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Abstract001

Retrieval-Augmented Generation (RAG) is the002
main method to embed context information003
Language Model (LM) pipelines. However,004
repository-aware code generation pose a chal-005
lenge to off-the-shelf RAG due to lack of speci-006
ficity of traditional embedders, usually trained007
to handle context-inespecific coding bench-008
marks such as HumanEval, MBPP and APPS.009
In order to create reliable pipelines, without010
relying on any retriever or generator finetun-011
ing, we studied the impact of different contexts:012
1) We firstly include the local scope of the re-013
trieved functions and methods; 2) we extend it014
to include the whole function file in the context;015
3) we evaluate the impact of the implementa-016
tion in the same file of the new function (“Infile”017
context); 4) we combine the entire retrieved018
function file with Infile; finally (5) we evaluate019
the ability of Language Models (LMs) to self-020
generate documentation and use them to im-021
plement new repository functions. Our experi-022
ments show the necessity of keeping the whole023
current, and retrieved file in the context as op-024
posed to specific methods and classes. With025
this setup, we reach the state-of-the-art perfor-026
mance in CoderEval benchmark employing the027
open-source small-scale Llama3.1-8B-Instruct028
without finetuning the generator or the retriever,029
and without relying on compiler feedback.030

1 Introduction031

Large Language Models (LLMs) have extensively032

been used for code generation (Shinn et al., 2024;033

Jiang et al., 2023; Chen et al., 2022; Ishibashi and034

Nishimura, 2024; Bi et al., 2024; Dong et al., 2023;035

Wang et al., 2023a; Hong et al., 2023). The typical036

scenario involves the LLM reading a problem state-037

ment and implementing a self-contained code or038

rely on standard or publicly libraries for implement-039

ing their solutions (Chen et al., 2021; Austin et al.,040

2021; Hendrycks et al., 2021). A more challenging041

scenario rises when we prompt the LLM to gener-042

ate a code to be inserted in an implemented repos- 043

itory. The LLM must understand the functions, 044

classes, constants, imports, and the general repos- 045

itory architecture to correctly call the necessary 046

functions, classes, and other codes to seamlessly 047

integrate in the existing components. This poses 048

a more challenging scenario than the former one, 049

since the LLM needs to consult and understand a 050

repository, potentially out of its knowledge scope, 051

to generate the correct requested implementation. 052

While Retrieval-Augmented Generation (RAG) 053

is a common strategy to obtain knowledge or code 054

snippets from the target repository (Lu et al., 2022; 055

Bi et al., 2024; Zhang et al., 2023; Wang et al., 056

2024), most of this works do not explore different 057

ways of building the context. Traditionally, they 058

employ a slide window-based strategy (Zhang et al., 059

2023) to scan the lines of the file codes to obtain 060

text chunks, which are later embedded into a vector 061

representation using some text processing or en- 062

coder (e.g., BM25 (Robertson et al., 1995), UniX- 063

Coder (Guo et al., 2022), CodeT5+ (Wang et al., 064

2023b), etc.). However, Wang et al. (2024) already 065

acknowledge the slide window weakness, and pro- 066

pose a novel chunks creation strategy based on the 067

entire function code body; also Feng et al. (2024) 068

already evaluate the positive effect of keeping the 069

current file in the generator context. Pointing to the 070

importance of studying the impact of the context in 071

code generation. 072

Some state-of-the-art methods improve code gen- 073

eration by training a retriever on generator output 074

(e.g., RLCoder (Wang et al., 2024)) or by using 075

compiler feedback (Bi et al., 2024; Zhang et al., 076

2023). However, these approaches have significant 077

drawbacks. Training a custom retriever for each 078

repository is costly, unscalable for large projects, 079

and incompatible with proprietary models like GPT- 080

4 (Achiam et al., 2023). This method also creates 081

security risks, as the retriever can embed sensi- 082

tive information from private code into its param- 083
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Figure 1: Chunks comparison. In the left, we have the
slide window-based approach, where a slide window
of a fixed size w slides every w lines obtaining the text
chunks. In this case, incomplete parts of different func-
tions can fall in the same window which can mislead
the code generation. In the right, as proposed in (Wang
et al., 2024), the chunk is the entire function body, which
avoids incomplete parts and allows the LLM to have an
overview of the function.

eters. Similarly, compiler feedback can mislead084

code generation. It may create overly complex con-085

texts that cause LLM distraction or hallucinations,086

particularly if the repository’s code is highly spe-087

cialized. Critically, this approach requires running088

LLM-generated code, which introduces a major se-089

curity vulnerability by potentially executing mali-090

cious code within the project’s environment. Thus,091

in this work, we aim to expand the AI-automated092

software engineering by answering the following093

question: How do we create the LLM context for094

repository-aware whole-body function generation095

without training the retriever and generator, nor096

requiring the compiling feedback?097

We believe this research has the following sci-098

entific and industrial interests: 1) it will contribute099

to the on-growing study of In-Context Learning100

(ICL) for LLMs in a challenging scenario; 2) We101

do not require severe extra security layers for de-102

ployment, nor dedicated hardware for training re-103

triever and generator, and we focus on open-source104

and small-size language models (e.g., Llama3.1-105

8B-Instruct (Grattafiori et al., 2024)) saving time106

and resources; 3) Our solution is plug-and-play and107

it is easier to be adapted to any public or propri-108

etary retriever or generator. In summary, our main109

contributions are:110

1. We analyze the context impact in repository-111

aware code generation by considering the main112

aspects of retrieved functions/methods. We113

propose and evaluate in the context: 1) func-114

tions and methods scope; 2) their whole file; 3)115

combination with the current file; and 4) self-116

generated documentation.117

2. We propose the RAG of Thoughts (RAGoT),118

which is an extension of the proposed Chain- 119

of-Thoughts for repository-aware code genera- 120

tion. It achieves a competitive performance to 121

other variants and prior works, and it provides 122

an acceptable trade-off between context size and 123

performance. 124

3. We DO NOT train the retriever and generator, 125

nor rely on compiler feedback, and focus on 126

open-source and small-size language models. 127

Even so, we outperform prior state-of-the-art, 128

which require training of the generator or re- 129

triever, in CoderEval (Yu et al., 2024), employ- 130

ing the same generator checkpoints. 131

4. We show our conclusions stand for different 132

combinations of open-source LLMs and retriev- 133

ers, easing reproduction and deployment. 134

5. Our solution is plug-and-play and it is easier to 135

be adapted to any public or proprietary retriever 136

or generator. 137

2 Related Work 138

Early research in AI-driven code generation fo- 139

cused on creating standalone functions from natural 140

language descriptions. Some approaches directly 141

prompt LLMs with the task, while others introduce 142

a structured pipeline with planning (Jiang et al., 143

2023) or agent collaboration (Hong et al., 2023; 144

Ishibashi and Nishimura, 2024). Multi-turn genera- 145

tion, as in CodeGen (Nijkamp et al., 2022), allows 146

the user to decompose tasks into smaller prompts. 147

PanGu-Coder (Christopoulou et al., 2022) uses two- 148

stage training: pretraining on raw text/code and 149

fine-tuning on text-to-code tasks. Role-based sys- 150

tems like Self-Collaboration (Dong et al., 2023) 151

simulate real-world development with agents act- 152

ing as analyst, coder, and tester. These strategies 153

enhance planning, coordination, and task decom- 154

position. However, they assume the function is 155

generated from scratch without referencing an ex- 156

isting codebase. Realistic scenarios often involve 157

navigating repositories with multiple files and de- 158

pendencies. In such contexts, understanding and 159

integrating with existing implementations becomes 160

crucial. This shifts the challenge from isolated code 161

synthesis to repository-aware code generation. 162

Some prior works in code generation have been 163

trained and evaluated in the repository-aware code 164

generation setup. RepoCoder (Zhang et al., 2023) 165

is a framework designed to enhance repository- 166

level code completion by integrating a similarity- 167

based retriever with a pre-trained code language 168
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model in an iterative retrieval-generation pipeline.169

