivation, see Appendix B.
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However, sampling from P (yt) is expensive since it requires rolling out the intermediate steps
yT , · · · , yt+1

2.

We propose an approximation instead. First we use Q as an approximate posterior of an earlier step
t+m, and then roll out a finite number of steps m from yt+m ∼ Q(yt+m|y0):

P̃(yt|y0) ≜
∫
yt+1,··· ,yt+m

Q(yt+m|y0)
t+m∏
s=t+1

P (ys−1|ys).

Figure 3: Diffusion samples y1 from Q. Sched-
uled sampling instead samples an upstream la-
tent variable y2 and then y1 based on the model’s
Markov chain P (y1|y2).

Note that when m = 0, P̃ (yt|y0) = Q(yt|y0)
and we recover normal diffusion training.
When m = T − t, P̃ (yt|y0) = P (yt) if
Q(yT |y0) = N (0, I). An example of m = 1
is shown in Figure 3. Substituting back, the ob-
jective becomes

T∑
t=1

Eyt∼P̃ (yt|y0)

∥∥∥∥yt −√ᾱty0√
1− ᾱt

− ϵθ(yt, t)

∥∥∥∥2 .
(3)

To compute its gradients, in theory we need to
back-propagate through P̃ since it depends on
θ, but in practice to save memory we ignore ∂P̃

∂θ
and only consider the term inside expectation.

4 MARKUP-TO-IMAGE SETUP

4.1 DATA

We adapt datasets from four domains to the task of markup-to-image. Table 1 provides a summary
of dataset statistics.

Math Our first dataset, LaTeX-to-Math, is a large collection of real-world mathematical expres-
sions written in LaTeX markups and their rendered images. We adopt IM2LATEX-100K introduced
in Deng et al. (2016), which is collected from Physics papers on arXiv. IM2LATEX-100K is origi-
nally created for the visual markup decompiling task, but we adapt this dataset for the reverse task
of markup-to-image. We pad all images to size 64 × 320 and remove images larger than that size.
For faster evaluation, we form a smaller test set by subsampling 1,024 examples from the original
test set in IM2LATEX-100K .

Table Layouts The second dataset we use is based on the 100k synthesized HTML snippets and
corresponding rendered webpage images from Deng et al. (2016). Each HTML snippet contains a
nested <div> with a solid border, a random width, and a random float. The maximum depth of a
nest is limited to two. We make no change to this dataset, except that we subsample 1,024 examples
from the original test set to form a new test set.

Sheet Music We generate a third dataset of sheet music. The markup language LilyPond is a file
format for music engraving (Nienhuys & Nieuwenhuizen, 2003). LilyPond is a powerful language
for writing music scores: it allows specifying notes using letters and note durations using numbers.
One challenge in the LilyPond-to-Sheet music task is to deal with the possible “relative” mode,
where the determination of each note relies on where the previous note is. We generate 35k synthetic
LilyPond files and compile them into sheet music. We downsample images by a factor of two and
then filter out images greater than 192× 448.

2There is no analytical solution since the transition probabilities in this Markov chain are parameterized by
a neural network µθ .
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Dataset Input Format Input Length # Train # Val # Test Image Size Grayscale

Math LaTeX Math 113 55,033 6,072 1,024 64× 320 Y
Table Layouts HTML Snippet 481 80,000 10,000 1,024 64× 64 Y
Sheet Music LilyPond File 240 30,902 989 988 192× 448 Y
Molecules SMILES String 30 17,925 1,000 1,000 128× 128 N

Table 1: Markup-to-image datasets. Inputs to each dataset are described in Section 4.1 in detail.
Input length is measured as the median number of characters in the validation set.

