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Abstract

Retrieval-Augmented Generation (RAG) is the
main method to embed context information
Language Model (LM) pipelines. However,
repository-aware code generation pose a chal-
lenge to off-the-shelf RAG due to lack of speci-
ficity of traditional embedders, usually trained
to handle context-inespecific coding bench-
marks such as HumanEval, MBPP and APPS.
In order to create reliable pipelines, without
relying on any retriever or generator finetun-
ing, we studied the impact of different contexts:
1) We firstly include the local scope of the re-
trieved functions and methods; 2) we extend it
to include the whole function file in the context;
3) we evaluate the impact of the implementa-
tion in the same file of the new function (“Infile”
context); 4) we combine the entire retrieved
function file with Infile; finally (5) we evaluate
the ability of Language Models (LMs) to self-
generate documentation and use them to im-
plement new repository functions. Our experi-
ments show the necessity of keeping the whole
current, and retrieved file in the context as op-
posed to specific methods and classes. With
this setup, we reach the state-of-the-art perfor-
mance in CoderEval benchmark employing the
open-source small-scale Llama3.1-8B-Instruct
without finetuning the generator or the retriever,
and without relying on compiler feedback.

1 Introduction

Large Language Models (LLMs) have extensively
been used for code generation (Shinn et al., 2024;
Jiang et al., 2023; Chen et al., 2022; Ishibashi and
Nishimura, 2024; Bi et al., 2024; Dong et al., 2023;
Wang et al., 2023a; Hong et al., 2023). The typical
scenario involves the LLM reading a problem state-
ment and implementing a self-contained code or
rely on standard or publicly libraries for implement-
ing their solutions (Chen et al., 2021; Austin et al.,
2021; Hendrycks et al., 2021). A more challenging
scenario rises when we prompt the LLM to gener-

ate a code to be inserted in an implemented repos-
itory. The LLM must understand the functions,
classes, constants, imports, and the general repos-
itory architecture to correctly call the necessary
functions, classes, and other codes to seamlessly
integrate in the existing components. This poses
a more challenging scenario than the former one,
since the LLM needs to consult and understand a
repository, potentially out of its knowledge scope,
to generate the correct requested implementation.

While Retrieval-Augmented Generation (RAG)
is a common strategy to obtain knowledge or code
snippets from the target repository (Lu et al., 2022;
Bi et al., 2024; Zhang et al., 2023; Wang et al.,
2024), most of this works do not explore different
ways of building the context. Traditionally, they
employ a slide window-based strategy (Zhang et al.,
2023) to scan the lines of the file codes to obtain
text chunks, which are later embedded into a vector
representation using some text processing or en-
coder (e.g., BM25 (Robertson et al., 1995), UniX-
Coder (Guo et al., 2022), CodeT5+ (Wang et al.,
2023b), etc.). However, Wang et al. (2024) already
acknowledge the slide window weakness, and pro-
pose a novel chunks creation strategy based on the
entire function code body; also Feng et al. (2024)
already evaluate the positive effect of keeping the
current file in the generator context. Pointing to the
importance of studying the impact of the context in
code generation.

Some state-of-the-art methods improve code gen-
eration by training a retriever on generator output
(e.g., RLCoder (Wang et al., 2024)) or by using
compiler feedback (Bi et al., 2024; Zhang et al.,
2023). However, these approaches have significant
drawbacks. Training a custom retriever for each
repository is costly, unscalable for large projects,
and incompatible with proprietary models like GPT-
4 (Achiam et al., 2023). This method also creates
security risks, as the retriever can embed sensi-
tive information from private code into its param-



Figure 1: Chunks comparison. In the left, we have the
slide window-based approach, where a slide window
of a fixed size w slides every w lines obtaining the text
chunks. In this case, incomplete parts of different func-
tions can fall in the same window which can mislead
the code generation. In the right, as proposed in (Wang
etal., 2024), the chunk is the entire function body, which
avoids incomplete parts and allows the LLM to have an
overview of the function.

eters. Similarly, compiler feedback can mislead
code generation. It may create overly complex con-
texts that cause LLM distraction or hallucinations,
particularly if the repository’s code is highly spe-
cialized. Critically, this approach requires running
LLM-generated code, which introduces a major se-
curity vulnerability by potentially executing mali-
cious code within the project’s environment. Thus,
in this work, we aim to expand the Al-automated
software engineering by answering the following
question: How do we create the LLM context for
repository-aware whole-body function generation
without training the retriever and generator, nor
requiring the compiling feedback?

We believe this research has the following sci-
entific and industrial interests: 1) it will contribute
to the on-growing study of In-Context Learning
(ICL) for LLMs in a challenging scenario; 2) We
do not require severe extra security layers for de-
ployment, nor dedicated hardware for training re-
triever and generator, and we focus on open-source
and small-size language models (e.g., Llama3.1-
8B-Instruct (Grattafiori et al., 2024)) saving time
and resources; 3) Our solution is plug-and-play and
it is easier to be adapted to any public or propri-
etary retriever or generator. In summary, our main
contributions are:

1. We analyze the context impact in repository-
aware code generation by considering the main
aspects of retrieved functions/methods. We
propose and evaluate in the context: 1) func-
tions and methods scope; 2) their whole file; 3)
combination with the current file; and 4) self-
generated documentation.

2. We propose the RAG of Thoughts (RAGoT),

which is an extension of the proposed Chain-
of-Thoughts for repository-aware code genera-
tion. It achieves a competitive performance to
other variants and prior works, and it provides
an acceptable trade-off between context size and
performance.

3. We DO NOT train the retriever and generator,
nor rely on compiler feedback, and focus on
open-source and small-size language models.
Even so, we outperform prior state-of-the-art,
which require training of the generator or re-
triever, in CoderEval (Yu et al., 2024), employ-
ing the same generator checkpoints.

4. We show our conclusions stand for different
combinations of open-source LLMs and retriev-
ers, easing reproduction and deployment.

5. Our solution is plug-and-play and it is easier to
be adapted to any public or proprietary retriever
or generator.

2 Related Work

Early research in Al-driven code generation fo-
cused on creating standalone functions from natural
language descriptions. Some approaches directly
prompt LLMs with the task, while others introduce
a structured pipeline with planning (Jiang et al.,
2023) or agent collaboration (Hong et al., 2023;
Ishibashi and Nishimura, 2024). Multi-turn genera-
tion, as in CodeGen (Nijkamp et al., 2022), allows
the user to decompose tasks into smaller prompts.
PanGu-Coder (Christopoulou et al., 2022) uses two-
stage training: pretraining on raw text/code and
fine-tuning on text-to-code tasks. Role-based sys-
tems like Self-Collaboration (Dong et al., 2023)
simulate real-world development with agents act-
ing as analyst, coder, and tester. These strategies
enhance planning, coordination, and task decom-
position. However, they assume the function is
generated from scratch without referencing an ex-
isting codebase. Realistic scenarios often involve
navigating repositories with multiple files and de-
pendencies. In such contexts, understanding and
integrating with existing implementations becomes
crucial. This shifts the challenge from isolated code
synthesis to repository-aware code generation.
Some prior works in code generation have been
trained and evaluated in the repository-aware code
generation setup. RepoCoder (Zhang et al., 2023)
is a framework designed to enhance repository-
level code completion by integrating a similarity-
based retriever with a pre-trained code language



model in an iterative retrieval-generation pipeline.
This approach effectively utilizes repository-wide
information to generate code at various levels
of granularity. RLCoder (Wang et al., 2024) in-
troduces a reinforcement learning framework for
repository-level code completion, enabling retriev-
ers to learn without labeled data by evaluating
retrieved content based on the perplexity of the
target code. It incorporates a stop signal mecha-
nism, allowing the retriever to autonomously de-
cide when to retrieve and which candidates to retain.
In ReACC (Lu et al., 2022), the authors propose
a retrieval-augmented code completion framework
that enhances code prediction by integrating a code
retriever with an auto-regressive language model.
This approach leverages external code snippets
with similar semantics to improve code completion
accuracy. In (Bi et al., 2024), the authors intro-
duce CoCoGen to obtain the code execution com-
piler feedback, which enhances generation through
an iterative refinement pipeline. It identifies mis-
matches between generated code and the project’s
context using compiler techniques, then aligns and
fixes these errors using information from the code
repository.

3 Methodology

This methodology will present different ways of
approaching code generation. First, we will un-
derstand the impact of scope in the LLM context
evaluating RAG-Scope (RAG-S) and FileRAG
approaches. Second we will explain how planing
might impact the final generation evaluating the
RAG of Thought (RAGoT) approach. Third, we
will study the impact of the current file in gener-
ation (called Infile). And finally we will study if
using LLM-generated documentation (called Self-
Doc) will improving context.

