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ABSTRACT

Brain effective connectivity (EC) characterizes the causal and directional inter-
actions among brain regions and plays a central role in understanding cognition
and neurological disorders. Constructing EC networks from multimodal neu-
roimaging such as functional Magnetic Resonance Imaging (fMRI) and electroen-
cephalography (EEG) is challenging, since most existing methods rely on feature
concatenation or linear mapping, neglecting structural consistency and nonlin-
ear cross-modal dynamics. In this work, we propose STBO-EC, a spatially and
temporally guided framework for multimodal EC learning. First, we develop an
anatomy-informed spatial alignment strategy that leverages known brain region
coordinates to establish structurally consistent correspondences between EEG
electrodes and fMRI regions. Second, we design a time-slice-based alignment
and fusion mechanism to effectively bridge the temporal resolution gap between
fast EEG activity and slow fMRI signals. Finally, to tackle the high dimensional-
ity and nonlinear dependencies of fused multimodal data, we employ a low-rank
parameterized Bayesian optimization method (DrBO), which enables efficient ex-
ploration of the exponential EC search space while providing uncertainty-aware
inference. Experiments on two real EEG—fMRI datasets demonstrate that STBO-
EC consistently outperforms state-of-the-art baselines across multiple evaluation
metrics. The code is available at https://anonymous.4open.science/
r/STBO-EC-6D03|

1 INTRODUCTION

Brain effective connectivity (EC) characterizes the causal and directional interactions among brain
regions and is fundamental for understanding the neural basis of cognition, behavior, and neuro-
logical disorders [Mamoon et al.| (2025). Traditional statistical approaches, such as structural equa-
tion modeling (SEM) Mclntosh| (1994), dynamic causal modeling (DCM) [Friston et al.|(2003), and
Granger causality analysis (GCA) Barnett & Seth| (2014)); [Seth et al.| (2015), have been widely ap-
plied for EC learning. However, these methods depend strongly on assumptions of linearity and
stationarity, which makes them inadequate for capturing the nonlinear and dynamic characteristics
of real brain networks |Marinazzo et al. (201 1)); Stramaglia et al.| (2014).

With the advancement of machine learning, data-driven approaches have greatly broadened EC anal-
ysis |Chen & Zhang| (2023); Dai et al,| (2025). Graph neural networks (GNNs) exploit topological
information to infer causal dependencies, recurrent neural networks (RNNs) capture temporal dy-
namics and nonlinear lags, and generative architectures such as GANs and diffusion models have
been studied for augmentation and causal structure discovery [Liang et al.| (2024); Ji et al| (2025);
Chen et al.| (2025). Although these methods have achieved encouraging results, most efforts remain
restricted to unimodal data—typically Functional magnetic resonance imaging (fMRI) and thus fail
to leverage the complementary strengths of multimodal integration.

The complementary nature of fMRI and electroencephalography (EEG) presents unique opportuni-
ties for enhanced EC learning [Wei et al.|(2025)). fMRI provides high spatial resolution but suffers
from low temporal resolution, whereas EEG offers millisecond-level temporal precision Herwig
et al.| (2003) but relatively poor spatial localization |[Zhang et al.| (2024a); Sakkalis| (2011). By in-
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tegrating these two modalities, it becomes possible to exploit both fine-grained spatial detail and
precise temporal dynamics, which is essential for accurately uncovering the brain’s causal organi-
zation. However, most existing multimodal approaches fail to fully harness these complementary
advantages. For instance, Anwar et al. employed Granger causality to learn EC from multimodal
data, but their method did not achieve genuine integration of fMRI and EEG information Muthu-
raman| (2016). Tu et al. proposed a linear state-space model to combine temporal information
across modalities, yet this approach is limited in capturing nonlinear causal dependencies [Tu et al.
(2019). Liu et al. introduced a cross-modal mapping strategy, but it essentially relied on feature
concatenation without leveraging spatial or temporal constraints. More broadly, many multimodal
methods simply apply concatenation or linear mapping [Liu et al.| (2024), overlooking anatomical
correspondence between EEG electrodes and brain regions, as well as the temporal dynamics of
neural activity. Such limitations reduce their interpretability and hinder generalization, highlighting
the need for methods that explicitly enforce structural consistency and model nonlinear cross-modal
interactions.

To overcome these challenges, we propose STBO-EC, a spatially and temporally guided frame-
work for multimodal EC learning based on Bayesian optimization. Our framework introduces three
innovations: an anatomy-informed spatial alignment strategy that utilizes known brain region coor-
dinates to align EEG electrodes with corresponding fMRI regions, ensuring structural consistency
across modalities; a time-slice-based alignment and fusion module that bridges the temporal res-
olution gap between EEG and fMRI, enabling synchronized and complementary spatiotemporal
integration; and the use of a Bayesian optimization method (DrBO) with low-rank parameteriza-
tion, which efficiently searches the exponential EC space and provides uncertainty-aware causal
inference.

Our contributions are summarized as follows:

* We propose a neuroanatomy-informed spatial alignment strategy that enforces structural
consistency between EEG and fMRI at the brain-region level.

* We design a time-slice-based alignment and fusion module that synchronizes multimodal
signals, enabling effective integration of complementary temporal and spatial information.

* We adopt a Bayesian optimization-based causal structure learning method (DrBO) with
low-rank parameterization, enabling efficient modeling of nonlinear EC.

¢ We validate our framework on two real EEG-fMRI datasets, and results show that STBO-
EC consistently outperforms state-of-the-art baselines across multiple evaluation metrics.

2  PRELIMINARY AND RELATED WORK

2.1 BRAIN EFFECTIVE CONNECTIVITY

Brain effective connectivity (EC) characterizes the directed causal influence exerted by one brain
region on another, thereby reflecting both the directionality and strength of information flow in the
brain |Cai et al.| (2018)); Huang et al.| (2018)). Formally, EC can be represented as a directed graph
G = (V,E,W), where V denotes the set of brain regions (ROIs), E is the set of directed edges
corresponding to causal interactions, and W € RIVIXIVl is an asymmetric weighted adjacency
matrix. Each element W;; quantifies the causal effect from region i to region j, thereby encoding
both the topology and strength of directional connectivity within the network.