Molecules The last dataset we use is from the chemistry domain. The input is a string of Simpli-
fied Molecular Input Line Entry System (SMILES) which specifies atoms and bonds of a molecule
(Weininger, 1988). The output is a scheme of the input molecule. We use a solubility dataset by
Wilkinson et al. (2022), containing 19,925 SMILES strings. The dataset is originally proposed to
improve the accessibility of chemical structures for deep learning research. 2D molecules images
are rendered from SMILES strings using the Python package RDKIT (Landrum et al., 2016). We
partition the data into training, validation, and test sets. We downsample images by a factor of two.

4.2 EVALUATION

Popular metrics for conditional image generation such as Inception Score (Salimans et al., 2016)
or Fréchet Inception Distance (Heusel et al., 2017) evaluate the fidelity and high-level semantics
of generated images. In markup-to-image tasks, we instead emphasize the pixel-level similarity
between generated and ground truth images because input markups describe exactly what the image
should look like.

Pixel Metrics Our primary evaluation metric is Dynamic Time Warping (DTW) (Müller, 2007),
which calculates the pixel-level similarities of images by treating them as a column time-series. We
preprocess images by binarizing them. We treat binarized images as time-series by viewing each
image as a sequence of column feature vectors. We evaluate the similarity of generated and ground
truth images by calculating the cost of alignment between the two time-series using DTW3. We use
Euclidean distance as a feature matching metric. We allow minor perturbations of generated images
by allowing up to 10% of upward/downward movement during feature matching.

Our secondary evaluation metric is the root squared mean error (RMSE) of pixels between generated
and ground truth images. We convert all images to grayscale before calculating RMSE. While RMSE
compares two images at the pixel level, one drawback is that RMSE heavily penalizes the score of
symbolically equivalent images with minor perturbations.

Complimentary Metrics Complementary to the above two main metrics, we report one learned
and six classical image similarity metrics. We use CLIP score (Radford et al., 2021) as a learned
metric to calculate the similarity between the CLIP embeddings of generated and ground truth im-
ages. While CLIP score is robust to minor perturbations of images, it is unclear if CLIP embeddings
capture the symbolic meanings of the images in the domains of rendered markups. For classical im-
age similarity metrics4, we report SSIM (Wang et al., 2004), PSNR (Wang et al., 2004), UQI (Wang
& Bovik, 2002), ERGAS (Wald, 2000), SCC (Zhou et al., 1998), and RASE (González-Audı́cana
et al., 2004).

4.3 EXPERIMENTAL SETUP

Model For Math, Table Layouts, and Sheet Music datasets, we use GPT-Neo-175M (Black et al.,
2021; Gao et al., 2020) as the input encoder, which incorporates source code in its pre-training. For
the Molecules dataset, we use ChemBERTa-77M-MLM from DeepChem (Ramsundar et al., 2019;
Chithrananda et al., 2020) to encode the input. To parameterize the diffusion decoder, we experiment
with three variants of U-Net (Ronneberger et al., 2015): 1) a standard U-Net conditioned on an

3We use the DTW implementation by https://tslearn.readthedocs.io/en/stable/user_
guide/dtw.html.

4We use the similarity metric implementation by https://github.com/andrewekhalel/sewar.

6

https://tslearn.readthedocs.io/en/stable/user_guide/dtw.html
https://tslearn.readthedocs.io/en/stable/user_guide/dtw.html
https://github.com/andrewekhalel/sewar


Published as a conference paper at ICLR 2023

Approach Pixel Complimentary
DTW↓ RMSE↓ CLIP↑ SSIM↑ PSNR↑ UQI↑ ERGAS↓ SCC↑ RASE↓

Math
Stable Diffusion 115.77 144.65 0.71 0.15 5.12 0.54 35366.43 0.00 8721.85
Base-Attn,-Pos 27.73 44.72 0.95 0.70 15.35 0.97 2916.76 0.02 729.19
Base+Attn,-Pos 20.81 39.53 0.96 0.76 16.62 0.98 2448.35 0.06 612.09
Base+Attn,+Pos 19.45 37.81 0.97 0.78 17.12 0.98 2314.31 0.07 578.58
Scheduled Sampling 18.81 37.19 0.97 0.79 17.25 0.98 2247.41 0.07 561.85