This approach effectively utilizes repository-wide170

information to generate code at various levels171

of granularity. RLCoder (Wang et al., 2024) in-172

troduces a reinforcement learning framework for173

repository-level code completion, enabling retriev-174

ers to learn without labeled data by evaluating175

retrieved content based on the perplexity of the176

target code. It incorporates a stop signal mecha-177

nism, allowing the retriever to autonomously de-178

cide when to retrieve and which candidates to retain.179

In ReACC (Lu et al., 2022), the authors propose180

a retrieval-augmented code completion framework181

that enhances code prediction by integrating a code182

retriever with an auto-regressive language model.183

This approach leverages external code snippets184

with similar semantics to improve code completion185

accuracy. In (Bi et al., 2024), the authors intro-186

duce CoCoGen to obtain the code execution com-187

piler feedback, which enhances generation through188

an iterative refinement pipeline. It identifies mis-189

matches between generated code and the project’s190

context using compiler techniques, then aligns and191

fixes these errors using information from the code192

repository.193

3 Methodology194

This methodology will present different ways of195

approaching code generation. First, we will un-196

derstand the impact of scope in the LLM context197

evaluating RAG-Scope (RAG-S) and FileRAG198

approaches. Second we will explain how planing199

might impact the final generation evaluating the200

RAG of Thought (RAGoT) approach. Third, we201

will study the impact of the current file in gener-202

ation (called Infile). And finally we will study if203

using LLM-generated documentation (called Self-204

Doc) will improving context.205

RAG, RAG-Scope (RAG-S) and FileRAG. Tra-206

ditionally, to implement a new function1 the func-207

tion signature and its docstring forms the query208

that is used to retrieve top-k most similar functions209

in the repository, which are added in LLM con-210

text (this procedure is here called as RAG, and211

example of context with k = 1 is illustrated in212

Listing 2.). However, we argue that this RAG213

strategy is too simple and it does not provide a214

proper context to the LLM understand the reposi-215

tory to implement the new function. To improve216

1The terms ‘function’ and ‘method’ will be used inter-
changeably along this paper

performance, we need to improve the LLM con- 217

text. Our main goal is to answer the following 218

question: How do we create the LLM context to 219

obtain a repository-aware knowledge to implement 220

new repository functions, without training the re- 221

triever nor the generator? We hypothesize that 222

the retrieved functions needs its scope. Import 223

statements, variables and constants declarations 224

and other functions and classes implementations in 225

the retrieved functions files may elucidate how a 226

retrieved function from the vector store operates, 227

how its parameters are defined, how it is called, for 228

what it is implemented and how its returning values 229

are used. In summary, functions scope empowers 230

the LLMs context to more effectively generate the 231

new functions. To validate this hypothesis we de- 232

signed two novel ways to create the LLM context: 233

RAG-Scope (RAG-S) and FileRAG. 234

When a function f , from a file F , is retrieved 235

from the vector store we have the following setups: 236

RAG-S will keep its scope along with its imple- 237

mentation, as well as other functions with the same 238

name of f in F . The rationale is to provide imports 239

statement, variable, constants, block declarations 240

and functions with similar name that surround the 241

retrieved function in its file to better understand its 242

behavior;FileRAG will assume the entire file F is 243

important to comprehend f behavior, and insert it 244

entirely in the generator context. RAG-S is a par- 245

ticular case of FileRAG, since RAG-S keeps just 246

part of the file. In counterpart, FileRAG keeps the 247

whole file and consequently the whole local infor- 248

mation about where the retrieved function is imple- 249

mented. We show a context example of RAG-S and 250

FileRAG in Listing 3 and Listing 6, respectively. 251

RAG of Thought (RAGoT). Previous approach 252

seek to retrieve functions based on the new function 253

signature with its docstring as the query. So, the 254

retrieved functions can be understood as few-shot 255

examples about how to implement the new func- 256

tion. A natural alternative thinking is: the model 257

can try to firstly understand the new implementa- 258

tion by analyzing the function signature and its 259

docstring before implementing it. Similar to the 260

Chain-of-Thoughts (CoT) strategy the generator 261

can break its implementation down in steps, and 262

retrieve the repository functions that mostly closes 263

implement each step. After that, the context will 264

be formed by retrieved functions that implements 265

each intermediate steps of the solution, and later 266

aggregated to prompt the generator. In summary, 267

the generator analyzes the signature and docstring, 268
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breaks the implementation down in steps, each step269

is used as query that retrieves the repository func-270

tions that mostly close implement it, insert the re-271

trieved function in the context, append the steps272

used as query, and ask the generator to implement273

the new function. We call this strategy RAG of274

Thoughts (RAGoT). This is basically an extension275

of previous RAG, but instead of inserting in the276

context the retrieved functions based on the func-277

tion signature and docstring, we insert the functions278

that implement each step (each “thought”) of the279

model. An example of the generator context for280

RAGoT can be find in Listing 4. We also employ281

the same strategy considering each function scope282

as previously, obtaining RAGoT-S (Listing 5) and283

FileRAGoT (Listing 7).284

Infile. So far we have focused in retrieving func-285

tions in the repository to support the new function286

implementation. So, the retriever retrieves func-287

tions considering the whole repository, but may288

ignore the function file where the new function will289

be implemented in. Typically, in a repository de-290

velopment scenario we implement new functions291

on files where it already has some other functions292

and methods implemented, and that probably have293

been already tested. In this case, the current file294

where the new function will be in can provide a295

local context for the LLM to guide the generation296

of the new function. We validate this hypothesis by297

keeping just the current file where the new function298

will be implemented in as the context, and prompt299

the generator to implement it. We call this strategy300

by “Infile”. Note that this strategy does not per-301

form any searching, since the context will be the302

functions already implemented in the current file.303

A prompt example with this strategy is provided304

in Listing 8. If the current file is empty, and the305

new function will be the first one, we fall in the306

previous cases where all retrieved functions will be307

searched in the repository.308

We can easily fuse the “Infile” strategy by, for in-309

stance, keeping the current file and the file retrieved310

with the “FileRAG” strategy. Then we will have the311

current file plus another file in the repository, and312

we call it “Infile + FileRAG”. A prompt example313

with “Infile + RAG” (our proposed “Infile” strategy314

employed with standard RAG) is in Listing 9.315

Self-Doc. Finally, we design a set of experi-316

ments to answer the following question: Can the317

documentation of functions in the repository help to318

implement new code? Typically, when we are work-319

ing with a new repository or library, we try to look 320

at some documentation, if any, to better understand 321

the repository and its functions, classes, methods, 322

etc. Then we implement new functions and codes 323

based on the documentation. We validate if this 324

strategy is also effective for LLMs. To achieve 325

this, we firstly, retrieve k files from the repository 326

using FileRAG. Then we prompt the LLM to read 327

and understand each function and method in the 328

k files. The LLM outputs each function signature, 329

the respective explanation about what each func- 330

tion does, and what it returns. After that, we insert 331

the generated documentation in the LLM context 332

along with the respective signature and docstring 333

of the function to be implemented. The goal is to 334

check if the own LLM understanding of the func- 335

tions, compressed in the generated documentation, 336

is enough to support new functions implementation. 337

Also, we will check what happens to the LLM per- 338

formance when the functions bodies are replaced 339

by their documentation. We call this strategy “Self- 340

Doc”. An extension of it is also presented when we 341

ask the LLM to perform RAGoT over the generated 342

documentation, naming it “Self-Doc + RAGoT”. In 343

other words, the LLM will break the task in steps 344

based on the self-generated documentation. 345

4 Experiments 346

We conduct all experiments using the CoderEval 347

benchmark (Yu et al., 2024), which evaluates code 348

generation in repositories across six sample types, 349

ranging from self-contained to project-level. Our 350

focus is on the more challenging and practically rel- 351

evant types: class-level, file-level, and project-level 352

samples. CoderEval includes 230 Python samples 353

from 43 repositories and 230 Java samples from 10 354

repositories. We evaluate performance using the 355

pass@1 metric, which measures the proportion of 356

correct implementations on the first attempt. For 357

code generation, we use the open-source Llama3.1- 358

8B-Instruct model (Grattafiori et al., 2024), and for 359

retrieval, CodeT5+ (110M) (Wang et al., 2023b), 360

due to its strong retrieval performance. We also 361

include comparisons with other small-scale open- 362

source LLMs and retrievers. Our emphasis on 363

open-source, lightweight models reflects practical 364

concerns such as cost-efficiency, privacy, and inde- 365

pendence from proprietary APIs. This setup pro- 366

vides a realistic and reproducible evaluation envi- 367

ronment for repository-level code generation. We 368

run our experiments in two H100 GPUs with 95GB 369
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of memory.370

