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Abstract

As large language models (LLMs) increasingly
extract text data without consent, content cre-
ators face growing risks to intellectual property
and privacy. This paper outlines the emerg-
ing threats of unauthorized content repurpos-
ing and sensitive data exposure by Al systems
and the need for robust defensive strategies.
We introduce SHROUD (Structured Hierar-
chy for Rewriting and Obfuscation in Unstruc-
tured Data), the first unified guide to text per-
turbation and obfuscation techniques to pro-
tect text content from misuse. Additionally,
we present GHOST (Generated Hidden Ob-
fuscation STrategy), a novel, lightweight de-
fensive method that prevents model training
and inference on text by injecting invisible to-
kens that overload a model’s tokenizer context
window. GHOST allows for imperceptible yet
effective obfuscation, preserving human read-
ability while shielding content from unautho-
rized machine learning use. GHOST serves as
a privacy mechanism for evading automated
moderation and protecting intellectual property,
enabling social media users to share content
and online authors to prevent unauthorized Al
training using their work.

1 Introduction

The advancement of Large Language Models
(LLMs) poses significant intellectual property chal-
lenges as these systems appropriate written con-
tent without authorization or commercial compen-
sation. Copyright frameworks have been system-
atically circumvented by Al developers harvesting
creators’ intellectual output for commercial train-
ing data (Kouloumpis et al., 2011; Severyn and
Moschitti, 2015; Conover et al., 2011; Li et al.,
2023). The resulting derivative works mimic origi-
nal content while providing no compensation, po-
tentially diminishing authors’ creative control in
an ecosystem that increasingly commodifies their
intellectual labor. Furthermore, LLMs present sub-
stantial privacy vulnerabilities, whereby personal

communications and confidential materials incor-
porated into training datasets may subsequently
emerge in model outputs. Content creators face the
prospect of sensitive information being encoded
within model parameters and reproduced in re-
sponse to user queries.

These challenges call for defensive obfuscation
approaches that introduce textual perturbations to
shield semantic content from computational inter-
pretation while preserving human readability. Text
transformation techniques, implemented at various
linguistic levels, have diverse applications across
NLP domains: adversarial methods reveal model
weaknesses (Hosseini et al., 2017; Gao et al., 2018;
Ebrahimi et al., 2017; Jin et al., 2020), robustness
assessments evaluate performance under linguistic
variance (Belinkov and Bisk, 2017; Michel et al.,
2019; Ribeiro et al., 2020; Hendrycks et al., 2020),
red-teaming bypasses safety protocols (Wei et al.,
2023b; Perez et al., 2022; Zou et al., 2023; Bai
et al., 2022), data augmentation enhances general-
ization (Wei and Zou, 2019; Kobayashi, 2018) and
privacy mechanisms safeguard semantic integrity
from machine processing.

Evaluation criteria for defensive obfuscation re-
quires a balance between machine imperceptibility
and human comprehension. Machine imperceptibil-
ity metrics assess models’ capacity to reconstruct
original meaning or perform downstream tasks
such as sentiment analysis and QA. Conversely,
utility metrics evaluate preservation of human inter-
pretability, ensuring that a human reader can read
and understand the perturbed text with minimal
difficulty. Text obfuscation can serve as a privacy
control mechanism. Social media users can employ
it to share potentially controversial content while
evading automated moderation. Authors and cre-
ators can apply obfuscation to prevent unauthorized
Al training using their work, preserving intellectual
property and usage rights.

To address this challenge, this paper presents two



key contributions:

* SHROUD (Structured Hierarchy for Rewrit-
ing and Obfuscation in Unstructured Data):
To our knowledge, this is the first conceptual
framework to define and organize the transfor-
mation search space for generating language
model-resistant text. It categorizes transforma-
tion strategies that hinder model comprehen-
sion, classification, or generation and helps re-
searchers identify opportunities for more novel
techniques.

GHOST (Generated Hidden Obfuscation
STrategy): a novel, lightweight method for
producing obfuscated text that resists LLM
training and inference without compromising
utility. GHOST outperforms prior strategies
in robustness against in-context defenses, as
demonstrated in Section 5.

2 Related Work

This section reviews prior research on text perturba-
tion, specifically in adversarial attacks and privacy
protection. Both approaches employ text obfusca-
tion while preserving utility, differing primarily in
their objectives. Adversarial attacks introduce sub-
tle modifications to induce model errors, whereas
privacy protection alters text to prevent sensitive
information leakage.!