Table Layouts
Base+Attn,-Pos 6.09 22.89 0.95 0.92 38.55 0.98 2497.51 0.44 624.38
Base+Attn,+Pos 5.91 22.17 0.95 0.93 38.91 0.98 2409.28 0.44 602.32
Scheduled Sampling 5.64 21.11 0.95 0.93 40.20 0.98 2285.83 0.45 571.46

Sheet Music
Base+Attn,-Pos 81.21 45.23 0.97 0.67 15.10 0.97 3056.72 0.02 764.18
Base+Attn,+Pos 80.63 45.16 0.97 0.68 15.11 0.97 3032.40 0.02 758.10
Scheduled Sampling 79.76 44.70 0.97 0.68 15.20 0.97 2978.36 0.02 744.59

Molecules
Base+Attn,-Pos 24.87 38.12 0.97 0.61 16.66 0.98 2482.08 0.00 620.52
Base+Attn,+Pos 24.95 38.15 0.96 0.61 16.64 0.98 2455.18 0.00 613.79
Scheduled Sampling 24.80 37.92 0.96 0.61 16.69 0.98 2467.16 0.00 616.79

Table 2: Evaluation results of markup-to-image generation across four datasets. (+/-)Attn indicates
a model with or without attention, and (+/-)Pos is a model with or without positional embeddings.
Scheduled Sampling is applied to training of models with attention and positional embeddings. Best
results are in bold (based on full precision although the numbers are rounded to two decimal places).

average-pooled encoder embedding (denoted as “-Attn,-Pos”), 2) a U-Net alternating with cross-
attention layers over the full resolution of the encoder embeddings (denoted as “+Attn,-Pos”), and
3) a U-Net with both cross-attention and additional position embeddings on the query marking row
ids and column ids (denoted as “+Attn,+Pos”) (Vaswani et al., 2017).

Hyperparameters We train all models for 100 epochs using the AdamW optimizer (Kingma &
Ba, 2014; Loshchilov & Hutter, 2018). The learning rate is set to 1e−4 with a cosine decay schedule
over 100 epochs and 500 warmup steps. We use a batch size of 16 for all models. For scheduled
sampling, we use m = 1. We linearly increase the rate of applying scheduled sampling from 0% to
50% from the beginning of the training to the end.

Implementation Details Our code is built on top of the HuggingFace diffusers library5. We use
a single Nvidia A100 GPU to train on the Math, Table Layouts, and Molecules datasets; We use
four A100s to train on the Sheet Music dataset. Training takes approximately 25 minutes per epoch
for Math and Table Layouts, 30 minutes for Sheet Music, and 15 minutes for Molecules. Although
one potential concern is that the scheduled sampling approach needs more compute due to the extra
computation to get P̃ for m > 0, in practice, we find that the training speed is not much affected:
on the Math dataset, scheduled sampling takes 24 minutes 59 seconds per training epoch, whereas
without scheduled sampling it takes 24 minutes 13 seconds per epoch.

5 RESULTS

Table 2 summarizes the results of markup-to-image tasks across four domains. We use DTW and
RMSE as our primary evaluation metrics to make our experimental conclusions. First, we train
and evaluate the variations of diffusion models on the Math dataset. Comparing the model with
attention (“-Attn,-Pos”) to without attention (“+Attn,-Pos”), using attention in the model results in a

5https://github.com/huggingface/diffusers
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Figure 4: Perturbation results. For each dataset, we compare the DTW score of images generated
by a compiler, removing an increasing number of symbols from markups, and our best model.