4.1 Ablation study of context strategies371

The results for each setup presented in previous372

section are shown in Table 1. Clearly, RAG states373

among the worst models with one of the lowest374

overall average performance (last column). This375

shows that, differently from other language tasks,376

RAG is not so effective for repository-aware code377

generation. Our first strategy to improve the con-378

text is RAG-Scope (RAG-S), which shows a perfor-379

mance improvement over RAG in “class” and “file”380

setup for Java (26.00 vs 18.00 and 100.00 vs 0.002,381

respectively), and in the most challenging project382

setup (13.04 vs 8.70 for Python and 18.18 vs 11.36383

for Java). Overall, RAG-S improves from 11.16384

to 31.02 over the standard RAG, with marginal in-385

crement in the numbers of context tokens. Our386

proposed RAGoT slightly underperforms RAG in387

the “class” Python setting but outperforms it in388

“file” and “project” setups. It uses an intermediate389

number of tokens compared to RAG and RAG-S.390

Overall, RAGoT is less effective than RAG-S. To391

address this, RAGoT-S incorporates function scope,392

improving performance in “class” and “project”393

Java, and showing better overall results than RAG394

and RAGoT. This improvement comes at the cost395

of increased context tokens due to additional func-396

tions needed for each step.397

The natural extension of the scope is to include398

the whole function file in the LLM context. In this399

sense, our proposed “FileRAG” achieves the best400

performance across most evaluation scenarios so401

far, outperforming other setups by large margins.402

The FileRAG average Python performance has a403

superior compared to previous approaches (14.85404

of RAGoT vs 26.14 of FileRAG), just loosing for405

FileRAGoT, but with a smaller margin (26.14 vs406

28.41). In Java, the best performance is still at-407

tached to RAG-S, since, among all methods in the408

upper part of table, it is the only one to correctly im-409

plement the single “file” Java example. This result410

pushes the performance up for RAG-S. Also, Fil-411

eRAG has the highest number of tokens in the con-412

text for Python, but keeps competitive with other413

variants in Java. FileRAGoT extends FileRAG by414

retrieving an entire file for each reasoning step,415

rather than just the single most relevant file. This416

2In CoderEval, there is just a single example for
file_runnable evaluation. So we have a binary performance
with 100.00 when the LLM successfully implements it, and
0.00 otherwise

results in multiple files being included in the con- 417

text, one per step. While FileRAGoT outperforms 418

earlier variants, its performance remains slightly 419

below that of FileRAG. 420

In the same line, we check the impact of current 421

file (where the new function will be implemented 422

in) in the context, which is the “Infile” setup. From 423

Table 1, it has competitive performance compared 424

to FileRAG and FileRAGoT, showing that, indeed, 425

the local context provides strong support. When 426

we extend Infile with the previous strategies, we 427

see a performance increase for all of them, where 428

“Infile + FileRAG” obtains the best performances. 429

It obtains an overall average python performance 430

of 34.49, where the runner-up is 28.41, and aver- 431

age Java performance of 71.15, where the runner- 432

up is in 60.12. These results show that the local 433

information may be complementary to the other 434

information in the repository. 435

The last set of experiments evaluate the LLM 436

ability to leverage its own self-created documenta- 437

tion for code generation. From the last five lines 438

of table 1, we see that the self-documentation has 439

limited performance, suggesting that the function 440

body in the context is better than its documentation. 441

The main conclusions are three fold: 1) The 442

scope plays a fundamental role to provide an under- 443

standing to the generator about how the functions 444

work and operate. When the full function scope 445

is included in the context (the full function file) 446

we obtain the best performance, with “Infile + Fil- 447

eRAG” attaining the best results across most of 448

the evaluated setups; 2) The standard RAG (first 449

line) states among the setups with the lowest per- 450

formance, showing that the standard RAG is not 451

suitable for repository-aware code generation; 452

and 3) Break the requirements in steps, similar to 453

CoT, brings improvements in some setups (lines 454

with RAGoT), but it is not as effective as “Infile 455

+ FileRAG”. In other words, CoT behaves dif- 456

ferently for repository-aware code generation. 457

Further study are still necessary to successfully 458

integrate CoT in repository-aware code generation. 459

4.2 Ablation study of text/code embedders 460

For completeness, in Table 2, we show the results 461

of some of our variants employing other well-know 462

retrievers, such as UniXCoder (Guo et al., 2022), 463

Contriever (Izacard et al., 2021), MPNet (Song 464

et al., 2020) and BM25 (Robertson et al., 1995). 465

We see that CodeT5+, Contriever and MPNet hold 466

similar performances. For Infile + FileRAG, for 467
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Table 1: Ablation study with Code Generation methods in CoderEval dataset. For each column, the best one is in
blue, and the second best is in green. The performance is calculated in terms of pass@1.

class file project Python
Avg.

Java
Avg.

Overall
Avg.

Method Avg. # Tokens in
Context

Encoder Python Java Python Java Python Java

Llama3.1-8B-Instruct
RAG 0.43K/0.30K CodeT5+ 12.73 18.00 16.18 0.00 8.70 11.36 12.54 9.79 11.16
RAG-S 1.19K/1.04K CodeT5+ 12.73 26.00 16.18 100.00 13.04 18.18 13.98 48.06 31.02
RAGoT 0.89K/0.60K CodeT5+ 10.91 18.00 20.59 0.00 13.04 9.09 14.85 9.03 11.94
RAGoT-S 2.58K/1.91K CodeT5+ 7.27 27.00 17.65 0.00 8.70 15.91 11.21 14.30 12.75
FileRAG 5.94K/1.02K CodeT5+ 34.55 46.00 26.47 0.00 17.39 31.82 26.14 25.94 26.04
FileRAGoT 3.70K/7.37K CodeT5+ 28.57 41.94 40.00 0.00 16.67 23.81 28.41 21.92 25.16
Infile 4.68K/8.22K - 23.64 44.00 29.41 0.00 17.39 36.36 23.48 26.79 25.13
Infile + RAG 3.91K/7.48K CodeT5+ 20.00 44.00 17.65 100.00 17.39 36.36 18.35 60.12 39.23
Infile + RAG-S 6.06K/9.09K CodeT5+ 23.64 45.00 26.47 100.00 13.04 29.55 21.05 58.18 39.62
Infile + RAGoT 4.37K/7.77K CodeT5+ 27.27 36.00 32.35 100.00 13.04 27.27 24.22 54.42 39.32
Infile + RAGoT-S 6.06K/9.09K CodeT5+ 23.64 39.00 23.53 100.00 17.39 27.27 21.52 55.42 38.47
Infile + FileRAG 9.42K/17.42K CodeT5+ 50.91 68.00 26.47 100.00 26.09 45.45 34.49 71.15 52.82
Self-Doc (current file) 1.01K/1.02K - 12.73 15.00 13.24 0.00 8.70 6.82 11.56 7.27 9.42
Self-Doc (current file + 1 extra file) 1.98K/1.95K CodeT5+ 14.55 14.00 11.76 0.00 8.70 11.36 11.67 8.45 10.06
Self-Doc (current file + 2 extra files) 2.92K/2.67K CodeT5+ 18.18 18.00 14.71 0.00 4.35 2.27 12.41 6.76 9.59
Self-Doc (current file + 3 extra files) 3.86K/3.30K CodeT5+ 10.91 16.00 10.29 0.00 4.35 4.55 8.52 6.85 7.68
self-Doc + RAGoT-S 2.68K/1.88K CodeT5+ 9.09 27.00 19.12 0.00 8.70 11.36 12.30 12.79 12.55

instance, CodeT5+, Contriever and MPNet has468

an average Python performance of 34.49, 34.26469

and 31.60, respectively. For Java, they achieved470

pass@1 of 71.15, 65.97 and 65.88, respectively.471

For UniXCoder, the pipeline runs out of mem-472

ory for most of the Java experiments (denoted by473

“OUT” word in Table 2), with exception to “In-474

file + RAG-S” which has the lowest number of475

context tokens, on average, in the context. This476

shows that our model may be sensible to some em-477

bedders and how much context they retrieve. How-478

ever, it successfully runs for all Python experiments479

for the four setups. For “Infile-FileRAG”, UniX-480

Coder average Python performance is 28.91, the481

lowest compared to other embedders. Conversely,482

it has the best performance for “Infile + RAG-S”,483

achieving 23.81 compared to 22.01 from MPNet.484

Interestingly, similar behavior happens for “Infile485

+ RAG-S” in Java, achieving 58.61 compared to486

58.18 from CodeT5+ and MPNet. This shows that487

some variants can improve performance if a proper488

retriever is employed.489

Finally, BM25 does not show competitive per-490

formance, exceptionally for “self-Doc + RAGoT-S”491

that achieves the best average Python performance,492

however, it has a substantial lower result in Java.493

Overall, BM25 does not provide competitive results494

mainly because it is a shallow retriever, which does495

not provide enough semantics for code retrieval. In496

conclusion, we recommend the employment of one497

of the four neural retrievers, mainly CodeT5+ and498

Contriever that state among the best performers.499

4.3 Comparison with the State of the Art500

In this section we compare our two best con-501

text formation strategies employed with varied502

language models. Differently from prior works,503

we do not finetune the retriever and the gener- 504

ator, nor employ compiler feedback or perform 505

multiple rounds of RAG. We evaluate our solu- 506

tions with four different language models, namely 507

“Llama3.2” (Grattafiori et al., 2024) (1B and 3B 508

versions), “Llama3.1” (Grattafiori et al., 2024) 509

(8B version) that has been employed in all experi- 510

ments so far along this paper, and DeepSeekCoder- 511

V1 (Guo et al., 2024) (7B version). All are instruct- 512

based models. As our competitors, we employ Re- 513

poCoder (Zhang et al., 2023) and RLCoder (Wang 514

et al., 2024), which are among the state-of-the-art 515

models in CoderEval benchmark, and have publicly 516

available codes that allow us to rerun their solutions 517

with the aforementioned language models with the 518

exact the same checkpoints we employed. The 519

results are presented in Table 3. 520

For Llama3.1-8B-Instruct, our solution “Infile 521

+ FileRAG” achieves the state of the art, outper- 522

forming RLCoder, with the same language model 523

checkpoint, by 10.91 percentage points (p.p.) and 524

38.00 p.p. in class level for Python and Java, re- 525

spectively, by 7.35 p.p. in file level for Python, 526

and by 4.35 p.p. and 20.45 p.p. in project level 527

for Python and Java, respectively. Additionally, 528

we achieve the best Python, Java and overall per- 529

formance. This shows the positive impact of our 530

proposed “Infile + FileRAG”. By properly creat- 531

ing the context, we do not require retriever and 532

generator training, even compared to a model that 533

trains the retriever (RLCoder) and one that employs 534

multiple RAG iterations (RepoCoder). 535

On average, our best solution requires 9.42K 536

and 17.42K tokens for Python and Java samples, 537

respectively, in CoderEval. For this reason, we 538

also compare our proposed “FileRAG” in Table 3, 539

since it has competitive performance and an av- 540
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Table 2: Ablation study with Code Generation methods in CoderEval dataset for different retrievers (encoders). The
performance is calculated in terms of pass@1.

