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Abstract
As large language models (LLMs) increasingly001
extract text data without consent, content cre-002
ators face growing risks to intellectual property003
and privacy. This paper outlines the emerg-004
ing threats of unauthorized content repurpos-005
ing and sensitive data exposure by AI systems006
and the need for robust defensive strategies.007
We introduce SHROUD (Structured Hierar-008
chy for Rewriting and Obfuscation in Unstruc-009
tured Data), the first unified guide to text per-010
turbation and obfuscation techniques to pro-011
tect text content from misuse. Additionally,012
we present GHOST (Generated Hidden Ob-013
fuscation STrategy), a novel, lightweight de-014
fensive method that prevents model training015
and inference on text by injecting invisible to-016
kens that overload a model’s tokenizer context017
window. GHOST allows for imperceptible yet018
effective obfuscation, preserving human read-019
ability while shielding content from unautho-020
rized machine learning use. GHOST serves as021
a privacy mechanism for evading automated022
moderation and protecting intellectual property,023
enabling social media users to share content024
and online authors to prevent unauthorized AI025
training using their work.026

1 Introduction027

The advancement of Large Language Models028

(LLMs) poses significant intellectual property chal-029

lenges as these systems appropriate written con-030

tent without authorization or commercial compen-031

sation. Copyright frameworks have been system-032

atically circumvented by AI developers harvesting033

creators’ intellectual output for commercial train-034

ing data (Kouloumpis et al., 2011; Severyn and035

Moschitti, 2015; Conover et al., 2011; Li et al.,036

2023). The resulting derivative works mimic origi-037

nal content while providing no compensation, po-038

tentially diminishing authors’ creative control in039

an ecosystem that increasingly commodifies their040

intellectual labor. Furthermore, LLMs present sub-041

stantial privacy vulnerabilities, whereby personal042

communications and confidential materials incor- 043

porated into training datasets may subsequently 044

emerge in model outputs. Content creators face the 045

prospect of sensitive information being encoded 046

within model parameters and reproduced in re- 047

sponse to user queries. 048

These challenges call for defensive obfuscation 049

approaches that introduce textual perturbations to 050

shield semantic content from computational inter- 051

pretation while preserving human readability. Text 052

transformation techniques, implemented at various 053

linguistic levels, have diverse applications across 054

NLP domains: adversarial methods reveal model 055

weaknesses (Hosseini et al., 2017; Gao et al., 2018; 056

Ebrahimi et al., 2017; Jin et al., 2020), robustness 057

assessments evaluate performance under linguistic 058

variance (Belinkov and Bisk, 2017; Michel et al., 059

2019; Ribeiro et al., 2020; Hendrycks et al., 2020), 060

red-teaming bypasses safety protocols (Wei et al., 061

2023b; Perez et al., 2022; Zou et al., 2023; Bai 062

et al., 2022), data augmentation enhances general- 063

ization (Wei and Zou, 2019; Kobayashi, 2018) and 064

privacy mechanisms safeguard semantic integrity 065

from machine processing. 066

Evaluation criteria for defensive obfuscation re- 067

quires a balance between machine imperceptibility 068

and human comprehension. Machine imperceptibil- 069

ity metrics assess models’ capacity to reconstruct 070

original meaning or perform downstream tasks 071

such as sentiment analysis and QA. Conversely, 072

utility metrics evaluate preservation of human inter- 073

pretability, ensuring that a human reader can read 074

and understand the perturbed text with minimal 075

difficulty. Text obfuscation can serve as a privacy 076

control mechanism. Social media users can employ 077

it to share potentially controversial content while 078

evading automated moderation. Authors and cre- 079

ators can apply obfuscation to prevent unauthorized 080

AI training using their work, preserving intellectual 081

property and usage rights. 082

To address this challenge, this paper presents two 083
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key contributions:084

