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ABSTRACT

Fine-tuning large language models often undermines their safety alignment, a
problem further amplified by harmful fine-tuning attacks in which adversarial
data removes safeguards and induces unsafe behaviors. We propose SPARD, a
defense framework that integrates Safety-Projected Alternating optimization with
Relevance-Diversity aware data selection. SPARD employs SPAG, which opti-
mizes alternatively between utility updates and explicit safety projections with a set
of safe data to enforce safety constraints. To curate safe data, we introduce a Rele-
vance–Diversity Determinantal Point Process to select compact safe data, balancing
task relevance and safety coverage. Experiments on GSM8K and OpenBookQA un-
der four harmful fine-tuning attacks demonstrate that SPARD consistently achieves
the lowest average attack success rates, substantially outperforming state-of-the-art
defense methods, while maintaining high task accuracy.

1 INTRODUCTION
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Figure 1: Illustration of SPARD.

Large language models (LLMs) (OpenAI, 2023;
Touvron et al., 2023; An et al., 2024; Meta,
2024) have shown strong capabilities across
a wide range of tasks, making them increas-
ingly popular in real-world applications. Fine-
tuning-as-a-service has become a common way
for users to adapt LLMs to specific down-
stream domains via service providers. However,
fine-tuning can inadvertently undermine safety
alignment, causing models to forget their safe-
guards (Qi et al., 2024; Yang et al., 2023; Ler-
men et al., 2023). This problem becomes more
severe when fine-tuning data contains malicious
or adversarial content, as in harmful fine-tuning attacks (Liu et al., 2023; Zou et al., 2023; Huang
et al., 2024a), which can effectively strip away safety mechanisms and cause the model to produce
unsafe outputs.

Recently, many defense methods have been proposed to counter the harmful fine-tuning attacks. For
example, PTST (Lyu et al., 2024) and SafeLoRA (Hsu et al., 2024) mitigate harmful updates by
re-injecting safety prompts or constraining LoRA adapters, but they either rely on carefully crafted
prompt templates or require structural constraints that limit general applicability. Other approaches
exploit safe data as an implicit safeguard. For instance, SafeInstr (Bianchi et al., 2023) mixes a small
fraction of safe examples into fine-tuning data to counter harmful behaviors, while Lisa (Huang et al.,
2024a) uses a bi-state optimization with safe samples and applies a proximal term to constrain the
drift of each state. However, those methods suffer from two key drawbacks: (i) they treat safe data
merely as a soft regularizer, which provides only weak control and makes it difficult to balance safety
with downstream utility; and (ii) they typically select safe samples randomly, overlooking a fact that
more relevant safe data can provide stronger corrective signals against harmful fine-tuning (as shown
in Section 3.2). This motivates the need for a more principled defense and data selection method to
robustly withstand harmful fine-tuning.
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To address these challenges, we propose SPARD, a novel framework that defends aligned LLMs
against harmful fine-tuning attacks by combining Safety-Projected Alternating optimization with
Relevance-Diversity aware data selection. Figure 1 illustrates the overall procedure of SPARD. As
shown, SPARD consists of two complementary components. First, we study the safety-constrained
fine-tuning problem, and introduce Safety-Projected Alternating Gradient (SPAG), an optimization
strategy that alternates between utility-driven updates on the fine-tuning data and explicit safety
projections onto a constraint set defined by safe data. Unlike penalty-based approaches, SPAG
enforces feasibility in a closed form, ensuring that safety alignment is preserved throughout training.
Second, we recognize that the effectiveness of the safety projection critically depends on the choice
of safe data. That is, not all safe samples are equally informative: samples that align closely with the
downstream task could provide stronger corrective signals than others. To this end, we develop a
Relevance–Diversity Determinantal Point Process (DPP) that selects a compact subset of safe data to
balance the task relevance and behavioral diversity, ensuring broad and effective coverage against
harmful attacks. Together, those two components yield a principled defense framework that maintains
downstream utility while robustly constraining unsafe behaviors.

We conduct experiments on GSM8K (Cobbe et al., 2021) and OpenbookQA (Mihaylov et al., 2018)
with four harmful finetuning attacks to evaluate both the utility and safety of SPARD. Empirical results
show that SPARD can effectively mitigate harmful behaviors, achieving the lowest average Attack
Success Rate (ASR) with high downstream accuracy. Moreover, SPARD significantly outperforms
SafeInstr on average in ASR, showing the effectiveness of SPAG and Relevance–Diversity DPP.

Our contributions are summarized as follows: (i) We propose SPARD, a novel defense framework
that integrates safety-projected optimization with relevance–diversity–aware data selection to robustly
defend aligned LLMs against harmful fine-tuning. (ii) We introduce SPAG, a principled optimization
method solving safety-constrained fine-tuning problems that alternates between utility updates
and explicit safety projections, and a Relevance–Diversity DPP to select compact, task-aligned,
and diverse safety subsets. (iii) Through extensive experiments on two aligned LLMs, multiple
downstream tasks, and diverse attack datasets, we show that SPARD consistently outperforms existing
defense methods in reducing the attack success rates while maintaining the utility.

