
Twin-Merging: Dynamic Integration of Modular
Expertise in Model Merging

Zhenyi Lu1,2∗ Chenghao Fan1,2∗ Wei Wei1,2† Xiaoye Qu1 Dangyang Chen3 Yu Cheng4

1 School of Computer Science & Technology, Huazhong University of Science and Technology,
2 Joint Laboratory of HUST and Pingan Property & Casualty Research (HPL),

3 Ping An Property & Casualty Insurance Company of China, Ltd.,
4 The Chinese University of Hong Kong.

{luzhenyi529,facicofan}@gmail.com, {weiw, xiaoye}@hust.edu.cn,
chendangyang273@pingan.com.cn, chengyu@cse.cuhk.edu.hk

Abstract

In the era of large language models, model merging is a promising way to combine
multiple task-specific models into a single multitask model without extra training.
However, two challenges remain: (a) interference between different models and
(b) heterogeneous data during testing. Traditional model merging methods often
show significant performance gaps compared to fine-tuned models due to these
issues. Additionally, a one-size-fits-all model lacks flexibility for diverse test data,
leading to performance degradation. We show that both shared and exclusive
task-specific knowledge are crucial for merging performance, but directly merging
exclusive knowledge hinders overall performance. In view of this, we propose
Twin-Merging, a method that encompasses two principal stages: (1) modularizing
knowledge into shared and exclusive components, with compression to reduce
redundancy and enhance efficiency; (2) dynamically merging shared and task-
specific knowledge based on the input. This approach narrows the performance gap
between merged and fine-tuned models and improves adaptability to heterogeneous
data. Extensive experiments on 20 datasets for both language and vision tasks
demonstrate the effectiveness of our method, showing an average improvement of
28.34% in absolute normalized score for discriminative tasks and even surpassing
the fine-tuned upper bound on the generative tasks. 1

1 Introduction

In recent years, Large Language Models (LLMs) have demonstrated notable success across various
Natural Language Processing (NLP) tasks [12, 16, 43, 61–63, 65, 68], including code generation
[22, 56], solving math problems [2, 44], multilingualism [47], etc. These models, with billions of
parameters, excel in various downstream tasks [25, 34, 72] but require extensive training on large
datasets using thousands of GPUs. The considerable computational and energy costs [53] limit their
specialization and deployment in resource-constrained environments [38].

To tackle this challenge, model fusion has emerged as a promising solution [37]. One notable
paradigm is model merging [29, 33, 76, 78], where multiple task-specific models, or “experts”, are
combined into a single unified model. This unified model can quickly adapt to new tasks without
the need to retrain a large model. Various techniques, such as parameter averaging [6, 74], weight

∗ Equal contribution.
† Corresponding authors.
1Our implementation is available in https://github.com/LZY-the-boys/Twin-Merging

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/LZY-the-boys/Twin-Merging

(I) Conventional Merging

. . .
Pretrained Task-Specific Expert

(II) + Knowledge Disentanglement

. . .
Task-Specific Expert Shared

Knowledge

. . .Exclusive
Knowledge

SVD Compression

(III) + Dynamical Merging

Router

. . .

MergedMerged

Input
Hidden

Exclusive
Knowledge

 Shared
Knowledge

Figure 1: Subfigure (I) shows that in conventional merging methods, parameters from different
task-specific models and a pre-trained model are weighted-summed into a single multitask model for
inference. Subfigure (II) illustrates that our Twin-Merging method first isolates shared knowledge,
then extracts exclusive knowledge by identifying differences between task experts and the shared
model. This exclusive knowledge is then compressed into sparse vectors. Subfigure (III) shows that
during testing, Twin-Merging dynamically merges shared and compressed specialized knowledge
based on test inputs to form the final inference model.

interpolation [33, 46], and advanced strategies like task arithmetic [29, 51, 67, 78], have been
developed for model merging. These techniques have been proven effective, enabling the integration
of fine-tuned knowledge from diverse tasks into a multi-task model without additional training.

However, merging models from different domains often sacrifices specific task performance, leading
to a large performance gap compared to the individual expert [31, 76]. Two major causes prevent
the existing merging methods from reaching the theoretical upper-bound performance of individual
experts: (1) Interference between models. Previous research shows that parameter redundancy and
sign discrepancies [76], as well as the distribution gap between tasks [31], hinder effective model
merging. We demonstrate that task-specific models often contain mixed knowledge, where the
expertise in one model may be exclusive or detrimental to others. This redundancy or interference
can obstruct the integration of expertise across models [9]. (2) heterogeneity of data at test time.
Previous methods pursue a single, static optimal solution for various tasks. While a one-size-fits-
all model avoids introducing new parameters, it might be inadequate or suboptimal due to the
unpredictable nature of test inputs [78]. It limits the utilization of complementary knowledge and
leads to deteriorated performance [71].

To address the above issues, in this paper, we introduce Twin Merging, involving two principal stages:
(1) Knowledge Modularization: Unlike previous research that migrates merging interference in a
parameter-wise manner or searches merging coefficients, we decompose the knowledge possessed by
experts into shared knowledge and exclusive task-specific knowledge, as shown in Figure 1 (II). First,
we compress common knowledge into a shared expert, serving to capture and consolidate common
knowledge across varying tasks. Then we isolate exclusive knowledge based on the difference
between the task experts and the shared expert, allowing diverse knowledge to be decomposed more
finely. (2) Dynamic Merging: Inspired by Mixture of Experts (MoE) [80, 84, 85], we simplify the
parameter merging problem into a conditional composition problem. Instead of pre-determining the
best parameter combination for heterogeneous data at test time, as illustrated in Figure 1 (III), we
introduce a router to dynamically merge shared and exclusive knowledge based on the test inputs.
The shared model serves as the foundation, and task-specific knowledge is conditionally injected
according to the router.

We demonstrate the effectiveness of our proposed Twin-Merging method through extensive experi-
ments on 12 datasets, covering both discriminative and generative tasks, various model architectures,
and in-domain and out-of-domain setups. As shown in Figure 2b, Twin-Merging consistently outper-
forms other merging methods across all datasets, surpassing the strongest baseline by an average of
28.34% in normalized scores for discriminative tasks and 3.86% for generative tasks on the scaled
model (Qwen-14B). We validate the scalability, extensibility, generalization, and storage efficiency of
Twin-Merging (Figure 2a). Remarkably, even with a 99.9% reduction in parameters, our method only
experiences a slight 14% performance degradation. Our results establish Twin-Merging as a powerful
and effective method for combining multiple fine-tuned models into a single multi-task model.

To summarize, our contributions are as follows: (1) We introduce Twin-Merging, a novel model
fusion method that reduces the performance gap between traditional model merging and fine-tuned
models while enhancing adaptability to diverse data. (2) We investigate the impact of shared and
exclusive task-specific knowledge on merging performance, presenting innovative techniques for

2

10 20 30 40 50 60
#Parameters (×109)

62

63

64

65

66

67

68

69

Av
er

ag
e

Sc
or

e
(%

)

Pre-trained

Individual

Weight Averaging

DARE

Task Arithmetic

Ties-Merging

Twin-Merging (Ours)

(a) The average performance on generative tasks vs. the
number of parameters of Twin-Merging compared to
various merging baselines, with different storage sizes
indicated by circle size.

COLA
SST2

MRPC

STSB

QQP

QNLI
MNLI

RTE

MMLU

TruthfulQA

BBQ

Summarization

0

20

40

60

80

100

Pretrained
Fine-tuned
Weight Averaging
Task Arithmetic

Ties-Merging
Task Arithmetic (w/ DARE)
Ties-Merging (W/ DARE)
Twin-Merging (Ours)

(b) Comparison of absolute accuracy (%) of
individual tasks for the NLP benchmarks on
RoBERTa and Qwen, covering 4 discrimina-
tive and 8 generative tasks.

Figure 2: The effectiveness of Twin-Merging in terms of performance and parameter-efficiency.

knowledge disentanglement and dynamic merging. (3) Twin-Merging is simple to implement with
minimal hyperparameters, improves multi-task performance without retraining expert models, and
can be combined with other merging methods for further gains. Our approach scales well with model
size and task numbers and is storage-efficient.

2 Related Work

In this section, we focus on model merging research, for additional related work on multi-task learning
and Mixture of Experts, please see Appendix B. Model merging aims to fuse multiple fine-tuned task-
specific models into one comprehensive multi-task model without additional training. FisherMerging
[46] and RegMean [33], use straightforward weight averaging but require extra data and computation.
Some works [1, 21, 58, 60, 70] bring models into a single low-loss basin and interpolate between
them based on the linear mode connectivity (LMC) theory [15, 18, 20]. The weight permutations [1]
and optimal transport [58] are utilized to better interpolate neural networks. However, recent studies
[83] suggest that LMC might not always hold for fine-tuned models. Task-Arithmetic [28, 51] extends
averaging to arithmetic operations in the parameter space for finer control over model behaviors, but
the interference between the multiple models can be an issue. To tackle this challenge, advanced
merging methods like Ties-Merging [76], AdaMerging [78] and DARE [79] have been proposed.
These methods aim to reduce task conflicts by addressing parameter redundancy or disagreements in
signs, finding optimal merging coefficients, and reducing weight density, respectively. Jiang et al. [32]
assume that test tasks are known and use task-specific knowledge to improve performance. However,
this assumption is often unrealistic since real-world data distributions are unpredictable. In contrast,
our method addresses merging interference by modularizing shared and task-specific knowledge. We
handle heterogeneous test data scenarios by introducing dynamic merging techniques.