• SHROUD (Structured Hierarchy for Rewrit-085

ing and Obfuscation in Unstructured Data):086

To our knowledge, this is the first conceptual087

framework to define and organize the transfor-088

mation search space for generating language089

model-resistant text. It categorizes transforma-090

tion strategies that hinder model comprehen-091

sion, classification, or generation and helps re-092

searchers identify opportunities for more novel093

techniques.094

• GHOST (Generated Hidden Obfuscation095

STrategy): a novel, lightweight method for096

producing obfuscated text that resists LLM097

training and inference without compromising098

utility. GHOST outperforms prior strategies099

in robustness against in-context defenses, as100

demonstrated in Section 5.101

2 Related Work102

This section reviews prior research on text perturba-103

tion, specifically in adversarial attacks and privacy104

protection. Both approaches employ text obfusca-105

tion while preserving utility, differing primarily in106

their objectives. Adversarial attacks introduce sub-107

tle modifications to induce model errors, whereas108

privacy protection alters text to prevent sensitive109

information leakage.1110

2.1 Adversarial Attack111

Early adversarial attacks on text classifiers fo-112

cused on character-level perturbations that pre-113

served meaning but induced misclassification. Hos-114

seini et al. (2017) showed that minor alterations,115

such as spacing and typos, could bypass toxicity116

filters. Gao et al. (2018) introduced DeepWord-117

Bug, which identified key tokens and applied tar-118

geted character edits to exploit model weaknesses.119

Ebrahimi et al. (2017) further refined this with Hot-120

Flip, framing attacks as a discrete optimization121

1Unfortunately, the research communities discussed above
use conflicting terminology to describe the same fundamental
goal: preventing an AI system from accessing the text or data
generated by another entity. In one community (Section 2.1),
the entity blocking access is referred to as the attacker, while
the AI model(s) attempting to read the data is the victim. In
contrast, the other community (Section 2.2) labels the blocking
entity as the defender and the AI model(s) as the attacker.
Given that the creator of the text or data is its rightful owner,
we expect the latter framing to gain wider acceptance over
time.