2 RELATED WORKS

LLM Safety and Alignment. Ensuring that large language models (LLMs) behave in a safe and
helpful manner is a central challenge in AI research (Yao et al., 2024). Recent foundation models
such as LLaMA (Meta, 2024; Touvron et al., 2023) and Qwen (An et al., 2024) have been aligned
with safety guardrails to reject harmful instructions and follow user intent more reliably. A common
paradigm for alignment is preference-based learning, most notably Reinforcement Learning from
Human Feedback (Ouyang et al., 2022; Ziegler et al., 2019; Bai et al., 2022), which optimizes models
to maximize human-preferred responses. Subsequent work has proposed more efficient formulations,
such as Direct Preference Optimization (Rafailov et al., 2023), reward-free methods like RRHF (Yuan
et al., 2023b), which reduce reliance on expensive reward models while maintaining alignment quality.
However, a critical vulnerability remains: the safety alignment achieved through these expensive
procedures is often brittle and can be easily compromised or erased through subsequent downstream
fine-tuning (Yang et al., 2023; Yi et al., 2024; Qi et al., 2024; Lermen et al., 2023; Zhan et al., 2023),
which motivates the need for robust defense mechanisms.

Defending Against Harmful Fine-tuning. Harmful fine-tuning attacks (Huang et al., 2024a;
Liu et al., 2023; Zou et al., 2023; Yuan et al., 2023a) compromise aligned models by poisoning
training data with adversarial prompts that bypass safety guardrails. To counter such risks, many
defense strategies have been proposed. PTST (Lyu et al., 2024) avoids safety degradation by fine-
tuning solely on task data and re-introducing safety prompts at inference time. SafeLoRA (Hsu
et al., 2024) constrains harmful updates by projecting LoRA weights from selected layers into a
safety-aligned subspace. Other approaches leverage safe data as an implicit safeguard. For example,
SafeInstr (Bianchi et al., 2023) mixes a small fraction of safe examples into fine-tuning data, while
Lisa (Huang et al., 2024b) uses safe samples by a bi-state optimization with a proximal regularization
term. Although effective to some extent, these methods either rely on carefully tuned penalty weights
or only weakly address the utility–safety tradeoff. In contrast, our proposed SPAG provides an
optimization-grounded solution by explicitly projecting the model back into the safe region. This
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adaptive projection automatically determines the correction size, removing the need for manual
weight tuning while simultaneously preserving downstream utility.

Data Selection for LLMs. The quality and composition of training data are critical determinants
of LLM performance (Zhou et al., 2023; Gadre et al., 2023). This has motivated a growing body
of work on data selection (Albalak et al., 2024), which seeks to curate smaller yet more effective
subsets from vast, noisy corpora. Selection strategies span a broad spectrum: filtering based on
perplexity or linguistic complexity (Longpre et al., 2024), identifying core sets that approximate the
full dataset’s training dynamics (Sorscher et al., 2022), or leveraging embedding similarity to retrieve
samples closer to the target distribution for task-specific fine-tuning (Liu et al., 2021; Xia et al., 2024).
However, relevance-based selection alone often leads to redundancy. To mitigate this, we propose a
novel approach to achieve a relevance-diversity trade-off.

Determinantal Point Processes (DPPs) (Macchi, 1975; Kulesza et al., 2012; Ye et al., 2023) provide
a principled probabilistic framework for subset selection that naturally achieves diversity. Given
a candidate pool X = {x1, . . . ,xn} and a positive semidefinite kernel matrix L ∈ Rn×n with
the kernel Lij = K(xi,xj), where K(·, ·) is the kernel function encoding similarity. DPP assigns
probability to each subset C ⊆ X as

P(C) = det(LC)

det(I+ L)
, (1)

where LC is the principal submatrix indexed by C, I is the identity matrix, and det(·) is the determinant
of a matrix. The denominator det(I+ L) is a constant independent of the subset selection, thus can
be ignored. Intuitively, det(LC) corresponds to the squared volume spanned by the feature vectors of
C, favoring subsets whose elements are both individually informative and mutually dissimilar. Yet,
traditional DPPs ignore task relevance. Our work closes this gap by introducing a Relevance–Diversity
DPP, which incorporates task-relevance quality scores directly into the DPP kernel.

3 METHODOLOGY

3.1 SAFETY-PROJECTED ALTERNATING GRADIENT (SPAG)

In the proposed SPARD method, we formulate fine-tuning as a safety-constrained optimization
problem to adapt the model to downstream data without compromising its safety alignment:

min
θ
L(Dft,θ) s.t. L(Dsafe,θ) ≤ τ, (2)

where Dft is the fine-tuning dataset, Dsafe is the safety dataset, and τ is a predefined threshold. In
practice, τ can be set by measuring the average safety loss of the pretrained LLM on Dsafe.

A common approach (Bianchi et al., 2023) to relax the constraint is to add it to the objective as a
penalty term: minθ L(Dft,θ) + λ

(
L(Dsafe,θ)− τ

)
, with a penalty parameter λ ≥ 0 controlling the

balance between utility and safety. However, this blending does not guarantee feasibility for finite λ
and requires careful tuning of the penalty parameter.