Figure 5: Qualitative results showing typical mistakes. (Top row) Model-generated images across
datasets. (Bottom row) Ground truth images.

significant improvement by reducing DTW (25% reduction) and RMSE (12% reduction). Therefore,
we always use attention for experiments on other datasets. We observe that additionally, using
positional embeddings (“+Attn,+Pos”) is helpful for the Math dataset. The proposed scheduled
sampling approach improves the model’s performance using attention and positional embeddings.
We also evaluate pre-trained Stable Diffusion (Rombach et al., 2022), but our evaluation results
suggest that pre-trained Stable Diffusion does not have a zero-shot transferability to the markup
domain. We provide qualitative results for Stable Diffusion in Figure 14.

We observe a similar trend in the other three datasets–Table Layouts, Sheet Music, and Molecules.
Using positional embeddings improves the performance measured by DTW and RMSE (except for
the Molecules dataset). Training models with the proposed scheduled sampling achieves the best
results consistently across all the datasets. As noted in Figure 2, we can qualitatively observe that
schedule sampling, which exposes the model to its own generations during training time, comes
with the benefits of the model being capable of correcting its own mistakes at inference time.

Absolute Evaluation Our evaluation metrics enable relative comparisons between models in the
markup-to-image task. However, it remains unclear how capable the models are in an absolute
sense–if the models are generating near-perfect images or even the best model is missing a lot of
symbols. We investigate this question by removing an increasing number of symbols from the
ground truth markups and evaluating the perturbed images against the ground truth images. Our
results in Figure 4 highlight that our best model performs roughly equivalent to the ground truth
images with three symbols removed on the Math dataset. On the other hand, our best model performs
better than ground truth images with only a single symbol removed on the Table Layouts dataset
and two symbols removed on the Molecules dataset, indicating that our best model adapts to these
datasets well. Results for music are less strong.

Qualitative Analysis We perform qualitative analysis on the results of our best models, and we
observe that diffusion models show a different level of adaptation to four datasets. First, we observe
that diffusion models fully learn the Table Layouts dataset, where the majority of generated images
are equivalent to the ground truth images for human eyes. Second, diffusion models perform mod-
erately well on the Math and Molecules datasets: diffusion models generate images similar to the
ground truth images most of the time on the Math dataset, but less frequently so on the Molecules
dataset. The common failure modes such as dropping a few symbols, adding extra symbols, and
repeating symbols are illustrated in Figure 5.
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On the Sheet Music dataset, diffusion models struggle by generating images that deviate significantly
from the ground truth images. Despite this, we observe that diffusion models manage to generate the
first few symbols correctly in most cases. The intrinsic difficulty of the Sheet Music dataset is a long
chain of dependency of symbols from left to right, and the limited number of denoising steps might
be a bottleneck to generating images containing this long chain. We provide additional qualitative
results for all four datasets in Appendix A.

6 RELATED WORK

Text-to-Image Generation Text-to-image generation has been broadly studied in the machine
learning literature, and several model families have been adopted to approach the task. Generative
Adversarial Networks (Goodfellow et al., 2014) is one of the popular choices to generate realistic
images from text prompts. Initiating from the pioneering work by Reed et al. (2016a), numerous
approaches are developed to improve the quality of text-to-image generation (Reed et al., 2016b;
Zhang et al., 2017; 2018; Zhu et al., 2019; Tao et al., 2020; Koh et al., 2021, inter alia). Another
common method is based on VQ-VAE (Van Den Oord et al., 2017), treating text-to-image genera-
tion as a sequence-to-sequence task of predicting discretized image tokens autoregressively from text
prompts (Ramesh et al., 2021; Ding et al., 2021; Gafni et al., 2022; Gu et al., 2022; Aghajanyan et al.,
2022; Yu et al., 2022). Diffusion models (Sohl-Dickstein et al., 2015) are the most recent progress in
text-to-image generation. The simplicity of training diffusion models introduces significant utility,
which often reduces to the minimization of mean-squared error for estimating noises added to im-
ages (Ho et al., 2020). Diffusion models are free from training instability or model collapses (Brock
et al., 2018; Dhariwal & Nichol, 2021), and yet manage to outperform Generative Adversarial Net-
works on text-to-image generation in the MSCOCO domain (Dhariwal & Nichol, 2021). Diffusion
models trained on large-scale image-text pairs demonstrate impressive performance in generating
creative natural or artistic images (Nichol et al., 2021; Ramesh et al., 2022; Saharia et al., 2022).