problem and using gradient-based methods to iden- 122

tify impactful character-level changes. These stud- 123

ies revealed the vulnerability of neural models to 124

subtle orthographic variations. As character-level 125

defenses improved, research progressed to word- 126

level substitution attacks. Papernot et al. (2016) 127

used gradient-based methods to identify key words 128

for replacement. Alzantot et al. (2018) employed 129

a genetic algorithm to generate fluent adversarial 130

examples using synonym substitutions. Jin et al. 131

(2020) introduced TextFooler, which used context- 132

aware embeddings to ensure semantic similarity 133

and high attack success against BERT. Similarly, 134

BERT-Attack (Li et al., 2020) leveraged BERT 135

masked language modeling for effective word re- 136

placement. Bajaj and Vishwakarma (2023) pro- 137

posed HOMOCHAR, a homoglyph-based charac- 138

ter attack that maintained readability while achiev- 139

ing over 90% success on models like BERT and 140

RoBERTa (Liu et al., 2019). 141

Recent adversarial approaches increasingly tar- 142

get multimodal and instruction-tuned models. Wei 143

et al. (2023a) introduced "jailbreaking" prompts 144

to bypass content filters, while Perez and Ribeiro 145

(2022) detailed prompt injection attacks that over- 146

ride instructions or extract sensitive data. Zou et al. 147

(2023) and Wallace et al. (2019) developed univer- 148

sal prompts and triggers that reliably manipulate 149

model behavior. 150

2.2 Privacy Protection 151

Early privacy-preserving NLP drew on struc- 152

tured data methods like k-anonymity (Sweeney, 153

2002) and differential privacy (Dwork, 2006), 154

later adapted to text by Cumby and Ghani (2011) 155

through redaction techniques. The emergence of 156

large language models prompted concerns over 157

data leakage, with Carlini et al. (2022) revealing 158

their memorization tendencies. This led to for- 159

mal privacy frameworks: Fernandes (2021) pro- 160

posed leakage metrics, and Weggenmann and Ker- 161

schbaum (2018) introduced SynTF for private text 162

classification. McMahan et al. (2017) applied feder- 163

ated learning with differential privacy to language 164

models, while Yun et al. (2021) mitigated memo- 165

rization via calibrated noise during pre-training. 166

Research on text obfuscation for privacy pro- 167

tection has not been systematically organized, as 168

many individual strategies search on only one level. 169

This paper unifies text obfuscation by defining 170

the SHROUD Framework, a text transformation 171
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search space that acts as a starting point for devel-172