RAG, RAG-Scope (RAG-S) and FileRAG. Tra-
ditionally, to implement a new function' the func-
tion signature and its docstring forms the query
that is used to retrieve top-k most similar functions
in the repository, which are added in LLM con-
text (this procedure is here called as RAG, and
example of context with £ = 1 is illustrated in
Listing 2.). However, we argue that this RAG
strategy is too simple and it does not provide a
proper context to the LLM understand the reposi-
tory to implement the new function. To improve

"The terms “function’ and ‘method’ will be used inter-
changeably along this paper

performance, we need to improve the LLM con-
text. Our main goal is to answer the following
question: How do we create the LLM context to
obtain a repository-aware knowledge to implement
new repository functions, without training the re-
triever nor the generator? We hypothesize that
the retrieved functions needs its scope. Import
statements, variables and constants declarations
and other functions and classes implementations in
the retrieved functions files may elucidate how a
retrieved function from the vector store operates,
how its parameters are defined, how it is called, for
what it is implemented and how its returning values
are used. In summary, functions scope empowers
the LLMs context to more effectively generate the
new functions. To validate this hypothesis we de-
signed two novel ways to create the LLM context:
RAG-Scope (RAG-S) and FileRAG.

When a function f, from a file F', is retrieved
from the vector store we have the following setups:
RAG-S will keep its scope along with its imple-
mentation, as well as other functions with the same
name of f in F'. The rationale is to provide imports
statement, variable, constants, block declarations
and functions with similar name that surround the
retrieved function in its file to better understand its
behavior;FileRAG will assume the entire file F' is
important to comprehend f behavior, and insert it
entirely in the generator context. RAG-S is a par-
ticular case of FileRAG, since RAG-S keeps just
part of the file. In counterpart, FileRAG keeps the
whole file and consequently the whole local infor-
mation about where the retrieved function is imple-
mented. We show a context example of RAG-S and
FileRAG in Listing 3 and Listing 6, respectively.

RAG of Thought (RAGoT). Previous approach
seek to retrieve functions based on the new function
signature with its docstring as the query. So, the
retrieved functions can be understood as few-shot
examples about how to implement the new func-
tion. A natural alternative thinking is: the model
can try to firstly understand the new implementa-
tion by analyzing the function signature and its
docstring before implementing it. Similar to the
Chain-of-Thoughts (CoT) strategy the generator
can break its implementation down in steps, and
retrieve the repository functions that mostly closes
implement each step. After that, the context will
be formed by retrieved functions that implements
each intermediate steps of the solution, and later
aggregated to prompt the generator. In summary,
the generator analyzes the signature and docstring,



breaks the implementation down in steps, each step
is used as query that retrieves the repository func-
tions that mostly close implement it, insert the re-
trieved function in the context, append the steps
used as query, and ask the generator to implement
the new function. We call this strategy RAG of
Thoughts (RAGoT). This is basically an extension
of previous RAG, but instead of inserting in the
context the retrieved functions based on the func-
tion signature and docstring, we insert the functions
that implement each step (each “thought”) of the
model. An example of the generator context for
RAGOT can be find in Listing 4. We also employ
the same strategy considering each function scope
as previously, obtaining RAGoT-S (Listing 5) and
FileRAGoT (Listing 7).

Infile. So far we have focused in retrieving func-
tions in the repository to support the new function
implementation. So, the retriever retrieves func-
tions considering the whole repository, but may
ignore the function file where the new function will
be implemented in. Typically, in a repository de-
velopment scenario we implement new functions
on files where it already has some other functions
and methods implemented, and that probably have
been already tested. In this case, the current file
where the new function will be in can provide a
local context for the LLM to guide the generation
of the new function. We validate this hypothesis by
keeping just the current file where the new function
will be implemented in as the context, and prompt
the generator to implement it. We call this strategy
by “Infile”. Note that this strategy does not per-
form any searching, since the context will be the
functions already implemented in the current file.
A prompt example with this strategy is provided
in Listing 8. If the current file is empty, and the
new function will be the first one, we fall in the
previous cases where all retrieved functions will be
searched in the repository.

We can easily fuse the “Infile” strategy by, for in-
stance, keeping the current file and the file retrieved
with the “FileRAG” strategy. Then we will have the
current file plus another file in the repository, and
we call it “Infile + FileRAG”. A prompt example
with “Infile + RAG” (our proposed “Infile” strategy
employed with standard RAG) is in Listing 9.

Self-Doc. Finally, we design a set of experi-
ments to answer the following question: Can the
documentation of functions in the repository help to
implement new code? Typically, when we are work-

ing with a new repository or library, we try to look
at some documentation, if any, to better understand
the repository and its functions, classes, methods,
etc. Then we implement new functions and codes
based on the documentation. We validate if this
strategy is also effective for LLMs. To achieve
this, we firstly, retrieve k files from the repository
using FileRAG. Then we prompt the LLM to read
and understand each function and method in the
k files. The LLM outputs each function signature,
the respective explanation about what each func-
tion does, and what it returns. After that, we insert
the generated documentation in the LLM context
along with the respective signature and docstring
of the function to be implemented. The goal is to
check if the own LLLM understanding of the func-
tions, compressed in the generated documentation,
is enough to support new functions implementation.
Also, we will check what happens to the LLM per-
formance when the functions bodies are replaced
by their documentation. We call this strategy “Self-
Doc”. An extension of it is also presented when we
ask the LLM to perform RAGoT over the generated
documentation, naming it “Self-Doc + RAGoT”. In
other words, the LLM will break the task in steps
based on the self-generated documentation.

4 Experiments

We conduct all experiments using the CoderEval
benchmark (Yu et al., 2024), which evaluates code
generation in repositories across six sample types,
ranging from self-contained to project-level. Our
focus is on the more challenging and practically rel-
evant types: class-level, file-level, and project-level
samples. CoderEval includes 230 Python samples
from 43 repositories and 230 Java samples from 10
repositories. We evaluate performance using the
pass@ 1 metric, which measures the proportion of
correct implementations on the first attempt. For
code generation, we use the open-source Llama3.1-
8B-Instruct model (Grattafiori et al., 2024), and for
retrieval, CodeT5+ (110M) (Wang et al., 2023b),
due to its strong retrieval performance. We also
include comparisons with other small-scale open-
source LLMs and retrievers. Our emphasis on
open-source, lightweight models reflects practical
concerns such as cost-efficiency, privacy, and inde-
pendence from proprietary APIs. This setup pro-
vides a realistic and reproducible evaluation envi-
ronment for repository-level code generation. We
run our experiments in two H100 GPUs with 95GB



of memory.

4.1 Ablation study of context strategies

The results for each setup presented in previous
section are shown in Table 1. Clearly, RAG states
among the worst models with one of the lowest
overall average performance (last column). This
shows that, differently from other language tasks,
RAG is not so effective for repository-aware code
generation. Our first strategy to improve the con-
text is RAG-Scope (RAG-S), which shows a perfor-
mance improvement over RAG in “class” and “file”
setup for Java (26.00 vs 18.00 and 100.00 vs 0.002,
respectively), and in the most challenging project
setup (13.04 vs 8.70 for Python and 18.18 vs 11.36
for Java). Overall, RAG-S improves from 11.16
to 31.02 over the standard RAG, with marginal in-
crement in the numbers of context tokens. Our
proposed RAGOT slightly underperforms RAG in
the “class” Python setting but outperforms it in
“file” and “project” setups. It uses an intermediate
number of tokens compared to RAG and RAG-S.
Overall, RAGOT is less effective than RAG-S. To
address this, RAGoT-S incorporates function scope,
improving performance in “class” and “project”
Java, and showing better overall results than RAG
and RAGoT. This improvement comes at the cost
of increased context tokens due to additional func-
tions needed for each step.

The natural extension of the scope is to include
the whole function file in the LLM context. In this
sense, our proposed “FileRAG” achieves the best
performance across most evaluation scenarios so
far, outperforming other setups by large margins.
The FileRAG average Python performance has a
superior compared to previous approaches (14.85
of RAGoT vs 26.14 of FileRAG), just loosing for
FileRAGOT, but with a smaller margin (26.14 vs
28.41). In Java, the best performance is still at-
tached to RAG-S, since, among all methods in the
upper part of table, it is the only one to correctly im-
plement the single “file” Java example. This result
pushes the performance up for RAG-S. Also, Fil-
eRAG has the highest number of tokens in the con-
text for Python, but keeps competitive with other
variants in Java. FileRAGoT extends FileRAG by
retrieving an entire file for each reasoning step,
rather than just the single most relevant file. This

YIn CoderEval, there is just a single example for
file_runnable evaluation. So we have a binary performance
with 100.00 when the LLM successfully implements it, and
0.00 otherwise

results in multiple files being included in the con-
text, one per step. While FileRAGoT outperforms
earlier variants, its performance remains slightly
below that of FileRAG.