So far, the demonstration of successful text-to-image generation models is centered around the sce-
nario with flexible interpretations of text prompts (e.g., artistic image generation). When there is
an exact interpretation of the given text prompt (e.g., markup-to-image generation), text-to-image
generation models are understudied (with a few exceptions such as Liu et al. (2021) which stud-
ied controlled text-to-image generation in CLEVR (Johnson et al., 2017) and iGibson (Shen et al.,
2021) domains). Prior work reports that state-of-the-art diffusion models face challenges in the ex-
act interpretation scenario. For example, Ramesh et al. (2022) report unCLIP struggles to generate
coherent texts based on images. In this work, we propose a controlled compositional testbed for
the exact interpretation scenario across four domains. Our study brings potential opportunities for
evaluating the ability of generation models to produce coherent outputs in a structured environment,
and highlights open challenges of deploying diffusion models in the exact interpretation scenario.

Scheduled Sampling In sequential prediction tasks, the mismatch between teacher forcing train-
ing and inference is known as an exposure bias problem (Ranzato et al., 2015; Spencer et al., 2021).
During teacher forcing training, a model’s next-step prediction is based on previous steps from the
ground truth sequence. During inference, the model performs the next step based on its own previous
predictions. Training algorithms such as DAgger (Ross et al., 2011) or scheduled sampling (Bengio
et al., 2015) are developed to mitigate this mismatch problem, primarily by forcing the model to
use its own previous predictions during training with some probability. In this work, we observe
a problem similar to exposure bias in diffusion models, and we demonstrate that training diffusion
models using scheduled sampling improves their performance on markup-to-image generation.

7 CONCLUSION

We propose the task of markup-to-image generation which differs from natural image generation
in that there are ground truth images and deterministic compositionality. We adapt four instances
of this task to analyze state-of-the-art diffusion-based image generation models. Motivated by the
observation that a diffusion model cannot correct its own mistakes at inference time, we propose to
use scheduled sampling to expose it to its own generations during training. Experiments confirm our
approach’s effectiveness, although perfect rendering is not yet achieved. We believe that rendering
markup is an interesting benchmark and a potential application of pretrained models with diffusion.
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A QUALITATIVE RESULTS

We provide additional qualitative results from models trained with or without scheduled sampling
on four datasets in Figure 6, Figure 7, Figure 8, and Figure 9.

Figure 6: Qualitative results in the Math domain. Left column: ground truth images. Middle column:
generations from +Attn,+Pos. Right column: generations from Scheduled Sampling. The top two
rows are random selections, and the bottom two rows are examples of good generations.

Figure 7: Qualitative results in the Table Layouts domain. Left column: ground truth images. Mid-
dle column: generations from +Attn,+Pos. Right column: generations from Scheduled Sampling.
The top two rows are random selections, and the bottom two rows are examples of good generations.
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Figure 8: Qualitative results in the Sheet Music domain. Left column: ground truth images. Middle
column: generations from +Attn,+Pos. Right column: generations from Scheduled Sampling. The
top two rows are random selections, and the bottom two rows are examples of good generations.

Figure 9: Qualitative results in the Molecules domain. Left column: ground truth images. Middle
column: generations from +Attn,+Pos. Right column: generations from Scheduled Sampling. The
top two rows are random selections, and the bottom two rows are examples of good generations.
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B DETAILED DERIVATION OF THE DIFFUSION OBJECTIVE

In this section, we provide a more detailed derivation of the objective function of the diffusion
process.