oping novel obfuscation strategies by combining173

one or more perturbation levels with different trans-174

formation strategies.175

3 SHROUD Framework176

Shown in Table 1, SHROUD is a unified frame-177

work that provides a systematic overview of digi-178

tal text obfuscation methods, enabling privacy re-179

searchers to apply one or a combination of strate-180

gies that conceal semantic meaning from AI lan-181

guage models. This reframes text perturbation as a182

combinatorial search over obfuscation techniques.183

The framework can be generalized to tasks like ad-184

versarial text, robustness testing, jailbreak-prompt185

injection, and unlearnable text. It also helps NLP186

researchers identify unexplored gaps and opportu-187

nities in obfuscation and perturbation methods.188

Given a document D, the text within D can be189

characterized by:190

• The level of obfuscation that determines at191

what granularity the document is perturbed.192

This level can be divided into three cate-193

gories: Character-level, Word/Token-Level194

and Sentence-Level. Applying obfuscation at195

levels higher than this (e.g., Paragraph or Doc-196

ument) requires more extensive modifications197

that could significantly degrade utility.198

• The obfuscation strategy that, given the level199

of obfuscation, determines how the object is200

obfuscated. The strategies can be grouped into201

4 main categories: Extra, Deletion, Injection,202

Transformation (EDIT).203

3.1 Level of Obfuscation204

Character-level obfuscation alters individual char-205

acters through misspellings, typos, or lookalike206

substitutions (e.g., "o" and "0") to mimic noise207

from human error. These subtle changes can dis-208

rupt word recognition and model comprehension.209

Word-token level obfuscation modifies entire words210

or tokens via synonym replacement, deletion, or211

insertion of unrelated terms. These changes in-212

troduce stronger semantic shifts while preserving213

grammar, testing a model’s ability to handle vocab-214

ulary variation and ambiguity. Sentence-level ob-215

fuscation disrupts structure by rearranging words,216

adding grammatical errors, or inserting distracting217

sentences. This challenges the models’ ability to218

parse syntax and retain focus on core meaning.219

3.2 Obfuscation Strategies 220

The EDIT framework summarizes all text modi- 221

fication methods based on the obfuscation level 222

and strategy, each targeting different behaviors 223

in the interpreting model. For example, at the 224

word-token level with token t = (hello), the 225

Extra method duplicates t → t′ = hellohello 226

to draw model focus toward t, potentially over- 227

shadowing other informative tokens. In contrast, 228

the Injection method appends a different token 229

t → t′ = HelloFresh, altering the semantic 230

meaning and obfuscating the original information 231

(Hello = greeting) vs (HelloFresh = food delivery 232

company). The choice of what and where to perturb 233

is governed by a search function and obfuscation 234

budget. 235

Simple strategies like repeating (Extra) or omit- 236

ting (Deletion) characters or tokens are easy to im- 237

plement and were effective against early language 238

models through adversarial misspelling, though 239

these have since been mitigated (Pruthi et al., 2019). 240

More advanced techniques adopted Injection and 241

Transformation strategies, including word swaps 242

(Ebrahimi et al., 2017; Alzantot et al., 2018), sym- 243

bol injection (Bajaj and Vishwakarma, 2023) and 244

synonym token substitution (Jin et al., 2020; Li 245

et al., 2020; Liang et al., 2017). Within the realm 246

of Injection and Transformation, text object can 247

be replaced with various substitution options as 248

shown in Table 2. Injection strategies might in- 249

duce interpreting model(s) to mis-tokenize (e.g., 250

’Wal文 king’ → ’wal’ + ’文’ + ’king’ instead of 251

’walking’), alter the semantics (e.g., Ore could 252

be misread as Oreo), or misinterpret the token (e.g., 253

inject(泉,Spring) → Spring泉 could cause state-of- 254