3 Methodology

3.1 Analysis of the Performance Gap in Model Merging

In this paper, following the settings of model merging [29, 76, 79], we consider the case of T tasks,
where training for each task t starts from pre-trained model weight θ0 and fine-tunes on Dtrain

t
to obtain task-specific model θt. Let f(x;θ) be a language model accepting inputs x ∈ X and
paramterized by weights θ ∈ Θ. Considering the real data distributions are diverse and challenging
to represent with a single task, to model such distributions, previous methods typically consider the
mixture of T task test data: D =

∑T
t=1 αtDt, where

∑T
t=1 αt = 1, αt > 0 ∀t. The model merging

3

considers the problem where we have T fine-tuned expert models {ft(x;θt)}Tt=1 and pre-trained
weight θ0, composing a multitask model θ∗ to approximate the optimal solution.

θopt ≈ θ∗ = F(θ0,θ1, · · · ,θT) (1)

Here F represents an arbitrary merging function. For example, in Task Arithmetic [28], θ∗ =

θ0 +
∑T

t=1 γt(θt − θ0).

Table 1: Merging without parameter interfer-
ence and merging between similar tasks both
cause performance degradation (Notice: these
two experiments use different datasets).

Task Normalized Score
(Equation (4))

With parameter interference
Fine-tuned 100.00
Merging 85.43
Without parameter interference
Non-overlap Fine-tuned 100.00
Non-overlap Merging 82.21 [↓ 3.21]

Similar tasks
Fine-tuned 100.00
Similar-Tasks Merging 91.58 [↓ 8.42]

0 5 10 15 20 25 30
Fine-tuned Epoch

40

60

Av
g.

 S
co

re

Fine-tuned
Merged

0 20 40 60 80 100
Sparsity Rate (%)

60

80

Av
g.

 S
co

re

Fine-tuned upperbound

1-model merging

8-models merging

Pre-trained lowerbound

Figure 3: The impact of different ratios of
shared knowledge and exclusive knowledge.

Although existing merging methods, like Task Arithmetic, can combine multiple task-specific models
efficiently, they often exhibit significant performance gaps compared to single-task models. Prior
research, such as Ties Merging [76], attributes this phenomenon to parameter interference. This term
refers to the redundancy or sign discrepancies found in parameters located at the same position (e.g.,
self-attention weights) across different task models, which in turn result in information conflicting and
performance loss. Additionally, task interference, as noted in multi-task learning literature [13, 31],
arises from the inherent differences between tasks. For instance, tasks such as summarization,
mathematical reasoning, and code generation require the model to process information in distinct
ways. These differences worsen interference when models trained on different tasks are merged.

To understand these performance drops, we conducted two experiments using Task Arithmetic.
First, we fine-tuned Qwen-14B with LoRA, assigning non-overlapping modules to avoid parameter
interference. Despite this, a 3.21% drop in performance occurred, indicating persistent interference.
Second, using two similar summarization tasks (XSUM and DailyMail), we observed an 8.42%
drop compared to individually fine-tuned models, confirming that interference persists even between
similar tasks. These results suggest that interference in model merging is not limited to parameter-wise
and task-wise issues.

3.2 Interpreting Interference From the Perspective of Knowledge

To tackle the challenge of interference, we examine the merging process at a finer-grained knowledge
perspective. We identify two types of critical knowledge: (1) Shared knowledge, which benefits
multiple tasks, and (2) Exclusive knowledge, which is useful only for a specific task. Single-task
models often contain both types, complicating the merging process and leading to interference. To
validate our hypotheses, we conduct experiments that vary the ratio of task-specific and shared
knowledge.

To examine the impact of shared knowledge, we conducted full fine-tuning on each model for its
specific task. Excessive fine-tuning epochs can lead to catastrophic forgetting [19], a phenomenon
where the model retains task-specific knowledge but loses general knowledge. As the fine-tuning
epochs increase, the shared knowledge gradually decreases. The top section of Figure 3 illustrates
that as the epoch count increases, merging performance significantly deteriorates, even though the
fine-tuned model performs well on its task. This underscores the crucial role of shared knowledge in
merging performance.

To explore the impact of exclusive knowledge, we merge a single task-specific model into the base
model. We apply a sparsity method (e.g., SVD) to reduce the ratios of task-specific weights in the

4

merging model from 100% (standard merging) to 0% (base model). As shown in the lower part of
Figure 3, performance remains stable up to 90% sparsity. Notably, even with a 99% sparsity rate,
a single-merged model outperforms multi-model merging, confirming the existence of exclusive
knowledge, which is more pronounced with more models. This also underscores the value of
unmerged task-specific knowledge, since the fine-tuning performance can be effectively restored by
preserving unmerged task-specific information.

To summarize, both shared knowledge and un-merged task-specific knowledge play a vital role in
merging performance. The exclusive nature of task-specific knowledge hinders the effectiveness of
merging methods. Different types of knowledge need to be separated and modularized to achieve
optimal performance. Thus, the first step of our Twin-Merging approach is to explicitly partition the
weights into an expert containing shared knowledge and weights holding task-exclusive knowledge
before merging. Formally, we denote the shared expert as θs and the exclusive task-specific knowledge
as {vt}Tt=1, the detail of our method is illustrated in the following section.

3.3 Twin Merging

Algorithm 1 Twin-Merging

Require: language model f(x;θ), pre-trained weight θ0

and T task-specific fine-tuned weights {θt}Tt=1, trained
routerR parameterized by a full-connect layer ϕ, em-
bedding Emb, compression rank r and pre-specified
weight {γt}Tt=1

1: Pre-calculation: ▷ Only excute once
2: Compute the shared expert θs:
3: θs ← θ0 +

∑T
t=1 γt(θt − θ0)

4: Extract exclusive knowledge vectors for each task-
specific weight:

5: vt ← SVDr(θt − θs), for t = 1, . . . , T

6: Inference: ▷ Main loop
7: initialize output Y
8: for each input x in inputs X do
9: Calculate router weights:

10: [w1, · · · , wT]← softmax(R(Emb(x);ϕ))
11: Merge into a single expert θ∗:
12: θ∗ ← θs +

∑T
t=1 wtvt

13: Perform model inference to produce the output:
14: Y ← Y ∪ f(x;θ∗)
15: end for

Ensure: Output Y for input X .

Our proposed Twin-Merging employs two
main stages: knowledge modularization
and dynamic merging. These stages are
designed to narrow the performance gap
and enhance adaptive knowledge composi-
tion. Building on the formulation in Equa-
tion (2), Twin-Merging preprocesses experts
into shared experts, isolates and compresses
exclusive knowledge into vectors, and dy-
namically composes them during inference.

The preprocess stage comprises three steps:
(1) Shared Expert: To separate shared
knowledge across different models, we con-
sider the pre-merged model as a natural place-
holder to encapsulate common knowledge
that is important to all tasks (denoted as
θ∗). By leveraging established merging tech-
niques such as Task Arithmetic, we can read-
ily extract the shared experts from the ini-
tial merged model. (2) Exclusive Knowl-
edge: To convey task-specific information
while separating common knowledge, we cal-
culate the difference vector: vt = θt − θ∗.
This subtraction vector preserves un-merged
task-specific information while discarding
the shared knowledge. (3) Compressed ex-
clusive vectors: For practical use and distribution, we apply singular value decomposition (SVD)
to further compress the above exclusive knowledge into vectors for each task. Assuming vt has a
rank-m decomposition, vt = UtΣtV

T
t , we achieve a low-rank task space by selecting the top-r

singular values, resulting in Ut(r)Σt(r)Vt(r)
T . We store only Ut(r),Σt(r),Vt(r)

T .

In inference stage, adapting to unforeseen challenges is difficult, especially with varied test data. For
example, if most of the data consists of a certain type (denoted as Du), we should tailor the merged
model for that specific task to get the best results. Instead of pre-defining the best parameters, we
propose a new approach that combines shared expertise with exclusive knowledge. Our method
involves using the input x to dynamically adjust to the current data, enabling us to utilize shared
knowledge and apply specialized expertise based on the inputs.

θ∗ = F(θs︸︷︷︸
shared knowledge

, v1, · · · ,vT︸ ︷︷ ︸
exclusive knowledge

,x)
(2)

During inference, we fine-tune a small fuser R parameterized by ϕ through empirical risk minimiza-
tion on a small validation dataset. This fuser, trained to dynamically select the specific task experts,

5

replacing the need for complex optimization algorithms to determine fusion coefficients. The merging
model is obtained by:

θ∗ = θs +

T∑
t=1

wt ∗ SVDr(θt − θ∗)

{w1, · · · , wT } = softmax

(
R(Emb(x);ϕ)

) (3)

Here, Emb(x) represents the sequence of the last-layer token embeddings from the shared expert
f(x;θs).

4 Experiments

4.1 Merging Experiment

Baselines We first compare Twin-Merging with several train-free model-merging methods on both
discriminative and generative NLP benchmarks, including weight averaging, Task Arithmetic [28],
Ties-Merging [76], and DARE Merging [79]. To compare with Merging methods that need validation
dataset, we also conduct experiments on CV tasks with AdaMerging [78] and Surgery [77]. Details
on these baselines are provided in Appendix D.

Benchmarks For language discriminative tasks, following [76, 79], we use RoBERTa [42] as
the backbone and evaluate on the 8-task GLUE benchmark [69]. More details are in Appendix
D.2. For language generative tasks, we use Qwen-14B [3] as the primary model to demonstrate the
effectiveness of our approach on large-scale language models. To reduce deployment costs, we utilize
task-specific checkpoints fine-tuned with the LoRA method [26] (See Appendix A for details on
adapting Twin-Merging to LoRA). We evaluate our model on four scenarios: general knowledge
(MMLU benchmark [24]), factualness (TruthfulQA [40]), safety (BBQ [52]), and summarization
(CNN-DailyMail [48]).

For vision tasks, following AdaMerging [78], we use ViT-B/32 in CLIP [55] as the backbone on
eight image classification datasets: SUN397 [75], Stanford Cars [35], RESISC45 [5], EuroSAT [23],
SVHN [50], GTSRB [59], MNIST [10], and DTD [7]. We employ the best version of AdaMerging
(layer-wise AdaMerging++) and the Surgery (AdaMerging version), and apply 90% sparsity for our
Twin-Merging. Detailed information is provided in Appendix D.2.