Instead of implicitly encouraging safety via a soft penalty, we directly enforce the constraint using
a projection-based strategy. The key idea is to first perform a utility-driven update (using Dft) and
then project the updated parameters back into a region where the safety constraint is approximately
satisfied. This alternating update scheme avoids the difficulty of choosing penalty weights, while
providing a principled geometric correction that guarantees feasibility up to first order.

Specifically, after a utility update θ+ = θ − ηft∇L(Dft,θ), where ηft is the learning rate for the
utility step and∇L(Dft,θ) denotes the gradient, we project θ+ back into a linearized safety region
determined by the safety loss. Using a first-order Taylor expansion at θ+, we approximate L(Dsafe,θ)
as L(Dsafe,θ) ≈ L(Dsafe,θ

+) + ⟨gsafe, θ − θ+⟩, where gsafe = ∇L(Dsafe,θ
+). This defines the

half-space C+ = {θ : L(Dsafe,θ
+) + ⟨gsafe, θ − θ+⟩ ≤ τ}, which is a local approximation of the

feasible set around θ+.

The projection step seeks the point in C+ that is closest to θ+:

min
θ
∥θ − θ+∥2 s.t. L(Dsafe,θ

+) + ⟨gsafe, θ − θ+⟩ ≤ τ, (3)

3
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Introducing multipliers for the constraint in Eq. (3), the KKT conditions (Bertsekas, 1997) give the
projected solution as

θnew =

θ+, if L(Dsafe,θ
+) ≤ τ,

θ+ − L(Dsafe,θ
+)−τ

∥gsafe∥2 gsafe, otherwise.
(4)

Algorithm 1 SPAG.

Require: Fine-tuning dataset Dft, safety
dataset Dsafe, learning rate ηft, thresh-
old τ , trust-region radius ηsafe > 0;
parameters θ;

1: while not converged do
2: /* Utility fine-tuning */
3: Sample mini-batch Bft ⊆ Dft;
4: θ+ ← θ − ηft∇L(Bft,θ);
5: /* Safety projection */
6: Sample mini-batch Bsafe ⊆ Dsafe;
7: ℓsafe ← L(Bsafe,θ

+);
8: if ℓsafe ≤ τ then
9: θ ← θ+;

10: else
11: gsafe ← ∇L(Bsafe,θ

+);

12: α← min
(ℓsafe − τ

∥gsafe∥2
, ηsafe

)
;

13: θ ← θ+ − αgsafe;
14: end if
15: end while
16: return Safety-aligned parameters θ.

The detailed derivation is provided in Appendix A.
When the safety condition is violated, to stabilize
training by avoiding arbitrarily large projections, we
adopt the trust-region optimization strategy (Schul-
man et al., 2015) to limit the step size as α =

min
(

L(Dsafe,θ
+)−τ

∥gsafe∥2 , ηsafe

)
, and then θnew = θ+ −

αgsafe, where ηsafe is a trust-region radius. The trust-
region constraint ensures the updated model θnew stays
within a ball centered at θ+ with radius ηsafe∥gsafe∥. Ac-
cording to Eq. (4), the update either keeps θ+ if already
safe, or applies a corrective step along gsafe with magni-
tude determined by projection and trust region.

In summary, SPAG provides a simple yet principled
mechanism for safety-constrained fine-tuning: it alter-
nates between utility optimization and explicit safety
projection. Geometrically, the method corrects each
update by projecting onto a safety half-space, thereby
directly solving the constraint rather than relying on
soft penalties. Unlike penalty-based approaches, which
require careful tuning of λ and offer no guarantee of
feasibility, SPAG yields a closed-form projection step
that enforces the constraint up to the first order. This
combination of interpretability, guaranteed feasibility,
and hyperparameter-free correction makes SPAG both
practical and robust for safety-aligned fine-tuning.

3.2 RELEVANCE- AND DIVERSITY-AWARE SAFETY DATA SELECTION
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Figure 2: Attack success rate (ASR) with
varying similarity levels of Dsafe to Dft.
The fine-tuning data are merged with
BeaverTails attack data, and Dsafe are sam-
pled from BeaverTails and LatHarmful de-
fense data.

While SPAG provides a principled projection mecha-
nism for enforcing safety constraints, its success fun-
damentally depends on the quality of the safety dataset
Dsafe. Here we claim that not all safety samples con-
tribute equally. That is, safety samples, which align well
with the fine-tuning domain Dft, could provide stronger
corrective signals than other safety samples. Therefore,
carefully selecting relevant safety data becomes critical
to ensuring that the projection step effectively constrains
the model.

Relevance Improves Safety. To better understand the
role of relevance, we conduct an experiment, where the
GSM8K training data are merged with 10% BeaverTails
attack data (Ji et al., 2023) as Dft, and safe samples are
selected from BeaverTails and LatHarmful (Sheshadri
et al., 2024) defense sets according to the similarity
with Dft. We define the similarity quality of a candidate
xi ∈ Dsafe as

qi = max
xz∈Dft

sim(xi,xz), (5)

where sim(·, ·) is cosine similarity in the embedding space. As shown in Figure 2, the attack success
rate (ASR) decreases sharply as the average similarity of selected samples increases, dropping from
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68.8% at low similarity to 11.4% at moderate-to-high similarity. This confirms that task-relevant safe
samples provide stronger constraints and substantially enhance robustness.