the-art (SoTA) multilingual models to interpret the 255

combined token as ’fountain’). Likewise, Transfor- 256

mation strategies can also cause mistokenization 257

and misinterpretation, while further obscuring con- 258

tent by converting characters into emojis, symbols, 259

images, or rare synonyms. 260

4 Problem Formulation 261

This section formalizes the problem. Given an 262

input text string x, the semantic understanding of a 263

function f (e.g., an LLM) on x is measured by its 264

ability to produce a reconstruction y that preserves 265

the essential information in x. Formally, for an 266

input x = (w1, w2, . . . , wn) ∈ X , the model maps 267

x to an output y = (s1, s2, . . . , sm) ∈ Y , where 268

wi and si denote tokens at position i in x and y, 269
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Lvl/Strategies Extra Deletion Injection Transformation
Character Insert existing character(s) Remove character(s) Insert a foreign character Change character(s) to

a different character
Word Token Repeat the existing token Drop the whole token Insert new token(s) Replace token(s) with

a different token
Sentence Append the same sentence Drop the entire sentence Inject a completely Restructure the sentence

at the start or end different sentence

Table 1: SHROUD Framework. The SHROUD framework categorizes text obfuscation strategies across three
linguistic levels—character, word token, and sentence—and four transformation types: Extra, Deletion, Injection,
and Transformation. Each cell defines how perturbations are applied at a given level, enabling systematic analysis
of obfuscation behavior.

Injection Transformation
Character Word Token Character Word Token

I→Eye
ASCII I→In I→Inn In→On Nice→Good

Extended Enjoy→ Enjoy→
Latin Char Enøjoy - Enjøy -

Non-Latin Script Walking→ Spring→
(eg.Cyrillic, Wal文 king Spring泉 Zoo→已 oo -

CJK, Arabic)
Mathematics &
Special Symbol Park→Park™ - Sleep→Sl € ep Money→$

Harmful→ Apple→ United
Emojis Ore→Ore Harmful pple Kingdom→

Injecting Mapping a char
Special Unicode Non-Printable

char(s) i.e Control
Chars

- to Non-Printable
char(s)

-

Table 2: Representative examples of obfuscation through Injection and Transformation strategies at the character
and word-token levels. Variants include ASCII repetition, extended Latin characters, non-Latin scripts (e.g., CJK),
mathematical and special symbols, emojis, and non-printable Unicode characters, illustrating diverse methods to
perturb model interpretation.

respectively. X and Y represent the spaces of all270

possible input and output strings.271

An obfuscated xobf is considered successful if:272

f(xobf) → y′ such that Sim(y, y′) ≤ ε,273

where Sim : Y ×Y → (0, 1) is a semantic similar-274

ity function comparing reconstructed outputs, and275

ε is the maximum allowed similarity between the276

output of the clean input and that of the obfuscated277

input.278

4.1 Defense Model279

Objective: In this work, we consider a defense280

model where the primary objective is to prevent281

large language models (LLMs) from successfully282

extracting, inferring, or leveraging important or283

sensitive information embedded in text.284

Adversary Consideration: The adversary is an 285

LLM-based system that tries to extract information 286

for training and downstream tasks utilization. The 287

owner of the text is a defender against the models. 288

We consider a black-box setting where the de- 289

fender has no knowledge of the model architecture, 290

parameters, or training data. Their only capabil- 291

ity is to query the target model using input data 292

and observe the resulting response. This simu- 293

lates the real-world scenario where online authors 294

would have no control or knowledge of the lan- 295

guage model(s) and/or their architecture. 296

Assumptions: We assume that 1) The model ob- 297

tains the text through text scraping, web dump or 298

any other means that do not involve image and 299

OCR (Optical Character Recignition) extraction, 2) 300
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The defender can only publish contents in pure text301