2.2 MULTIMODAL EFFECTIVE CONNECTIVITY

Multimodal EC extends traditional EC by integrating complementary information from multiple
neuroimaging modalities (e.g., EEG and fMRI) to enhance causal inference in brain networks dau
(2011). This concept emerged from early EEG-fMRI fusion studies |[Debener et al.| (2006)); [Sato
et al.| (2010), where joint modeling of different modalities improved the stability of causal estima-
tion. Recent advances have formalized multimodal EC as learning cross-modal consistent patterns
of directed brain interactions from multi-source neuroimaging data[Liu et al[(2024);|Li et al.| (2025),
providing a more comprehensive framework for studying complex cognitive processes and psychi-
atric disorders.
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Figure 1: Workflow of the proposed STBO-EC framework, which consists of three main modules:
(a) spatially-informed EEG and fMRI feature extraction, (b) block-wise temporal alignment and
fusion, and (c) BO-based EC learning.
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2.3 DAG RECOVERY VIA BAYESIAN OPTIMIZATION

DrBO (DAG recovery via Bayesian Optimization) is a causal structure learning method that ap-
plies Bayesian Optimization (BO) to recover directed acyclic graphs (DAGs) from purely obser-
vational data |Duong et al.. It reformulates the original combinatorial optimization problem into a
low-dimensional continuous one by representing a DAG with a node potential vector and a low-rank
edge embedding matrix. This reduces the search space from O(d?) to O(d(1 + k)), where d is
the number of nodes and k is the embedding dimension. To model the acquisition function in BO,
DrBO employs dropout neural networks as surrogate models, enabling uncertainty-aware score esti-
mation via Thompson sampling. Instead of predicting the global DAG score directly, DrBO models
node-wise local score components and then aggregates them according to a decomposable scoring
function. This approach allows the generation of valid DAGs without explicit acyclicity constraints
and guides the search toward high-scoring structures within the BO framework.

3 METHOD

We propose STBO-EC, a spatially and temporally guided Bayesian optimization for multi-modal
EC learning (as showed in Fig. [T). Our approach first aligns EEG and fMRI data at the brain re-
gion level using neuroanatomical priors and spatial mapping, ensuring structural consistency across
modalities. We then introduce a time-slice-based alignment and fusion module to comprehensively
integrate complementary temporal and spatial information from both EEG and fMRI. Finally, we
employ DrBO, a Bayesian optimization-based causal structure learning method with low-rank EC
parameterization and a dropout neural network surrogate, to efficiently and interpretably model non-
linear causal relationships between brain regions.

3.1 NEUROANATOMY-GUIDED SPATIAL ALIGNMENT

The fundamental challenge in EEG-fMRI integration lies in bridging the spatial gap between scalp
electrodes and brain regions. While EEG captures electrical activity at V. scalp locations, fMRI
measures hemodynamic responses within [Ny anatomically-defined brain regions. We address this
challenge through a biophysically-motivated projection that respects the underlying neuroanatomy.
Let the EEG data be represented as

Xpp € RVXTe, (1)
where NN, is the number of electrodes and T is the number of samples. Similarly, the fMRI data is
Xorr € RIS @)

where N is the number of ROIs and T is the number of fMRI time frames. Our goal is to project
EEG signals into the ROI space of fMRI.
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Each electrode ¢ and ROI 7 has anatomical coordinates p.,q; € R3. Their Euclidean distance is
defined as

dic = ||di = Pel|2- 3)

We then define a Gaussian kernel weighting:

w0y — exp(—dfc/202) @

S exp(—d2, /20%)
where o > 0 is the diffusion parameter. Normalization ensures Z 2y wie = 1.

The EEG signal at ROI 7 and time ¢ is projected as
N,

Yera (i) = 3 wie Xena(c, ). 5)

c=1

After spatial alignment, we obtain the ROI-level EEG representation: Ygrg € R™/*7 which is
spatially aligned with Xg\Ri.

3.2 BLOCK-WISE TEMPORAL ALIGNMENT AND FUSION

EEG and fMRI differ significantly in temporal resolution, with T, > T'r. We address this mismatch
using block-wise alignment.

We divide Yggq into Ty non-overlapping blocks, each of length

Te
L = —, 6
T (6)
The j-th EEG block is
B = Yina(, (j — )L +1:jL0)T € REXM, )

The j-th fMRI vector xﬁf\zm € R/ is expanded to match block length as
Bf(I{/I)RI =1r- (3551{21{1) e RPN, (®)
where 17, is a column vector of ones.
We then construct the fusion target as
Bl = B + (1= a)Bf. a€(0.1] ©)
In our experiments, we fix o = 0.5 to enforce equal contribution of both modalities.
A nonlinear mapping fp is trained to approximate
Bf(jied fg(B}(EJP%Gv Bf(lz/I)RI) (10)
where 6 are trainable parameters.

The objective is optimized iteratively using gradient descent:

Tf L Nf 2
Etotal T LN ZZZ (bgljlied Bt(izgct(tai)> ’ (11)
f o=t =1
04D =0 — Vg Ligra (1), (12)

where 7 is the learning rate and k is the iteration index.

Finally, sliding-window inference is applied. Let L = TR x Hz denote the EEG samples per fMRI
TR, and W, the set of windows covering time ¢. The fused output is

. ]- w .
sea (1) = o0 D b o (¢ — waar + 1,4). (13)
wEW,

The final multimodal sequence is
Yiused € R X2, (14)
which inherits both the high temporal resolution of EEG and the stable baselines of fMRI.
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3.3 BO-BASED EC LEARNING

Given the fused multimodal representation Yr,seq, the objective is to infer the directed EC network
among Ny brain regions.

We adopt a Bayesian information criterion (BIC)-based score to evaluate candidate structures:
A E
S(D,G) =lnp(D|0,G) — %lnn, (15)

where D = Yiused, 6 are maximum likelihood parameters, |E| is the number of edges, and n is the
sample size. This criterion balances model fit and complexity.