In the same line, we check the impact of current
file (where the new function will be implemented
in) in the context, which is the “Infile” setup. From
Table 1, it has competitive performance compared
to FileRAG and FileRAGoT, showing that, indeed,
the local context provides strong support. When
we extend Infile with the previous strategies, we
see a performance increase for all of them, where
“Infile + FileRAG” obtains the best performances.
It obtains an overall average python performance
of 34.49, where the runner-up is 28.41, and aver-
age Java performance of 71.15, where the runner-
up is in 60.12. These results show that the local
information may be complementary to the other
information in the repository.

The last set of experiments evaluate the LLM
ability to leverage its own self-created documenta-
tion for code generation. From the last five lines
of table 1, we see that the self-documentation has
limited performance, suggesting that the function
body in the context is better than its documentation.

The main conclusions are three fold: 1) The
scope plays a fundamental role to provide an under-
standing to the generator about how the functions
work and operate. When the full function scope
is included in the context (the full function file)
we obtain the best performance, with “Infile + Fil-
eRAG” attaining the best results across most of
the evaluated setups; 2) The standard RAG (first
line) states among the setups with the lowest per-
formance, showing that the standard RAG is not
suitable for repository-aware code generation;
and 3) Break the requirements in steps, similar to
CoT, brings improvements in some setups (lines
with RAGoT), but it is not as effective as “Infile
+ FileRAG”. In other words, CoT behaves dif-
ferently for repository-aware code generation.
Further study are still necessary to successfully
integrate CoT in repository-aware code generation.

4.2 Ablation study of text/code embedders

For completeness, in Table 2, we show the results
of some of our variants employing other well-know
retrievers, such as UniXCoder (Guo et al., 2022),
Contriever (Izacard et al., 2021), MPNet (Song
et al., 2020) and BM25 (Robertson et al., 1995).
We see that CodeT5+, Contriever and MPNet hold
similar performances. For Infile + FileRAG, for



Table 1: Ablation study with Code Generation methods in CoderEval dataset. For each column, the best one is in

blue, and the second best is in green. The performance is calculated in terms of pass@1.

class

file

project

Python

Java

Overall

Avg. Avg. Avg.

Method Avg. # Tokens in Encoder Python Java Python Java Python Java
Context
Llama3.1-8B-Instruct

RAG 0.43K/0.30K CodeT5+ 12.73 18.00 16.18 0.00 8.70 11.36 12.54 9.79 11.16
RAG-S 1.19K/1.04K CodeT5+ 12.73 26.00 16.18 100.00 13.04 18.18 13.98 48.06 31.02
RAGoT 0.89K/0.60K CodeT5+ 10.91 18.00 20.59 0.00 13.04 9.09 14.85 9.03 11.94
RAGoOT-S 2.58K/1.91K CodeT5+ 7.27 27.00 17.65 0.00 8.70 1591 11.21 14.30 12.75
FileRAG 5.94K/1.02K CodeT5+ 34.55 46.00 2647 0.00 17.39 31.82 26.14 25.94 26.04
FileRAGoT 3.70K/7.37K CodeT5+ 28.57 41.94 40.00 0.00 16.67 23.81 28.41 21.92 25.16
Infile 4.68K/8.22K - 23.64 44.00 29.41 0.00 17.39 36.36 2348 26.79 25.13
Infile + RAG 3.91K/7.48K CodeT5+ 20.00 44.00 17.65 100.00 17.39 36.36 18.35 60.12 39.23
Infile + RAG-S 6.06K/9.09K CodeT5+ 23.64 45.00 2647 100.00 13.04 29.55 21.05 58.18 39.62
Infile + RAGOT 4.37K/7.77K CodeT5+ 27.27 36.00 32.35 100.00 13.04 27.27 2422 54.42 39.32
Infile + RAGoT-S 6.06K/9.09K CodeT5+ 23.64 39.00 23.53 100.00 17.39 27.27 21.52 55.42 38.47
Infile + FileRAG 9.42K/17.42K CodeT5+ 50.91 68.00 26.47 100.00 26.09 45.45 34.49 71.15 52.82
Self-Doc (current file) 1.01K/1.02K - 12.73 15.00 13.24 0.00 8.70 6.82 11.56 727 9.42
Self-Doc (current file + 1 extra file) 1.98K/1.95K CodeT5+ 14.55 14.00 11.76 0.00 8.70 11.36 11.67 8.45 10.06
Self-Doc (current file + 2 extra files) 2.92K/2.67K CodeT5+ 18.18 18.00 14.71 0.00 4.35 227 12.41 6.76 9.59
Self-Doc (current file + 3 extra files) 3.86K/3.30K CodeT5+ 10.91 16.00 10.29 0.00 4.35 4.55 8.52 6.85 7.68
self-Doc + RAGoT-S 2.68K/1.88K CodeT5+ 9.09 27.00 19.12 0.00 8.70 11.36 12.30 12.79 12.55

instance, CodeT5+, Contriever and MPNet has
an average Python performance of 34.49, 34.26
and 31.60, respectively. For Java, they achieved
pass@]1 of 71.15, 65.97 and 65.88, respectively.

For UniXCoder, the pipeline runs out of mem-
ory for most of the Java experiments (denoted by
“OUT” word in Table 2), with exception to “In-
file + RAG-S” which has the lowest number of
context tokens, on average, in the context. This
shows that our model may be sensible to some em-
bedders and how much context they retrieve. How-
ever, it successfully runs for all Python experiments
for the four setups. For “Infile-FileRAG”, UniX-
Coder average Python performance is 28.91, the
lowest compared to other embedders. Conversely,
it has the best performance for “Infile + RAG-S”,
achieving 23.81 compared to 22.01 from MPNet.
Interestingly, similar behavior happens for “Infile
+ RAG-S” in Java, achieving 58.61 compared to
58.18 from CodeT5+ and MPNet. This shows that
some variants can improve performance if a proper
retriever is employed.

Finally, BM25 does not show competitive per-
formance, exceptionally for “self-Doc + RAGoT-S”
that achieves the best average Python performance,
however, it has a substantial lower result in Java.
Overall, BM25 does not provide competitive results
mainly because it is a shallow retriever, which does
not provide enough semantics for code retrieval. In
conclusion, we recommend the employment of one
of the four neural retrievers, mainly CodeT5+ and
Contriever that state among the best performers.

4.3 Comparison with the State of the Art

In this section we compare our two best con-
text formation strategies employed with varied
language models. Differently from prior works,

we do not finetune the retriever and the gener-
ator, nor employ compiler feedback or perform
multiple rounds of RAG. We evaluate our solu-
tions with four different language models, namely
“Llama3.2” (Grattafiori et al., 2024) (1B and 3B
versions), “Llama3.1” (Grattafiori et al., 2024)
(8B version) that has been employed in all experi-
ments so far along this paper, and DeepSeekCoder-
V1 (Guo et al., 2024) (7B version). All are instruct-
based models. As our competitors, we employ Re-
poCoder (Zhang et al., 2023) and RLCoder (Wang
et al., 2024), which are among the state-of-the-art
models in CoderEval benchmark, and have publicly
available codes that allow us to rerun their solutions
with the aforementioned language models with the
exact the same checkpoints we employed. The
results are presented in Table 3.

For Llama3.1-8B-Instruct, our solution “Infile
+ FileRAG” achieves the state of the art, outper-
forming RLCoder, with the same language model
checkpoint, by 10.91 percentage points (p.p.) and
38.00 p.p. in class level for Python and Java, re-
spectively, by 7.35 p.p. in file level for Python,
and by 4.35 p.p. and 20.45 p.p. in project level
for Python and Java, respectively. Additionally,
we achieve the best Python, Java and overall per-
formance. This shows the positive impact of our
proposed “Infile + FileRAG”. By properly creat-
ing the context, we do not require retriever and
generator training, even compared to a model that
trains the retriever (RLCoder) and one that employs
multiple RAG iterations (RepoCoder).