format (i.e., Unicode, ASCII).302

Approach: To generate an obfuscated example,303

we propose a two-step approach:304

Step 1: Extract Important Token. Given an input305

text x = {w1, w2, . . . , wn}, not all wi contribute to306

the semantics of X , with tokens such as stopwords307

offering little to no information to the statement x.308

Therefore, only information-dense tokens should309

be obfuscated for a strategy to potentially reduce310

utility.311

Step 2: Apply Transformation. Given the key to-312

kens identified in step 1, each is transformed using313

one or more strategies from SHROUD (Section 3).314

The transformation function should be guided by315

the formal optimzation problem: Given a sensitive316

token w, and an obfuscated version w′ ∈ O(w)317

from a valid obfuscation set, we define the opti-318

mization problem as:319

min
w′∈O(w)

P (w | w′)

subject to L(w,w′) ≥ δ
(1)320

where:321

• P (w | w′) is the probability that an adversary322

model infers the original token w given the323

obfuscated token w′,324

• O(w) is the set of allowable obfuscations,325

• L(w,w′) is a utility function,326

• δ is a threshold ensuring the obfuscation pre-327

serves minimum acceptable utility.328

5 GHOST329

This section introduces GHOST (Generated Hid-330

den Obfuscation STrategy), a novel, utility-331

preserving defense strategy that applies a single332

SHROUD transformation. GHOST effectively de-333

fends against SoTA LLMs in black-box settings,334

showing strong resistance to denoising and in-335

context defenses by exploiting LLM tokenization336

mechanisms.337

5.1 LLMs and Tokenizer338

The context window of a model’s tokenizer defines339

the finite sequence of preceding tokens that the340

model attends to during both the encoding of input341

and the decoding of output. This limited short-342

term memory directly impacts the model’s capacity343

to maintain topical consistency, resolve prior ref- 344

erences, and understand long-range dependencies 345

within a given text or conversation—all of which 346

are required for effective interpretation and sub- 347

sequent usage of the text. GHOST exploits this 348

context window by injecting invisible characters 349

into sensitive tokens, effectively overloading the 350

tokenizer and impairing the model’s ability to fur- 351

ther process the input accurately. These invisible 352

characters have no semantic meaning, but are still 353

considered valid tokens to the model(s), thus be- 354

ing tokenized with the original text. For example, 355

given a token x = "Gin", after obfuscating with 356

GHOST, invisible characters will be added to pro- 357

duce GinGHOST 358

GinGHOST

{
what human reader sees: Gin

what the model sees: GInv1, ..Invnin

(2)

359

where Invt are injected invisible characters 360

Appending invisible characters to text can dis- 361

rupt large language models (LLMs) by distorting 362

token structures, fragmenting meaningful words, 363

introducing rare tokens, or triggering edge-case 364

behaviors. This misalignment leads to misinterpre- 365

tation, semantic dilution, or prompt injection. The 366

vulnerability stems from a disconnect between the 367

static, rule-based nature of tokenizers and the con- 368

textual basis of language understanding, making 369

LLMs susceptible to adversarial manipulation due 370

to their training on standard textual inputs. 371

5.2 Invisible Characters 372

Invisible Unicode characters span a range of code 373

points not intended to render visible glyphs. These 374

include control characters (e.g., tabs, line feeds), 375

format characters (e.g., right-to-left markers, line 376

break hints), and other special-purpose symbols 377

with technical functions. Among these, Variation 378

Selectors (VS) are a class of invisible format char- 379

acters that modify the visual rendering of a pre- 380

ceding base character with multiple glyph forms. 381

They do not appear independently but instruct the 382

rendering engine to select a specific variant, which 383

is essential for scripts like CJK ideographs, histori- 384

cal characters, and emoji, where visual differences 385

may convey semantic or stylistic distinctions. 386

There are 256 VS characters, each specifying a 387

distinct rendering behavior—for example, VS15 388

enforces text-style rendering, while VS16 applies 389
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Model BAE TextFooler HOMOCHAR GHOST