To reduce search space, the adjacency matrix is parameterized in a continuous low-rank form:
Aij = o((ri,r5)), (16)

where r; € R¥ is the latent embedding of region 4, and o (-) is the sigmoid function. A topological
ordering vector p enforces acyclicity, leading to

A=1(p,R). (17)

We cast EC learning as
2" = argmax S(D, 7(2)), (18)

where z = (p, R) are continuous DAG parameters. Since S(+) is expensive to compute, we employ
Bayesian Optimization with a dropout neural network surrogate g,(z), which estimates both score
¢ () and uncertainty o, (2). The acquisition function is

a(z) = py(2) + Bog(2), (19)
where (3 controls exploration.

By iteratively maximizing a(z) and updating z, we obtain the optimal adjacency matrix A. The
inferred EC network is . o
G=(V,E, W), (20)

where E denotes the directed edges and W their estimated weights.

3.4 ALGORITHM DESCRIPTION

The proposed STBO-EC framework integrates EEG and fMRI data through three sequential mod-
ules: (1) Neuroanatomy-Guided Spatial Alignment, which projects EEG signals into the fMRI
ROI space using Gaussian-kernel weighting based on anatomical distances; (2) Block-wise Tem-
poral Alignment and Fusion, which synchronizes the temporal scales of EEG and fMRI via a
time-slice fusion mechanism, generating multimodal representations that combine EEG’s high tem-
poral resolution with fMRI’s spatial stability; and (3) BO-based EC learning, which performs
low-rank parameterized causal discovery using dropout neural network surrogates for scalable and
uncertainty-aware inference. The overall pseudocode of STBO-EC is summarized in Algorithm|I]

4 EXPERIMENTS

To evaluate the effectiveness of STBO-EC, we apply our proposed method to two publicly available
real-world datasets with simultaneously recorded fMRI and EEG data. These experiments are de-
signed to demonstrate the practical applicability and performance advantages of STBO-EC in real
multimodal neuroimaging scenarios.Since ground truth effective connectivity (EC) is not available
for real datasets, we further assess the quality of EC learning by using the inferred connectivity
features to classify brain activity according to known experimental labels. A higher classification
accuracy indicates more accurate EC learning.For fair comparison, all methods were evaluated using
the same classification pipeline: a 5-fold cross-validated random forest classifier for the Visual Cat-
egorization Dataset (6 regions), and a 10-fold cross-validated KNN classifier for the XP2 Dataset
(90 regions). These classifiers were chosen to match the dimensionality and sample size of each
dataset, ensuring robust and reliable evaluation.
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4.1 BASELINE METHODS

To comprehensively evaluate the effectiveness of our proposed STBO-EC framework, we compare
it with a range of classical and state-of-the-art EC learning methods. The baselines include Patel
Patel et al| (2006), pwLiNGAM Hyvarinen| (2010), 1sGC DSouza et al.| (2017), DiffAN |Sanchez
et al., MetaRLEC Zhang et al.| (2024b), MCAN |Liu et al.| (2024), FSTA-EC |Xiong et al.| (2025)),
and our proposed STBO-EC. Among these, MCAN is also a multimodal method that integrates both
EEG and fMRI data for EC learning. For all comparison methods, we follow the parameter settings
recommended in the original literature and further fine-tune the hyperparameters on a subset of
subjects to ensure optimal performance. The evaluation is conducted on the Visual Categorization
Dataset, and we report a comprehensive set of graph and classification metrics, including Accu-
racy, Precision, Recall, F1 score, Specificity, Error Rate, and ROC_AUC POWERS]| (2011); |[Fawcett;
(2006). The detailed description of the baseline methods and evaluation metrics can be found in
Appendix [A.T|and Appendix [A.2] The detailed results are summarized in Table[T]and Table 2]

4.2 DATA DESCRIPTION

We evaluate our method on two public multimodal neuroimaging datasets: the visual categorization
dataset and the XP2 motor imagery neurofeedback dataset. Details of the datasets are provided in
Appendix and the data preprocessing procedure is described in Appendix

Visual categorization datase{’| This dataset includes simultaneous fMRI-EEG recordings from 31
subjects performing an event-related three-class visual categorization task (face, car, house)|Tu et al.
(2019). Each subject completed four runs, with 180 trials per run (60 per category), resulting in a
total of 93 multimodal samples. The fMRI data consist of time series extracted from 6 task-related
ROIs (FFA, PPA, SPL, ACC, PMC, and bilateral FEF), with a TR of 2 seconds, while EEG was
recorded from 34 MR-compatible channels and subsequently downsampled to 10 Hz. This dataset
provides a benchmark for evaluating EC models under well-controlled experimental conditions with
simultaneous high spatial and temporal resolution signals.

XP2 datase The XP2 dataset [Lioi et al.| (2019) contains simultaneous fMRI-EEG data from 40
decoupled Neurofeedback (dNF) and 28 motor imagery (MI) participants. During the task, subjects
alternated between 20-second blocks of rest and task across five runs. EEG was recorded from 64
channels at 5 kHz (downsampled to 200 Hz after preprocessing in EEGLAB), with FCz as the ref-
erence and AFz as the ground. Simultaneous fMRI was acquired on a 3T Siemens Verio scanner
(EPI sequence, TR = 1s, TE = 23 ms, resolution =3 x 3 x 3 mm?3), covering the superior half of
the brain. Regional time series were extracted from AAL-defined ROIs following standard prepro-
cessing with DPABI. This dataset offers a challenging testbed for multimodal EC analysis due to its
motor imagery paradigm, neurofeedback design, and high-density EEG-fMRI recordings.

4.3 MODEL CONFIGURATION

The main hyperparameters of the STBO-EC model are as follows. We set the batch size B to 64 and
the EC rank % to 8. The number of training steps (ngrads) is set to 10, and the number of preliminary
candidates (C') is 100,000. The maximum number of iterations is set to 2,000. The hyperparameter
details are provided in Appendix[A.6]

4.4 ABLATION STUDY

To further evaluate the impact of multimodal integration in STBO-EC, we conducted ablation ex-
periments using only the fMRI modality as input, while keeping all other settings unchanged. As
shown in Tables[I]and 2} on both datasets, the multimodal version of STBO-EC consistently outper-
forms its fMRI-only counterpart, denoted as DrBO, across all key metrics. The performance gain
is particularly pronounced on the XP2 dataset, which contains more brain regions and richer mul-
timodal signals. These results demonstrate the effectiveness of integrating EEG and fMRI data for
more accurate effective connectivity learning and brain state classification.