On average, our best solution requires 9.42K
and 17.42K tokens for Python and Java samples,
respectively, in CoderEval. For this reason, we
also compare our proposed “FileRAG” in Table 3,
since it has competitive performance and an av-



Table 2: Ablation study with Code Generation methods in CoderEval dataset for different retrievers (encoders). The

performance is calculated in terms of pass@1.

class file project average
Method Avg. # Tokens in Python Java Python Java Python Java Python Java Overall
Context ‘ ‘
CodeT5+
FileRAG 5.94K/10.24K 34.55 46.00 26.47 0.00 17.39 31.82 26.14 25.94 26.04
Infile + RAG-S 6.06K/9.09K 23.64 45.00 26.47 100.00 13.04 29.55 21.05 58.18 39.62
Infile + FileRAG 9.42K/17.42K 50.91 68.00 26.47 100.00 26.09 45.45 34.49 71.15 52.82
self-Doc + RAGoT-S 2.68K/1.88K 9.09 27.00 19.12 0.00 8.70 11.36 12.30 12.79 12.55
UniXCoder
FileRAG 6.47K/9.97K 18.18 OuT 29.41 ouT 21.74 ouT 23.11 - -
Infile + RAG-S 5.26K/8.17K 29.09 44.00 20.59 100.00 21.74 31.82 23.81 58.61 41.21
Infile + FileRAG 9.95K/17.15K 32.73 ouT 27.94 ouT 26.09 ouT 28.92 - -
self-Doc + RAGoT-S 2.23K/- 10.91 ouT 20.59 ouT 8.70 OouT 13.40 - -
Contriever
FileRAG 5.64K/7.74K 34.55 42.00 25.00 0.00 17.39 25.00 25.65 22.33 23.99
Infile + RAG-S 4.74K/8.14K 29.09 43.00 20.59 0.00 13.04 2273 20.91 21.91 21.41
Infile + FileRAG 9.12K/14.92K 47.27 57.00 29.41 100.00 26.09 4091 34.26 65.97 50.11
self-Doc + RAGoT-S 2.62K/2.02K 7.27 19.00 19.12 0.00 8.70 9.09 11.70 9.36 10.53
MPNet
FileRAG 5.85K/7.93K 25.45 43.00 17.65 0.00 17.39 25.00 20.16 22.67 21.42
Infile + RAG-S 4.62K/8.09K 23.64 45.00 25.00 100.00 17.39 29.55 22.01 58.18 40.10
Infile + FileRAG 9.33K/15.10K 43.064 59.00 29.41 100.00 21.74 38.64 31.60 65.88 48.74
self-Doc + RAGoT-S 2.43K/1.70K 10.91 23.00 19.12 100.00 4.35 11.36 11.46 44.79 28.12
BM25

FileRAG 6.43K/5.34K 38.18 17.00 29.41 0.00 17.39 1591 28.33 10.97 19.65
Infile + RAG-S 5.14K/7.95K 23.64 46.00 23.53 0.00 17.39 38.64 21.52 28.21 24.87
Infile + FileRAG 9.91K/12.52K 41.82 50.00 26.47 0.00 17.39 29.55 28.56 26.52 27.54
self-Doc + RAGoT-S 3.62K/1.47K 20.00 10.00 17.65 0.00 4.35 2.27 14.00 4.09 9.05

erage token size of 5.94K and 1.02K for Python
and Java, respectively (Table 1). Clearly, due to
the substantial context reduction, the performance
drops compared to “Infile + FileRAG”. However,
it still attains the second best average Java perfor-
mance and the second-best overall performance
with Llama3.1-8B-Instruct, also outperforming the
state of the art. Our strategies are not benefited just
from the current file (“Infile” setup) but also due
to our proposed RAG strategy to retrieve and keep
function file in the context.

Even with smaller models, such as Llama3.2-3B-
Instruct, we outperform prior works. With “Infile
+ FileRAG” we achieve an average Python per-
formance of 22.96 against 22.22 from RepoCoder,
and an average Java performance of 23.00 against
14.73 from RLCoder. Consequently, this setup also
keeps the best overall performance (22.98). “Fil-
eRAG” is the second best. These results are particu-
larly interesting, since when we reduce models size
we have more space for context tokens, allowing a
more effective usage of our strategies.

However, when reducing too much the model
size our strategies have limited performance as evi-
denced with Llama3.2-1B-Instruct. Our solutions
require some minimal level of knowledge from
the base language models, a phenomenon that has
been already verified by prior RAG literature (Melz,
2023). In this work, the author states that some
RAG solutions are only effective in bigger mod-
els, since they require a minimal knowledge level

typically present on them.

Our solutions show limited performance with
models like DeepSeekCoder-7B-Instruct, which
struggle when the context exceeds 4096 tokens,
leading to illogical outputs. This negatively im-
pacts results. In contrast, LLaMA models handle
overloaded contexts more robustly, maintaining rea-
sonable performance despite larger input sizes.

For completeness, our final analysis compare
our two best strategies with chatGPT (GPT-3.5),
and other repository-aware code generation models
employing it as language model. The results are
depicted in Table 4. Even with a much smaller
language model our solutions has competitive per-
formance compared to GPT-3.5-based solutions.
One can state that our model is better due to data
leakage, however, we argue that, if so, it has limited
impact. We argue based on: 1) All solutions under
the same language model name in Table 1 oper-
ates with exact the same language model check-
point. It means that RLCoder, RepoCoder and our
setups under the Llama3.1-8B-Instruct name, op-
erates with exact the same language model check-
point. Even so, our solutions outstand compared to
others; 2) The “Direct” lines in Table 1 indicates
that the model was directly prompt without any
context. If any sample from CoderEval was memo-
rized, it would be able to still generate successfully
the correct answers, which does not happen to any
language model. In fact, GPT-3.5 has better “Di-
rect” performance than Llama3.1-8B-Instruct on



Table 3: Comparison with relevant repository-aware Code Generation methods in CoderEval dataset. For each
language model, the best one is in blue, the second best is in green. The best overall (for each column) is underlined.

class file project Python Java Overall
Avg. Avg. ‘ Avg.
Method Venue Size python Jjava python java python java
CodeGen (Nijkamp et al., 2022) ICLR’23 350M 5.82 8.30 7.79 0.00 391 6.14 5.84 4.81 5.33
PanGu-Coder (Christopoulou et al., 2022) ArXiv’22 300M 7.82 19.90 9.41 0.00 6.09 7.95 7.77 ‘ 9.28 ‘ 8.53
Llama3.2-1B-Instruci
Direct Meta 1B 5.45 1.00 4.41 0.00 8.70 2.27 6.19 1.09 3.64
RepoCoder (Zhang et al., 2023) EMNLP’23 1B 29.09 23.00 17.65 0.00 21.74 18.18 22.81 13.73 18.27
RLCoder (Wang et al., 2024) ICSE’25 1B 27.27 22.00 17.65 0.00 13.04 20.45 19.32 14.15 16.73
Ours (FileRAG) This work 1B 7.27 1.00 1.47 0.00 4.35 0.00 4.36 0.33 2.35
Ours (Infile + FileRAG) This work 1B 3.64 6.00 0.00 0.00 0.00 0.00 121 2.0 1.61
Llama3.2-3B-Instruct
Direct Meta 3B 9.09 13.00 11.76 0.00 435 4.55 8.40 5.85 7.13
RepoCoder (Zhang et al., 2023) EMNLP’23 3B 27.27 26.00 17.65 0.00 21.74 18.18 22.22 14.73 18.47
RLCoder (Wang et al., 2024) ICSE’25 3B 27.27 26.00 16.18 0.00 21.74 18.18 21.73 14.73 18.23
Ours (FileRAG) This work 3B 36.36 32.00 13.24 0.00 13.04 18.18 20.88 16.73 18.80
Ours (Infile + FileRAG) This work 3B 38.18 44.00 17.65 0.00 13.04 25.00 22.96 23.00 22.98
DeepSeekCoder-7B-Instruct
Direct Meta 7B 14.55 8.08 19.12 0.00 8.70 2.27 14.12 3.45 8.79
RepoCoder (Zhang et al., 2023) EMNLP’23 7B 32.73 32.00 13.24 0.00 8.70 20.45 18.22 17.48 17.85
RLCoder (Wang et al., 2024) ICSE’25 7B 34.55 30.00 11.76 0.00 8.70 20.45 18.34 16.82 17.58
Ours (FileRAG) This work 7B 12.73 ouT 14.71 ouT 435 ouT 10.60 - -
Ours (Infile + FileRAG) This work 7B 5.45 ouT 4.41 ouT 8.70 ouT 6.19 - -
Llama3.1-8B-Instruci
Direct Meta 8B 12.73 11.00 11.76 0.00 435 9.09 9.60 6.70 8.16
RepoCoder (Zhang et al., 2023) EMNLP’23 8B 34.55 31.00 14.71 0.00 21.74 20.45 23.67 17.15 20.41
RLCoder (Wang et al., 2024) ICSE’25 8B 40.00 30.00 19.12 0.00 21.74 25.00 26.95 18.33 22.64
Ours (FileRAG) This work 8B 34.55 46.00 26.47 0.00 17.39 31.82 26.14 25.94 26.04
Ours (Infile + FileRAG) This work 8B 50.91 68.00 26.47 100.00 26.09 45.45 34.49 71.15 52.82

Table 4: Comparison of our best solution with chatGPT (GPT3.5) in CoderEval dataset. The best results is in blue,

and the second best is in green.

class file project Python Java Overall

Avg. ‘ Avg. ‘ Avg.