class file project average
Method Avg. # Tokens in

Context
Python Java Python Java Python Java Python Java Overall

CodeT5+
FileRAG 5.94K/10.24K 34.55 46.00 26.47 0.00 17.39 31.82 26.14 25.94 26.04
Infile + RAG-S 6.06K/9.09K 23.64 45.00 26.47 100.00 13.04 29.55 21.05 58.18 39.62
Infile + FileRAG 9.42K/17.42K 50.91 68.00 26.47 100.00 26.09 45.45 34.49 71.15 52.82
self-Doc + RAGoT-S 2.68K/1.88K 9.09 27.00 19.12 0.00 8.70 11.36 12.30 12.79 12.55

UniXCoder
FileRAG 6.47K/9.97K 18.18 OUT 29.41 OUT 21.74 OUT 23.11 - -
Infile + RAG-S 5.26K/8.17K 29.09 44.00 20.59 100.00 21.74 31.82 23.81 58.61 41.21
Infile + FileRAG 9.95K/17.15K 32.73 OUT 27.94 OUT 26.09 OUT 28.92 - -
self-Doc + RAGoT-S 2.23K/- 10.91 OUT 20.59 OUT 8.70 OUT 13.40 - -

Contriever
FileRAG 5.64K/7.74K 34.55 42.00 25.00 0.00 17.39 25.00 25.65 22.33 23.99
Infile + RAG-S 4.74K/8.14K 29.09 43.00 20.59 0.00 13.04 22.73 20.91 21.91 21.41
Infile + FileRAG 9.12K/14.92K 47.27 57.00 29.41 100.00 26.09 40.91 34.26 65.97 50.11
self-Doc + RAGoT-S 2.62K/2.02K 7.27 19.00 19.12 0.00 8.70 9.09 11.70 9.36 10.53

MPNet
FileRAG 5.85K/7.93K 25.45 43.00 17.65 0.00 17.39 25.00 20.16 22.67 21.42
Infile + RAG-S 4.62K/8.09K 23.64 45.00 25.00 100.00 17.39 29.55 22.01 58.18 40.10
Infile + FileRAG 9.33K/15.10K 43.64 59.00 29.41 100.00 21.74 38.64 31.60 65.88 48.74
self-Doc + RAGoT-S 2.43K/1.70K 10.91 23.00 19.12 100.00 4.35 11.36 11.46 44.79 28.12

BM25
FileRAG 6.43K/5.34K 38.18 17.00 29.41 0.00 17.39 15.91 28.33 10.97 19.65
Infile + RAG-S 5.14K/7.95K 23.64 46.00 23.53 0.00 17.39 38.64 21.52 28.21 24.87
Infile + FileRAG 9.91K/12.52K 41.82 50.00 26.47 0.00 17.39 29.55 28.56 26.52 27.54
self-Doc + RAGoT-S 3.62K/1.47K 20.00 10.00 17.65 0.00 4.35 2.27 14.00 4.09 9.05

erage token size of 5.94K and 1.02K for Python541

and Java, respectively (Table 1). Clearly, due to542

the substantial context reduction, the performance543

drops compared to “Infile + FileRAG”. However,544

it still attains the second best average Java perfor-545

mance and the second-best overall performance546

with Llama3.1-8B-Instruct, also outperforming the547

state of the art. Our strategies are not benefited just548

from the current file (“Infile” setup) but also due549

to our proposed RAG strategy to retrieve and keep550

function file in the context.551

Even with smaller models, such as Llama3.2-3B-552

Instruct, we outperform prior works. With “Infile553

+ FileRAG” we achieve an average Python per-554

formance of 22.96 against 22.22 from RepoCoder,555

and an average Java performance of 23.00 against556

14.73 from RLCoder. Consequently, this setup also557

keeps the best overall performance (22.98). “Fil-558

eRAG” is the second best. These results are particu-559

larly interesting, since when we reduce models size560

we have more space for context tokens, allowing a561

more effective usage of our strategies.562

However, when reducing too much the model563

size our strategies have limited performance as evi-564

denced with Llama3.2-1B-Instruct. Our solutions565

require some minimal level of knowledge from566

the base language models, a phenomenon that has567

been already verified by prior RAG literature (Melz,568

2023). In this work, the author states that some569

RAG solutions are only effective in bigger mod-570

els, since they require a minimal knowledge level571

typically present on them. 572

Our solutions show limited performance with 573

models like DeepSeekCoder-7B-Instruct, which 574

struggle when the context exceeds 4096 tokens, 575

leading to illogical outputs. This negatively im- 576

pacts results. In contrast, LLaMA models handle 577

overloaded contexts more robustly, maintaining rea- 578

sonable performance despite larger input sizes. 579

For completeness, our final analysis compare 580

our two best strategies with chatGPT (GPT-3.5), 581

and other repository-aware code generation models 582

employing it as language model. The results are 583

depicted in Table 4. Even with a much smaller 584

language model our solutions has competitive per- 585

formance compared to GPT-3.5-based solutions. 586

One can state that our model is better due to data 587

leakage, however, we argue that, if so, it has limited 588

impact. We argue based on: 1) All solutions under 589

the same language model name in Table 1 oper- 590

ates with exact the same language model check- 591

point. It means that RLCoder, RepoCoder and our 592

setups under the Llama3.1-8B-Instruct name, op- 593

erates with exact the same language model check- 594

point. Even so, our solutions outstand compared to 595

others; 2) The “Direct” lines in Table 1 indicates 596

that the model was directly prompt without any 597

context. If any sample from CoderEval was memo- 598

rized, it would be able to still generate successfully 599

the correct answers, which does not happen to any 600

language model. In fact, GPT-3.5 has better “Di- 601

rect” performance than Llama3.1-8B-Instruct on 602
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Table 3: Comparison with relevant repository-aware Code Generation methods in CoderEval dataset. For each
language model, the best one is in blue, the second best is in green. The best overall (for each column) is underlined.

class file project Python
Avg.

Java
Avg.

Overall
Avg.

Method Venue Size python java python java python java
CodeGen (Nijkamp et al., 2022) ICLR’23 350M 5.82 8.30 7.79 0.00 3.91 6.14 5.84 4.81 5.33
PanGu-Coder (Christopoulou et al., 2022) ArXiv’22 300M 7.82 19.90 9.41 0.00 6.09 7.95 7.77 9.28 8.53

Llama3.2-1B-Instruct
Direct Meta 1B 5.45 1.00 4.41 0.00 8.70 2.27 6.19 1.09 3.64
RepoCoder (Zhang et al., 2023) EMNLP’23 1B 29.09 23.00 17.65 0.00 21.74 18.18 22.81 13.73 18.27
RLCoder (Wang et al., 2024) ICSE’25 1B 27.27 22.00 17.65 0.00 13.04 20.45 19.32 14.15 16.73
Ours (FileRAG) This work 1B 7.27 1.00 1.47 0.00 4.35 0.00 4.36 0.33 2.35
Ours (Infile + FileRAG) This work 1B 3.64 6.00 0.00 0.00 0.00 0.00 1.21 2.0 1.61

Llama3.2-3B-Instruct
Direct Meta 3B 9.09 13.00 11.76 0.00 4.35 4.55 8.40 5.85 7.13
RepoCoder (Zhang et al., 2023) EMNLP’23 3B 27.27 26.00 17.65 0.00 21.74 18.18 22.22 14.73 18.47
RLCoder (Wang et al., 2024) ICSE’25 3B 27.27 26.00 16.18 0.00 21.74 18.18 21.73 14.73 18.23
Ours (FileRAG) This work 3B 36.36 32.00 13.24 0.00 13.04 18.18 20.88 16.73 18.80
Ours (Infile + FileRAG) This work 3B 38.18 44.00 17.65 0.00 13.04 25.00 22.96 23.00 22.98