2.1 Adversarial Attack

Early adversarial attacks on text classifiers fo-
cused on character-level perturbations that pre-
served meaning but induced misclassification. Hos-
seini et al. (2017) showed that minor alterations,
such as spacing and typos, could bypass toxicity
filters. Gao et al. (2018) introduced DeepWord-
Bug, which identified key tokens and applied tar-
geted character edits to exploit model weaknesses.
Ebrahimi et al. (2017) further refined this with Hot-
Flip, framing attacks as a discrete optimization

"Unfortunately, the research communities discussed above
use conflicting terminology to describe the same fundamental
goal: preventing an Al system from accessing the text or data
generated by another entity. In one community (Section 2.1),
the entity blocking access is referred to as the attacker, while
the AI model(s) attempting to read the data is the victim. In
contrast, the other community (Section 2.2) labels the blocking
entity as the defender and the AI model(s) as the attacker.
Given that the creator of the text or data is its rightful owner,
we expect the latter framing to gain wider acceptance over
time.

problem and using gradient-based methods to iden-
tify impactful character-level changes. These stud-
ies revealed the vulnerability of neural models to
subtle orthographic variations. As character-level
defenses improved, research progressed to word-
level substitution attacks. Papernot et al. (2016)
used gradient-based methods to identify key words
for replacement. Alzantot et al. (2018) employed
a genetic algorithm to generate fluent adversarial
examples using synonym substitutions. Jin et al.
(2020) introduced TextFooler, which used context-
aware embeddings to ensure semantic similarity
and high attack success against BERT. Similarly,
BERT-Attack (Li et al., 2020) leveraged BERT
masked language modeling for effective word re-
placement. Bajaj and Vishwakarma (2023) pro-
posed HOMOCHAR, a homoglyph-based charac-
ter attack that maintained readability while achiev-
ing over 90% success on models like BERT and
RoBERTa (Liu et al., 2019).

Recent adversarial approaches increasingly tar-
get multimodal and instruction-tuned models. Wei
et al. (2023a) introduced "jailbreaking" prompts
to bypass content filters, while Perez and Ribeiro
(2022) detailed prompt injection attacks that over-
ride instructions or extract sensitive data. Zou et al.
(2023) and Wallace et al. (2019) developed univer-
sal prompts and triggers that reliably manipulate
model behavior.

2.2 Privacy Protection

Early privacy-preserving NLP drew on struc-
tured data methods like k-anonymity (Sweeney,
2002) and differential privacy (Dwork, 2006),
later adapted to text by Cumby and Ghani (2011)
through redaction techniques. The emergence of
large language models prompted concerns over
data leakage, with Carlini et al. (2022) revealing
their memorization tendencies. This led to for-
mal privacy frameworks: Fernandes (2021) pro-
posed leakage metrics, and Weggenmann and Ker-
schbaum (2018) introduced SynTF for private text
classification. McMahan et al. (2017) applied feder-
ated learning with differential privacy to language
models, while Yun et al. (2021) mitigated memo-
rization via calibrated noise during pre-training.
Research on text obfuscation for privacy pro-
tection has not been systematically organized, as
many individual strategies search on only one level.
This paper unifies text obfuscation by defining
the SHROUD Framework, a text transformation



search space that acts as a starting point for devel-
oping novel obfuscation strategies by combining
one or more perturbation levels with different trans-
formation strategies.

3 SHROUD Framework

Shown in Table 1, SHROUD is a unified frame-
work that provides a systematic overview of digi-
tal text obfuscation methods, enabling privacy re-
searchers to apply one or a combination of strate-
gies that conceal semantic meaning from Al lan-
guage models. This reframes text perturbation as a
combinatorial search over obfuscation techniques.
The framework can be generalized to tasks like ad-
versarial text, robustness testing, jailbreak-prompt
injection, and unlearnable text. It also helps NLP
researchers identify unexplored gaps and opportu-
nities in obfuscation and perturbation methods.

Given a document D, the text within D can be
characterized by:

* The level of obfuscation that determines at
what granularity the document is perturbed.
This level can be divided into three cate-
gories: Character-level, Word/Token-Level
and Sentence-Level. Applying obfuscation at
levels higher than this (e.g., Paragraph or Doc-
ument) requires more extensive modifications
that could significantly degrade utility.

* The obfuscation strategy that, given the level
of obfuscation, determines how the object is
obfuscated. The strategies can be grouped into
4 main categories: Extra, Deletion, Injection,
Transformation (EDIT).