Method Venue Size python [ java python [ java python [ java
chatGPT

Direct (GPT-3.5) OpenAl 175B 8.73 22.40 21.03 0.00 9.57 16.14 13.11 12.85 12.98
ReACC (GPT-3.5) (Lu et al., 2022) ACL22 175B 20.36 - 17.65 - 11.30 16.44 - -
CoCoGen (GPT-3.5) (Bi et al., 2024) ArXiv'24 175B 28.00 30.29 21.30 - 26.53 - -
RepoCoder (GPT-3.5) (Zhang et al., 2023) EMNLP’23 175B 35.45 29.41 16.96 27.27 - -
Self-Collaboration (GPT-3.5) (Dong et al., 2023) | ArXiv’23 175B 21.82 - 20.59 - 13.04 - 18.48 - -
Ours (FileRAG - Llama3.1-8B-Inst.) This work 8B 34.55 46.00 26.47 0.00 17.39 31.82 26.14 2594 26.04
Ours (Infile + FileRAG - Llama3.1-8B-Inst.) | This work 8B 50.91 68.00 26.47 100.00 26.09 45.45 34.49 71.15 52.82

average Python (13.11 vs. 9.60) and Java (12.85
vs. 6.70) performances. This indicates that solely
relying on parametric language model knowledge,
GPT-3.5 is better than Llama3.1-8B-Instruct. This
shows Llama3.1-8B-Instruct is strongly benefited
by our designed setups allowing it to outperform
GPT-3.5 and solutions based on it. We did not per-
form any experiment with GPT-3.5 since we focus
on open-source and small-scale language models,
and it would require an extra API calling cost that
would not be affordable with the project’s budget.

5 Conclusion

In this work we aimed to explore different con-
text formation strategies for repository-aware code
generation without requiring retriever or generator
training, nor compiler feedback. With a comprehen-
sive evaluation of different context formation strate-
gies, impact of retrievers and language models, we
provide a deep analysis about how these different
pieces influence repository-aware code generation.
By validating different hypothesis about how the
retrieved functions must be inserted in the language

models context, we conclude that its entire scope,
1.e. the retrieved function whole file, is the most
powerful context. It provides a full function con-
textualization, where it is implemented, imports,
dependencies and even examples about how it be-
haves. Also, the current file where the new function
will be implemented in, if available, also provide a
strong guide to code generation, following previous
findings (Feng et al., 2024).

In particular, our solution keeps repository safe-
guards since: 1) we do not require training, avoid-
ing sensitive leakage of proprietary repositories,
2) we do not require running the code repository
to obtain compiler feedback for implementation
improvement, alleviating the impact of malicious
or hallucinated code, 3) Our explorations and so-
lutions are designed for open-source small-scale
language models, broadening the application for en-
vironments with limited computational resources,
and avoids data sharing with proprietary models.
Our solution can help software developers and
speedup software engineering, and help to under-
stand repository structures.



6 Limitations

While this work presents a comprehensive analy-
sis and demonstrates the effectiveness of specific
context strategies for repository-aware code gener-
ation, it is essential to acknowledge the boundaries
of the study. The following limitations outline the
key constraints regarding the practical scalability
of our methods, the generalizability of the find-
ings to different programming environments, the
scope of the models tested, the chosen generation
paradigm, and the dependency on the quality of the
underlying codebase.

Overall Scalability and Context Size: A pri-
mary limitation of the study is the scalability of its
most effective methods, which is directly tied to
the significant context size required for generation.
The best-performing strategy, "Infile + FileRAG,"
demands large context windows, averaging around
9K tokens for Python and 17K for Java. This depen-
dency creates practical scalability challenges, espe-
cially in projects with extremely large, monolithic
files, where including an entire file via "FileRAG"
becomes impractical. The authors acknowledge
this issue and, as part of their future work, plan to
explore context summarization and selection strate-
gies to decrease the context size while preserving
performance.

Generalizability Across Languages and Project
Types: The study’s experiments are confined to
Python and Java within the CoderEval benchmark.
The effectiveness of the proposed context strate-
gies is not guaranteed to translate to other program-
ming languages (e.g., JavaScript, Rust, C++) or
different types of software projects, such as web
development, embedded systems, or data science
notebooks, which may have different structural con-
ventions.

Limited Scope of Language Models due to Re-
source Constraints: This study deliberately fo-
cused on open-source, small-scale language mod-
els to ensure reproducibility and manage resource
costs. This choice introduces a limitation, as the
effectiveness of our context strategies is highly sen-
sitive to the base model. The performance improve-
ments observed may be smaller on models with
different architectural constraints (e.g., smaller con-
text windows) or larger on future, more capable
models. Our inability to conduct extensive tests
on large-scale proprietary models, such as GPT-
3.5, was due to budget and resource limitations,

which are common constraints in academic re-
search. Therefore, while the strategies proved po-
tent, their precise impact may vary when applied
to different LLMs.

Limited Scope of Generation Paradigm: This
study’s methodology was scoped to a single gen-
eration attempt per task, providing a clear base-
line for the effectiveness of each context strategy.
This approach, however, does not leverage more ad-
vanced, multi-output paradigms. For instance, the
use of Self-Consistency (Wang et al., 2022) was
not investigated. This is a notable limitation, as
such strategies could improve the robustness and
accuracy of the generated code. Future work will
explore these avenues, particularly through the de-
velopment of multi-agent systems where different
agents can generate and validate solutions.

Dependence on Codebase Quality: The success
of the "Infile" and "FileRAG" strategies hinges on
the assumption that the existing code in the repos-
itory is of high quality. These methods might be
less effective or even counterproductive in legacy
systems or projects with poorly documented, un-
structured, or buggy code. Providing a low-quality
file as context could lead the LLM to replicate bad
practices or introduce new errors.
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A Full prompts

In this appendix section, we show the exact
prompts we employed for code generation for each
setup depicted in Table 1. They are depicted from
Figure 2 to Figure 9.

B Complementary qualitative results

From Figures 10 to 21 we depict successful and
failure cases for each of the three main evaluation
setups in CoderEval (“class”, “file” and “project”).
Our analysis below focus in the “project” setup,
which is the most challenging one requiring a
repository-level knowledge for successful imple-
mentation.

In Figure 18, we depict a successful case for
project_runnable sample in Python. We see that
the generated implementation (above) is close to
the ground truth. The language model is able to cor-
rectly execute the steps of the function and is able to
call “Response” with exactly the same parameters
as expected in the ground truth. In Figure 19 we
depict a failure case for one sample in project_level
for Python. Despite of being an error, we see that
the generated code is very close to the ground truth.
All parameters of the “Structure” class, which is
implemented in another file in the repository and
requires a repository-level understanding to call it,
are correctly placed by the language model, match-
ing exactly with the ground truth. Which makes
it a failure case are the parameters values. For in-
stance, “months” variable should be zero, but the
language models assigns “months = days // 30”.
This makes the code to fail the test cases. Still, in
a practical scenario, our solution has the ability to
provide a good starting point to generate functions
to be integrated to the repository.

Similar conclusions can be drawn from the Java
samples. In Figure 20, our solution enables the lan-
guage model to generate a more concise code than
the ground truth. Differently than the ground truth,
the generated code calls the “getContentLength-
Long()” method instead of “ getContentLength()”
as in the ground truth. Still, the generated code
passes the test cases. In Figure 21, as happens
in Python, our solution provides a code similar to
the ground truth, providing a starting point already
aligned to the repository implementations, requir-
ing less work and time to adapt it to the expected
code.
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You are an expert developer. You must write a function or method based on the
function signature, docstring and documentation provided in the context of the
function (restate the function signature). Firstly, make a high level plan with
steps that progressively solves the task. Based on this plan, generate the code.
If a method signature is provided, implement just the method, do not implement
the whole class. The generated code must be between [CODE] and [/CODE] tags.

### Context with implementations:
HHHHHHHHH

FILE 1

HHHHHHHHH

def dehydrate_pandas_timedelta(value):
""" Dehydrator for “pandas.Timedelta™ values.