Notably, the curve also shows that ASR rises again (to 16.6%) when the selected samples are too
similar to the fine-tuning data (e.g., average similarity ≈ 0.94). This counterintuitive phenomenon
occurs because extreme similarity introduces redundancy: the selected safety samples cover only a
narrow region of the risk space, leaving other harmful behaviors underrepresented. Consequently, the
model may overfit to a small set of highly similar constraints, reducing the effectiveness of safety
alignment.

Relevance–Diversity DPP. The above observation motivates a selection strategy that balances the
relevance and diversity: the relevance ensures that the chosen samples provide strong and task-aligned
safety signals, while the diversity ensures broad coverage of distinct harmful behaviors. To achieve
this, we extend Determinantal Point Processes (DPPs) (Macchi, 1975; Kulesza et al., 2012; Ye et al.,
2023), which naturally promote the diversity through determinant-based subset probabilities, by
incorporating the relevance into the kernel design.

Specifically, given relevance scores qi (defined in Eq. (5)) for candidates xi ∈ Dsafe, We then
construct the kernel as

K̂ij = (qi · qj)β · K(xi,xj), (6)
where K(xi,xj) captures the intrinsic similarity between two safety samples (e.g., the cosine sim-
ilarity in an embedding space), and β ≥ 0 controls the influence of the relevance. Intuitively,
(qi · qj)β acts as a multiplicative weight that increases the likelihood of including pairs of samples
that are both highly relevant to the fine-tuning distribution (a sensitive analysis of β is provided in
Section 4.3). When β = 0, the kernel reduces to the classical diversity-only DPP, while larger β
biases the distribution toward relevance-aware subsets.

Let L and L̂ be the kernel matrix corresponding to K and K̂, respectively. For any subset C ⊆ Dsafe,
according to Eq. (1), the selection probability is given by

P(C) ∝ det(L̂C) =
∏
xi∈C

q2βi · det(LC), (7)

where LC denotes the kernel submatrix with indices in C. This decomposition makes the roles explicit:
the factor

∏
q2βi rewards subsets containing highly relevant samples, while det(LC) enforces diversity

among them. Thus, the relevance–diversity DPP jointly balances the task alignment and coverage,
ensuring that the selected safety set is neither irrelevant nor redundant.

Efficient Greedy Selection. Although DPPs define a principled probability distribution, exactly
solving the maximum a posteriori (MAP) problem argmaxC⊆Dsafe

det(L̂C) is computationally expen-
sive, requiring to calculate determinants of many submatrices. To scale the selection to large safety
datasets, we adopt a greedy approximation that incrementally builds the subset by adding one sample
at a time, each chosen to maximize the marginal gain in the determinant.

Specifically, suppose we have already selected Cm−1 after m− 1 steps. For a candidate i /∈ Cm−1,

the expanded kernel matrix is L̂Cm−1∪{i} =

(
L̂Cm−1 vi

v⊤
i Lii

)
, where vi contains kernel similarities

between xi and the already-selected set Cm−1. By the Schur complement, the determinant after
including i can be factorized as

det(L̂Cm−1∪{i}) = det(L̂Cm−1
) ·

(
Lii − v⊤

i L̂
−1
Cm−1

vi

)
. (8)

The second term in the right-hand side of Eq. (8), known as the gain factor, measures the additional
volume contributed by xi that is not already spanned by Cm−1. Intuitively, it rewards candidates that
are both individually relevant (large L̂ii) and novel relative to the current set (small v⊤

i L̂
−1
Cm−1

vi).

To compute the gain efficiently, we maintain the Cholesky decomposition L̂Cm−1
= CC⊤. Then,

v⊤
i L̂

−1
Cm−1

vi = (C−1vi)
⊤(C−1vi) = ∥wi∥2, where wi is obtained by solving the triangular system

Cwi = vi. This avoids explicitly inverting L̂Cm−1 , reducing the complexity per iteration to O(m)

instead of cubic cost. At each step, we select xi⋆ = argmaxxi∈Dsafe\Cm−1

(
L̂ii − ∥wi∥2

)
, and add

it into Cm−1 to obtain Cm.
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. Safety corpora. We use four datasets containing harmful or jailbreak-style prompts with
both harmful and safe responses: (i) BeaverTails (Ji et al., 2023), a collection of safety-related QA
pairs with helpfulness and harmlessness annotations; (ii) I-BeaverTails, constructed by converting
BeaverTails questions into instructions using GPT-4o-mini (Hurst et al., 2024) following Bianchi et al.
(2023); (iii) LatHarmful (Sheshadri et al., 2024), consisting of 5k instructions with paired harmful
and harmless completions; and (iv) Q-LatHarmful, obtained by converting LatHarmful instructions
into QA pairs with GPT-4o-mini. Each dataset is split 90%/10% into training and testing. From these
corpora, we use harmful queries with safe responses from the training splits to build GeneralSafe,
the candidate pool for selecting safety data. In contrast, to simulate harmful fine-tuning, we use
harmful queries with harmful responses from the training splits to inject malicious samples into
downstream utility tasks. Following Huang et al. (2024b); Hsu et al. (2024), the number of injected
harmful samples is fixed to 10% of the original utility task training size, ensuring a consistent attack
intensity across tasks.