Generative Process Denoising diffusion probabilistic models (DDPM) (Ho et al., 2020) parame-
terize the probabilistic distribution P (y0|x) by parameterizing a Markov chain P (yt−1|yt) with an
initial distribution P (yT ) (we omit the dependence on x for simplicity):

P (yT ) = N (0, I)

P (yt−1|yt) = N (µθ(yt, t);σ
2
t I)

P (y0:T ) = P (yT )

T∏
t=1

P (yt−1|yt),

where y1, y2, · · · , yT are latent variables of the same size as y0 ∈ Y , µθ(·, t) is a neural network
parameterizing a map Y → Y .

Evidence Lower Bound To learn the model, we use variational inference and maximize the evi-
dence lower bound (ELBO) (Bishop & Nasrabadi, 2006). We introduce an auxiliary Markov chain
Q(y1, · · · , yT |y0) =

∏T
t=1 Q(yt|yt−1) as the approximate posterior distribution to compute the

ELBO:

logP (y0) ≥ Ey1,··· ,yT∼Q log
P (y0, · · · , yT )
Q(y1, · · · , yT )

= EQ log
P (yT )

∏T
t=1 P (yt−1|yt)

Q(y1|y0)
∏T

t=2 Q(yt|yt−1)

= EQ log
P (yT )

∏T
t=1 P (yt−1|yt)

Q(y1|y0)
∏T

t=2[Q(yt−1|yt, y0)Q(yt|y0)/Q(yt−1|y0)]

= EQ log
P (yT )P (y0|y1)

∏T
t=2 P (yt−1|yt)

Q(yT |y0)
∏T

t=2 Q(yt−1|yt, y0)

= EQ

[
logP (y0|y1) + log

T∏
t=2

P (yt−1|yt)
Q(yt−1|yt, y0))

+ log
P (yT )

Q(yT |y0)

]

= EQ

[
logP (y0|y1)−

T∑
t=2

DKL(Q(yt−1|yt, y0)∥P (yt−1|yt))−DKL(Q(yT |y0)∥P (yT ))

]
. (4)

Note that this shows how Equation (1) in Section 3 in the main paper is derived.

Instead of optimizing Q to maximize ELBO as is typically done in variational inference, diffusion
model fixes Q to a predefined Markov chain:

Q(yt|yt−1) = N (
√

1− βtyt−1, βtI)

Q(y1, · · · , yT |y0) =
T∏

t=1

Q(yt|yt−1),

where β1, · · · , βT is a sequence of predefined scalars controlling the variance schedule. Since Q is
fixed, the last term −EQDKL(Q(yT |y0)∥P (yT )) in Equation (4) is a constant, and we only need to
optimize

EQ

[
logP (y0|y1)−

T∑
t=2

DKL(Q(yt−1|yt, y0)∥P (yt−1|yt))

]

= EQ(y1|y0) logP (y0|y1)−
T∑

t=2

EQ(yt|y0)DKL(Q(yt−1|yt, y0)∥P (yt−1|yt)). (5)
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Since in practice T is usually set to a large number (this paper uses 1000), to efficiently compute
the gradients, we use stochastic gradient descent and sample t uniformly from {1, · · · , T} instead
of computing the full sum

∑T
t=2 DKL(Q(yt−1|yt, y0)∥P (yt−1|yt)) to estimate gradients. The key

observation is that sampling from Q(yt|y0) is efficient since Q(yt|y0) =
∫
y1,··· ,yt−1

Q(y1:t|y0) has
an analytical form:

Q(yt|y0) = N (
√
ᾱty0,

√
1− ᾱtI),

where ᾱt =
∏t

s=1 αs and αt = 1 − βt. This enables fast sampling of yt ∼ Q(yt|y0) without
sampling the intermediate steps y1, · · · , yt−1:

ϵ ∼ N (0, I)

yt =
√
ᾱty0 +

√
1− ᾱtϵ.