"nttps://github.com/taotu/VBLDS_Connectivity EEG_fMRI
https://openneuro.org/datasets/ds002338/versions/2.0.2
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Methods (Years) Accuracy! Precisionf Recallf F11 Error_Rate| Specificity? ROC_AUCYT
Patel (2006) 0.27 £0.13 0.254+0.13 0.27 +£0.14 0.26 +£0.13 0.73 +£0.13 0.27 +£0.14 0.50 +0.11
1sGC (2010) 0.39 +0.11 0.41+0.13 0.39+0.11 0.38£0.11 0.61+0.11 0.39 +£0.11 0.56 + 0.06
pwLiNGAM (2017) 0.31 +£0.09 0.31 +0.10 0.31 £0.09 0.30 £0.08 0.69 +0.09 0.31 £0.09 0.54 + 0.08
DiffAN (2023) 0.33 £0.10 0.35+0.11 0.33+0.10 0.33 +£0.10 0.67 = 0.10 0.33 +0.10 0.56 &+ 0.08

MetaRLEC (2024) 0.35+0.16 0.37 +0.20 0.35+0.16 0.34 +0.15 0.65 4+ 0.16 0.35+0.16 0.47 = 0.10
MCAN (2024) 0.27 £0.06 0.24 +£0.08 0.27 £0.07 0.25 £ 0.07 0.73 £0.06 0.27 = 0.07 0.49 = 0.09
FSTA-EC (2025) 026 £0.11 023 £0.11 026 £0.11 024 £0.11 0.74 £0.11 0.26 =0.11 0.41 +=0.08
DrBO (2025) 0.38 £0.10 0.40 £0.10 0.38 =0.10 0.37 £0.10 0.62 £0.10 0.38 =0.10 0.49 +0.14
STBO-EC (Ours) 0.42+0.11 0.494+0.14 0.424+0.11 0.42+0.11 0.58 +0.11 0.42+0.11 0.57 £0.10

Table 1: Performance comparison of different methods across various metrics on the Visual Cate-
gorization Dataset. The best results are in bold, and the second-best are underlined. For Error_Rate,
the lowest and second lowest are highlighted.

5 EXPERIMENTAL RESULTS

5.1 RESULTS ON VISUAL CATEGORIZATION DATASET

The results on the Visual Categorization Dataset (Table[I) clearly demonstrate the superior perfor-
mance of STBO-EC across all key evaluation metrics. Specifically, STBO-EC achieves the highest
accuracy (0.42), precision (0.49), recall (0.42), and F1 score (0.42) among all compared methods.
Notably, the second-best method, 1sGC, attains an accuracy of 0.39 and an F1 score of 0.38, which
are both lower than those of STBO-EC. While some methods, such as pwLiNGAM and DiffAN,
show moderate performance in certain metrics, they fall short in terms of overall balanced perfor-
mance. For example, pwLiNGAM achieves a relatively high precision (0.31) but lower recall (0.31)
and F1 (0.30), indicating a tendency to miss true connections. Similarly, DiffAN yields balanced
but generally lower scores across all metrics.The p-values for these comparisons are also provided
in Appendix [A3]

It is also worth noting that the overall classification accuracies for all methods are not very high on
this dataset. This is primarily due to the intrinsic similarity between the Car and House conditions,
which makes it inherently challenging to distinguish between these two categories based on effective
connectivity patterns. As a result, even advanced multimodal methods like MCAN do not show a
clear advantage over single-modal approaches in this scenario.
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Figure 2: Estimated EC networks for six brain regions on the Visual Categorization Dataset. The
node positions in the figure are for illustration only and do not precisely reflect real anatomical
locations.
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The physiological analysis of the EC (as showed in Figure [2)) further supports these findings. The
connectivity patterns and strengths differ across tasks. For example, in the Face task, the FFA ex-
hibits strong connections with motor and attention-related regions (such as PMC and FEF), suggest-
ing that face processing involves motor preparation and attentional modulation. In contrast, in the
Car and House tasks, the PPA shows more prominent connections with other regions, reflecting the
importance of scene and spatial information in these tasks. Overall, these results reveal the brain’s
flexible regulation of information flow and functional coordination during different visual cognitive
processes.

5.2 RESULTS ON XP2 DATASET

On the XP2 motor imagery neurofeedback dataset (Table [2), STBO-EC again demonstrates clear
superiority across multiple evaluation metrics. It achieves the highest accuracy (0.62), precision
(0.53), and ROC_AUC (0.64), and ranks second in recall (0.62) and F1 score (0.55) (as showed
in Figure [6). Compared to the strongest alternative methods, such as FSTA-EC and pwLiNGAM,
STBO-EC delivers significantly higher accuracy and precision, as confirmed by paired significance
tests. The p-values for these comparisons are also provided in Appendix [A.3] Furthermore, STBO-
EC consistently outperforms the single-modal baselines (Patel, 1sGC, and DiffAN) on at least three
core metrics, highlighting the advantage of joint spatio-temporal modeling of EEG and fMRI data.

These results demonstrate that STBO-EC achieves a better balance between sensitivity and speci-
ficity, leading to more robust and reliable classification performance. The consistent statistical sig-
nificance across multiple metrics further underscores the effectiveness of the proposed multimodal
approach. Note that MCAN, as a multimodal method, was not included on the XP2 dataset due to
its high computational cost on large-scale brain networks.