Metrics We include individually fine-tuned models and the pre-trained model as upper and lower
bounds on performance, respectively. To mitigate the effects of different task-specific score ranges,
performance is assessed using the average normalized score of the fine-tuned models. The normalized
score of merged model θ∗ is calculated as:

Normalized Score =
1

T

T∑
t=1

Score
x∼Dt

[f(x;θ∗)]

Score
x∼Dt

[ft(x;θt)]
(4)

Table 2: Performance on 8 Discriminative Tasks (RoBERTa) and 4 Generative Tasks (Qwen-14B)
Method 8 Discriminative Tasks 4 Generative Tasks Avg.
Pretrained 41.69 91.06 66.37
Fine-tuned 100.00 100.00 100.00

Weight Averaging 52.56 95.74 74.15
Task Arithmetic 67.80 96.61 82.20
Task Arithmetic (w/ DARE) 64.66 98.52 81.59
Ties-Merging 63.68 92.67 78.17
Ties-Merging (w/ DARE) 65.58 91.92 78.75

Twin-Merging (Rank-1) 86.00 100.96 93.48
Twin-Merging (Ours) 96.14 102.38 99.26

6

Table 3: Performance and Cost on 8 CV Tasks (ViT-B/32)
Method Avg. Normalized Score Additional Time Cost VRAM
Pretrained 52.02 18m48s 3.6GB
Fine-tuned 100.00 18m48s 28.8GB

Weight Averaging 72.30 18m50s 3.6GB
Task Arithmetic 76.50 21m34s 3.6GB
Ties-Merging 75.10 19m24s 3.6GB
AdaMerging 88.50 185m35s 3.6GB
Surgery 94.04 215m01s 32.4GB

Twin-Merging(Ours) 95.33 47m22s 5.0GB

Main Results Table 2 presents the results for all discriminative and generative benchmarks for
language tasks, while Table 3 provides the results for vision tasks. A comparison of each task is
illustrated in Figure 2b, with detailed statistics provided in Table 8 and Table 9 in the Appendix D.7.
We also list the full-finetuned LLaMA results in Appendix D.7.

For discriminative tasks, it approachs the upper bound of finetune performance in the GLUE bench-
mark. Specifically, our methods improve over Task Arithmetic by 28.34%, Ties-Merging by 32.46%,
and DARE-Merging by 30.56% in absolute normalized score. In Figure 2b, we observe that especially
on the COLA task, where conventional merging methods fail to improve the result, our approach can
still approach the upper bound of the COLA expert.

On generative tasks, Twin-Merging achieves strong performance, outperforming Task Arithmetic
and DARE Merging by 5.77% and 3.86%. Two interesting insights emerge: (1) The performance
gains for Qwen-14B in generative tasks are smaller compared to RoBERTa in discriminative tasks.
This indicates that smaller models like RoBERTa gain more from task-specific knowledge, while
large models like Qwen-14B perform well because its strong general knowledge. (2)Twin-Merging
surpasses the upper bound set by fine-tuned experts on the generative benchmark. This may be due to
the extensive knowledge in Qwen-14B, where modularization and dynamic merging unlock further
potential without additional fine-tuning. These findings highlight a promising path for improving
large language models without retraining.

For vision tasks, Twin-Merging outperforms the AdaMerging and Surgery baselines with a higher
accuracy (95.33% vs. 94.04%) while being more efficient in time and storage (47m22s vs. 215m01s,
5.0GB vs. 32.4GB). AdaMerging uses task-wise or layer-wise learnable parameters to improve
merging, and Surgery adds task-specific modules after merging, requiring training on the validation
set for all eight tasks. Surgery also needs prior knowledge of the task type before inference and
involves multiple forward passes, leading to high VRAM usage. In contrast, our method efficiently
handles diverse test inputs with minimal time and storage costs.

Table 4: Our method scalability (72B)
Method TruthfulQA BBQ
Pretrained-72B 94.48 89.51
Fine-tuned 100 100

Task Arithmetic 98.70 95.40
Twin Merging 99.30 97.14

Table 5: Performance (un-normalized2) on unseen tasks
Method QNLI+MNLI+RTE MMLU
Multi-Task Learning 44.63 63.74
Task Arithmetic 53.92 62.02
Task Arithmetic (w/ DARE) 54.27 63.09
Ties Merging 54.09 64.62
Ties Merging (w/ DARE) 54.72 63.13
Twin-Merging 55.86 65.98

Scalability of Twin-Merging Our method remains effective with scaled models (e.g., 72B parame-
ters), as shown in Table 4. To manage high deployment costs, we limited our evaluation and merged
experts to two tasks: BBQ and TruthfulQA. Twin-Merging consistently surpasses scaled pre-trained
models and Task Arithmetic, highlighting our approach’s scalability. Additionally, our method can be

2Notice that we cannot directly normalize them as we do not have the corresponding expert on unseen
datasets to get upper-bound performances. This leads to relatively lower scores due to the narrower score ranges
for tasks like RTE (max 66.43 vs max 91.71 for QNLI) and MMLU (max 68.03).

7

easily integrated with other merging methods, as detailed in Appendix D.9, making it both extensible
and scalable.

4.2 Unseen Generalization

As shown in Table 5, Twin-Merging method benefits from complementary collaboration among
different experts. Since the corresponding task-specific experts are unavailable, we directly use the
average of the unnormalized scores as the metrics. In the GLUE benchmark, when QNLI, MNLI, and
RTE experts are absent, our approach still outperforms traditional baselines. Details on the expert
combination for QNLI can be found in Figure 5a. For complex tasks like MMLU, which involves
multiple-choice QA tasks across 57 categories, Twin-Merging demonstrates superior performance
using the combined knowledge from TruthfulQA, BBQ, and CNN-DailyMail domains.

4.3 Ablation Studies

Table 6: Ablation study of Twin-Merging
Method RoBERTa Qwen
Pretrain 41.69 91.06

Shared 67.80 96.61
Dynamic Merging 81.47 87.77
Pretrain + Dynamic Merging 85.90 95.03
Shared + Dynamic Merging (Twin Merging) 96.14 102.38

To demonstrate the effectiveness of our approach, we conducted ablation studies for Twin-Merging,
summarized in Table 6. Removing dynamic experts from the Shared model leads to a significant
performance loss (96.14 vs. 67.80), highlighting the need for dynamic merging. Replacing the
shared expert with a task-specific expert also results in a clear drop in performance (96.14 vs. 81.47),
showing the value of the shared expert in capturing common knowledge.

Additionally, applying dynamic merging directly to a pretrained model performs worse than Twin
Merging (85.90 vs. 96.14), likely due to two factors: (1) Pretrained models may lack rich task
knowledge, while the shared expert in Twin Merging captures diverse, task-specific knowledge. (2)
Subtracting the pretrained model fails to fully consider exclusive knowledge specific to each task,
leading to interference, as analyzed in Section 3.2.

Discussion 1 We find that removing dynamic experts severely impacts RoBERTa but has less effect
on Qwen-14B, suggesting that smaller models rely more on task-specific biases, while larger models
benefit more from general shared knowledge. This indicates that our method adapts effectively to the
varying knowledge requirements of models of different sizes.

Discussion 2 Compared to simpler routing methods like direct route to task-specific expert or com-
bining multiple experts based on multiple LoRA [27, 81], Twin Merging delivers better performance,
especially on unseen tasks, by reducing interference and leveraging complementary knowledge.

Direct route to task-specific expert refers to the fine-tuned baseline in Table 2. This approach assumes
perfect routing and the absence of out-of-domain data, where each task uses its own dedicated
expert. It represents the ideal scenario and serves as an oracle baseline to highlight the performance
gap for merging methods. Despite this, Twin Merging still improves performance on generative
tasks (102.38 vs. 100.0) and unseen tasks (Table 5) by leveraging different sources of exclusive
knowledge. Moreover, this baseline demands storing all task-specific experts, which significantly
increases storage, as discussed in Section 4.6.

In combining multiple experts, the lack of separation between shared and exclusive knowledge
leads to interference, as conflicts between exclusive knowledge are inevitable (Section 3.2). There
are two ways to combine experts: (1) Static Combination: This is akin to “Task Arithmetic” in
LoRA (Table 2). Twin Merging outperforms static combinations (102.38 vs. 96.61). (2) Dynamic
Combination: This matches “Pretrain + Dynamic Merging” method in Table 6, and Twin Merging
again shows superior performance (102.38 vs. 97.03).

8

4.4 Scale to More Tasks

2 3 4 5 6 7 8
Number of tasks

0

20

40

60

80

100
N

or
m

. A
cc

. (
%

)

2 3 4 5 6 7 8
Number of tasks

1

2

3

St
or

ag
e

Si
ze

 (G
)

Pretrained
Fine-tuned

Weight Averaging
Task Arithmetic

Ties-Merging
Task Arithmetic (w/ DARE)

Ties-Merging (W/ DARE)
Twin-Merging (Ours)

Figure 4: Averaged normalized accuracy vs. the number of tasks for various benchmarks. Twin-
Merging maintains performance regardless of task number and compresses the fine-tuned checkpoints.

In the left panel of Figure 4, we examine the impact of the number of tasks on model merging
performance. Conventional model merging methods degrade notably, especially with many tasks,
nearly reaching pre-trained levels. However, Twin-Merging consistently outperforms other methods,
approaching fine-tuned performance, with greater gains as the task count rises.

The right panel of Figure 4 shows the performance-storage trade-offs. While model merging methods
have a constant storage cost, their performance remains low. In contrast, maintaining individual
task-specific models guarantees strong performance but requires excessive storage. Twin-Merging
achieves nearly 100% normalized accuracy across various tasks, balancing performance and storage
efficiency by maintaining task-specific parameters with shared experts. This makes Twin-Merging a
viable solution for scenarios demanding a balance between performance and storage efficiency.