:param value:

:type value: pandas.Timedelta

:returns:

return dehydrate_duration(Duration(
nanoseconds=value.value

)

### Function docstring:
def dehydrate_timedelta(value): """

nnn

Dehydrator for ~timedelta” values.

:param value:
:type value: timedelta
creturn:

nnn

Figure 2: Standard RAG prompt. The function “dehydrate_pandas_timedelta” is retrieved from the vector store and
included in the context without further contextualization.
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You are an expert developer. You must write a function or method based on the
function signature, docstring and documentation provided in the context of the
function (restate the function signature). Firstly, make a high level plan with
steps that progressively solves the task. Based on this plan, generate the code.
If a method signature is provided, implement just the method, do not implement the
whole class. The generated code must be between [CODE] and [/CODE] tags.

### Context with implementations:
HHHHHFHAHS

FILE 1

HHHHHHHHH

import sys

sys.path.append(”"/home/travis/builds/repos/neo4j---neo4j-python-driver/")
from datetime import datetime, time, timedelta, timezone
from src.neo4j._optional_deps import np, pd
from src.neo4j.time import Date, DateTime, Duration, MAX_YEAR, MIN_YEAR,
NANO_SECONDS ,
Time,
)

from src.neo4j._codec.packstream import Structure

ANY_BUILTIN_DATETIME = datetime (1970, 1, 1)
if np is not None:
if pd is not None:
if np is not None:

_NUMPY_DURATION_UNITS = {"Y": "years”, "M": "months"”", "W": "weeks"”,
"D": "days”, "h”: "hours”, "m”: "minutes”, "s”: "seconds”,
"ms": "milliseconds"”,"us"”: "microseconds”,”"ns"”: "nanoseconds”,}

if pd is not None:
def dehydrate_pandas_timedelta(value):
""" Dehydrator for “pandas.Timedelta” values.
:param value:
:type value: pandas.Timedelta
:returns:
return dehydrate_duration(Duration(
nanoseconds=value.value
))
if __name__ == "__main_
isT=True
try:
resl = hydrate_time (3723000000004, 3600)
res2 = hydrate_time (3723000000004, None)
if not str(res1)=="01:02:03.000000004+01:00"
or not str(res2)=="01:02:03.000000004":
isT=False

",

except:
isT=False
if not isT:
raise Exception("Result not True!!!")

### Function docstring:
def dehydrate_timedelta(value): """

nnn

Dehydrator for ~timedelta” values.

:param value:
:type value: timedelta
creturn:

nnn

Figure 3: The proposed RAG-Statement (RAG-S) prompt. The function “dehydrate_pandas_timedelta” is retrieved
from the vector store and included along with import statements, declarations, and other code pieces. All functions
and methods with different name from “dehydrate_pandas_timedelta” are removed.
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You are an expert developer. You must write a function or method based on the
function signature, docstring and implementations provided in the context of the
function (restate the function signature). If a method signature is provided,
implement just the method, do not implement the whole class. The generated code
must be between [CODE] and [/CODE] tags.

### Context with implementations:
HHHHHHHHH

FILE 1

HHHHHHHHH

def _validate_version(version):

if isinstance(version, numbers.Number):
# Some people apparently take "version number” too literally :)
version = str(version)

if version is not None:
try:
packaging.version.Version(version)
except (packaging.version.InvalidVersion, TypeError):
warnings.warn(
"The version specified (%r) is an invalid version, this "
"may not work as expected with newer versions of "
"setuptools, pip, and PyPI. Please see PEP 440 for more
"details."” % version

”

)

return setuptools.sic(version)
return version

HAu#HdHdHH

FILE 2

HUHHdH Y

def _to_seconds(td):
'"'"'Convert a timedelta to seconds'
return td.seconds + td.days * 24 x 60 * 60

Here are the steps to implement it:

1. **xValidate the input**: Check if the input “value™ is indeed a timedelta object.
If not, raise a TypeError with a descriptive message.

2. **xExtract relevant information#**: Extract the days, seconds, and microseconds
from the timedelta object “value™ to prepare it for dehydration.

### Function docstring:
def dehydrate_timedelta(value): """

nnn

Dehydrator for ~timedelta” values.

:param value:
:type value: timedelta
creturn:

nnn

Figure 4: The proposed RAG of Toughts (RAGoT) prompt. The functions “_validate_version” and ““_to_seconds”
are retrieved from the vector store based on the steps 1 and 2, respectively, present in the prompt.
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You are an expert developer (... <same text as in previous listings> ...).
The generated code must be between [CODE] and [/CODE] tags.

### Context with implementations:

HHHHHHHHH

FILE 1

HHHHHHHHH

import io

# .

# More imports

# ...

from setuptools.extern.packaging import version

class Distribution(_Distribution):
# ... class docstring
_DISTUTILS_UNSUPPORTED_METADATA = {# ... Dictionary declaration ...}
_patched_dist = None

def _validate_version(version):
if isinstance(version, numbers.Number):
# Some people apparently take "version number” too literally :)

version = str(version)
if version is not None:
try:

packaging.version.Version(version)
except (packaging.version.InvalidVersion, TypeError):

warnings.warn("The version specified (%r) is an invalid version,

this ""may not work as expected with newer versions of "
"setuptools, pip, and PyPI. Please see PEP 440 for more
"details."” % version)

return setuptools.sic(version)

return version

”

HHHHHHHHH

FILE 2

HHHHHHHHH

'''Base classes and helpers for building zone specific tzinfo classes'
from datetime import datetime, timedelta, tzinfo

[

# .

# More imports

# ...

__all__ =[]

# ... global variables declaration ... #

def _to_seconds(td):
"''"Convert a timedelta to seconds'
return td.seconds + td.days * 24 x 60 * 60

Here are the steps to implement it:

1. x*Validate the input*x: Check if the input “value™ is indeed a timedelta
object. If not, raise a TypeError with a descriptive message.

2. *xExtract relevant information**x: Extract the days, seconds, and
microseconds from the timedelta object “value™ to prepare it for dehydration.

### Function docstring:
def dehydrate_timedelta(value): """

nnn

Dehydrator for ~timedelta” values.

:param value:
:type value: timedelta
creturn:

nnn

Figure 5: The proposed RAGoT-Scope (RAGO0T-S) prompt. The functions ““_validate_version” and *“_to_seconds”
are retrieved from the vector store based on the steps 1 and 2, respectively, present in the prompt.
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You are an expert developer (... <same text as in previous listings> ...).
The generated code must be between [CODE] and [/CODE] tags.

### Context with implementations:

HHHAHHAHH

FILE 1

HHHAHHAHH

# Copyright (c) "Neo4j"

# ... comments about the code license ... #

import sys
# ... more imports
from src.neo4j._codec.packstream import Structure

ANY_BUILTIN_DATETIME = datetime (1970, 1, 1)
def get_date_unix_epoch():
return Date (1970, 1, 1)

def get_date_unix_epoch_ordinal ():
return get_date_unix_epoch().to_ordinal ()

(0]
o
(0]

# ... <other functions and classes implementations in the file> ... #

(0]
o
(0]

if pd is not None:
def dehydrate_pandas_timedelta(value):
""" Dehydrator for ~pandas.Timedelta” values.
:param value:
:type value: pandas.Timedelta
:returns:

nnn

return dehydrate_duration(Duration( nanoseconds=value.value))

if __name__ == "__main__":
# ... < main function body >

### Function docstring:
def dehydrate_timedelta(value): """

nnn

Dehydrator for ~timedelta”~ values.

:param value:
:type value: timedelta
:return:

nnn

Figure 6: The proposed FileRAG prompt. The function “dehydrate_pandas_timedelta” is retrieved from the vector
store, and its entire file is inserted in the context.
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You are an expert developer (... <same text as in previous listings> ...).
The generated code must be between [CODE] and [/CODE] tags.