Methods (Years) Accuracy! Precisiont Recallf F11 Error_Rate| Specificityf ROC_AUCT
Patel (2006) 043 +0.17 039 £0.15 0.70 £0.23 049 +0.16 0.57 +0.17 0.25 £ 0.24 0.47 +0.20
1sGC (2010) 0.61 £0.06 0.10+0.32 0.03 £0.11 0.05+0.16 0.39 +0.06 1.00 +0.00 0.53 £ 0.22
pwLINGAM (2017) 0.61 £0.18 0.47 +£ 0.41 0.32+0.30 0.35+0.31 0.39 £0.18 0.80 +£0.23 0.57 +0.24
DiffAN (2023) 0.54 +0.15 0.30 £0.36 0.22 +£0.25 0.25+0.28 0.46 +0.15 0.75 £ 0.17 0.54 +0.18

MetaRLEC (2024) 0.52 £0.18 0.37 = 0.40 0.30 £ 0.33 0.29 = 0.28 0.48 £ 0.18 0.65 &= 0.27 0.50 = 0.21
MCAN (2024) - - - - - - -

FSTA-EC (2025)  0.54 £ 0.25 0.40 = 0.47 0.25 +0.29 0.30 = 0.34 0.46 + 0.25 0.73 &= 0.30 0.50 & 0.32
DrBO (2025) 0.53 £ 0.14 035+ 0.22 043 £026 0384023 047 £0.14 058 +0.24 0.49 +0.11
STBO-EC (Ours) 0.62 £0.15 0.53 = 0.26 0.62 +0.29 0.55+0.23 0.38 +0.15 0.63 = 0.18 0.64 = 0.13

Table 2: Performance comparison of different methods across various metrics on the XP2 Dataset.
The best results are in bold, and the second-best are underlined (for Error_Rate, the lowest and
second lowest are highlighted).

(a) dNF state (b) MI state

Figure 3: Top 10 most active brain regions in the dNF and MI states. The highlighted nodes corre-
spond to the most active regions identified in each condition.

In the dNF state, the motor regions (such as Rolandic_Oper_R, Supp_Motor_Area_R, and Postcen-
tral_R), as well as certain frontal and parietal areas (including Frontal Mid_R, Angular_R, and Supra-
Marginal R), and parts of the occipital and temporal lobes (such as Calcarine_R, Fusiform_R, and
Heschl_R), exhibit relatively high out-degree and in-degree values. This indicates that, even in the
resting or baseline state, the brain maintains active information flow and coordination within net-
works related to motor, sensory, visual, and auditory functions. Additionally, regions within the lim-
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bic system and basal ganglia (such as Insula_R, ParaHippocampal R, Putamen_R, and Thalamus_R)
also show strong connectivity, suggesting that emotion, memory, and motor regulation are func-
tionally engaged. Frontal lobe regions (e.g., Frontal Sup_R, Frontal Mid_Orb_R) show substantial
connectivity, indicating executive and attentional processes even without explicit motor tasks. Pari-
etal (Angular_R, SupraMarginal _R) and occipital (Calcarine_R, Fusiform_R) regions are also highly
connected, supporting sensory integration and visual processing. Additionally, temporal (Heschl R,
Temporal _Sup_R), limbic, and basal ganglia areas (Insula_R, Putamen_R, Thalamus_R) are engaged,
reflecting involvement in perception, emotion, and motor control during baseline.

(a) dNF state (b) MI state

Figure 4: Out-degree distribution of brain regions in (a) dNF state and (b) MI state. Node size and
color represent the out-degree values in the EC network.

In the MI state, the out-degree and in-degree values of the motor, frontal, parietal, and occip-
ital regions are further increased, especially in areas such as Rolandic_Oper_R, Frontal Sup R,
Frontal Mid_Orb_R, and Fusiform_R. This reflects the significant activation of neural networks asso-
ciated with motor preparation, execution, spatial perception, and visual processing during the motor
imagery task. At the same time, certain regions within the limbic system and basal ganglia (such
as ParaHippocampal R, Putamen_R, and Pallidum_L) also demonstrate enhanced connectivity, indi-
cating a greater involvement of emotion, memory, and motor regulation during motor imagery.The
occipital lobe (e.g., Calcarine_R, Fusiform_R) shows increased connectivity, likely linked to visual
imagery and integration with motor representations. Temporal regions (Heschl_R, Temporal _Sup_R)
remain active, supporting auditory and semantic processing. Enhanced connectivity in limbic and
basal ganglia areas (ParaHippocampal R, Putamen_R, Pallidum_L) suggests greater involvement of
memory, emotion, and motor control during motor imagery.

Overall, statistical analysis of the EC matrices reveals that the MI state is characterized by stronger
coordination and information flow across multiple functional brain networks. The integration of mo-
tor, cognitive, sensory, and emotional systems becomes more pronounced, highlighting the extensive
recruitment and synchronization of brain regions during motor imagery. These findings provide im-
portant physiological evidence for understanding the neural mechanisms underlying motor-related
cognition and regulation. More detailed descriptions are provided in Appendix [A.7]

6 CONCLUSION AND LIMITATIONS

In summary, we presented STBO-EC, a framework for multimodal EC that integrates neuroanatom-
ical spatial alignment, temporal synchronization, and Bayesian optimization for causal discovery.
By leveraging the complementary strengths of EEG and fMRI, our method achieves consistent im-
provements over state-of-the-art baselines across multiple datasets. These results highlight that re-
specting the distinct characteristics of each modality, rather than applying naive fusion, is crucial for
uncovering the brain’s causal organization. Moreover, the anatomically grounded and uncertainty-
aware design of STBO-EC provides new opportunities for understanding neural mechanisms in both
healthy cognition and neurological disorders.

Despite these advances, our method still faces some limitations. In detail, the accuracy of anatomical
mapping and temporal alignment may be affected by individual variability, and the scalability to
larger or higher-resolution datasets requires further exploration. In the future work, we plan to
enhance the robustness and generalizability of STBO-EC, and to validate its effectiveness in broader
cognitive and clinical applications.
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A APPENDIX

A.1 BASELINE METHODS AND OPERATING ENVIRONMENT

To thoroughly assess the effectiveness of the proposed STBO-EC framework, we compare it
against a suite of classical and state-of-the-art EC learning methods. The baselines include Patel,
pwLINGAM, IsGC, DiffAN, MetaRLEC, MCAN, FSTA-EC, and our proposed STBO-EC. Notably,
MCAN is a multimodal approach that integrates both EEG and fMRI data for EC learning. For all
baseline methods, we adopt the parameter settings recommended in the original publications and fur-
ther fine-tune hyperparameters on a subset of subjects to ensure fair and optimal performance.The
full list of baseline methods and their parameter settings is summarized in Table |3} which provides
the parameter settings for all compared methods.