4.5 Router Analysis

IND 2
0

1

W
ei

gh
t

IND 3 IND 4 IND 5 IND 6 IND 7

v:COLA
v:SST-2

v:MRPC
v:STS-B

v:QQP
v:MNLI

v:QNLI

(a) The routing result on the QNLI dataset using different num-
bers of GLUE experts, ranging from 2 twin vectors (vCoLA and
vSST-2) to 7 twin vectors (vCoLA, vSST-2, vMRPC, vSTS-B, vQQP,
vMNLI, and vQNLI). The router weights are Softmax normalized.

MMLU
0

1

W
ei

gh
t

TruthfulQA BBQ CNN

v:MMLU
v:TruthfulQA

v:BBQ
v:CNN

(b) The routing weight of Qwen ex-
perts (vMMLU,vTruthfulQA,vBBQ,vCNN-DailyMail)
on four generative tasks (MMLU, Truth-
fulQA, BBQ, CNN-DailyMail).

Figure 5: Twin-Merging routing decisions of the experts for various tasks.

Figure 5 shows the results of routing decisions among experts for the QNLI dataset and four generative
benchmarks. As shown in Figure 5a, the router maximizes the use of limited expert knowledge to
address QNLI, a task where the goal is to determine if the context sentence contains the answer to the
input question. For example, with only vCoLA and vSST-2 available, the router primarily uses vCoLA,
which provides knowledge of sentence and word relations, while vSST-2 is focused on irrelevant
sentiment classification. With six experts ranging from vCoLA to vMNLI, the router mainly leverages
vMNLI for textual entailment and vQQP for question-answering capabilities. When vQNLI is included,
the router naturally relies on QNLI-specific knowledge. These results demonstrate the flexibility and
adaptability of our Twin-Merging method, providing good interpretability. For larger models like
Qwen-14B, as shown in Figure 5b, the router plays a crucial role in selecting and combining specific
knowledge. When experts have overlapping task-specific knowledge, such as vTruthfulQA and vMMLU,
the router may assign them similar weights.

4.6 Compression and Speed Analysis

Compression Analysis In the left panel of Figure 6, we explore sparsity rates from 0% to 100%.
Appendix E attachs detail qualtivie analysis of various Merging methods. Remarkably, our Twin-

9

0 20 40 60 80 100
Sparsity Rate (%)

70

80

90

100

Av
g.

 S
co

re
(99.87,86.4)

(100.00,67.55)Shared Expert

10 30 50 70 90 98
Rate of Sparsification (%)

70

80

90

100

Av
g.

 S
co

re

Magnitude Bernouli SVD

Figure 6: Twin-Merging performance vs. different sparsity levels and techniques for GLUE

Merging method maintains 86.4% performance even at a 99.8% compression rate. This suggests that
performance relies on a small fraction of task-specific parameters, aligning with previous findings
[76, 79]. Our results also validate our hypothesis that redundant parameters can obscure critical
knowledge, leading to performance degradation. Consequently, we primarily use a 90% sparsity
rate in our experiments to preserve performance while reducing storage costs. We also conducted
an ablation study on sparsity methods, shown on the right side of Figure 6. SVD better retains
task-specific information compared to Magnitude [76] and Bernoulli Dropout [79]. As SVD is
applied only once during preprocessing, it does not become an inference bottleneck.

Table 7: Compute-performance tradeoff in the generative benchmark.
Method Training Tokens Training Cost Inference Cost (/1000 items) Performance
Multi-Task Learning 536.35M 10h32min 236s 94.31
Model Merging 3 0 0 236s 96.61
Twin-Merging 0.57M 183s 275s 102.38

Speed Analysis Table 7 presents the time cost for Twin-Merging in generative benchmarks. Al-
though the training stage utilizes only 0.1% of the total training budget, Twin-Merging significantly
improves general capabilities compared to multi-task learning. Compared to conventional model
merging methods, Twin-Merging sacrifices minimal router training budget and incurs a slight re-
duction in inference speed for dynamically composing the twin vectors, thereby achieving superior
performance. More detailed analysis and results are provided in Appendix E. In summary, our
approach strikes a better balance between computational cost and performance.

5 Conclusions

In this paper, we introduce the Twin-Merging to merge language models, aiming to close the
performance gap between conventional model merging techniques and fine-tuned models, while
improving adaptability to data heterogeneity. By modularizing and dynamically merging shared and
task-specific knowledge, Twin-Merging significantly outperforms existing model-merging methods
and approaches the performance of fine-tuned models across various settings and domains. Our
study highlights the impact of shared and exclusive task-specific knowledge on merging performance.
We show that Twin-Merging benefits even strong scaled models like Qwen-72B, which already
perform well across domains. It extends to more tasks and merging methods, demonstrating better
generalization on unseen data. By utilizing SVD, our solution retains 86% of the performance with
only 0.1% of the parameters, approaching upper-bound performance with minimal storage increase
as tasks grow, achieving a better tradeoff between computation and performance.

6 Acknowledgments

We thank the Shanghai AI Laboratory for supporting GPU resources. We also thank the anonymous
reviewers for their comments on improving the quality of this paper and Netmind.AI for their
resource/technical support.

3Here, we assume that merging method does not retrain all task experts; instead, it reuses experts (e.g., down-
loaded from model hubs like Huggingface [73]).

10

References
[1] Samuel Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models

modulo permutation symmetries. In The Eleventh International Conference on Learning
Representations, 2023.

[2] Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer,
Albert Q. Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language
model for mathematics, 2024.

[3] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin
Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu,
Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren,
Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu,
Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang,
Chang Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report, 2023.

[4] Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gra-
dient normalization for adaptive loss balancing in deep multitask networks. In International
conference on machine learning, pages 794–803. PMLR, 2018.

[5] Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification:
Benchmark and state of the art. Proceedings of the IEEE, 105(10):1865–1883, 2017.

[6] Leshem Choshen, Elad Venezian, Noam Slonim, and Yoav Katz. Fusing finetuned models for
better pretraining, 2022.

[7] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi.
Describing textures in the wild. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3606–3613, 2014.

[8] Aidan Clark, Diego de Las Casas, Aurelia Guy, Arthur Mensch, Michela Paganini, Jordan
Hoffmann, Bogdan Damoc, Blake Hechtman, Trevor Cai, Sebastian Borgeaud, et al. Unified
scaling laws for routed language models. In International conference on machine learning,
pages 4057–4086. PMLR, 2022.

[9] Damai Dai, Chengqi Deng, Chenggang Zhao, R. X. Xu, Huazuo Gao, Deli Chen, Jiashi Li,
Wangding Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li, Panpan Huang, Fuli Luo, Chong
Ruan, Zhifang Sui, and Wenfeng Liang. Deepseekmoe: Towards ultimate expert specialization
in mixture-of-experts language models, 2024.

[10] Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

[11] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient
finetuning of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis,
Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423.
URL https://aclanthology.org/N19-1423.

[13] Chuntao Ding, Zhichao Lu, Shangguang Wang, Ran Cheng, and Vishnu Naresh Boddeti.
Mitigating task interference in multi-task learning via explicit task routing with non-learnable
primitives. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7756–7765, 2023.

[14] Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and Haifeng Wang. Multi-task learning for
multiple language translation. In Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural Language

11

https://aclanthology.org/N19-1423

Processing (Volume 1: Long Papers), pages 1723–1732, Beijing, China, July 2015. Association
for Computational Linguistics. doi: 10.3115/v1/P15-1166. URL https://aclanthology.
org/P15-1166.

[15] Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred Hamprecht. Essentially no
barriers in neural network energy landscape. In International conference on machine learning,
pages 1309–1318. PMLR, 2018.

[16] Chenghao Fan, Zhenyi Lu, Wei Wei, Jie Tian, Xiaoye Qu, Dangyang Chen, and Yu Cheng.
On giant’s shoulders: Effortless weak to strong by dynamic logits fusion. arXiv preprint
arXiv:2406.15480, 2024.

[17] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. Journal of Machine Learning Research, 23
(120):1–39, 2022.

[18] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode
connectivity and the lottery ticket hypothesis. In International Conference on Machine Learning,
pages 3259–3269. PMLR, 2020.

[19] Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive
sciences, 3(4):128–135, 1999.

[20] Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson.
Loss surfaces, mode connectivity, and fast ensembling of dnns. Advances in neural information
processing systems, 31, 2018.

[21] Almog Gueta, Elad Venezian, Colin Raffel, Noam Slonim, Yoav Katz, and Leshem Choshen.
Knowledge is a region in weight space for fine-tuned language models. In Houda Bouamor,
Juan Pino, and Kalika Bali, editors, Findings of the Association for Computational Linguistics:
EMNLP 2023, pages 1350–1370, Singapore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.findings-emnlp.95. URL https://aclanthology.org/
2023.findings-emnlp.95.

[22] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen,
Xiao Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When
the large language model meets programming – the rise of code intelligence, 2024.

[23] Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel
dataset and deep learning benchmark for land use and land cover classification. IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing, 12(7):2217–2226, 2019.

[24] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. In International
Conference on Learning Representations, 2020.

[25] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia
Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent
Sifre. Training compute-optimal large language models, 2022.

[26] Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu
Chen, et al. Lora: Low-rank adaptation of large language models. In International Conference
on Learning Representations, 2021.

[27] Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu Pang, Chao Du, and Min Lin. Lorahub:
Efficient cross-task generalization via dynamic lora composition, 2024. URL https://arxiv.
org/abs/2307.13269.

[28] Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Ha-
jishirzi, and Ali Farhadi. Editing models with task arithmetic. In The Eleventh International
Conference on Learning Representations, 2022.

12

https://aclanthology.org/P15-1166
https://aclanthology.org/P15-1166
https://aclanthology.org/2023.findings-emnlp.95
https://aclanthology.org/2023.findings-emnlp.95
https://arxiv.org/abs/2307.13269
https://arxiv.org/abs/2307.13269

[29] Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Ha-
jishirzi, and Ali Farhadi. Editing models with task arithmetic. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=
6t0Kwf8-jrj.