LLama3.2 0.8359 0.7593 0.7358 0.0683
Qwen2.5 0.8779 0.8097 0.7400 0.0808
Mistral 0.8693 0.8067 0.8674 0.0732
GPT4o 0.8816 0.7904 0.9863 0.3084
Gemini 0.8789 0.7868 0.9893 0.0903

Table 3: Performance Comparison of Open-Source and Commercial Models across Different Obfuscation Strategies
on Text Reconstruction Task. The score represents the similarity score between clean text and obfuscated text
reconstruction using all-MiniLM- L6-v2 Sentence-Transformer. Lower score represents higher effectiveness.

Model Clean BAE TextFooler HOMOCHAR GHOST

LLama3.2 0.85 0.575 0.675 0.69 0.475
Qwen2.5 0.88 0.605 0.63 0.81 0.48
Mistral 0.87 0.615 0.625 0.76 0.525
GPT4o 0.94 0.615 0.695 0.90 0.475
Gemini 0.92 0.57 0.73 0.93 0.475

Table 4: Performance Comparison of Open-Source and Commercial Models across Different Obfuscation Strategies
on Sentiment Classification. The score represents the accuracy of the predictions against SST2 ground truth. Lower
score represents higher effectiveness.

emoji-style rendering. The character♥ (U+2665),390

for instance, can be rendered in one of two formats:391

• Text Presentation: (U+2665) followed by VS-392

15 →♥393

• Emoji Presentation: (U+2665) followed by394

VS-16 →395

With a wide range of possible values, we can in-396

ject various combinations of variation selectors ap-397

pended to information-dense tokens to obfuscate398

them from the model(s).399

5.3 Experimental Setup400

This section details the models and the dataset used401

to measure the effectiveness of GHOST obfusca-402

tion strategy.403

Test Models For this experiment, we select five404

models to evaluate the effectiveness of the GHOST405

algorithm. We choose only stable SoTA models406

that were recently released. It is important to note407

that testing on close-source, commercial models408

such as GPT-4o and Gemini incurs API call costs.409

These models are Llama3.2 (Llama) (Touvron et al.,410

2023), Qwen2.5 (Qwen) (Hui et al., 2024), Mistral,411

GPT-4o-mini (GPT-4o) and Gemini2.0 (Gemini)412

(refer to Appendix A for full model specification413

and configuration).414

Tasks We apply two tests to measure the effec- 415

tiveness of obfuscation. 416

• Text Reconstruction A neural model f re- 417

ceives input x alongside prompt PromptIC 418

which instructs the model to repeat back x 419

clearly and concisely, preserving key informa- 420

tion. Models are first prompted on clean in- 421

puts to establish a baseline, then on obfuscated 422

inputs. Metric: Reconstruction quality is mea- 423

sured using semantic similarity computed via 424

the all-MiniLM-L6-v2 sentence transformer. 425

This task follows prior work by Lin et al. 426

(2023) and Jia and Liang (2016). 427

• Sentiment Classification A neural model f 428

receives input x prompt PromptSC, which in- 429

structs it to classify the sentiment of x as Posi- 430

tive (1) or Negative (0). Metric: The predic- 431

tions are compared against the ground truth la- 432

bel obtained from HuggingFace for accuracy. 433

Dataset We choose SST2 (Socher et al., 2013) 434

(Split = Validation, random_seed = 168) as the 435

dataset. SST2 is an extremely popular dataset, 436

therefore there is a significantly high chance that 437

the target models have been exposed to the dataset. 438

With the consideration of API costs, we select 200 439

instances to evaluate. 440
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Algorithm Design Based on the two-step ap-441