All experiments are conducted in a robust computational environment, comprising both advanced
hardware and a comprehensive software stack.The hardware setup consists of a high-performance
NVIDIA RTX 5090 GPU with 32 GB of memory, an NVIDIA GeForce RTX 3090 GPU, and an
AMD Ryzen 9 5950X 16-core CPU. These components collectively provide a powerful and efficient
computing platform. The system operates on Ubuntu 20.04.6 LTS, ensuring a stable and robust
foundation for all experimental procedures. Additionally, the machine is equipped with 128 GB of
high-speed DDR4 RAM, which guarantees excellent responsiveness and computational throughput.

The software environment is built around Python 3.10, with key scientific and deep learning li-
braries including NumPy 1.26.4, pandas 2.2.3, scikit-learn 1.6.1, matplotlib 3.10.3, seaborn 0.13.2,
PyTorch 2.7.1+cul28, JAX 0.6.2, and jaxlib 0.6.2. All deep learning computations are accelerated
using CUDA version 12.8, ensuring optimal utilization of GPU resources. This comprehensive
combination of hardware and software provides a reliable and reproducible environment for our
research.

Method Parameter settings

Patel threshold = 0.3

1sGC cmp =5, ARorder = 2, normalize = 1

pwLINGAM method = 1

DiffAN Ir =0.001, Bstqre = 0.0001, Bepg = 0.02, nh = 1024

MetaCAE nh=64, a=0.05, 5=20.0, k=3, d=4, 1r;=0.02, 1r;=0.02, 1r3=0.001,
Irmain=0.002

MCAN a=04, 5=0.2, v=0.4

FSTA-EC Adam (5:;=0.90, [(2=0.98), embed=16, dropout=0.2, attention
heads=2

Table 3: Parameter settings for all compared methods.

A.2 EVALUATION METRICS

Since the datasets used in this study do not provide ground-truth EC networks, we evaluate the qual-
ity of the learned EC by using it as input features for downstream classification tasks. Specifically,
we assess the classification performance using the following standard metrics: Accuracy, Precision,
Recall, F1 score, Specificity, and ROC_AUC.

Let TP (true positives), T'N (true negatives), F'P (false positives), and F' N (false negatives) denote
the elements of the confusion matrix. The evaluation metrics are defined as follows:

TP+TN

A = 21
Y = TP Y TN+ FP+ FN’ D
TP
Precision = ——— 22
recision TP+ FP 22)
TP
Recall = ——— 2
eca TP FN (23)
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TN

SpeCIﬁCIty = W’

(24)

F1 score — 2- Prf:c.ision . Recall7 (25)
Precision + Recall

1
ROC_AUC = / TPR(t) dFPR(t), (26)
0

where TPR(¢) and FPR(¢) denote the true positive rate and false positive rate at threshold ¢, respec-
tively.

Accuracy measures the proportion of correctly classified samples among all samples. Precision
is the proportion of true positive predictions among all positive predictions, reflecting the model’s
ability to avoid false positives. Recall is the proportion of true positive samples that are correctly
identified, indicating the model’s ability to detect actual positives. Specificity is the proportion
of true negative samples that are correctly identified, reflecting the model’s ability to avoid false
positives. F1 score is the harmonic mean of Precision and Recall, providing a balanced measure
of both. Error Rate measures the proportion of incorrectly classified samples among all samples,
reflecting the model’s overall misclassification rate. ROC_AUC (Area Under the Receiver Operating
Characteristic Curve) summarizes the trade-off between true positive and false positive rates across
different thresholds, providing an overall measure of discriminative ability.

All metrics are reported such that higher values indicate better classification performance (1), except
for Error Rate, where lower values indicate better performance (). These metrics comprehensively
evaluate the effectiveness of the learned EC features in supporting downstream classification tasks.

A.3 DATASET SUMMARY AND AVAILABILITY

Visual Categorization Dataset.The visual categorization dataset used in this study was collected
while subjects performed an event-related three-choice visual categorization task, with simultaneous
EEG and fMRI acquisition. Each subject completed four runs of the task, and each run consisted of
180 trials (60 for each category: face, car, and house), with each image presented for 2 seconds per
trial. In total, there are 31 groups of simultaneous fMRI-EEG data for each category, resulting in 93
samples.

The fMRI data cover 6 regions of interest (ROIs): the fusiform face area (FFA), parahippocampal
place area (PPA), superior parietal lobule (SPL), anterior cingulate cortex (ACC), premotor cortex
(PMC), and bilateral frontal eye field (FEF). These ROIs were identified based on group-level EEG-
informed fMRI analysis and transformed into each subject’s native anatomical space. EEG was
recorded from 34 channels, and the fMRI repetition time (TR) was set to 2 seconds. Both EEG
and fMRI data were preprocessed. The fMRI data have dimensions 6 x 56000, and the EEG data
have dimensions 34 x 56000. To reduce computational complexity, the EEG sampling rate was
downsampled to 10 Hz. For analysis, the three categorization tasks are concatenated every 10 trials.

XP2 Dataset.The XP2 dataset is a multimodal neuroimaging dataset that provides simultaneous
EEG and fMRI recordings during motor imagery neurofeedback tasks. Sixteen healthy subjects
participated in the experiment, each performing five runs with a block design alternating between
20 seconds of rest and 20 seconds of task. Subjects were randomly assigned to two groups: one
group performed bimodal EEG-fMRI neurofeedback with a bi-dimensional feedback display, while
the other group performed the same task with a mono-dimensional feedback display. The dNF task
includes 40 subjects, and the MI task includes 28 subjects.

EEG data were recorded using a 64-channel MR-compatible system at a sampling rate of 5 kHz,
with FCz as the reference and AFz as the ground. The EEG data were preprocessed using EEGLAB,
including artifact removal, filtering, and channel interpolation as needed, and then downsampled to
200 Hz. The preprocessed EEG signals are provided in standard BIDS format, and neurofeedback
scores are also available for each subject and session.

fMRI data were acquired simultaneously using a 3T Siemens Verio scanner with an EPI sequence
(TR =15, TE = 23 ms, resolution = 3 x 3 x 3 mm?), covering the superior half of the brain. The fMRI
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Algorithm 1: STBO-EC Framework
Input: EEG data Xggg € RN XTE, fMRI data X¢yry € RNsxTy
Output: Brain effective connectivity G = (V, E, W).