[30] Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier,
Marie-Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak,
Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and
William El Sayed. Mixtral of experts, 2024.

[31] Junguang Jiang, Baixu Chen, Junwei Pan, Ximei Wang, Dapeng Liu, Mingsheng Long, et al.
Forkmerge: Mitigating negative transfer in auxiliary-task learning. In Thirty-seventh Conference
on Neural Information Processing Systems, 2023.

[32] Weisen Jiang, Baijiong Lin, Han Shi, Yu Zhang, Zhenguo Li, and James T. Kwok. Byom:
Building your own multi-task model for free, 2024.

[33] Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge
fusion by merging weights of language models. In The Eleventh International Conference on
Learning Representations, 2022.

[34] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020.

[35] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-
grained categorization. In Proceedings of the IEEE international conference on computer vision
workshops, pages 554–561, 2013.

[36] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with condi-
tional computation and automatic sharding. In International Conference on Learning Represen-
tations, 2021.

[37] Weishi Li, Yong Peng, Miao Zhang, Liang Ding, Han Hu, and Li Shen. Deep model fusion: A
survey, 2023.

[38] Lucas Liebenwein, Cenk Baykal, Brandon Carter, David Gifford, and Daniela Rus. Lost in
pruning: The effects of pruning neural networks beyond test accuracy. Proceedings of Machine
Learning and Systems, 3:93–138, 2021.

[39] Chin-Yew Lin and Eduard Hovy. Automatic evaluation of summaries using n-gram co-
occurrence statistics. In Proceedings of the 2003 Human Language Technology Conference of
the North American Chapter of the Association for Computational Linguistics, pages 150–157,
2003. URL https://aclanthology.org/N03-1020.

[40] Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic
human falsehoods. In Proceedings of the 60th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), 2022.

[41] Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent
for multi-task learning. Advances in Neural Information Processing Systems, 2021.

[42] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. 2019.

[43] Zhenyi Lu, Jie Tian, Wei Wei, Xiaoye Qu, Yu Cheng, Dangyang Chen, et al. Mitigating
boundary ambiguity and inherent bias for text classification in the era of large language models.
arXiv preprint arXiv:2406.07001, 2024.

13

https://openreview.net/forum?id=6t0Kwf8-jrj
https://openreview.net/forum?id=6t0Kwf8-jrj
https://aclanthology.org/N03-1020

[44] Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng,
Qingwei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical
reasoning for large language models via reinforced evol-instruct, 2023.

[45] Kevis-Kokitsi Maninis, Ilija Radosavovic, and Iasonas Kokkinos. Attentive single-tasking of
multiple tasks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 1851–1860, 2019.

[46] Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging.
Advances in Neural Information Processing Systems, 2022.

[47] Taishi Nakamura, Mayank Mishra, Simone Tedeschi, Yekun Chai, Jason T Stillerman, Felix
Friedrich, Prateek Yadav, Tanmay Laud, Vu Minh Chien, Terry Yue Zhuo, Diganta Misra, Ben
Bogin, Xuan-Son Vu, Marzena Karpinska, Arnav Varma Dantuluri, Wojciech Kusa, Tommaso
Furlanello, Rio Yokota, Niklas Muennighoff, Suhas Pai, Tosin Adewumi, Veronika Laippala,
Xiaozhe Yao, Adalberto Junior, Alpay Ariyak, Aleksandr Drozd, Jordan Clive, Kshitij Gupta,
Liangyu Chen, Qi Sun, Ken Tsui, Noah Persaud, Nour Fahmy, Tianlong Chen, Mohit Bansal,
Nicolo Monti, Tai Dang, Ziyang Luo, Tien-Tung Bui, Roberto Navigli, Virendra Mehta, Matthew
Blumberg, Victor May, Huu Nguyen, and Sampo Pyysalo. Aurora-m: The first open source
multilingual language model red-teamed according to the u.s. executive order, 2024.

[48] Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre, Bing Xiang, et al. Abstractive text sum-
marization using sequence-to-sequence rnns and beyond. arXiv preprint arXiv:1602.06023,
2016.

[49] Aviv Navon, Aviv Shamsian, Idan Achituve, Haggai Maron, Kenji Kawaguchi, Gal Chechik,
and Ethan Fetaya. Multi-task learning as a bargaining game. In International Conference on
Machine Learning, pages 16428–16446. PMLR, 2022.

[50] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011, page 4. Granada, 2011.

[51] Guillermo Ortiz-Jimenez, Alessandro Favero, and Pascal Frossard. Task arithmetic in the
tangent space: Improved editing of pre-trained models. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?id=
0A9f2jZDGW.

[52] Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Thomp-
son, Phu Mon Htut, and Samuel Bowman. Bbq: A hand-built bias benchmark for question
answering. In Findings of the Association for Computational Linguistics: ACL 2022, 2022.

[53] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel
Rothchild, David So, Maud Texier, and Jeff Dean. Carbon emissions and large neural network
training, 2021.

[54] Ruoyu Qin, Zheming Li, Weiran He, Mingxing Zhang, Yongwei Wu, Weimin Zheng, and
Xinran Xu. Mooncake: A kvcache-centric disaggregated architecture for llm serving, 2024.
URL https://arxiv.org/abs/2407.00079.

[55] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PMLR, 2021.

[56] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov,
Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan
Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas
Usunier, Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for
code, 2024.

14

https://openreview.net/forum?id=0A9f2jZDGW
https://openreview.net/forum?id=0A9f2jZDGW
https://arxiv.org/abs/2407.00079

[57] Victor Sanh, Albert Webson, Colin Raffel, Stephen H Bach, Lintang Sutawika, Zaid Alyafeai,
Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, et al. Multitask prompted training
enables zero-shot task generalization. In International Conference on Learning Representations,
2022.

[58] Sidak Pal Singh and Martin Jaggi. Model fusion via optimal transport. Advances in Neural
Information Processing Systems, 33:22045–22055, 2020.

[59] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The german traffic sign
recognition benchmark: a multi-class classification competition. In The 2011 international joint
conference on neural networks, pages 1453–1460. IEEE, 2011.

[60] George Stoica, Daniel Bolya, Jakob Bjorner, Taylor Hearn, and Judy Hoffman. Zipit! merging
models from different tasks without training, 2023.

[61] Zhaochen Su, Juntao Li, Jun Zhang, Tong Zhu, Xiaoye Qu, Pan Zhou, Yan Bowen, Yu Cheng,
et al. Living in the moment: Can large language models grasp co-temporal reasoning? arXiv
preprint arXiv:2406.09072, 2024.

[62] Zhaochen Su, Jun Zhang, Xiaoye Qu, Tong Zhu, Yanshu Li, Jiashuo Sun, Juntao Li, Min Zhang,
and Yu Cheng. Conflictbank: A benchmark for evaluating the influence of knowledge conflicts
in llm. arXiv preprint arXiv:2408.12076, 2024.

[63] Zhaochen Su, Jun Zhang, Tong Zhu, Xiaoye Qu, Juntao Li, Min Zhang, and Yu Cheng. Timo:
Towards better temporal reasoning for language models. arXiv preprint arXiv:2406.14192,
2024.

[64] Sainbayar Sukhbaatar, Olga Golovneva, Vasu Sharma, Hu Xu, Xi Victoria Lin, Baptiste Rozière,
Jacob Kahn, Daniel Li, Wen-tau Yih, Jason Weston, et al. Branch-train-mix: Mixing expert llms
into a mixture-of-experts llm. arXiv preprint arXiv:2403.07816, 2024.

[65] Xiaofei Sun, Linfeng Dong, Xiaoya Li, Zhen Wan, Shuhe Wang, Tianwei Zhang, Jiwei Li, Fei
Cheng, Lingjuan Lyu, Fei Wu, and Guoyin Wang. Pushing the limits of chatgpt on nlp tasks,
2023.

[66] Anke Tang, Li Shen, Yong Luo, Nan Yin, Lefei Zhang, and Dacheng Tao. Merging multi-task
models via weight-ensembling mixture of experts, 2024.

[67] Anke Tang, Li Shen, Yong Luo, Yibing Zhan, Han Hu, Bo Du, Yixin Chen, and Dacheng
Tao. Parameter-efficient multi-task model fusion with partial linearization. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=iynRvVVAmH.

[68] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez,
Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023.

[69] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. In
Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, 2018.

[70] Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khaz-
aeni. Federated learning with matched averaging. In International Conference on Learning
Representations, 2019.

[71] Hongyi Wang, Felipe Maia Polo, Yuekai Sun, Souvik Kundu, Eric P Xing, and Mikhail
Yurochkin. Fusing models with complementary expertise. In NeurIPS 2023 Workshop on
Distribution Shifts: New Frontiers with Foundation Models, 2023.

[72] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large
language models. Transactions on Machine Learning Research, 2022.

15

https://openreview.net/forum?id=iynRvVVAmH
https://openreview.net/forum?id=iynRvVVAmH

[73] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface’s transformers:
State-of-the-art natural language processing, 2020.

[74] Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak Gadre, Rebecca Roelofs, Raphael Gontijo
Lopes, Ari S. Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and
Ludwig Schmidt. Model soups: averaging weights of multiple fine-tuned models improves
accuracy without increasing inference time. In International Conference on Machine Learning,
2022.

[75] Jianxiong Xiao, Krista A Ehinger, James Hays, Antonio Torralba, and Aude Oliva. Sun database:
Exploring a large collection of scene categories. International Journal of Computer Vision, 119:
3–22, 2016.

[76] Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. Ties-merging:
Resolving interference when merging models. In Thirty-seventh Conference on Neural Informa-
tion Processing Systems, 2023.

[77] Enneng Yang, Li Shen, Zhenyi Wang, Guibing Guo, Xiaojun Chen, Xingwei Wang, and Dacheng
Tao. Representation surgery for multi-task model merging. arXiv preprint arXiv:2402.02705,
2024.