### Context with implementations:

HHHHHHHHH

FILE 1

HHHHHHHHH

import io

# More imports

from setuptools.extern.packaging import version

00 o0
# ... <other functions and classes implementations in the file> ...#
00 o0
class Distribution(_Distribution):
# ... class docstring
# ... class attributes declaration

def _validate_version(version):

if isinstance(version, numbers.Number):
# Some people apparently take "version number” too literally :)

version = str(version)
if version is not None:
try:

packaging.version.Version(version)
except (packaging.version.InvalidVersion, TypeError):
warnings.warn("The version specified (%r) is an invalid version,
this ""may not work as expected with newer versions of "
"setuptools, pip, and PyPI. Please see PEP 440 for more "
"details.” % version)
return setuptools.sic(version)
return version
00 O
# ... <other functions and classes implementations in the file> ...#
00 O
HHHHHHHHH
FILE 2
HHHHHHHHH
''"'Base classes and helpers for building zone specific tzinfo classes'''
from datetime import datetime, timedelta, tzinfo
# More imports

# ... global variables declaration ... #
00O

# ... <other functions and classes implementations in the file> ...#
00O

def _to_seconds(td):
"'"'"Convert a timedelta to seconds'
return td.seconds + td.days * 24 * 60 * 60
000
# ... <other functions and classes implementations in the file> ...#
00 0
Here are the steps to implement it:
1. **xValidate the input*x*: Check if the input “value™ is indeed a timedelta
object. If not, raise a TypeError with a descriptive message.
2. x*xExtract relevant informationx*: Extract the days, seconds, and microseconds
from the timedelta object “value™ to prepare it for dehydration.

### Function docstring:

def dehydrate_timedelta(value): """
Dehydrator for ~timedelta” values.
:param value:
:type value: timedelta
creturn:

nnn

Figure 7: The proposed FileRAGoT prompt. The functions ““_validate_version” and “_to_seconds” are retrieved
from the vector store based on the steps 1 and 2, respectively, present in the prompt. Their entire files are included
in the context.
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You are an expert developer (... <same text as in previous listings> ...).
The generated code must be between [CODE] and [/CODE] tags.

### Context with implementations:

HEHHHHAHH

FILE 1

HHHHHHAHH

# Copyright (c) "Neo4j"

# ... comments about the code license ... #

from datetime import datetime, time, timedelta
# ... more imports

def get_date_unix_epoch():
return Date (1970, 1, 1)

def get_date_unix_epoch_ordinal ():
return get_date_unix_epoch().to_ordinal ()

def get_datetime_unix_epoch_utc():
from pytz import utc
return DateTime (1970, 1, 1, @0, @, @, utc)

def hydrate_date (days):
# ... <function body implementation >

def dehydrate_date(value):
# ... <function body implementation >

def hydrate_time(nanoseconds, tz=None):
# ... <function body implementation >

def dehydrate_time(value):
# ... <function body implementation >

def hydrate_datetime (seconds, nanoseconds, tz=None):
# ... <function body implementation >

def dehydrate_datetime(value):
# ... <function body implementation >

def hydrate_duration(months, days, seconds, nanoseconds):
# ... <function body implementation >

def dehydrate_duration(value):
# ... <function body implementation >

### Function docstring:

def dehydrate_timedelta(value): """
Dehydrator for ~timedelta values.
:param value:
:type value: timedelta
creturn:

nnn

Figure 8: The proposed Infile prompt. In this case, there is no retrieval. We just move the function “dehy-
drate_timedelta” to the end of its file and remove its body. Then we ask the generator to implement based just in its
current file implementation.
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You are an expert developer (... <same text as in previous listings> ...).
The generated code must be between [CODE] and [/CODE] tags.
### Context with implementations:
HHHHHHHHH
FILE 1
HHHHHHHHH
def dehydrate_pandas_timedelta(value):
""" Dehydrator for ~pandas.Timedelta™ values.

:param value:

:type value: pandas.Timedelta

:returns:

return dehydrate_duration(Duration(nanoseconds=value.value ))
HHHHHHHHH

FILE 2

HHHHHHHHH

# Copyright (c) "Neo4j"

# ... comments about the code license ... #

from datetime import datetime, time, timedelta
# ... more imports

def get_date_unix_epoch():
return Date (1970, 1, 1)

def get_date_unix_epoch_ordinal():
return get_date_unix_epoch().to_ordinal ()

def get_datetime_unix_epoch_utc():
from pytz import utc
return DateTime (1970, 1, 1, @, @, 0, utc)

def hydrate_date(days):
# ... <function body implementation >

def dehydrate_date(value):
# ... <function body implementation >

def hydrate_time(nanoseconds, tz=None):
# ... <function body implementation >

def dehydrate_time(value):
# ... <function body implementation >

def hydrate_datetime (seconds, nanoseconds, tz=None):
# ... <function body implementation >

def dehydrate_datetime(value):
# ... <function body implementation >

def hydrate_duration(months, days, seconds, nanoseconds):
# ... <function body implementation >

def dehydrate_duration(value):
# ... <function body implementation >
### Function docstring:
def dehydrate_timedelta(value): """
Dehydrator for ~timedelta~ values.
:param value:
:type value: timedelta
creturn:

nnn

Figure 9: The proposed Infile + RAG prompt. We keep the prompt of Listing 2 along with the one in Listing 8. All
other variations, like “Infile + RAGoT”, “Infile + fileRAG”, etc., follow the same rationale.
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### Predicted
def values(self, #*keys):
"""Return the values of the record,
optionally filtering to
include only certain values by index
or key.

:param keys: indexes or keys of the
items to include; if none
are provided, all
values will be

included
:return: list of values
:rtype: list
if keys:
d =[]
for key in keys:
try:
i = self.index(key)
except KeyError:
d.append(None)
else:
d.append(self[i])
return d

return list(self)

### Predicted
def index(self,

noun

key):

Return the index of the given item.
:param key: a key
:return: index
:rtype: int
try:
return self.__keys.index(str (key
))
except ValueError:
raise IndexError (f"Key '{key}'
not found in the record”)

### Ground Truth
def values(self,

nnn

*keys):

Return the values of the record,

optionally filtering to

include only certain values by
or key.

index

:param keys: indexes or keys of the

items to include; if none
are provided, all
values will be
included
:return: list of values
:rtype: list
if keys:
d =[]
for key in keys:
try:

i = self.index(key)
except KeyError:
d.append(None)
else:
d.append(self[i])
return d
return list(self)

### Ground Truth

def index(self, key):
""" Return the index of the given
item.
:param key: a key
:return: index
:rtype: int

nonn

if isinstance(key, int):
if @ <= key < len(self.__keys):
return key
raise IndexError (key)
elif isinstance(key, str):
try:
return self.__keys.index (key
)
except ValueError:
raise KeyError (key)
else:
raise TypeError (key)

Figure 10: Successful case for a class_runnable Python
sample employing “Infile + FileRAG” with Llama3.1-
8B-Instruct. Predicted is above and the ground-truth
below.

Figure 11: Failure case for a class_runnable Python
sample employing “Infile + FileRAG” with Llama3.1-
8B-Instruct. Predicted is above and the ground-truth
below.




### Predicted
/**

* Decodes octets to characters using
the UTF-8 decoding and appends

* the characters to a StringBuffer.

* @return the index to the next
unchecked character in the string
to decode

*/

private static int decodeOctets(int i,
ByteBuffer bb, StringBuilder sb) {
// If there is only one octet and
is an ASCII character
if (bb.limit () 1 && (bb.get(0) &
OxFF) < 0x80) {
// Octet can be appended
directly
sb.append((char) bb.get(0));
return i + 2;

it

} else {
// Decode the octets using UTF-8
decoding
CharBuffer cb = UTF_8_CHARSET.
decode (bb);
sb.append(cb);
return i + bb.limit() * 3 - 1;
}

### Ground Truth
private static int decodeOctets(int i,
ByteBuffer bb,StringBuilder sb)({
if (bb.limit() 1 && (bb.get(0) & 0@
xFF) < 0x80) {
sb.append((char)bb.get(0));
return i + 2;
3
else {
CharBuffer cb=UTF_8_CHARSET.decode(
bb) ;
sb.append(cb);
return i + bb.limit() * 3 - 1;
3
3

Figure 12: Successful case for a class_runnable Java
sample employing “Infile + FileRAG” with Llama3.1-
8B-Instruct. Predicted is above and the ground-truth
below.

### Predicted

/**

* Schedules a file to be deleted when
JVM exits.

* If file is directory delete it and

all sub-directories.

@param file file or directory to
delete, must not be {@code null}
@throws NullPointerException if the

file is {@code null}

* @throws IOException in case deletion
is unsuccessful

*/

public static void forceDeleteOnExit(

File file) throws IOException {

if (file == null) {
throw new NullPointerException(”

File must not be null"”);

3
if (file.exists()) {
if (file.isDirectory()) {
deleteDirectoryOnExit(file);
} else {
forceDeleteOnExit(file);

3

### Ground Truth
public static void forceDeleteOnExit(
File file) throws IOException {
if (file.isDirectory()) {
deleteDirectoryOnExit(file);
}
else {
file.deleteOnExit();
}
}

22

Figure 13: Failure case for a class_runnable Java sam-
ple employing “Infile + FileRAG” with Llama3.1-8B-
Instruct. Predicted is above and the ground-truth below.