DeepSeekCoder-7B-Instruct
Direct Meta 7B 14.55 8.08 19.12 0.00 8.70 2.27 14.12 3.45 8.79
RepoCoder (Zhang et al., 2023) EMNLP’23 7B 32.73 32.00 13.24 0.00 8.70 20.45 18.22 17.48 17.85
RLCoder (Wang et al., 2024) ICSE’25 7B 34.55 30.00 11.76 0.00 8.70 20.45 18.34 16.82 17.58
Ours (FileRAG) This work 7B 12.73 OUT 14.71 OUT 4.35 OUT 10.60 - -
Ours (Infile + FileRAG) This work 7B 5.45 OUT 4.41 OUT 8.70 OUT 6.19 - -

Llama3.1-8B-Instruct
Direct Meta 8B 12.73 11.00 11.76 0.00 4.35 9.09 9.60 6.70 8.16
RepoCoder (Zhang et al., 2023) EMNLP’23 8B 34.55 31.00 14.71 0.00 21.74 20.45 23.67 17.15 20.41
RLCoder (Wang et al., 2024) ICSE’25 8B 40.00 30.00 19.12 0.00 21.74 25.00 26.95 18.33 22.64
Ours (FileRAG) This work 8B 34.55 46.00 26.47 0.00 17.39 31.82 26.14 25.94 26.04
Ours (Infile + FileRAG) This work 8B 50.91 68.00 26.47 100.00 26.09 45.45 34.49 71.15 52.82

Table 4: Comparison of our best solution with chatGPT (GPT3.5) in CoderEval dataset. The best results is in blue,
and the second best is in green.

class file project Python
Avg.

Java
Avg.

Overall
Avg.

Method Venue Size python java python java python java
chatGPT

Direct (GPT-3.5) OpenAI 175B 8.73 22.40 21.03 0.00 9.57 16.14 13.11 12.85 12.98
ReACC (GPT-3.5) (Lu et al., 2022) ACL’22 175B 20.36 - 17.65 - 11.30 16.44 - -
CoCoGen (GPT-3.5) (Bi et al., 2024) ArXiv’24 175B 28.00 - 30.29 - 21.30 - 26.53 - -
RepoCoder (GPT-3.5) (Zhang et al., 2023) EMNLP’23 175B 35.45 - 29.41 - 16.96 - 27.27 - -
Self-Collaboration (GPT-3.5) (Dong et al., 2023) ArXiv’23 175B 21.82 - 20.59 - 13.04 - 18.48 - -
Ours (FileRAG - Llama3.1-8B-Inst.) This work 8B 34.55 46.00 26.47 0.00 17.39 31.82 26.14 25.94 26.04
Ours (Infile + FileRAG - Llama3.1-8B-Inst.) This work 8B 50.91 68.00 26.47 100.00 26.09 45.45 34.49 71.15 52.82

average Python (13.11 vs. 9.60) and Java (12.85603

vs. 6.70) performances. This indicates that solely604

relying on parametric language model knowledge,605

GPT-3.5 is better than Llama3.1-8B-Instruct. This606

shows Llama3.1-8B-Instruct is strongly benefited607

by our designed setups allowing it to outperform608

GPT-3.5 and solutions based on it. We did not per-609

form any experiment with GPT-3.5 since we focus610

on open-source and small-scale language models,611

and it would require an extra API calling cost that612

would not be affordable with the project’s budget.613

5 Conclusion614

In this work we aimed to explore different con-615

text formation strategies for repository-aware code616

generation without requiring retriever or generator617

training, nor compiler feedback. With a comprehen-618

sive evaluation of different context formation strate-619

gies, impact of retrievers and language models, we620

provide a deep analysis about how these different621

pieces influence repository-aware code generation.622

By validating different hypothesis about how the623

retrieved functions must be inserted in the language624

models context, we conclude that its entire scope, 625

i.e. the retrieved function whole file, is the most 626

powerful context. It provides a full function con- 627

textualization, where it is implemented, imports, 628

dependencies and even examples about how it be- 629

haves. Also, the current file where the new function 630

will be implemented in, if available, also provide a 631

strong guide to code generation, following previous 632

findings (Feng et al., 2024). 633

In particular, our solution keeps repository safe- 634

guards since: 1) we do not require training, avoid- 635

ing sensitive leakage of proprietary repositories, 636

2) we do not require running the code repository 637

to obtain compiler feedback for implementation 638

improvement, alleviating the impact of malicious 639

or hallucinated code, 3) Our explorations and so- 640

lutions are designed for open-source small-scale 641

language models, broadening the application for en- 642

vironments with limited computational resources, 643

and avoids data sharing with proprietary models. 644

Our solution can help software developers and 645

speedup software engineering, and help to under- 646

stand repository structures. 647
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6 Limitations648

While this work presents a comprehensive analy-649

sis and demonstrates the effectiveness of specific650

context strategies for repository-aware code gener-651

ation, it is essential to acknowledge the boundaries652

of the study. The following limitations outline the653

key constraints regarding the practical scalability654

of our methods, the generalizability of the find-655

ings to different programming environments, the656

scope of the models tested, the chosen generation657

paradigm, and the dependency on the quality of the658

underlying codebase.659

Overall Scalability and Context Size: A pri-660

mary limitation of the study is the scalability of its661

most effective methods, which is directly tied to662

the significant context size required for generation.663

The best-performing strategy, "Infile + FileRAG,"664

demands large context windows, averaging around665

9K tokens for Python and 17K for Java. This depen-666

dency creates practical scalability challenges, espe-667

cially in projects with extremely large, monolithic668

files, where including an entire file via "FileRAG"669

becomes impractical. The authors acknowledge670

this issue and, as part of their future work, plan to671

explore context summarization and selection strate-672

gies to decrease the context size while preserving673

performance.674

Generalizability Across Languages and Project675

Types: The study’s experiments are confined to676

Python and Java within the CoderEval benchmark.677

The effectiveness of the proposed context strate-678

gies is not guaranteed to translate to other program-679

ming languages (e.g., JavaScript, Rust, C++) or680

different types of software projects, such as web681

development, embedded systems, or data science682

notebooks, which may have different structural con-683

ventions.684

Limited Scope of Language Models due to Re-685

source Constraints: This study deliberately fo-686

cused on open-source, small-scale language mod-687

els to ensure reproducibility and manage resource688

costs. This choice introduces a limitation, as the689

effectiveness of our context strategies is highly sen-690

sitive to the base model. The performance improve-691

ments observed may be smaller on models with692

different architectural constraints (e.g., smaller con-693

text windows) or larger on future, more capable694

models. Our inability to conduct extensive tests695

on large-scale proprietary models, such as GPT-696

3.5, was due to budget and resource limitations,697

which are common constraints in academic re- 698

search. Therefore, while the strategies proved po- 699

tent, their precise impact may vary when applied 700

to different LLMs. 701

Limited Scope of Generation Paradigm: This 702

study’s methodology was scoped to a single gen- 703

eration attempt per task, providing a clear base- 704

line for the effectiveness of each context strategy. 705

This approach, however, does not leverage more ad- 706

vanced, multi-output paradigms. For instance, the 707

use of Self-Consistency (Wang et al., 2022) was 708

not investigated. This is a notable limitation, as 709

such strategies could improve the robustness and 710

accuracy of the generated code. Future work will 711

explore these avenues, particularly through the de- 712

velopment of multi-agent systems where different 713

agents can generate and validate solutions. 714

Dependence on Codebase Quality: The success 715

of the "Infile" and "FileRAG" strategies hinges on 716

the assumption that the existing code in the repos- 717

itory is of high quality. These methods might be 718

less effective or even counterproductive in legacy 719

systems or projects with poorly documented, un- 720

structured, or buggy code. Providing a low-quality 721

file as context could lead the LLM to replicate bad 722

practices or introduce new errors. 723
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A Full prompts866

In this appendix section, we show the exact867

prompts we employed for code generation for each868

setup depicted in Table 1. They are depicted from869

Figure 2 to Figure 9.870

B Complementary qualitative results871

From Figures 10 to 21 we depict successful and872

failure cases for each of the three main evaluation873

setups in CoderEval (“class”, “file” and “project”).874

Our analysis below focus in the “project” setup,875

which is the most challenging one requiring a876

repository-level knowledge for successful imple-877

mentation.878

In Figure 18, we depict a successful case for879

project_runnable sample in Python. We see that880

the generated implementation (above) is close to881

the ground truth. The language model is able to cor-882

rectly execute the steps of the function and is able to883

call “Response” with exactly the same parameters884

as expected in the ground truth. In Figure 19 we885

depict a failure case for one sample in project_level886

for Python. Despite of being an error, we see that887

the generated code is very close to the ground truth.888

All parameters of the “Structure” class, which is889

implemented in another file in the repository and890

requires a repository-level understanding to call it,891

are correctly placed by the language model, match-892

ing exactly with the ground truth. Which makes893

it a failure case are the parameters values. For in-894

stance, “months” variable should be zero, but the895

language models assigns “months = days // 30”.896

This makes the code to fail the test cases. Still, in897

a practical scenario, our solution has the ability to898

provide a good starting point to generate functions899

to be integrated to the repository.900

Similar conclusions can be drawn from the Java901

samples. In Figure 20, our solution enables the lan-902

guage model to generate a more concise code than903

the ground truth. Differently than the ground truth,904

the generated code calls the “getContentLength-905

Long()” method instead of “ getContentLength()”906

as in the ground truth. Still, the generated code907

passes the test cases. In Figure 21, as happens908

in Python, our solution provides a code similar to909

the ground truth, providing a starting point already910

aligned to the repository implementations, requir-911

ing less work and time to adapt it to the expected912

code.913
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You are an expert developer. You must write a function or method based on the
function signature , docstring and documentation provided in the context of the
function (restate the function signature). Firstly , make a high level plan with
steps that progressively solves the task. Based on this plan , generate the code.
If a method signature is provided , implement just the method , do not implement
the whole class. The generated code must be between [CODE] and [/CODE] tags.