[78] Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guibing Guo, Xingwei Wang, and Dacheng
Tao. Adamerging: Adaptive model merging for multi-task learning. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=
nZP6NgD3QY.

[79] Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario:
Absorbing abilities from homologous models as a free lunch, 2024.

[80] Jihai Zhang, Xiaoye Qu, Tong Zhu, and Yu Cheng. Clip-moe: Towards building mixture of
experts for clip with diversified multiplet upcycling. arXiv preprint arXiv:2409.19291, 2024.

[81] Jinghan Zhang, Junteng Liu, Junxian He, et al. Composing parameter-efficient modules with
arithmetic operation. Advances in Neural Information Processing Systems, 36:12589–12610,
2023.

[82] Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M Dai,
Quoc V Le, James Laudon, et al. Mixture-of-experts with expert choice routing. Advances in
Neural Information Processing Systems, 2022.

[83] Zhanpeng Zhou, Zijun Chen, Yilan Chen, Bo Zhang, and Junchi Yan. Cross-task linearity
emerges in the pretraining-finetuning paradigm, 2024.

[84] Tong Zhu, Daize Dong, Xiaoye Qu, Jiacheng Ruan, Wenliang Chen, and Yu Cheng. Dy-
namic data mixing maximizes instruction tuning for mixture-of-experts. arXiv preprint
arXiv:2406.11256, 2024.

[85] Tong Zhu, Xiaoye Qu, Daize Dong, Jiacheng Ruan, Jingqi Tong, Conghui He, and Yu Cheng.
Llama-moe: Building mixture-of-experts from llama with continual pre-training. arXiv preprint
arXiv:2406.16554, 2024.

[86] Barret Zoph. Designing effective sparse expert models. In 2022 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), pages 1044–1044, 2022. doi:
10.1109/IPDPSW55747.2022.00171.

16

https://openreview.net/forum?id=nZP6NgD3QY
https://openreview.net/forum?id=nZP6NgD3QY

A Twin Merge on LoRA

Here, we will demonstrate that our Twin-Merging method can be seamlessly applied to LoRA module
[26], where the base model is fixed and additional task-specific information is injected through matrix,
i.e., θt = θ0 + LoRAt, where LoRAt represents the fine-tuned LoRA module for the t-th task. let
θs = θ0 + LoRAs, we can prove that Twin-Merging on the θ is equivalent to Twin-Merging on the
LoRA module.

θ∗ = θs +

T∑
t=1

wt ∗ SVDr(θt − θs)︸ ︷︷ ︸
Twin-Merging on θ

= θ0 + LoRAs +

T∑
t=1

wt ∗ SVDr

(
(θ0 + LoRAt)− (θ0 + LoRAs)

)

= θ0 + LoRAs +

T∑
t=1

wt ∗ SVDr(LoRAt − LoRAs)︸ ︷︷ ︸
Twin-Merging on LoRA

= θ0 + LORA∗

(5)

where we denote LORA∗ = LORAs +
∑T

t=1 wt ∗ SVDr(LoRAt − LoRAs).

B More relative research

Multi-Task Learning. The multi-task training typically learns multi-task features by simultaneously
optimizing task-specific objectives, facilitating the integration of diverse knowledge into the model.
Existing works mainly focus on mitigating task conflicts [41] and catastrophic forgetting [19] by
parameter sharing [45], adjusting suitable objectives [14, 57], find suitable task weighting [4, 49],
and minimizing negative transfer [31]. In an era where models are growing larger, and the number of
task scenarios is increasing, what we need to explore is a more cost-effective approach to multi-task
learning. Therefore our focus is on multi-task scenarios that do not require acquiring or integrating
multi-task data and do not involve additional updates to existing experts.

Mixture of Experts. To enhance model scalability without increasing computational costs, the
mixture of experts (MoE) paradigm introduces conditional routing of inputs to a subset of learnable
parameters. Several efforts have extended feedforward networks (FFNs) within Transformers to
incorporate MoE layers, such as GShard [36] and Switch Transformer [17]. These models typically
employ learnable top-2 or top-1 routing strategies to scale MoE language models to an extremely
large size [30]. Recent studies have focused on challenges such as load balancing of experts [8, 82],
training instability [86], expert specialization [9, 66], and synchronization reduction [64]. However,
these methods often require substantial multi-task data and costly joint training. In contrast, our
approach directly reuses task-specific experts, leading to the natural specialization of experts in
different domains. We only require minimal fine-tuning for a small router to calculate fusion weights,
making our method highly efficient.

C The Merging Interference and Limited Generalization

To illustrate the challenge in determining the optimal merging coefficient and the limitations of pre-
specified coefficients with unpredictable data, we consider COLA and SST-2 as in-domain experts.
We merge them using Task Arithmetic and evaluate on the eight discriminative tasks from the GLUE
benchmark. Only COLA and SST-2 are seen tasks, while the others are unseen. Since the merging
coefficient is crucial for performance [51, 78], we conduct an extensive grid search for coefficients
ranging from −2 to 2.

A large dark-blue region indicates consistent optimal performance, which is why Task Arithmetic can
work with various weights. Conventional methods search this region for optimal performance across

17

-2 -1 0 1 2
-2

-1

0

1

2

γ
S
S
T

-2 θCOLA

θSST-2

COLA

-2 -1 0 1 2
-2

-1

0

1

2

θCOLA

θSST-2

SST-2

-2 -1 0 1 2
-2

-1

0

1

2

θCOLA

θSST-2

MRPC

-2 -1 0 1 2
-2

-1

0

1

2

θCOLA

θSST-2

STS-B

-2 -1 0 1 2
γCOLA

-2

-1

0

1

2

γ
S
S
T

-2 θCOLA

θSST-2

QQP

-2 -1 0 1 2
γCOLA

-2

-1

0

1

2

θCOLA

θSST-2

MNLI

-2 -1 0 1 2
γCOLA

-2

-1

0

1

2

θCOLA

θSST-2

QNLI

-2 -1 0 1 2
γCOLA

-2

-1

0

1

2

θCOLA

θSST-2

RTE

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 7: The visualizations show normalized performance across eight GLUE tasks, highlighting the
impact of combining expertise from the COLA and SST-2 domains (expert indicated by red vectors)
through Task Arithmetic. Performance scores are normalized, with the unmerged pretrained model set
to zero and other results scaled to the [−1, 1] range. The x-axis (γCOLA) and y-axis (γSST-2) represent
the merging weights for COLA and SST-2 expertise. Blue regions indicate improved performance
over the pretrained model, while red regions indicate deterioration.

all in-domain tasks, avoiding the red region. However, this is computationally expensive and does not
scale well with an increasing number of tasks. Additionally, it cannot handle unseen tasks, as the
same coefficients can produce different patterns across tasks. For example, setting coefficients γCOLA
and γSST-2 to 1 leads to performance drops in MRPC and QNLI, but gains in MNLI, QQP, and RTE. 4

Furthermore, merging performance is not always a single cluster. For example, within the range of
[−2, 2], STS-B and QNLI already show complex patterns, making it difficult to find an optimal weight
for all tasks when task-specific experts are limited. Although Yang et al. [78] propose unsupervised
entropy minimization to find optimal coefficients, this method is limited to classification tasks and
has limited adaptability.

To address this, we propose reformulating the problem of fusing models as a supervised learning task.
Specifically, we train a router to dynamically merge task-specific experts, as detailed in Section 3.3.

D Experiment Details

Here we detaily illustrate the setting of our experiments.

D.1 Compute Resources Used and Runtimes

We executed all our experiments on Nvidia A100 GPUs equipped with 80GB RAM. Single-task
LoRA models for Qwen-14B on four generative tasks required 1-2 hours per task, Single-task LoRA
for Qwen-72B need 10 hours on single GPUs to train. while the multitask vector took around 10
hours on single GPUs of 500M tokens. The RoBERTa model needs 15 minutes per task on GLUE
datasets.

Our router is implemented as a three-layer linear network with Leaky ReLU activations and batch
normalization. We train the router on the validation dataset with a learning rate of 5e-4 for 10 epochs.
The validation set consists of the integration of in-domain downstream tasks, not the general text
corpus. The validation set is taken from a split of the training set, and we use at most 1,000 items for
router training for each task.

4In fact, the MNLI and QNLI are very similar tasks about Natural Language Inference (NLI) [69]. This
demonstrates that task similarity does not guarantee similar merging performance patterns.

18

Merge experiments were efficient, with evaluations consuming less than 2 minutes. The inference
is generally fast within 4 minutes per 1000 items for generative tasks and less than 30 seconds per
1000 items for discriminative tasks. The detail comparison of the training cost and inference cost of
different methods are detailed in Table 7.

D.2 Employed Datasets and Associated Licences

Discriminative Tasks. we conduct experiments on the GLUE benchmark [69] with eight discrimi-
native tasks, which is designed for classification tasks except for STS-B for the regression task. The
detail of eight dataset can be found in the paper of Wang et al. [69]. Consistent with prior research
[79], We split 10% of the training set as a validation set and employ the original validation data as the
test set.

The licenses of QNLI, COLA, and STS-B are licensed under CC-BY-SA. QQP is licensed under MIT.
SST-2 and MRPC are licensed under Apache 2.0. MNLI is licensed under OANC. RTE is licensed
under CC BY 4.0. Thus, these datasets in GLUE are available for non-commercial research purposes.

Generative Tasks. We conducted experiments on four benchmarks:

1. MMLU [24]: This benchmark tests general and STEM knowledge across 57 subjects, from
elementary to professional levels. We used Exact-Match as the metric.

2. TruthfulQA [40]: This benchmark assesses the truthfulness of language models with 817
questions spanning 38 categories like health, law, finance, and politics. Exact-Match was
used as the metric.

3. BBQ [52]: This dataset highlights social biases against protected classes in nine social
dimensions relevant to U.S. English-speaking contexts. Exact-Match was the metric.