We refer readers to Ho et al. (2020) for detailed derivations. Based on this observation,
Q(yt−1|yt, y0) = Q(yt|yt−1,y0)Q(yt−1|y0)

Q(yt|y0)
is also a Gaussian:

Q(yt−1|yt, y0) = N (

√
ᾱt−1βt

1− ᾱt
y0 +

√
αt(1− ᾱt−1)

1− ᾱt
yt,

(1− ᾱt−1)

1− ᾱt
βtI)

= N (
1√

1− βt

(yt −
βt√
1− ᾱt

ϵ),
(1− ᾱt−1)

1− ᾱt
βtI)

Since our goal is to minimize
∑T

t=2 DKL(Q(yt−1|yt, y0)∥P (yt−1|yt)), to match the covariance
matrix of P (yt−1|yt) to that of Q(yt−1|yt, y0), we can simply set

σ2
t =

(1− ᾱt−1)

1− ᾱt
βt.

To match the mean, µθ(yt, t) should match

1
√
αt

(yt −
βt√
1− ᾱt

ϵ).

Since yt is given as input to the model, Ho et al. (2020) propose to parameterize µθ(yt, t) in a similar
form by parameterizing another function ϵθ(yt, t):

µθ(yt, t) =
1
√
αt

(yt −
βt√
1− ᾱt

ϵθ(yt, t)).

With this parameterization the objective in Equation (5) can be written as (ignoring constants)

T∑
t=1

EQ(yt|y0)
β2
t

2σ2
1αt(1− ᾱt)

∥ϵt − ϵθ(yt, t)∥2,

where ϵt =
yt−

√
ᾱty0√

1−ᾱt
. Ho et al. (2020) further proposes to ignore the weights β2

t

2σ2
1αt(1−ᾱt)

, so the
final objective becomes

T∑
t=1

EQ(yt|y0)∥
yt −

√
ᾱty0√

1− ᾱt
− ϵθ(yt, t)∥2. (6)

C ALGORITHM OUTLINE

The training algorithm of scheduled sampling is shown in Algorithm 1, where the differences from
the original DDPM training (shown in Algorithm 2) are highlighted in red. We refer readers to Ho
et al. (2020) for the sampling algorithm, since our approach doesn’t change sampling.
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Algorithm 1 Scheduled Sampling

Require: m ≥ 0
1: repeat
2: y0 ∼ data
3: t ∼ Uniform({1, . . . , T−m})
4: ϵ ∼ N (0, I)
5: yt+m ←

√
ᾱt+my0 +

√
1− ᾱt+mϵ

6: for m′ = m− 1,m− 2, · · · , 0 do
7: yt+m′ ∼ P (yt+m′ |yt+m′+1)
8: end for
9: Take gradient descent step on

∇θ ∥ϵ− ϵθ(yt, t)∥2
10: until converged

Algorithm 2 No Scheduled Sampling

Require:
1: repeat
2: y0 ∼ data
3: t ∼ Uniform({1, . . . , T})
4: ϵ ∼ N (0, I)
5: yt ←

√
ᾱty0 +

√
1− ᾱtϵ

6:
7:
8:
9: Take gradient descent step on

∇θ ∥ϵ− ϵθ(yt, t)∥2
10: until converged
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Figure 10: The generation process of diffusion (left) versus diffusion+schedule sampling (right).
The numbers on the y-axis are the number of diffusion steps (t). The ground truth LaTeX is
\tilde{Q}_{1}ˆ{(L,I)} \tilde{Q}_{0}ˆ{(L,I)} \neq 0 \,

D MORE QUALITATIVE EXAMPLES OF INTERMEDIATE STEPS

More qualitative examples of the generative process comparing a model trained with scheduled
sampling and a model trained without scheduled sampling can be found at Figure 10, Figure 11, and
Figure 12.