3.1 Level of Obfuscation

Character-level obfuscation alters individual char-
acters through misspellings, typos, or lookalike
substitutions (e.g., "o" and "0") to mimic noise
from human error. These subtle changes can dis-
rupt word recognition and model comprehension.
Word-token level obfuscation modifies entire words
or tokens via synonym replacement, deletion, or
insertion of unrelated terms. These changes in-
troduce stronger semantic shifts while preserving
grammar, testing a model’s ability to handle vocab-
ulary variation and ambiguity. Sentence-level ob-
fuscation disrupts structure by rearranging words,
adding grammatical errors, or inserting distracting
sentences. This challenges the models’ ability to
parse syntax and retain focus on core meaning.

3.2 Obfuscation Strategies

The EDIT framework summarizes all text modi-
fication methods based on the obfuscation level
and strategy, each targeting different behaviors
in the interpreting model. For example, at the
word-token level with token ¢ = (hello), the
Extra method duplicates t — t' = hellohello
to draw model focus toward ¢, potentially over-
shadowing other informative tokens. In contrast,
the Injection method appends a different token
t — t' = HelloFresh, altering the semantic
meaning and obfuscating the original information
(Hello = greeting) vs (HelloFresh = food delivery
company). The choice of what and where to perturb
is governed by a search function and obfuscation
budget.

Simple strategies like repeating (Extra) or omit-
ting (Deletion) characters or tokens are easy to im-
plement and were effective against early language
models through adversarial misspelling, though
these have since been mitigated (Pruthi et al., 2019).
More advanced techniques adopted Injection and
Transformation strategies, including word swaps
(Ebrahimi et al., 2017; Alzantot et al., 2018), sym-
bol injection (Bajaj and Vishwakarma, 2023) and
synonym token substitution (Jin et al., 2020; Li
et al., 2020; Liang et al., 2017). Within the realm
of Injection and Transformation, text object can
be replaced with various substitution options as
shown in Table 2. Injection strategies might in-
duce interpreting model(s) to mis-tokenize (e.g.,
"Wal 3Z king’ — *wal’ +° 3 + ’king’ instead of
*walking’), alter the semantics (e.g., Ore[®) could
be misread as Oreo), or misinterpret the token (e.g.,
inject(4%,Spring) — Spring ‘& could cause state-of-
the-art (SoTA) multilingual models to interpret the
combined token as ’fountain’). Likewise, Transfor-
mation strategies can also cause mistokenization
and misinterpretation, while further obscuring con-
tent by converting characters into emojis, symbols,
images, or rare synonyms.

4 Problem Formulation

This section formalizes the problem. Given an
input text string x, the semantic understanding of a
function f (e.g., an LLM) on x is measured by its
ability to produce a reconstruction y that preserves
the essential information in x. Formally, for an
input z = (wq, wa, ..., wy,) € X, the model maps
x to an output y = (1, 82,...,8m,) € Y, where
w; and s; denote tokens at position ¢ in x and y,



Lvl/Strategies Extra Deletion Injection Transformation
Character Insert existing character(s) Remove character(s) Insert a foreign character | Change character(s) to
a different character
‘Word Token Repeat the existing token Drop the whole token Insert new token(s) Replace token(s) with
a different token
Sentence Append the same sentence | Drop the entire sentence Inject a completely Restructure the sentence
at the start or end different sentence

Table 1: SHROUD Framework. The SHROUD framework categorizes text obfuscation strategies across three
linguistic levels—character, word token, and sentence—and four transformation types: Extra, Deletion, Injection,
and Transformation. Each cell defines how perturbations are applied at a given level, enabling systematic analysis

of obfuscation behavior.

Injection Transformation
Character Word Token Character Word Token
I—Eye
ASCII I—In [—Inn In—On Nice—Good
Extended Enjoy— Enjoy—
Latin Char Engjoy - Enjgy -
Non-Latin Script Walking— Spring—
(eg.Cyrillic, Wal 3 king Spring R Zoo— B oo -
CJK, Arabic)
Mathematics &
Special Symbol Park—Park™ - Sleep—SI1 € ep Money—$
Harmful — Apple— United
Emojis Ore—Ore[0) Harmful|"] Npple Kingdom—
<
Injecting Mapping a char
Special Unicode Non-Printable - to Non-Printable -
char(s) i.e Control char(s)
Chars

Table 2: Representative examples of obfuscation through Injection and Transformation strategies at the character
and word-token levels. Variants include ASCII repetition, extended Latin characters, non-Latin scripts (e.g., CJK),
mathematical and special symbols, emojis, and non-printable Unicode characters, illustrating diverse methods to

perturb model interpretation.

respectively. X and Y represent the spaces of all
possible input and output strings.
An obfuscated x ot is considered successful if:

f(xobf) — y' such that Sim(y,y’) <€,

where Sim : Y xY — (0, 1) is a semantic similar-
ity function comparing reconstructed outputs, and
€ is the maximum allowed similarity between the
output of the clean input and that of the obfuscated
input.