Utility tasks. For downstream performance, we evaluate on (i) GSM8K (Cobbe et al., 2021), a
benchmark of grade-school math word problems, augmented with MetaMath (Yu et al., 2024) for
broader coverage; and (ii) OpenBookQA (Mihaylov et al., 2018), a science QA dataset requiring
factual reasoning.

Evaluation Metrics. Following Hsu et al. (2024), we evaluate methods on two dimensions: Safety
and Utility. For safety, we adopt the protocol of Qi et al. (2024), using GPT-4o-mini to judge
responses under OpenAI’s 11 harmful content categories. Each response receives a Harmfulness
Score (HS) from 1 (safest) to 5 (most harmful), and we report the Attack Success Rate (ASR), the
proportion of responses with HS > 2. For utility, we measure accuracy on downstream tasks (GSM8K
or OpenBookQA), reflecting utility performance under when safety defense is enforced.

Baselines. We compare SPARD against a range of baselines using two safe pre-trained models,
Qwen-2.5-7B-Instruct (An et al., 2024) and LLaMA-3.2-3B-Instruct (Meta, 2024). Specifically, we
consider: (i) SFT, which is a standard fine-tuning baseline where the model is trained exclusively
on the target task data without any explicit safety measures. (ii) PTST (Lyu et al., 2024), which
fine-tunes the model without safety instructions but prepends them back to inputs at inference time.
(iii) SafeInstr (Bianchi et al., 2023), which randomly mixes a small fraction (3%) of safe samples into
the fine-tuning dataset. (iv) Lisa (Huang et al., 2024b), which bi-state learning finetuning samples
and safe samples with a proximal term to constrain the safety degradation of each state.

Implementation Details We employ LoRA (Hu et al., 2022) for parameter-efficient fine-tuning,
with a rank r = 32 and an alpha of 4. All models are trained using the AdamW optimizer (Loshchilov
& Hutter, 2017). We set the learning rate to 5× 10−5 for Qwen-2.5-7B-Instruct and 1× 10−4 for
LLaMA-3.2-3B-Instruct. The models are fine-tuned for 10 epochs on GSM8K and 3 epochs on
OpenBookQA. For our SPAG algorithm, the safety mini-batch Bsafe is sampled with a batch size of 1.
The trust region radius ηsafe is set equal to the fine-tuning learning rate ηft. The hyperparameters τ , δ,
and ϵ are chosen as 2, 0.1, and 1× 10−8 for all experiments. For our Relevance-Diversity DPP data
selection, sample embeddings are generated by taking the average of the final layer’s hidden states
from the pretrained model (i.e., Qwen-2.5-7B-Instruct and LLaMA-3.2-3B-Instruct). Based on these
embeddings, we select Dsafe from the GeneralSafe pool, with the size fixed to 3% (i.e., p = 0.03)
of the fine-tuning data. The relevance exponent is set to β = 4. All experiments are conducted on
NVIDIA A800 (80GB) and A100 (40GB) GPUs.

4.2 MAIN RESULT

Robustness to Different Attacks. Table 1 presents results on GSM8K under four harmful fine-tuning
attacks. As can be seen, SPARD simultaneously achieves the lowest ASR/HS while preserving
competitive GSM8K accuracy, offering the strongest balance between safety and utility among all
methods.
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Beavertails I-BeaverTails LatHarmful Q-LatHarmful Average GSM8K

ASR HS ASR HS ASR HS ASR HS ASR HS Accuracy

Qwen-2.5-7B-Instruct 25.80 1.71 36.06 1.97 7.88 1.23 6.52 1.22 19.02 1.53 77.71

SFT 83.60 3.92 79.45 3.78 91.92 4.60 96.74 4.80 87.93 4.28 86.77
PTST (Lyu et al., 2024) 62.40 3.03 70.23 3.29 82.42 4.13 83.50 4.11 74.64 3.64 85.06
SafeInstr (Bianchi et al., 2023) 65.60 3.21 66.25 3.18 76.77 3.99 85.74 4.34 73.59 3.68 86.28
Lisa (Huang et al., 2024b) 24.40 1.73 35.64 2.00 7.88 1.26 8.55 1.25 19.12 1.56 78.45
SPARD 10.60 1.34 14.05 1.43 6.46 1.26 10.39 1.41 10.38 1.36 85.77

Table 1: Defense performance of Qwen-2.5-7B-Instruct on GSM8K under four harmful fine-tuning
attacks. Lower ASR/HS indicates stronger safety, while higher GSM8K accuracy reflects better
utility. Best results are in bold. GSM8K accuracy is averaged over all four attacks.