E MORE PERTURBATION ANALYSIS

We expand our perturbation analysis in Figure 4 to more perturbation patterns. In addition to the
deletion of symbols, we add the results for insertion and substitution. The distribution of the newly
introduced symbols follows the empirical distribution of those symbols in the training data. We
summarize the results in Table 3 and Figure 13.

F STABLE DIFFUSION EXPERIMENTAL DETAILS

We use the HuggingFace implementation of Stable Diffusion (Rombach et al., 2022). Stable Dif-
fusion is originally trained on images with the size of 500 × 500. During inference, it generates
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Figure 11: The generation process of diffusion (left) versus diffusion+schedule sampling
(right). The numbers on the y-axis are the number of diffusion steps (t). The ground truth LaTeX is
g_{00}=1,\qquad g_{ij}=-({\frac{2}{1+\vec{x}ˆ{2}}})ˆ{2}\delta_{ij}.
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Figure 12: The generation process of diffusion (left) versus diffusion+schedule sampling (right).
The numbers on the y-axis are the number of diffusion steps (t). The ground truth LaTeX is
\{\psi({\bf x}),\psiˆ{\dagger}({\bf y})\}=\delta({\bf x-y}).
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Approach Math Simple Tables Music Molecules
DTW↓ RMSE↓ DTW↓ RMSE↓ DTW↓ RMSE↓ DTW↓ RMSE↓

Gold Images
-1 Symbol 12.33 27.17 10.72 40.93 39.38 25.04 19.42 30.36
-2 Symbols 16.00 35.55 16.37 60.46 48.45 30.82 23.43 36.76
-3 Symbols 18.49 37.84 18.45 67.86 57.08 35.49 24.73 37.80
-4 Symbols 20.76 40.17 20.80 73.72 66.90 39.59 23.96 36.68
-8 Symbols 24.60 43.18 23.56 81.52 75.08 43.48 21.99 32.84
-16 Symbols 27.49 43.54 25.09 84.66 71.95 42.37 21.10 31.06

+1 Symbol 11.94 26.23 5.92 22.80 40.07 25.00 22.81 35.23
+2 Symbols 16.25 35.75 11.00 39.83 57.56 35.22 24.55 38.32
+3 Symbols 20.66 38.09 16.15 56.92 63.86 38.63 24.09 36.74
+4 Symbols 21.50 40.91 19.72 69.60 67.30 40.23 22.52 33.98
+8 Symbols 27.62 45.91 23.86 80.75 76.06 44.79 20.43 29.87
+16 Symbols 31.62 48.79 25.75 85.77 81.56 47.61 20.34 29.72

∆1 Symbol 16.55 31.42 11.20 41.31 52.88 32.20 15.25 24.27
∆2 Symbols 19.04 38.90 18.43 64.99 64.21 37.50 20.25 30.85
∆3 Symbols 23.42 41.58 20.96 72.71 67.73 39.60 21.11 31.27
∆4 Symbols 25.65 43.04 23.35 79.71 66.76 39.62 20.85 30.73
∆8 Symbols 28.61 45.89 25.57 86.93 75.37 43.97 20.34 29.72
∆16 Symbols 31.34 47.67 25.95 85.96 74.01 44.12 20.34 29.72

Scheduled Sampling 18.81 37.19 5.64 21.11 79.81 44.70 24.80 37.92

Table 3: Perturbation results. Perturbation noise is denoted by (-) deletion, (+) insertion, and (∆)
substitution.

poor-quality images if we query significantly smaller-sized images. Therefore, for our Math domain
experiments, we first generate images with the size of 320× 1600 and then down-sample the gener-
ated images to 64× 320. Figure 14 illustrates some of the images generated by Stable Diffusion.

20



Published as a conference paper at ICLR 2023

Figure 13: Perturbation results. Perturbation noise is denoted by (-) deletion, (+) insertion, and (∆)
substitution.

Figure 14: Qualitative results from Stable Diffusion (Rombach et al., 2022) in the Math domain.
Left column: ground truth images. Right column: generations from Stable Diffusion.
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