Step 1: Spatial Alignment
for each ROI i and electrode ¢ do
L Compute anatomical distance d;. = ||q; — Pe|2;

exp(=d;, /20%) .
> exp(—dZ, /202)°
Project EEG to ROI space: Ygrg(i,t) = > wicXgrc(c, t);
Step 2: Temporal Alignment and Fusion
Partition Yggq into 7' blocks of length L = T, / Ty;
for j = 1to Ty do

Construct EEG block BI(EJE)]G;
Expand fMRI frame asg/zm to block Bé{/I)RI;

Construct fusion target Bt(izget = ozB](EJ%G +(1- a)Bf(l‘QRI;
(9)

target;

Compute Gaussian weights w;. =

Train nonlinear mapping fy to minimize MSE to B
Obtain fused sequence Yiyseq € RV ¥ Te;

Step 3: Bayesian Optimization for EC Learning
Initialize low-rank parameterization z = (p, R);
Initialize surrogate networks { DropoutNN,} for each node;
form =1t M do
Sample candidate graphs from trust region around z;
Predict node scores §; using surrogates;
Select promising graphs via Thompson sampling;
Evaluate true score S(D, A) and update replay buffer;
Update surrogate networks with replay buffer;
Adapt trust region size;

Prune spurious edges via conditional independence tests;
return Final EC G;

data were preprocessed using DPABI, including slice-timing correction, realignment, coregistration,
spatial smoothing, normalization to MNI space, and extraction of regional time series based on the
AAL atlas.

A.4 DATA PREPROCESSING PROCEDURES

Visual Categorization Dataset. This dataset provides preprocessed EEG and fMRI data. No ad-
ditional preprocessing was performed in this study. For EEG analysis, we selected the standard
32-channel electrode configuration.

XP2 Dataset. For the XP2 dataset, both EEG and fMRI data underwent a comprehensive pre-
processing pipeline to ensure data quality, temporal alignment, and compatibility for multimodal
analysis.

For EEG, the raw signals were first loaded and gradient artifacts were corrected using template
subtraction based on fMRI volume triggers. The data were then downsampled to 200 Hz and low-
pass filtered at 50 Hz to remove high-frequency noise. Cardiac artifacts were removed using the
ECG channel and template subtraction. To ensure temporal alignment with the fMRI data, the first
10 time points (corresponding to TR x Hz samples) were discarded from each EEG recording. The
resulting EEG time series were then segmented according to task events, and only the segments
corresponding to the fMRI acquisition period were retained for further analysis.

For fMRI, preprocessing was performed using DPABI with the following steps: removal of the
first 10 time points, slice-timing correction (16 slices, slice order [24 6 8 10121416 13579
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11 13 15], reference slice 8), realignment, coregistration, spatial normalization to MNI space, and
spatial smoothing with a Gaussian kernel (FWHM = 4 mm). The final voxel size was resampled
to 3 x 3 x 3 mm? to ensure consistency across subjects. Segmentation was performed using the
DARTEL algorithm, and nuisance covariates (including Friston 24 head motion parameters and
signals from white matter, CSF, and global signal) were regressed out. The fMRI time series were
then extracted for each region of interest (ROI) based on the Automated Anatomical Labeling (AAL)
atlas, which defines 90 cortical and subcortical brain regions. To ensure data consistency, brain
regions not fully covered in the acquisition were excluded from further analysis.

This preprocessing pipeline ensures that both EEG and fMRI data are artifact-free, temporally
aligned, and region-matched at the level of 90 AAL-defined ROIs.

‘ Evaluation Metric (p-value)

Method

‘ Accuracy Precision Recall F1 Error Rate Specificity ROC_AUC
Patel (2006) 0.0002 * 0.0146 * 0.0021 * 0.0015 * 0.4041 0.0021 * 0.0571
1sGC (2010) 0.3802 0.9002 0.3802 0.0095 * 0.5648 0.3802 0.5786
pwLiNGAM (2017) 0.0005 * 0.0251 * 0.0005 *  0.0037 * 0.0888 0.0005 * 0.3660
DiffAN (2023) 0.0023 * 0.0216 * 0.0023 * 0.0023 * 0.7374 0.0023 * 0.4528
MetaRLEC (2024) 0.0075 * 0.5910 0.0075 *  0.0015 * 0.9913 0.0075 * 0.3305
MCAN (2024) - - - - - - -
FSTA-EC (2025) 0.0000 * 0.0000 *  0.0000 * 0.0003 * 0.5328 0.0000 * 0.0001 *
STBO-EC (fMRI) 0.3275 0.9932 0.3275 0.1117 0.5187 0.3275 0.0195 *

Table 4: P-values of statistical tests for different methods on the Visual Categorization Dataset.
*
p < 0.05.

| Evaluation Metric (p-value)

Method

‘ Accuracy Precision Recall F1 Error Rate Specificity ROC_AUC
Patel (2006) 0.0182 * 0.0242 *  0.0796 0.5811 0.1967 0.0000 * 0.4102
1sGC (2010) 0.3856 0.0000 * 0.0000 *  0.0000 * 0.5676 0.0000 * 0.6822
pwLINGAM (2017) 0.1260 0.0006 * 0.0008 * 0.0149 * 0.8825 0.7006 0.8134
DiffAN (2023) 0.3957 0.0305 * 0.0001 * 0.0736 0.4615 0.0774 0.3949
MetaRLEC (2024) 0.1496 0.0203 * 0.0000 * 0.0435 * 0.8685 0.5294 0.5471
MCAN (2024) - - - - - - -
FSTA-EC (2025) 0.3934 0.6427 0.0016 *  0.0097 * 0.9910 0.1731 0.4035
STBO-EC (fMRI) 0.9225 0.1227 0.1785 0.0005 * 0.5521 0.3163 0.0340 *

Table 5: P-values of statistical tests for different methods on the XP2 Dataset. *p < 0.05.