### Context with implementations:
#########
FILE 1
#########

def dehydrate_pandas_timedelta(value):
""" Dehydrator for `pandas.Timedelta ` values.

:param value:
:type value: pandas.Timedelta
:returns:
"""
return dehydrate_duration(Duration(

nanoseconds=value.value
))

### Function docstring:
def dehydrate_timedelta(value): """

"""
Dehydrator for `timedelta ` values.

:param value:
:type value: timedelta
:return:
"""

Figure 2: Standard RAG prompt. The function “dehydrate_pandas_timedelta” is retrieved from the vector store and
included in the context without further contextualization.
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You are an expert developer. You must write a function or method based on the
function signature , docstring and documentation provided in the context of the
function (restate the function signature). Firstly , make a high level plan with
steps that progressively solves the task. Based on this plan , generate the code.
If a method signature is provided , implement just the method , do not implement the
whole class. The generated code must be between [CODE] and [/CODE] tags.

### Context with implementations:
#########
FILE 1
#########
import sys

sys.path.append ("/ home/travis/builds/repos/neo4j ---neo4j -python -driver /")
from datetime import datetime , time , timedelta , timezone
from src.neo4j._optional_deps import np, pd
from src.neo4j.time import Date , DateTime , Duration , MAX_YEAR , MIN_YEAR ,

NANO_SECONDS ,
Time ,

)
from src.neo4j._codec.packstream import Structure

ANY_BUILTIN_DATETIME = datetime (1970, 1, 1)
if np is not None:
if pd is not None:
if np is not None:

_NUMPY_DURATION_UNITS = {"Y": "years", "M": "months", "W": "weeks",
"D": "days", "h": "hours", "m": "minutes", "s": "seconds",
"ms": "milliseconds ","us": "microseconds ","ns": "nanoseconds ",}

if pd is not None:
def dehydrate_pandas_timedelta(value):

""" Dehydrator for `pandas.Timedelta ` values.
:param value:
:type value: pandas.Timedelta
:returns:
"""
return dehydrate_duration(Duration(

nanoseconds=value.value
))

if __name__ == "__main__ ":
isT=True
try:

res1 = hydrate_time (3723000000004 , 3600)
res2 = hydrate_time (3723000000004 , None)
if not str(res1)=="01:02:03.000000004+01:00"
or not str(res2)=="01:02:03.000000004":

isT=False
except:

isT=False
if not isT:

raise Exception (" Result not True !!!")

### Function docstring:
def dehydrate_timedelta(value): """

"""
Dehydrator for `timedelta ` values.

:param value:
:type value: timedelta
:return:
"""

Figure 3: The proposed RAG-Statement (RAG-S) prompt. The function “dehydrate_pandas_timedelta” is retrieved
from the vector store and included along with import statements, declarations, and other code pieces. All functions
and methods with different name from “dehydrate_pandas_timedelta” are removed.
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You are an expert developer. You must write a function or method based on the
function signature , docstring and implementations provided in the context of the
function (restate the function signature). If a method signature is provided ,
implement just the method , do not implement the whole class. The generated code
must be between [CODE] and [/CODE] tags.

### Context with implementations:
#########
FILE 1
#########
def _validate_version(version):

if isinstance(version , numbers.Number):
# Some people apparently take "version number" too literally :)
version = str(version)

if version is not None:
try:

packaging.version.Version(version)
except (packaging.version.InvalidVersion , TypeError):

warnings.warn(
"The version specified (%r) is an invalid version , this "
"may not work as expected with newer versions of "
"setuptools , pip , and PyPI. Please see PEP 440 for more "
"details ." % version

)
return setuptools.sic(version)

return version

#########
FILE 2
#########
def _to_seconds(td):

'''Convert a timedelta to seconds '''
return td.seconds + td.days * 24 * 60 * 60

Here are the steps to implement it:
1. ** Validate the input **: Check if the input `value ` is indeed a timedelta object.
If not , raise a TypeError with a descriptive message.
2. ** Extract relevant information **: Extract the days , seconds , and microseconds
from the timedelta object `value ` to prepare it for dehydration.

### Function docstring:
def dehydrate_timedelta(value): """

"""
Dehydrator for `timedelta ` values.

:param value:
:type value: timedelta
:return:
"""

Figure 4: The proposed RAG of Toughts (RAGoT) prompt. The functions “_validate_version” and “_to_seconds”
are retrieved from the vector store based on the steps 1 and 2, respectively, present in the prompt.
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You are an expert developer (... <same text as in previous listings > ...).
The generated code must be between [CODE] and [/CODE] tags.

### Context with implementations:
#########
FILE 1
#########
import io
# ...
# More imports
# ...
from setuptools.extern.packaging import version

class Distribution(_Distribution):
# ... class docstring ...
_DISTUTILS_UNSUPPORTED_METADATA = {# ... Dictionary declaration ...}
_patched_dist = None

def _validate_version(version):
if isinstance(version , numbers.Number):

# Some people apparently take "version number" too literally :)
version = str(version)

if version is not None:
try:

packaging.version.Version(version)
except (packaging.version.InvalidVersion , TypeError):

warnings.warn("The version specified (%r) is an invalid version ,
this ""may not work as expected with newer versions of "

"setuptools , pip , and PyPI. Please see PEP 440 for more "
"details ." % version)

return setuptools.sic(version)
return version

#########
FILE 2
#########
'''Base classes and helpers for building zone specific tzinfo classes '''
from datetime import datetime , timedelta , tzinfo
# ...
# More imports
# ...
__all__ = []
# ... global variables declaration ... #
def _to_seconds(td):

'''Convert a timedelta to seconds '''
return td.seconds + td.days * 24 * 60 * 60

Here are the steps to implement it:
1. ** Validate the input **: Check if the input `value ` is indeed a timedelta
object. If not , raise a TypeError with a descriptive message.
2. ** Extract relevant information **: Extract the days , seconds , and
microseconds from the timedelta object `value ` to prepare it for dehydration.

### Function docstring:
def dehydrate_timedelta(value): """

"""
Dehydrator for `timedelta ` values.

:param value:
:type value: timedelta
:return:
"""

Figure 5: The proposed RAGoT-Scope (RAGoT-S) prompt. The functions “_validate_version” and “_to_seconds”
are retrieved from the vector store based on the steps 1 and 2, respectively, present in the prompt.
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You are an expert developer (... <same text as in previous listings > ...).
The generated code must be between [CODE] and [/CODE] tags.

### Context with implementations:
#########
FILE 1
#########
# Copyright (c) "Neo4j"
# ... comments about the code license ... #

import sys
# ... more imports ...
from src.neo4j._codec.packstream import Structure

ANY_BUILTIN_DATETIME = datetime (1970, 1, 1)
def get_date_unix_epoch ():

return Date (1970, 1, 1)

def get_date_unix_epoch_ordinal ():
return get_date_unix_epoch ().to_ordinal ()

o
o
o

# ... <other functions and classes implementations in the file > ... #

o
o
o

if pd is not None:
def dehydrate_pandas_timedelta(value):

""" Dehydrator for `pandas.Timedelta ` values.
:param value:
:type value: pandas.Timedelta
:returns:
"""
return dehydrate_duration(Duration( nanoseconds=value.value))

if __name__ == "__main__ ":
# ... < main function body > ...

### Function docstring:
def dehydrate_timedelta(value): """

"""
Dehydrator for `timedelta ` values.