4. CNN-DailyMail [48]: This dataset is used for text summarization, requiring models to
generate summaries of news stories. ROUGE-2 scores [39] were used for evaluation.

We evaluated these tasks using the HELM benchmark5 in a few-shot setting.

For MMLU and TruthfulQA, which lack official training sets, we used the Dolly-15k dataset6 for
MMLU and the BigBench-sampled dataset for TruthfulQA.

The GSM8K and MMLU datasets are under the MIT License. TruthfulQA and CNN-DailyMail are
under the Apache-2.0 License. BBQ is under the CC-BY 4.0 License. These datasets are available
for non-commercial research purposes.

Vision Tasks.

1. SUN397 [75]:A scene classification dataset containing 108,754 images across 397 classes,
with each class having at least 100 images.

2. Stanford Cars [35]: A car classification dataset comprising 196 classes and a total of 16,185
images, divided equally between the training and test sets.

3. RESISC45 [5]: A remote sensing image scene classification dataset with 45 classes and
31,500 images, approximately 700 per class.

4. EuroSAT [23]: A satellite image classification dataset consisting of 27,000 labeled and
geo-referenced images across 10 classes.

5. SVHN [50]: A real-world digit classification dataset extracted from Google Street View
images. It includes 10 classes, with 73,257 training samples, 26,032 test samples, and
531,131 additional simple samples.

6. GTSRB [59]: A traffic sign classification dataset containing over 50,000 images across 43
classes of traffic signs.

7. MNIST [10]: A benchmark dataset for image classification, containing grayscale images of
handwritten digits across 10 classes. The training set has 60,000 images, and the test set has
10,000 images, with a balanced distribution among classes.

5https://github.com/stanford-crfm/helm
6https://huggingface.co/datasets/databricks/databricks-dolly-15k

19

https://github.com/stanford-crfm/helm
https://huggingface.co/datasets/databricks/databricks-dolly-15k

8. DTD [7]: A texture classification dataset with 47 classes and a total of 5,640 images, with
approximately 120 images per class.

D.3 Language Model Backbone

For discriminative tasks, we used RoBERTa-base7 [42] as our pre-trained backbone and fine-tuned it
for each dataset to create supervised models. We conducted separate fine-tuning for the RoBERTa-
base model on each dataset for 10 epochs. Our selected hyperparameters included a batch size of 64
and a learning rate set at 1e−5.

For generative tasks, we employed Qwen-14B8 as the backbone and applied LoRA [26] for task-
specific fine-tuning. In the case of generative tasks, the fine-tuning process for Qwen-14B involved
the utilization of LoRA with a rank set to 32, a batch size of 128, and a learning rate of 2e−4 for 3
epochs. For Qwen-72B we employ the same setting with QLoRA technique [11].

D.4 Non-Overlapping Merging

To serperate the impact of parameter-wise interference, we design the non-overlapping experiment
based on Qwen LoRA modules as follows: (1) Firstly, we obtain standard merging experts by injecting
the LoRA module into both the “w1” and “c_proj” weights of the Qwen-based model, and fine-tune
them on two different tasks, resulting in two distinct models. Then we combine it into a single model
to obtrain standard merging results. (2) Next, we performe a non-overlapping fine-tuning by injecting
LoRA only to “w1” on one task and “c_proj” on another, producing two models with task-specific
knowledge in different modules. (3) Finally, we combined the non-overlapping checkpoints to get the
merged results. Since task-specific knowledge was injected into separate modules, parameter-wise
interference was minimized. The results are shown in the upper section of Table 1.

D.5 Sparsification Methods Details

In Figure 6, we conduct a comparative analysis employing various sparsification methods. The
specifics of each method are outlined below:

• Magnitude. Following the setting in Ties-Merging [76], we retain solely the k% largest-
magnitude values while resetting the remaining values to zero.

• Bernoulli-Dropout. Adhering to the methodology introduced in DARE [79], we employ a
parameterized Bernoulli distribution to sample a sparse mask mt. This mask is then applied
to the parameters δ and subsequently rescaled with respect to the mask rate k.

mt ∼ Bernoulli(k),

δ̃t = mt ⊙ δt,

δ̂t = δ̃t/(1− k).

(6)

• Singular value decomposition (SVD). Assuming that matrix M has a rank-m decompo-
sition, expressed as M = UtΣtV

T
t where Ut ∈ Rdout×m,Σt ∈ Rm×m,Vt ∈ Rdin×m.

We compress the matrix M by selecting only the top-r singular values from Σt, denoted
as Mr = Ut(r)Σt(r)Vt(r)

T . Here, Ut(r) ∈ Rdout×r,Σt(r) ∈ Rr×r,Vr
t ∈ Rdin×r

represent sub-matrices of Ut,Σt,V
T
t . This transformation significantly reduces the task-

specific parameter dimensionality from m× (dout + din + 1) to r × (dout + din + 1), as
the maximum m typically equals to the hidden size of the language model (e.g., m = 768
for RoBERTa-base and m = 4096 for Qwen-14B) and r can be reduced to 1, resulting in a
significant reduction in parameters and storage effectiveness.
During merging, we decompress these matrices by extending Ut(r),Σt(r),Vt(r)

T to size-
m by filling with zeros, allowing us to recover M via their product. This operation is only at
the matrix level; once we obtain the merged matrix, we discard the decompressed matrices,
ensuring efficient storage.

7https://huggingface.co/FacebookAI/roberta-base
8https://huggingface.co/Qwen/Qwen-14B

20

https://huggingface.co/FacebookAI/roberta-base
https://huggingface.co/Qwen/Qwen-14B

D.6 Baselines Details

Here we will elaborate on the baselines utilized in our main comparison experiment, as outlined in
Table 2 and Figure 2b.

• Individual means that each task uses the corresponding fine-tuned model, which has no
interference between tasks but cannot perform multiple tasks simultaneously. It serves as
the upper-bound performance for each specific task.

• Weight Averaging [6, 74] is the simplest form of model merging, which straightforwardly
averages the parameters of multiple models. It serves as a lower bound for model merging.

• Task Arithmetic [28] first introduces the concept of “task vectors” and merges them into
the pre-trained model to execute multi-task learning.

• Ties-Merging [76] addresses task conflicts by eliminating redundant parameters. The
process involves three steps: Trim, Elect Sign, and Disjoint Merge.

• Task Arithmetic (w/ DARE) [79] This variant incorporates the Bernoulli-Dropout technique
for 70% sparsification before employing Task Arithmetic [28] for merging.

• Ties-Merging (w/ DARE) [79] Similar to the previous approach, this variant integrates
Bernoulli-Dropout for 70% sparsification, followed by Ties-Merging [76] for the merging
process.

• AdaMerging [78] assumes access to an offline test set and dynamically adapts to it by
introducing additional coefficients at every layer, conducting unsupervised training across
multiple iterations on the test set (without labels) to refine the model.

• Surgery [77] assumes that test data IDs are accessible during inference, allowing it to insert
corresponding task-specific adapters to leverage task-specific knowledge.

The coefficient for Task Arithmetic and Ties-Merging are decided by a small scale grid search on
validation datasets. The coefficient of 0.7 is consistently applied for DARE Merging, following the
previous papers [79].

D.7 Detail Results

In Table 2, we present only the average normalized scores across various tasks. In this section, we
detail the statistical performance of all tasks, with discriminative results displayed in Table 8 and
generative results shown in Table 9.
Table 8: The detail statistics of different merging performance on 8 discriminative tasks. Bold
numbers indicate the best-averaging performance across different model merging methods.

Model COLA STS-2 MRPC STS-B QQP QNLI MNLI RTE Avg.
Pre-trained 0.00 53.76 85.01 4.01 37.48 53.05 37.09 71.19 41.69
Fine-tuned 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Weight Averaging 0.00 59.21 85.79 46.99 45.37 63.94 48.00 71.19 52.56
Task Arithmetic 8.35 88.26 89.57 32.84 82.03 85.40 75.54 80.43 67.80
Ties-Merging 31.76 88.86 86.18 10.94 61.05 85.94 83.01 69.56 64.66
Task Arithmetic (w/ DARE) 0.00 88.14 86.61 30.19 84.33 79.09 63.95 77.16 63.68
Ties-Merging (w/ DARE) 11.82 95.52 85.75 9.43 86.77 88.67 83.13 63.59 65.58

Twin-Merging (Rank-1) 51.24 98.67 89.20 76.31 92.16 93.24 96.45 90.76 86.00
Twin-Merging (90% compressed) 101.01 99.88 99.41 79.89 99.14 99.67 96.68 93.47 96.14

We primarily merge using LoRA for the Qwen-14B models because fully finetuning them to obtain
task-specific experts would require a huge amount of resources and computation (finetuning the full
14B model requires at least 8 A100 GPUs). However, to further demonstrate, we provide experiments
on fully fine-tuned LLaMA 7B models for generative tasks (GSM8k and TruthfulQA), where our
approach still exhibits superior performance.

D.8 More Advantages of Our Method

Beyond its strong performance and efficiency, our method offers key benefits in handling distribution
shifts and LLM deployment, surpassing approaches like AdaMerging and Surgery.

21

Table 9: The detail statistics of different merging performance on 4 generative tasks. Bold numbers
indicate the best-averaging performance across different model merging methods. Underlines indicate
the second best performance of each task across different model merging methods.