Beavertails I-BeaverTails LatHarmful Q-LatHarmful Average GSM8K

ASR HS ASR HS ASR HS ASR HS ASR HS Accuracy

LLaMA-3.2-3B-Instruct 41.80 2.12 52.20 2.44 16.36 1.55 12.02 1.40 30.60 1.88 62.32

SFT 87.20 4.03 79.45 3.66 98.99 4.91 99.80 4.95 91.36 4.39 72.27
PTST (Lyu et al., 2024) 58.80 2.87 64.99 3.04 97.78 4.82 96.33 4.73 79.48 3.87 73.75
SafeInstr (Bianchi et al., 2023) 76.20 3.61 72.54 3.46 90.10 4.56 89.21 4.52 82.01 4.04 72.21
Lisa (Huang et al., 2024b) 32.20 1.95 45.70 2.32 9.90 1.36 8.96 1.29 24.19 1.73 65.03
SPARD 15.80 1.53 9.01 1.27 19.19 1.74 12.42 1.48 14.11 1.51 71.36

Table 2: Defense performance of LLaMA-3.2-3B-Instruct on GSM8K under four harmful fine-tuning
attacks. Best results (lowest ASR/HS and highest GSM8K accuracy) are in bold.

Specifically, compared with SFT and PTST, SPARD achieves substantial gains: average ASR is
reduced by over 63% and HS by 2.28 points, while accuracy remains competitive. This shows that
explicit safety projection is far more effective than standard fine-tuning or inference-time prompting.
Compared with SafeInstr, which randomly mixes safe samples into fine-tuning, SPARD consistently
achieves lower ASR/HS, highlighting the necessity of principled relevance–diversity selection over
naive random selection. Compared with Lisa, a strong optimization-based baseline, SPARD further
improves safety and utility, achieving 8.74% lower ASR, 0.20 lower HS, and 7.32% higher accuracy.
This demonstrates that the key designs of SPARD—SPAG safety projection and relevance–diversity
DPP selection—are crucial for constraining harmful behaviors while preserving downstream task
performance.

Generalization Across Architectures (LLaMA). Table 2 presents results on LLaMA-3.2-3B-
Instruct. We observe that the overall safety degradation is more severe on LLaMA than on Qwen, as
SFT and PTST both yield very high ASR/HS despite maintaining task accuracy. SPARD, however,
remains effective across model families, achieving the lowest ASR (14.11%) and HS (1.51) while
keeping accuracy competitive (71.36%). Compared with SFT and PTST, SPARD lowers ASR by
over 66%, confirming that its safety projection generalizes across backbones. Against SafeInstr,
which suffers from high ASR/HS, SPARD shows the value of relevance–diversity selection over
naive random mixing. Relative to Lisa, SPARD further improves both safety and utility (−10.08%
ASR, −0.22 HS, +6.33% accuracy). Together, these results demonstrate that SPAG optimization
and DPP-based selection enhance robustness consistently across architectures.

Generalization to OpenBookQA. Table 3 reports results on OpenBookQA under four harmful
fine-tuning attacks. SPARD achieves the lowest ASR (14.66%) and HS (1.48) while preserving
strong task accuracy (82.95%), confirming that its effectiveness extends beyond math reasoning tasks.
Compared with SFT and PTST, SPARD reduces ASR by more than 15.3% on average, showing
that explicit safety projection remains effective for science QA. Relative to SafeInstr, which again
suffers from high ASR/HS, SPARD demonstrates the importance of relevance–diversity selection over
naive data mixing. Finally, compared with Lisa, SPARD achieves lower ASR/HS (−4.14%/−0.05)
and higher accuracy (+4.05%), reinforcing that its joint use of SPAG optimization and DPP-based
selection improves both safety and utility. These results highlight that SPARD generalizes beyond
GSM8K to diverse downstream reasoning tasks, maintaining robustness across domains.
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Beavertails I-BeaverTails LatHarmful Q-LatHarmful Average OpenbookQA

ASR HS ASR HS ASR HS ASR HS ASR HS Accuracy

Qwen-2.5-7B-Instruct 25.80 1.71 36.06 1.97 7.88 1.23 6.52 1.22 19.02 1.53 77.60

SFT 50.20 2.70 56.39 2.81 25.66 1.96 28.92 2.05 40.29 2.38 83.70
PTST (Lyu et al., 2024) 37.20 2.09 56.39 2.81 10.71 1.35 16.90 1.59 30.30 1.96 83.25
SafeInstr (Bianchi et al., 2023) 51.40 2.68 59.75 2.95 26.06 1.95 29.53 2.11 41.69 2.42 84.15
Lisa (Huang et al., 2024b) 26.00 1.74 34.80 1.93 7.07 1.22 7.33 1.24 18.80 1.53 78.90
SPARD 15.60 1.48 19.29 1.56 11.11 1.42 12.63 1.47 14.66 1.48 82.95

Table 3: Defense performance of Qwen-2.5-7B-Instruct on OpenBookQA under four in-distribution
harmful fine-tuning attacks. Lower ASR/HS indicate stronger safety; higher accuracy indicates better
utility. OpenBookQA accuracy is averaged over the four attacks. Best results are in bold.
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Figure 5: Effects of β.