A.5 SIGNIFICANCE TEST ANALYSIS

To rigorously assess the performance differences between STBO-EC and other baseline methods,
we conducted paired ¢-tests on the classification metrics obtained from cross-validation. For each
evaluation metric (Accuracy, Precision, Recall, and F1), a paired ¢-test was performed between the
results of STBO-EC and each competing method across the cross-validation folds. A checkmark
in Tables [] and [3] indicates that the improvement of STBO-EC over the corresponding method is
statistically significant (p < 0.05). These results demonstrate that the observed performance gains
of STBO-EC are statistically robust and not attributable to random variation.

A.6 MODEL CONFIGURATION

The main hyperparameters of the STBO-EC model are as follows. We set the batch size B to 64 and
the EC rank & to 8. The number of training steps (ngrads) is set to 10, and the number of preliminary
candidates (C') is 100,000. The model is optimized using the Adam optimizer with a learning rate
of 0.1. The replay buffer size (nreplay) is set to 1,024. Each neural network layer contains 64 hidden
units, and a dropout rate of 0.1 is applied during training.

To further evaluate the robustness of STBO-EC with respect to hyperparameter choices, we con-
ducted a comprehensive parameter sensitivity analysis. Figure [5]illustrates the effects of key hyper-
parameters (including ngrads, Ncands, dag-rank, and dropout rate) on both the F1 score and execu-
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F1 Score and Execution Time vs. Hyperparameters

0.49200
Time: n_grads [ Fl:n_grads |,
0.49175 Time: n_cands [ F1: n_cands
0.49150 - Time: dag_rank =31 F1:dag_rank [ ‘%@
Time: dropout [ F1:dropout [i160 @
@ 0.49125 £
o 140 p=
8 0.49100 £
120
- L
L 0.49075 100 3
1%
@
0.49050 { Lo i
0.49025 F 60
0.49000 ’ N .
35 05 0% CCI P S S o R
0" 10" 0@ | AN @000,,0 5% g 5% 08 400 40f°
Y% G e ¥ g O

Parameter Value

Figure 5: Parameter sensitivity analysis of STBO-EC. Bar plots show the mean F1 score for each
hyperparameter value, and line plots indicate the corresponding average execution time.
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Figure 6: Visualization of Accuracy, Precision, Recall, and F1 for different methods on XP2 Dataset.

tion time. The bar plots show the mean F1 score for each parameter value, while the overlaid line
plots indicate the corresponding average execution time. The results demonstrate that the F1 score
remains stable across a wide range of parameter settings, highlighting the robustness of STBO-EC
to hyperparameter variations. At the same time, execution time increases with certain parameter
values, providing practical guidance for parameter selection in real applications.

A.7 PHYSIOLOGICAL INFORMATION ANALYSIS ON XP2 DATASET

In the dNF state, motor regions such as Rolandic_Oper_R, Supp_Motor_Area_R, and Postcentral R,
as well as frontal (Frontal_Sup_R, Frontal Mid_Orb_R), parietal (Angular_R, SupraMarginal R), oc-
cipital (Calcarine_R, Fusiform_R), and temporal (Heschl_R, Temporal_Sup_R) areas, exhibit rela-
tively high out-degree and in-degree values. This indicates that, even during rest, the brain maintains
active information flow and coordination within networks related to motor, sensory, visual, and au-
ditory functions. Additionally, regions within the limbic system and basal ganglia (such as Insula_R,
ParaHippocampal R, Putamen_R, and Thalamus_R) also show strong connectivity, suggesting on-
going engagement of emotion, memory, and motor regulation.

In the MI state, there is a marked increase in both out-degree and in-degree values across motor,
frontal, parietal, and occipital regions, especially in areas such as Rolandic_Oper_R, Frontal Sup_R,
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Frontal Mid_Orb_R, and Fusiform_R. This reflects the significant activation of neural networks as-
sociated with motor preparation, execution, spatial perception, and visual processing during motor
imagery. Temporal regions (Heschl_R, Temporal _Sup_R) remain active, supporting auditory and se-
mantic processing. Enhanced connectivity in limbic and basal ganglia areas (ParaHippocampal R,
Putamen_R, Pallidum_L) further suggests greater involvement of memory, emotion, and motor con-
trol during motor imagery.

Figure [3] visualizes the top 10 most active brain regions identified in the dNF and MI
states. In the dNF state, the most active regions include: Precentral L, Frontal Sup_R,
Frontal Mid_Orb_R, Frontal Sup_Medial_L, Frontal Sup_Medial R, Rectus_R, Insula_L, Cingu-
lum_Ant_R, ParaHippocampal R, Amygdala_R, Cuneus_L, Cuneus_R,Fusiform_R, Postcentral R,
and Parietal Sup_R. In the MI state, the most active regions are: Frontal Sup_R, Frontal Mid_L,
Frontal Mid_Orb_R, Frontal Inf_Tri_R, Frontal_Inf_Orb_R, Rolandic_Oper_R, Supp_-Motor_Area_R,
Olfactory_L, Frontal Med_Orb_R, Calcarine_R, Postcentral R, and Angular_R. These regions are
highlighted on the brain template, illustrating the spatial distribution of the most functionally active
areas under each condition.

Overall, statistical analysis of the effective connectivity matrices reveals that the MI state is char-
acterized by stronger coordination and information flow across multiple functional brain networks.
The integration of motor, cognitive, sensory, and emotional systems becomes more pronounced,
highlighting the extensive recruitment and synchronization of brain regions during motor imagery.
These findings provide important physiological evidence for understanding the neural mechanisms
underlying motor-related cognition and regulation. More detailed results are illustrated in Fig. 4]
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ensure clarity across different sections of the paper. The model provided support for tasks including
sentence restructuring, grammatical corrections, and improving the overall coherence of the text.

It should be emphasized that the LLM played no role in the conceptualization, research method-
ology, or experimental design of this work. All scientific concepts, research ideas, and analytical
work were independently developed and executed by the authors. The LLM’s contributions were
strictly limited to enhancing the linguistic presentation of the paper, without any involvement in the
scientific content or data analysis.
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The authors assume complete responsibility for all content in the manuscript, including any text
refined or generated with LLM assistance. We have carefully ensured that all LLM-assisted text
complies with ethical standards and does not involve any form of plagiarism or scientific misconduct.
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