proach from the Defense Model proposed in Sec-442

tion 4.1, GHOST performs obfuscation as follows:443

As GHOST utilizes invisible characters (i.e., Vari-444

ation Selectors), it can obfuscate all of the tokens445

instead of just important ones in a given input as it446

does not degrade utility (i.e, the utility function L447

is always ∞ as human readability is not affected448

by the amount of injections). For each of the to-449

kens, GHOST iteratively injects invisible tokens450

in between the characters, guided by Eq.(1). After451

each iteration, the models are queried for the log-452

probability of the token w given the obfuscated453

wGHOST until P (w | wGHOST ) ≈ 0. (Note:454

GPT-4o-mini does not support logprob query so455

we use GPT-4o to approximate the logprob of a456

token. GPT-4o and GPT-4o-mini share the same457

architecture family (OpenAI, 2024) therefore this458

approximation is a fair representation.)459

5.4 Results460

This section outlines the results from our experi-461

ments.462

Text Reconstruction The main results for text463

reconstruction are summarized in Table 3. The464

table presents the effectiveness of four different465

recent obfuscation methods: BAE (Garg and Ra-466

makrishnan, 2020), TextFooler (Jin et al., 2020),467

HOMOCHAR (Bajaj and Vishwakarma, 2023),468

and GHOST on various open-source and commer-469

cial language models. These strategies were care-470

fully chosen as baselines because of their efficacy471

against transformer-based models and their utility-472

preserving nature. Overall, GHOST displayed473

a significant performance in preventing language474

models from inferring on text. The scores repre-475

sent the models’ ability to understand perturbed476

text, with lower scores indicating more success-477

ful defense. GHOST is the most effective strat-478

egy across all models, achieving the lowest scores479

overall. Among open-source models, LLama3.2480

is the most vulnerable to GHOST (0.0683), but481

relatively more robust to other obfuscation. Mistral482

shows stronger resilience against HOMOCHAR483

and TextFooler attacks (e.g., 0.8674 and 0.8067, re-484

spectively), but is still highly affected by GHOST.485

The commercial models show high comprehen-486

sion scores for most perturbations. GPT-4o main-487

tains strong comprehension after BAE, suggesting488

resilience to basic word-level substitutions. Like-489

wise, it is very resilient to HOMOCHAR, indicat-490

ing extreme robustness to homoglyph-based char- 491

acter substitutions. GPT-4o likely normalizes or ig- 492

nores these alterations. On the other hand, it shows 493

moderate vulnerability to TextFooler; the drop 494

in score reflects partial confusion due to context- 495

aware replacements. When facing GHOST, it wit- 496

nesses a major drop, the lowest performance across 497

all obfuscation for GPT-4o. Similary, Gemini dis- 498

plays the same trend. Albeit a low score, Gemini 499

performed better than GPT-4o on GHOST. This 500

performance is much closer to the top-performing 501

open-source models, and indicates stronger robust- 502

ness towards the semantic understanding. 503

Sentiment Classification The results in Table 4 504

highlight key differences in performance between 505

open-source and commercial language models un- 506

der text perturbation strategies. On clean SST2 test 507

data, commercial models outperform their open- 508

source counterparts, with GPT-4o achieving the 509

highest accuracy, followed by Gemini. In contrast, 510

open-source models perform slightly lower. 511

Under obfuscation, performance varies consider- 512

ably. The BAE strategy causes substantial accuracy 513

drops: GPT-4o and Mistral fall to 0.615, while 514

Gemini drops further to 0.57. In contrast, Gem- 515

ini shows the highest robustness under TextFooler, 516

outperforming GPT-4o and all open-source mod- 517

els, suggesting stronger resilience to semantic- 518

preserving perturbations. HOMOCHAR has mini- 519

mal impact on commercial models but significantly 520

affects LLama and Mistral, exposing weaknesses in 521

character-level preprocessing among open-source 522

models. 523

GHOST results in the most severe performance 524

degradation across all models: GPT-4o, Gemini, 525

and LLama each drop to 0.475, with Qwen slightly 526

higher. Mistral achieves the highest accuracy un- 527

der GHOST, though still markedly lower than its 528

clean baseline. These findings suggest GHOST 529

effectively disrupts deeper semantic processing in 530

both commercial and open-source models. 531

5.5 In-Context Defense from Commercial 532

Models 533

In-context ’defense’ has been shown to enhance 534

attacker model robustness against perturbation de- 535

fenses by conditioning models through tailored 536

prompts rather than retraining. GHOST demon- 537

strates a strong resistance to in-context ’defense’ 538

mechanisms used in commercial language models. 539

To assess this, we test whether LLMs can pene- 540
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Figure 1: Robustness of GHOST to in-context defense by SoTA commercial models. This presents the effectiveness
of GHOST in resisting in-context defenses across three levels of increasingly helpful prompting. Each commercial
models show no signs of ability to denoise.

GPT-4o Gemini
After 5 0.30 0.09
After 10 0.28 0.09
After 20 0.3102 0.09

Table 5: Average Performance on Text Reconstruc-
tion by Commercial Models With In-Context Defense
Prompting after 5, 10 and 20 GHOST Examples.

trate obfuscation when explicitly informed of the541

obfuscation technique used. This reveals whether542

a attacker LLM can generalize from explicit in-543

structions to effectively counter specific obfusca-544

tion strategies. As this requires the model(s) to545

continuously learn from previous input, it is logical546

to explore using commercial model web interfaces547

as API calls to the models do not store previous548

input and output.549

Fig. 1 shows an example of the robustness of550

GHOST against Gemini and GPT-4o in-context551

defense for text reconstruction on one obfuscated552

example against three levels of increasing assis-553

tance. Table 5 outlines the average performance of554

text reconstruction by Gemini and GPT-4o after 5,555

10 and 20 obfuscated prompts with in-context de-556

fense prompting, obtained from inputs to their web557

GUI. The changes in average performance from the558

models after more exposure to GHOST examples559

are minimal for both Gemini and GPT-4o. This560

clearly demonstrates the inability of these SoTA561

commercial models to understand or learn how to 562

remove the invisible characters accurately. 563

6 Conclusion 564

This paper introduces SHROUD, a conceptual 565

framwork that unifies the search space for text 566

transformation to generate obfuscated texts that 567

are resistant to language model training and infer- 568

encing. We also propose the GHOST strategy as a 569

starting point on how SHROUD can be utilized to 570

create utility-preserving defensive text. Defensive 571

text obfuscation is an emerging tool for digital pri- 572

vacy and control. As generative models and surveil- 573

lance tools advance forward, this paper opens up 574

the venue for more research that addresses the ethi- 575

cal and technical implications of these obfuscation 576

strategies and the evolving dynamics between ob- 577

fuscation and AI systems data acquisition. 578

Limitations 579

The GHOST design is currently proving to be very 580

effective against SoTA models. However, given 581

that it only uses one strategy from the SHROUD 582

tables, denoising could be achieved by these mod- 583

els through more training or better preprocessing. 584

Future research can look to combine one or more 585

strategies to produce an even more robust method. 586

8



Ethics And Risks587

While a successful obfuscation strategy can help588

defend intellectual property and free-expression, it589

might also enable toxic or harmful content to evade590

detection. Likewise, it can be exploited for prompt591

injection, misinformation, or spam.592
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A Model Specifications 765

Models Weight Publisher Release Type
Llama3.2 3B Meta 2024 OS
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