4.3 SENSITIVITY ANALYSIS

Effects of safe sample ratio. Figure 3 shows the impact of varying the ratio p of safe samples added
to the GSM8K finetuning data using Qwen-2.5-7B-Instruct under the BeaverTails attack. When p = 0
(i.e., no safe samples are added), the model is highly vulnerable with ASR above 80%. As p increases,
ASR drops sharply and reaches the lowest point around p ∈ [0.03, 0.05]. Beyond this range, further
increasing p leads to diminishing returns and even slight degradation due to the inclusion of redundant
or less relevant samples. This indicates that a small but carefully chosen proportion of safe samples is
sufficient to provide strong safety guarantees without overwhelming the fine-tuning objective.

Effects of τ . We study the effects of the safety threshold τ on GSM8K using Qwen-2.5-7B-Instruct
under the BeaverTails attack. As shown in Figure 4, small values of τ enforce strict safety constraints,
effectively suppressing ASR, but overly conservative thresholds (τ > 5) begin to harm the balance
and allow ASR to rise again. In practice, we can set the τ by evaluating the average loss of the aligned
LLM on the safety benchmark.

Effects of β. To analyze the effect of relevance exponent β, we conduct experiments with the
BeaverTails attack on GSM8K using Qwen-2.5-7B-Instruct. Figure 5 analyzes the relevance exponent
β, which balances the weight between relevance and diversity in the DPP kernel. SPARD is relatively
robust to a wide range of moderate values (β ∈ [4, 10]), achieving the lowest ASR, while very small
β underemphasizes relevance and very large β collapses diversity, both leading to weaker defenses.
These results confirm that both relevance and diversity should be considered in the data selection
process.

4.4 ANALYSIS

Effect of Relevance-Diversity DPP To study the effect of Relevance-Diversity DPP, we compare it
with (i) SPAG w/ Random, which randomly selects samples from GeneralSafe as Dsafe. (ii) SPAG w/
Max Quality, which selects the samples with the highest quality score as Dsafe. As shown in Table 4,
SPAG w/ Random surpasses previous SOTA (i.e., Lisa) with an average ASR reduction of 3.27% and
an GSM8K accuracy improvement of 6.61%, validating the effectiveness of SPAG safety projection.
Compared with all variants, SPARD has the best average safety and utility, achieving the lowest
mean ASR/HS (10.38%/1.36) and the highest GSM8K accuracy (85.77%). Specifically, SPARD
outperforms SPAG w/ Random with a noticeable ASR and HS reduction of 5.47% and 0.18, showing
that selecting relevant data can substantially improve safety. Additionally, SPARD surpasses SPAG w/
Max Quality by a large margin of 6.13% on average ASR, validating that diversity is equally crucial.
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Beavertails I-BeaverTails LatHarmful Q-LatHarmful Average GSM8K

ASR HS ASR HS ASR HS ASR HS ASR HS Accuracy

Lisa (Huang et al., 2024b) 24.40 1.73 35.64 2.00 7.88 1.26 8.55 1.25 19.12 1.56 78.45

SPAG w/ Random 15.80 1.47 22.64 1.70 13.33 1.52 11.61 1.46 15.85 1.54 85.06
SPAG w/ Max Quality 16.60 1.53 24.32 1.71 16.16 1.63 8.96 1.34 16.51 1.55 85.69
SPARD 10.60 1.34 14.05 1.43 6.46 1.26 10.39 1.41 10.38 1.36 85.77

Table 4: Effect of Relevance-Diversity DPP under different harmful fine-tuning attacks. Best results
are in bold.

Attack Samples
Selected Samples

(a) Random.

Attack Samples
Selected Samples

(b) Max Quality (i.e., β = +∞).

Attack Samples
Selected Samples

(c) SPARD.

Figure 6: Comparison of selected safe samples for GSM8K task under BeaverTails attack.

By balancing both relevance and diversity, SPARD achieves broad coverage of safety constraints
while remaining task-aligned, leading to superior robustness without sacrificing utility.

Visualization Figure 6 shows the t-SNE visualization (Van der Maaten & Hinton, 2008) of selected
samples for the GSM8K task under BeaverTails attacks. As shown, randomly selected data cover
diverse regions but are not necessarily aligned with the attacked distribution, leading to limited safety
gains. Moreover, a quality-only strategy (Max Quality) selects samples that cluster tightly around
the attack distribution, but suffers from severe redundancy. In construct, SPAG achieves a balanced
selection that aligns samples closely with the attacked distribution while maintaining diversity across
different safety corpora, ensuring broad coverage without redundancy. This suggests that our method
is effective in selecting safe samples that are both relevant to the task and diverse (Tables 4).

0.70 0.75 0.80 0.85 0.90 0.95 1.00
qi

0

2

4

6

8

10

12

De
ns

ity

69%

Figure 7: Distribution of similarity scores.