:param value:
:type value: timedelta
:return:
"""

Figure 6: The proposed FileRAG prompt. The function “dehydrate_pandas_timedelta” is retrieved from the vector
store, and its entire file is inserted in the context.
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You are an expert developer (... <same text as in previous listings > ...).
The generated code must be between [CODE] and [/CODE] tags.
### Context with implementations:
#########
FILE 1
#########
import io
# More imports
from setuptools.extern.packaging import version

o o o
# ... <other functions and classes implementations in the file > ...#

o o o
class Distribution(_Distribution):

# ... class docstring ...
# ... class attributes declaration ...
def _validate_version(version):

if isinstance(version , numbers.Number):
# Some people apparently take "version number" too literally :)
version = str(version)

if version is not None:
try:

packaging.version.Version(version)
except (packaging.version.InvalidVersion , TypeError):

warnings.warn("The version specified (%r) is an invalid version ,
this ""may not work as expected with newer versions of "

"setuptools , pip , and PyPI. Please see PEP 440 for more "
"details ." % version)

return setuptools.sic(version)
return version
o o o

# ... <other functions and classes implementations in the file > ...#
o o o

#########
FILE 2
#########
'''Base classes and helpers for building zone specific tzinfo classes '''
from datetime import datetime , timedelta , tzinfo
# More imports
# ... global variables declaration ... #

o o o
# ... <other functions and classes implementations in the file > ...#

o o o
def _to_seconds(td):

'''Convert a timedelta to seconds '''
return td.seconds + td.days * 24 * 60 * 60

o o o
# ... <other functions and classes implementations in the file > ...#

o o o
Here are the steps to implement it:
1. ** Validate the input **: Check if the input `value ` is indeed a timedelta
object. If not , raise a TypeError with a descriptive message.
2. ** Extract relevant information **: Extract the days , seconds , and microseconds
from the timedelta object `value ` to prepare it for dehydration.

### Function docstring:
def dehydrate_timedelta(value): """

"""
Dehydrator for `timedelta ` values.
:param value:
:type value: timedelta
:return:
"""

Figure 7: The proposed FileRAGoT prompt. The functions “_validate_version” and “_to_seconds” are retrieved
from the vector store based on the steps 1 and 2, respectively, present in the prompt. Their entire files are included
in the context.
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You are an expert developer (... <same text as in previous listings > ...).
The generated code must be between [CODE] and [/CODE] tags.

### Context with implementations:
#########
FILE 1
#########
# Copyright (c) "Neo4j"
# ... comments about the code license ... #

from datetime import datetime , time , timedelta
# ... more imports ...

def get_date_unix_epoch ():
return Date (1970, 1, 1)

def get_date_unix_epoch_ordinal ():
return get_date_unix_epoch ().to_ordinal ()

def get_datetime_unix_epoch_utc ():
from pytz import utc
return DateTime (1970, 1, 1, 0, 0, 0, utc)

def hydrate_date(days):
# ... <function body implementation > ...

def dehydrate_date(value):
# ... <function body implementation > ...

def hydrate_time(nanoseconds , tz=None):
# ... <function body implementation > ...

def dehydrate_time(value):
# ... <function body implementation > ...

def hydrate_datetime(seconds , nanoseconds , tz=None):
# ... <function body implementation > ...

def dehydrate_datetime(value):
# ... <function body implementation > ...

def hydrate_duration(months , days , seconds , nanoseconds):
# ... <function body implementation > ...

def dehydrate_duration(value):
# ... <function body implementation > ...

### Function docstring:
def dehydrate_timedelta(value): """

"""
Dehydrator for `timedelta ` values.
:param value:
:type value: timedelta
:return:
"""

Figure 8: The proposed Infile prompt. In this case, there is no retrieval. We just move the function “dehy-
drate_timedelta” to the end of its file and remove its body. Then we ask the generator to implement based just in its
current file implementation.
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You are an expert developer (... <same text as in previous listings > ...).
The generated code must be between [CODE] and [/CODE] tags.
### Context with implementations:
#########
FILE 1
#########
def dehydrate_pandas_timedelta(value):

""" Dehydrator for `pandas.Timedelta ` values.
:param value:
:type value: pandas.Timedelta
:returns:
"""
return dehydrate_duration(Duration(nanoseconds=value.value ))

#########
FILE 2
#########
# Copyright (c) "Neo4j"
# ... comments about the code license ... #

from datetime import datetime , time , timedelta
# ... more imports ...

def get_date_unix_epoch ():
return Date (1970, 1, 1)

def get_date_unix_epoch_ordinal ():
return get_date_unix_epoch ().to_ordinal ()

def get_datetime_unix_epoch_utc ():
from pytz import utc
return DateTime (1970, 1, 1, 0, 0, 0, utc)

def hydrate_date(days):
# ... <function body implementation > ...

def dehydrate_date(value):
# ... <function body implementation > ...

def hydrate_time(nanoseconds , tz=None):
# ... <function body implementation > ...

def dehydrate_time(value):
# ... <function body implementation > ...

def hydrate_datetime(seconds , nanoseconds , tz=None):
# ... <function body implementation > ...

def dehydrate_datetime(value):
# ... <function body implementation > ...

def hydrate_duration(months , days , seconds , nanoseconds):
# ... <function body implementation > ...

def dehydrate_duration(value):
# ... <function body implementation > ...

### Function docstring:
def dehydrate_timedelta(value): """

"""
Dehydrator for `timedelta ` values.
:param value:
:type value: timedelta
:return:
"""

Figure 9: The proposed Infile + RAG prompt. We keep the prompt of Listing 2 along with the one in Listing 8. All
other variations, like “Infile + RAGoT”, “Infile + fileRAG”, etc., follow the same rationale.
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### Predicted
def values(self , *keys):

""" Return the values of the record ,
optionally filtering to

include only certain values by index
or key.

:param keys: indexes or keys of the
items to include; if none

are provided , all
values will be
included

:return: list of values
:rtype: list
"""
if keys:

d = []
for key in keys:

try:
i = self.index(key)

except KeyError:
d.append(None)

else:
d.append(self[i])

return d
return list(self)

### Ground Truth
def values(self , *keys):

""" Return the values of the record ,
optionally filtering to

include only certain values by index
or key.

:param keys: indexes or keys of the
items to include; if none

are provided , all
values will be
included

:return: list of values
:rtype: list
"""
if keys:

d = []
for key in keys:

try:
i = self.index(key)

except KeyError:
d.append(None)

else:
d.append(self[i])

return d
return list(self)

Figure 10: Successful case for a class_runnable Python
sample employing “Infile + FileRAG” with Llama3.1-
8B-Instruct. Predicted is above and the ground-truth
below.

### Predicted
def index(self , key):

"""
Return the index of the given item.

:param key: a key
:return: index
:rtype: int
"""
try:

return self.__keys.index(str(key
))

except ValueError:
raise IndexError(f"Key '{key}'

not found in the record")

### Ground Truth
def index(self , key):

""" Return the index of the given
item.

:param key: a key
:return: index
:rtype: int
"""
if isinstance(key , int):

if 0 <= key < len(self.__keys):
return key

raise IndexError(key)
elif isinstance(key , str):

try:
return self.__keys.index(key

)
except ValueError:

raise KeyError(key)
else:

raise TypeError(key)

Figure 11: Failure case for a class_runnable Python
sample employing “Infile + FileRAG” with Llama3.1-
8B-Instruct. Predicted is above and the ground-truth
below.

21



### Predicted
/**
* Decodes octets to characters using

the UTF -8 decoding and appends
* the characters to a StringBuffer.
* @return the index to the next

unchecked character in the string
to decode

*/
private static int decodeOctets(int i,

ByteBuffer bb, StringBuilder sb) {
// If there is only one octet and it

is an ASCII character
if (bb.limit() == 1 && (bb.get(0) &

0xFF) < 0x80) {
// Octet can be appended

directly
sb.append ((char) bb.get(0));
return i + 2;

} else {
// Decode the octets using UTF -8

decoding
CharBuffer cb = UTF_8_CHARSET.

decode(bb);
sb.append(cb);
return i + bb.limit() * 3 - 1;

}
}

### Ground Truth
private static int decodeOctets(int i,

ByteBuffer bb,StringBuilder sb){
if (bb.limit() == 1 && (bb.get(0) & 0

xFF) < 0x80) {
sb.append ((char)bb.get(0));
return i + 2;

}
else {

CharBuffer cb=UTF_8_CHARSET.decode(
bb);

sb.append(cb);
return i + bb.limit() * 3 - 1;

}
}

Figure 12: Successful case for a class_runnable Java
sample employing “Infile + FileRAG” with Llama3.1-
8B-Instruct. Predicted is above and the ground-truth
below.