### Predicted

def normalize_cmd(cmd: tuplelstr,...]1) -> tuplelstr,...]:
Fixes for the following issues on windows
- https://bugs.python.org/issue8557
- windows does not parse shebangs

This function also makes deep-path shebangs work just fine

# Check if the input cmd is a tuple of strings

if not isinstance(cmd, tuple) or not all(isinstance(x, str) for x in cmd):
raise ValueError("Input cmd must be a tuple of strings")

# If the tuple contains a string that is a full path to an executable, return
the tuple as is
for exe in cmd:
if os.path.isfile(exe) and os.access(exe, os.X_O0K):
return cmd

# If the tuple contains a string that is a shebang, normalize it to a full path
by finding the executable using find_executable
for i, exe in enumerate(cmd):
if exe.startswith('#!'):
exe_path = find_executable(exe[2:])
if exe_path is not None:
cmd = tuple(x if x!= exe else exe_path for x in cmd)
break

# If the tuple contains a string that is not a full path or a shebang, find the
executable using find_executable and replace the string with the full path
for i, exe in enumerate(cmd):
exe_path = find_executable(exe)
if exe_path is not None:
cmd = tuple(x if x!= exe else exe_path for x in cmd)
break

return cmd

### Ground Truth

def normalize_cmd(cmd: tuple[str, ...]1) -> tuple[str, ...1J:
"""Fixes for the following issues on windows
- https://bugs.python.org/issue8557
- windows does not parse shebangs

This function also makes deep-path shebangs work just fine

nnn

# Use PATH to determine the executable
exe = normexe(cmd[0])

# Figure out the shebang from the resulting command
cmd = parse_filename(exe) + (exe,) + cmd[1:]

# This could have given us back another bare executable
exe = normexe(cmd[0])

return (exe,) + cmd[1:]

Figure 14: Successful case for a file_runnable Python sample employing “Infile + FileRAG” with Llama3.1-8B-
Instruct. Predicted is above and the ground-truth below.
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### Predicted
@deprecated (" 'foo' has been deprecated in favour of 'bar'")
def foo(x):

pass

### Ground Truth
def deprecated(message):
""" Decorator for deprecating functions and methods.

@deprecated(”'foo' has been deprecated in favour of 'bar'")
def foo(x):
pass

nnn

def decorator(f):
if asyncio.iscoroutinefunction(f):
@wraps (f)
async def inner(*args, x*kwargs):
deprecation_warn(message, stack_level=2)
return await f(xargs, *xkwargs)

return inner
else:
@wraps (f)
def inner (xargs, *xkwargs):
deprecation_warn(message, stack_level=2)
return f(*xargs, **kwargs)

return inner

return decorator

Figure 15: Failure case for a file_runnable Python sample employing “Infile + FileRAG” with Llama3.1-8B-Instruct.
Predicted is above and the ground-truth below.
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### Predicted

/**
* Performs a right node rotation.

@param node a node to rotate

@return a new parent of the {@code
node }

*
*
*

*/
private TreeNode<T> rotateRight (TreeNode
<T> node)

{

TreeNode<T> 1left
left.parent = null;

node. left;

node.
left

setLeftChild(left.right);
.setRightChild(node);

node.
left.

updateHeightAndSubtreeSize () ;
updateHeightAndSubtreeSize();

return left;

### Ground Truth
private TreeNode<T> rotateRight(TreeNode
<T> node){

TreeNode<T> left=node.left;
left.parent=null;
node.setLeftChild(left.right);
left.setRightChild(node);
node.updateHeightAndSubtreeSize ();
left.updateHeightAndSubtreeSize();
return left;

Figure 16: Successful case for a file_runnable Java
sample employing “Infile + FileRAG” with Llama3.1-
8B-Instruct. Predicted is above and the ground-truth
below.
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### Predicted
/**
* Performs a right node rotation.
*
* @param node a node to rotate
* @return a new parent of the {@code
node}
*/
private TreeNode<T> rotateRight(TreeNode
<T> node)
{
// Update the node's left child to
be its current right child
TreeNode<T> newRoot node.right;
node.setRightChild(newRoot.left);

// Update the new root's left child
to be the node's current left
child

newRoot.setlLeftChild(node);

// Update the node's parent to be
the new root
node.parent newRoot;

// Update the new root's parent to
be the node's current parent
newRoot.parent node . parent;

// Update the new root's right child
to be the node's current right
child
newRoot.right

node.right;

// Update the new root's height and
subtree size
newRoot.updateHeightAndSubtreeSize ()

’

// Return the new parent of the
rotated node
return newRoot;

### Ground Truth
private TreeNode<T> rotateRight(TreeNode
<T> node){

TreeNode<T> left=node.left;
left.parent=null;
node.setlLeftChild(left.right);
left.setRightChild(node);
node.updateHeightAndSubtreeSize ();
left.updateHeightAndSubtreeSize();
return left;

Figure 17: Failure case for a file_runnable Java sample
employing “FileRAG” with Llama3.1-8B-Instruct. Pre-
dicted is above and the ground-truth below.




### Predicted

def discard(self, n=-1, qid=-1, dehydration_hooks=None, hydration_hooks=None, =*x
handlers):
""" Appends a DISCARD message to the output queue.

:param n: number of records to discard, default = -1 (ALL)
:param qgid: query ID to discard for, default = -1 (last query)
:param dehydration_hooks:
Hooks to dehydrate types (dict from type (class) to dehydration
function). Dehydration functions receive the value and returns an
object of type understood by packstream.
:param hydration_hooks:
Hooks to hydrate types (mapping from type (class) to
dehydration function). Dehydration functions receive the value of
type understood by packstream and are free to return anything.
:param handlers: handler functions passed into the returned Response object
log.debug ("[#%04X] C: DISCARD %r", self.local_port, (n, qid))
self._append(b”"\x14", (n, qid),
Response (self, "discard”, hydration_hooks, x*handlers),
dehydration_hooks=dehydration_hooks)

### Ground Truth
def discard(self, n=-1, qid=-1, dehydration_hooks=None,
hydration_hooks=None, **handlers):
# Just ignore n and qid, it is not supported in the Bolt 3 Protocol.
log.debug ("[#%04X] C: DISCARD_ALL", self.local_port)
self._append(b"\x2F", (),
Response(self, "discard”, hydration_hooks, #*x*handlers),
dehydration_hooks=dehydration_hooks)

Figure 18: Successful case for a project_runnable Python sample employing “Infile + FileRAG” with Llama3.1-8B-
Isntruct. Predicted is above and the ground-truth below.
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### Predicted
def dehydrate_timedelta(value):
""" Dehydrator for ~timedelta” values.

:param value:
:type value: timedelta

:return:

days, seconds = value.days, value.seconds
months = days // 30

days %= 30

nanoseconds = (seconds + value.microseconds // 1000000) x 1000000000
return Structure(b"E"”, months, days, seconds, nanoseconds)

### Ground Truth
def dehydrate_timedelta(value):
""" Dehydrator for ~timedelta” values.

:param value:

:type value: timedelta

:return:

months = @

days = value.days

seconds = value.seconds

nanoseconds = 1000 * value.microseconds

return Structure(b"E"”, months, days, seconds, nanoseconds)

Figure 19: Failure case for a project_runnable Python sample employing “Infile + FileRAG” with Llama3.1-8B-
Isntruct. Predicted is above and the ground-truth below.

### Predicted
public long contentlLength() {

return request.getContentLengthLong();
3

### Ground Truth
public long contentLength (){
long size;
try {
size=Long.parselLong(request.getHeader (FileUpload.CONTENT_LENGTH));
3
catch ( NumberFormatException e) {
size=request.getContentLength();
3
return size;

}

Figure 20: Successful case for a project_runnable Java sample employing “Infile + FileRAG” with Llama3.1-8B-
Instruct. Predicted is above and the ground-truth below.
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### Predicted
/**
Produces a formatted string as specified by the conversion pattern.
*/

public String format(LoggingEvent event) {
StringBuffer sbuf = new StringBuffer (BUF_SIZE);
PatternConverter head = createPatternParser(getConversionPattern()).parse();
head. format (sbuf, event);
return sbuf.toString();

### Ground Truth
public String format(LoggingEvent event){
if (sbuf.capacity() > MAX_CAPACITY) {
sbuf=new StringBuffer (BUF_SIZE);
3
else {
sbuf.setlLength(0);
3
PatternConverter c=head;
while (c != null) {
c.format (sbuf,event);
c=c.next;
3
return sbuf.toString();
3

Figure 21: Failure case for a project_runnable Java sample employing “Infile + FileRAG” with Llama3.1-8B-
Instruct. Predicted is above and the ground-truth below.
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