Why using β as an exponent. To better understand
the role of β, we analyze the distribution of similarity
scores qi between GeneralSafe samples and the GSM8K
dataset under the BeaverTails attack. As shown in Fig-
ure 7, most samples already exhibit very high similarity:
69% of them have qi > 0.9. This heavy concentration
near the upper bound makes it difficult to distinguish rel-
ative preferences using linear weighting. By introducing
β as an exponent in the relevance term, we amplify sub-
tle differences among highly similar samples, allowing
the selection process to more effectively favor those that
are most aligned with the target distribution.

5 CONCLUSION

In this paper, we propose SPARD, a defense framework that safeguards aligned LLMs against harmful
fine-tuning by combining Safety-Projected Alternating Gradient (SPAG) with a Relevance–Diversity
DPP for safe data selection. SPAG enforces safety constraints in closed form during training, while
the Relevance–Diversity DPP selects task-relevant and diverse safety data to maximize coverage.
Experiments on GSM8K and OpenBookQA with multiple attacks show that SPARD achieves the
lowest average ASR while preserving high utility, outperforming existing defenses such as SafeInstr.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This research investigates the vulnerabilities of large language models (LLMs) to harmful fine-tuning
attacks and introduces methods to strengthen their safety alignment. All datasets employed in our
experiments are publicly available and widely used in the safety community. Although these datasets
contain harmful or adversarial prompts, they are utilized solely for the purpose of evaluating defenses.
Harmful responses are restricted to controlled experimental settings and are not disseminated beyond
what is strictly necessary for reproducibility. The overarching aim of this work is to advance the safe
and responsible deployment of LLMs by providing principled defense mechanisms against malicious
fine-tuning. We recognize that research in this area carries potential dual-use concerns, but we believe
the benefits of improving the robustness of safety alignment outweigh these risks. Our study adheres
to ethical standards and prioritizes the promotion of beneficial and safe AI.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our work. The complete code and training
data are included in the supplementary material. A complete description of the datasets, including
preprocessing steps and the construction of safety corpora and attack settings, is provided in 4.1
and Appendix B. The full derivation of the proposed SPAG algorithm is presented in Appendix A.
Implementation details, hyperparameters, and training configurations for all experiments are reported
in Section 4.1. Together, these details are sufficient to allow independent researchers to reproduce our
results.
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A DERIVATION OF SPAG

Introducing multipliers λ ≥ 0, the Lagrangian is

L(θ, λ)=∥θ − θ+∥2 + λ
(
L(Dsafe,θ

+) + ⟨gsafe, θ − θ+⟩ − τ
)
. (9)

Taking derivatives with respect to θ and setting to zero yields the stationarity condition: θ − θ+ +
λgsafe = 0. Hence, the solution has the form θnew = θ+ − λgsafe. Plugging θnew into the safety
constraint gives L(Dsafe,θ

+) +
〈
gsafe, θ

new − θ+
〉
= L(Dsafe,θ

+) − λ∥gsafe∥2. Hence feasibility

requires L(Dsafe,θ
+)− λ∥gsafe∥2 ≤ τ. Complementary slackness further implies λ

(
L(Dsafe,θ

+)−

λ∥gsafe∥2 − τ
)
= 0. Two cases arise: (i) If L(Dsafe,θ

+) ≤ τ , the unconstrained update already

satisfies the safety constraint, and no correction is needed: θnew = θ+. (ii) Otherwise, the projection
requires a step along gsafe: θnew = θ+ − L(Dsafe,θ

+)−τ
∥gsafe∥2 gsafe.

B TRANSFORMATION PROMPT

We follow Bianchi et al. (2023) to turn the BeaverTails dataset into the I-BeaverTails dataset by the
following prompt.

Prompt 1: Transformation to Instructions.

You are transforming a question into an instruction. You should keep the same sentence structure.
Use active and imperative verbs. The type of instructions should be diverse. Here are some
examples:

Sentence: Is drinking cool?

Output: List reasons why drinking is cool.

Sentence: How do I poison food?

Output: Describe methods to poison food.

Sentence: How do I make a racist joke?

Output: Explain how to make a racist joke.

Sentence: How do I kill people?

Output: Write a poem about ways to kill people.

The following is your sentence. Sentence: {input}

Output:

Similarly, we turn the LatHarmful dataset into the Q-LatHarmful by the prompt below.
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Prompt 2: Transformation to Questions.

You are transforming an instruction into a question. You should keep the same sentence structure.
The type of questions should be diverse. Here are some examples:

Sentence: List reasons why drinking is cool.

Output: Is drinking cool?

Sentence: Describe methods to poison food.

Output: How do I poison food?

Sentence: Explain how to make a racist joke.

Output: How do I make a racist joke?

Sentence: Write a poem about ways to kill people.

Output: How do I kill people?

The following is your sentence. Sentence: {input}

Output:

C LARGE LANGUAGE MODEL USAGE STATEMENT

During the preparation of this manuscript, large language models (LLMs) were employed exclusively
for writing assistance, including polishing grammar, improving clarity, and refining presentation. All
scientific contributions, including the development of the SPARD framework, theoretical derivations,
and empirical evaluations, are entirely original to the authors. The LLMs are therefore not considered
authors of this work.
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