### Predicted
/**
* Schedules a file to be deleted when

JVM exits.
* If file is directory delete it and

all sub -directories.
*
* @param file file or directory to

delete , must not be {@code null}
* @throws NullPointerException if the

file is {@code null}
* @throws IOException in case deletion

is unsuccessful
*/

public static void forceDeleteOnExit(
File file) throws IOException {
if (file == null) {

throw new NullPointerException("
File must not be null");

}
if (file.exists ()) {

if (file.isDirectory ()) {
deleteDirectoryOnExit(file);

} else {
forceDeleteOnExit(file);

}
}

}

### Ground Truth
public static void forceDeleteOnExit(

File file) throws IOException {
if (file.isDirectory ()) {

deleteDirectoryOnExit(file);
}

else {
file.deleteOnExit ();

}
}

Figure 13: Failure case for a class_runnable Java sam-
ple employing “Infile + FileRAG” with Llama3.1-8B-
Instruct. Predicted is above and the ground-truth below.
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### Predicted
def normalize_cmd(cmd: tuple[str ,...]) -> tuple[str ,...]:

"""
Fixes for the following issues on windows
- https :// bugs.python.org/issue8557
- windows does not parse shebangs

This function also makes deep -path shebangs work just fine
"""
# Check if the input cmd is a tuple of strings
if not isinstance(cmd , tuple) or not all(isinstance(x, str) for x in cmd):

raise ValueError("Input cmd must be a tuple of strings")

# If the tuple contains a string that is a full path to an executable , return
the tuple as is

for exe in cmd:
if os.path.isfile(exe) and os.access(exe , os.X_OK):

return cmd

# If the tuple contains a string that is a shebang , normalize it to a full path
by finding the executable using find_executable

for i, exe in enumerate(cmd):
if exe.startswith('#!'):

exe_path = find_executable(exe [2:])
if exe_path is not None:

cmd = tuple(x if x!= exe else exe_path for x in cmd)
break

# If the tuple contains a string that is not a full path or a shebang , find the
executable using find_executable and replace the string with the full path

for i, exe in enumerate(cmd):
exe_path = find_executable(exe)
if exe_path is not None:

cmd = tuple(x if x!= exe else exe_path for x in cmd)
break

return cmd

### Ground Truth
def normalize_cmd(cmd: tuple[str , ...]) -> tuple[str , ...]:

""" Fixes for the following issues on windows
- https :// bugs.python.org/issue8557
- windows does not parse shebangs

This function also makes deep -path shebangs work just fine
"""
# Use PATH to determine the executable
exe = normexe(cmd [0])

# Figure out the shebang from the resulting command
cmd = parse_filename(exe) + (exe ,) + cmd [1:]

# This could have given us back another bare executable
exe = normexe(cmd [0])

return (exe ,) + cmd [1:]

Figure 14: Successful case for a file_runnable Python sample employing “Infile + FileRAG” with Llama3.1-8B-
Instruct. Predicted is above and the ground-truth below.
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### Predicted
@deprecated("'foo' has been deprecated in favour of 'bar'")
def foo(x):

pass

### Ground Truth
def deprecated(message):

""" Decorator for deprecating functions and methods.

::

@deprecated ("'foo' has been deprecated in favour of 'bar '")
def foo(x):

pass

"""
def decorator(f):

if asyncio.iscoroutinefunction(f):
@wraps(f)
async def inner(*args , ** kwargs):

deprecation_warn(message , stack_level =2)
return await f(*args , ** kwargs)

return inner
else:

@wraps(f)
def inner(*args , ** kwargs):

deprecation_warn(message , stack_level =2)
return f(*args , ** kwargs)

return inner

return decorator

Figure 15: Failure case for a file_runnable Python sample employing “Infile + FileRAG” with Llama3.1-8B-Instruct.
Predicted is above and the ground-truth below.
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### Predicted
/**
* Performs a right node rotation.
*
* @param node a node to rotate
* @return a new parent of the {@code

node}
*/

private TreeNode <T> rotateRight(TreeNode
<T> node)

{
TreeNode <T> left = node.left;
left.parent = null;

node.setLeftChild(left.right);
left.setRightChild(node);

node.updateHeightAndSubtreeSize ();
left.updateHeightAndSubtreeSize ();

return left;
}

### Ground Truth
private TreeNode <T> rotateRight(TreeNode

<T> node){
TreeNode <T> left=node.left;
left.parent=null;
node.setLeftChild(left.right);
left.setRightChild(node);
node.updateHeightAndSubtreeSize ();
left.updateHeightAndSubtreeSize ();
return left;

}

Figure 16: Successful case for a file_runnable Java
sample employing “Infile + FileRAG” with Llama3.1-
8B-Instruct. Predicted is above and the ground-truth
below.

### Predicted
/**
* Performs a right node rotation.
*
* @param node a node to rotate
* @return a new parent of the {@code

node}
*/

private TreeNode <T> rotateRight(TreeNode
<T> node)

{
// Update the node's left child to

be its current right child
TreeNode <T> newRoot = node.right;
node.setRightChild(newRoot.left);

// Update the new root's left child
to be the node's current left
child

newRoot.setLeftChild(node);

// Update the node's parent to be
the new root

node.parent = newRoot;

// Update the new root's parent to
be the node's current parent

newRoot.parent = node.parent;

// Update the new root's right child
to be the node's current right

child
newRoot.right = node.right;

// Update the new root's height and
subtree size

newRoot.updateHeightAndSubtreeSize ()
;

// Return the new parent of the
rotated node

return newRoot;
}

### Ground Truth
private TreeNode <T> rotateRight(TreeNode

<T> node){
TreeNode <T> left=node.left;
left.parent=null;
node.setLeftChild(left.right);
left.setRightChild(node);
node.updateHeightAndSubtreeSize ();
left.updateHeightAndSubtreeSize ();
return left;

}

Figure 17: Failure case for a file_runnable Java sample
employing “FileRAG” with Llama3.1-8B-Instruct. Pre-
dicted is above and the ground-truth below.
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### Predicted
def discard(self , n=-1, qid=-1, dehydration_hooks=None , hydration_hooks=None , **

handlers):
""" Appends a DISCARD message to the output queue.

:param n: number of records to discard , default = -1 (ALL)
:param qid: query ID to discard for , default = -1 (last query)
:param dehydration_hooks:

Hooks to dehydrate types (dict from type (class) to dehydration
function). Dehydration functions receive the value and returns an
object of type understood by packstream.

:param hydration_hooks:
Hooks to hydrate types (mapping from type (class) to
dehydration function). Dehydration functions receive the value of
type understood by packstream and are free to return anything.

:param handlers: handler functions passed into the returned Response object
"""
log.debug("[#%04X] C: DISCARD %r", self.local_port , (n, qid))
self._append(b"\x14", (n, qid),

Response(self , "discard", hydration_hooks , ** handlers),
dehydration_hooks=dehydration_hooks)

### Ground Truth
def discard(self , n=-1, qid=-1, dehydration_hooks=None ,

hydration_hooks=None , ** handlers):
# Just ignore n and qid , it is not supported in the Bolt 3 Protocol.
log.debug("[#%04X] C: DISCARD_ALL", self.local_port)
self._append(b"\x2F", (),

Response(self , "discard", hydration_hooks , ** handlers),
dehydration_hooks=dehydration_hooks)

Figure 18: Successful case for a project_runnable Python sample employing “Infile + FileRAG” with Llama3.1-8B-
Isntruct. Predicted is above and the ground-truth below.
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### Predicted
def dehydrate_timedelta(value):

""" Dehydrator for `timedelta ` values.

:param value:
:type value: timedelta
:return:
"""
days , seconds = value.days , value.seconds
months = days // 30
days %= 30
nanoseconds = (seconds + value.microseconds // 1000000) * 1000000000
return Structure(b"E", months , days , seconds , nanoseconds)

### Ground Truth
def dehydrate_timedelta(value):

""" Dehydrator for `timedelta ` values.

:param value:
:type value: timedelta
:return:
"""
months = 0
days = value.days
seconds = value.seconds
nanoseconds = 1000 * value.microseconds
return Structure(b"E", months , days , seconds , nanoseconds)

Figure 19: Failure case for a project_runnable Python sample employing “Infile + FileRAG” with Llama3.1-8B-
Isntruct. Predicted is above and the ground-truth below.

### Predicted
public long contentLength () {

return request.getContentLengthLong ();
}

### Ground Truth
public long contentLength (){

long size;
try {

size=Long.parseLong(request.getHeader(FileUpload.CONTENT_LENGTH));
}

catch ( NumberFormatException e) {
size=request.getContentLength ();

}
return size;

}

Figure 20: Successful case for a project_runnable Java sample employing “Infile + FileRAG” with Llama3.1-8B-
Instruct. Predicted is above and the ground-truth below.
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### Predicted
/**

Produces a formatted string as specified by the conversion pattern.
*/

public String format(LoggingEvent event) {
StringBuffer sbuf = new StringBuffer(BUF_SIZE);
PatternConverter head = createPatternParser(getConversionPattern ()).parse();
head.format(sbuf , event);
return sbuf.toString ();

}

### Ground Truth
public String format(LoggingEvent event){

if (sbuf.capacity () > MAX_CAPACITY) {
sbuf=new StringBuffer(BUF_SIZE);

}
else {

sbuf.setLength (0);
}
PatternConverter c=head;
while (c != null) {

c.format(sbuf ,event);
c=c.next;

}
return sbuf.toString ();

}

Figure 21: Failure case for a project_runnable Java sample employing “Infile + FileRAG” with Llama3.1-8B-
Instruct. Predicted is above and the ground-truth below.
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