Model MMLU TruthfulQA BBQ CNN-DailyMail Avg.
Pretrained 101.37 94.35 86.27 82.24 91.06
Fine-tuned 100.00 100.00 100.00 100.00 100.00

Weight Averging 99.63 92.04 88.01 103.28 95.74
Task Arithmetic 98.93 98.23 83.65 105.62 96.61
Task Arithmetic (w/ DARE) 99.22 96.90 88.56 109.40 98.52
Ties-Merging 99.88 92.04 89.92 88.83 92.67
Ties-Merging (w/ DARE) 101.41 97.66 86.81 81.80 91.92

Twin-Merging (rank-1) 99.40 95.58 93.46 115.39 100.96
Twin-Merging (rank-16) 99.87 98.23 97.00 114.43 102.38

Table 10: Performance of LLaMA-7B
Method Avg. Inference Time (/1000 items)
Task-Arithmetic 69.89 186s
Twin Merging 88.18 198s

AdaMerging tackles distribution shifts in image domains by requiring access to test sets, even in
unseen domains. This is problematic for online settings where test data is unpredictable. In offline
scenarios, scaling test sets to large sizes is inefficient. Additionally, AdaMerging’s entropy-based
optimization limits it to classification tasks, which restricts its applicability as generative models like
LLaMA and GPT-4 become more prominent.

Our method overcomes these limitations by dynamically adapting to test inputs, as shown in Table 5.
It does not require specific validation datasets for each in-domain expert, making it more flexible.
For example, the open-source Dolly dataset can represent the MMLU expert, and we do not need
validation sets for QNLI, MNLI, RTE, or MMLU. Instead, we assume that combining in-domain
knowledge helps address out-of-domain inputs, as supported by [71]. This dynamic merging ensures
better generalization to diverse inputs, unlike AdaMerging, which relies on entropy approximations
without supervision.

Our approach is also optimized for real-world LLM deployment with continuous data streams and no
gradient updates, aligning with current trends [54]. Key advantages include:

• Handling Unpredictable, Heterogeneous Data: Our dynamic merging technique efficiently
addresses diverse streaming inputs.

• Reducing Latency and Storage: We shift router training and knowledge modularization to
preprocessing, and apply SVD techniques to minimize storage needs.

• Broad Applicability: Our method works across NLP and CV tasks, including generative
tasks with Qwen-14B and up to 72B models, supporting large-scale AI deployment.

D.9 Compatibility of Twin-Merging with Other Merging Methods

Table 11: Our method extensibility to other model merging methods
Method RoBERTa Qwen
Weight Average 52.56 95.74
Twin-Merging + Weight Average 96.23 100.08
Task-Arithmetic 67.80 98.52
Twin-Merging + Task-Arithmetic 96.14 102.38
Ties-Merging 63.68 92.67
Twin-Merging + Ties-Merging 96.34 102.35

22

To evaluate the compatibility of Twin-Merging with other merging methods, we conducted exper-
iments using different techniques to create a shared expert, followed by dynamically merging the
twin vectors. The results in Table 11 demonstrate that our method integrates seamlessly with primary
merging techniques, leading to significant improvements. For example, when combined with our
approach, the baseline Weight Average method improves from 52.26 to 96.23 on GLUE, approaching
the performance of fine-tuned experts. Notably, our method complements Ties-Merging particularly
well, suggesting that better isolation of shared knowledge enhances the overall performance of
Twin-Merging.

E Inference Efficiency

Assume we have T tasks, the fine-tuned model have P = Pf + Pa parameters, where Pf are frozen
and Pa are activated.

Parameter Count and Storage Cost Assuming each float parameter uses 16 bits (either fp16 or
bf16): Fine-tuned models require 2(TPa + Pf) bytes of storage. Pretrained models, including those
using Weight Average, Task Arithmetic, Ties-Merging, and DARE Merging techniques, each need
2P bytes of storage per model. For Twin-Merging, with the router having Pr parameters (Pr ≪ P)
and a compression rate of k%, it need to store 2TkPa + 2P + Pr bytes including a shared expert,
compressed exclusive task-specific vectors, and the router. We can select k to compress the model
matrix to rank 1 for best storage. These strategies enhance the accessibility and sustainability of
task-specific models, fostering wider advancements and applications. Visual representations can be
found in Figure 2a and Figure 4.

Computation FLOPs Analysis Our method mainly introduce the extra time cost due to routing and
dynamical merging. However, as the inference process typically involves hundreds of forward passes
(e.g., 300 tokens for summarization tasks), the additional computing is usually neglectable. Assuming
context length s, task number T , layer number m, the introduced FLOPs (Multiply–accumulate
operation) can be computed as m(24sh2 + 4bs2h) for routing, Tm(12h2 + 9h) for merging
(excluding norm parameter), while generating L tokens typically requires

∑L
l=s 24m(lh2 + 4bl2h)

FLOPs. Given that n ≪ L and s are typically truncated, the additional consumption is neglectable in
generation tasks. We demonstrate the actual time cost in Table 7, which adds only 0.039 seconds per
sample while bringing significant performance improvements.

Comparison with other baselises Moreover, our approach offers significant performance improve-
ments with these additional computing resources. As shown in Table 2 and the "More Baseline"
section, we achieve an absolute normalized improvement of 28.34% for RoBERTa, 18.83% on ViT-
B-32 compared to Task Arithmetic, 9.71% compared to Twin-Merging on Qwen-14B. Traditional
model merging methods often overlook the heterogeneous nature of test inputs, leading to substantial
performance gaps. Advanced merging techniques like AdaMerging and Surgery typically require
costly training and searching processes, as demonstrated in Table 3. In contrast, our method achieves
superior performance to fine-tuned models with minimal cost and storage requirements (47m22s vs.
215m01s, 5.0GB vs. 32.4GB) due to dynamic merging and SVD techniques.

Speedup variants Currently, our method supports batch inference for the routing process, while
the dynamic merging process handles inputs sequentially. However, it is straightforward to extend
our approach to support merging in batches or groups. We can achieve this by first obtaining router
weights in batch, then grouping similar data items using the following strategy: (1) Divide into Bins
Based on Argmax Indices: First, we divide the data into several bins according to the arg-max indices
of the router logits. (2) Cluster Within Each Bin: Then, we cluster (by KMeans) within each bin to
group the logits (we set the group number to 20). (3) Average Weights Within Each Group: Within
each group, the router weights are averaged to obtain a merged model. Each group corresponds to
one merged process, and the group size is typically larger than the batch size, making it very efficient.
We have added a group-wise experiment on RoBERTa to illustrate this:

23

Table 12: Performance of group-wise variant.
Method Avg. Normalized Score Time
Task-Arithmetic 67.80 4m52s
Twin-Merging 96.14 9m31s
Twin-Merging (group-wise, group number=20) 90.02 5m14s

F Limitations and Future Work

Our approach shares common limitations with existing merging methods: (1) The underlying theory
behind why and when weight interpolation works is not fully understood, though recent works
[51, 83] have made interesting observations about weight disentanglement and cross-task linearity.
(2) Currently, merging is limited to models with the same architecture and it may be difficult to find a
suitable fine-tuned model with specific capacities.

Additionally, while our method focuses on shared and exclusive task-specific knowledge, providing a
way to approach fine-tuned model performance and potentially surpass it without additional training,
we observe there may be other types of knowledge that remain unexplored: (1) Evil knowledge:
Useless for any task and distracts the model, obscuring critical knowledge during merging. (2)
Irrelevant knowledge: Has no impact on merging performance. Our experiments validate the
existence of the irrelevant knowledge since we demonstrate that dropping 90% of parameters retains
most of the fine-tuned performance, but we have not investigated evil knowledge. Future work may
include further investigation and decomposing these different types of knowledge to better ignite the
model’s full potential without retraining.

G Broader Impacts

This paper presents work whose goal is to advance the field of machine learning and model merg-
ing research. In terms of positive social impact, twin-merging techniques can achieve multi-task
performance of foundation models without retraining expert models, significantly reducing com-
putational and energy costs. Our proposed knowledge modularization and compression techniques
make the task-specific enhanced model more accessible and sustainable, paving the way for broader
applications and advancements in the field. These techniques effectively align unaligned models by
leveraging experts, thus mitigating the harmfulness and biases present in the original models. Addi-
tionally, model merging allows the unified model to benefit from the strengths of each task-specific
model, even for tasks with private or inaccessible data, enhancing commercial and safety benefits.
However, improper merging of biased models may contaminate the merged model. This issue can be
addressed by merging a de-bias expert or using sparsity techniques to minimize the impact.

24

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Appendix F provides a detailed report on our limitations and future work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

25

Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 3.3 provides the pseudo-code of our method and Appendix D provides
the training and test details of each method we experiment with.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

26

Answer: [Yes]
Justification: Our paper uses publicly available datasets and provides the complete code and
execution scripts in the supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Appendix D provides the training and test details of each method we experi-
ment with.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The paper does not include error bars for the experiments. This omission is
due to the high computational cost associated with calculating error bars for large language
models. Additionally, the training-free algorithms used in the experiments are deterministic,
ensuring reproducibility and consistency of the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

27

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides computer resources and information needed to reproduce
experiments in Appendix D.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, the research conducted in the paper conforms in every respect with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We analyze both the positive and negative societal impacts in the Appendix G.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

28

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the creators or original owners of assets used in the paper are properly
cited and Appendix D.2 provides licensing information for datasets used in our work.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

29

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We submit the code in the supplementary material with detail scripts and
guidance.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with humans subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing or research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing or research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

30

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

31

	Introduction
	Related Work
	Methodology
	Analysis of the Performance Gap in Model Merging
	Interpreting Interference From the Perspective of Knowledge
	Twin Merging

	Experiments
	Merging Experiment
	Unseen Generalization
	Ablation Studies
	Scale to More Tasks
	Router Analysis
	Compression and Speed Analysis

	Conclusions
	Acknowledgments
	Twin Merge on LoRA
	More relative research
	The Merging Interference and Limited Generalization
	Experiment Details
	Compute Resources Used and Runtimes
	Employed Datasets and Associated Licences
	Language Model Backbone
	Non-Overlapping Merging
	Sparsification Methods Details
	Baselines Details
	Detail Results
	More Advantages of Our Method
	Compatibility of Twin-Merging with Other Merging Methods

	Inference Efficiency
	Limitations and Future Work
	Broader Impacts