4.1 Defense Model

Objective: In this work, we consider a defense
model where the primary objective is to prevent
large language models (LLMs) from successfully
extracting, inferring, or leveraging important or
sensitive information embedded in text.

Adversary Consideration: The adversary is an
LLM-based system that tries to extract information
for training and downstream tasks utilization. The
owner of the text is a defender against the models.

We consider a black-box setting where the de-
fender has no knowledge of the model architecture,
parameters, or training data. Their only capabil-
ity is to query the target model using input data
and observe the resulting response. This simu-
lates the real-world scenario where online authors
would have no control or knowledge of the lan-
guage model(s) and/or their architecture.

Assumptions: We assume that 1) The model ob-
tains the text through text scraping, web dump or
any other means that do not involve image and
OCR (Optical Character Recignition) extraction, 2)




The defender can only publish contents in pure text
format (i.e., Unicode, ASCII).

Approach: To generate an obfuscated example,
we propose a two-step approach:

Step 1: Extract Important Token. Given an input
text x = {wy, wa, ..., wy}, notall w; contribute to
the semantics of X, with tokens such as stopwords
offering little to no information to the statement x.
Therefore, only information-dense tokens should
be obfuscated for a strategy to potentially reduce
utility.

Step 2: Apply Transformation. Given the key to-
kens identified in step 1, each is transformed using
one or more strategies from SHROUD (Section 3).
The transformation function should be guided by
the formal optimzation problem: Given a sensitive
token w, and an obfuscated version w’ € O(w)
from a valid obfuscation set, we define the opti-
mization problem as:

min  Pw | w')
w' €O (w) (1)

subjectto  L(w,w') > §
where:

* P(w | w') is the probability that an adversary
model infers the original token w given the
obfuscated token w’,

* O(w) is the set of allowable obfuscations,
o L(w,w') is a utility function,

* ) is a threshold ensuring the obfuscation pre-
serves minimum acceptable utility.

S GHOST

This section introduces GHOST (Generated Hid-
den Obfuscation STrategy), a novel, utility-
preserving defense strategy that applies a single
SHROUD transformation. GHOST effectively de-
fends against SOTA LLMs in black-box settings,
showing strong resistance to denoising and in-
context defenses by exploiting LLM tokenization
mechanisms.

5.1 LLMs and Tokenizer

The context window of a model’s tokenizer defines
the finite sequence of preceding tokens that the
model attends to during both the encoding of input
and the decoding of output. This limited short-
term memory directly impacts the model’s capacity

to maintain topical consistency, resolve prior ref-
erences, and understand long-range dependencies
within a given text or conversation—all of which
are required for effective interpretation and sub-
sequent usage of the text. GHOST exploits this
context window by injecting invisible characters
into sensitive tokens, effectively overloading the
tokenizer and impairing the model’s ability to fur-
ther process the input accurately. These invisible
characters have no semantic meaning, but are still
considered valid tokens to the model(s), thus be-
ing tokenized with the original text. For example,
given a token x = "Gin", after obfuscating with
GHOST, invisible characters will be added to pro-
duce GinGHOST

) what human reader sees: Gin
Gingrost

what the model sees: GInvy, ..Inv,in

2

where Inv; are injected invisible characters

Appending invisible characters to text can dis-
rupt large language models (LLMs) by distorting
token structures, fragmenting meaningful words,
introducing rare tokens, or triggering edge-case
behaviors. This misalignment leads to misinterpre-
tation, semantic dilution, or prompt injection. The
vulnerability stems from a disconnect between the
static, rule-based nature of tokenizers and the con-
textual basis of language understanding, making
LLMs susceptible to adversarial manipulation due
to their training on standard textual inputs.

5.2 Invisible Characters

Invisible Unicode characters span a range of code
points not intended to render visible glyphs. These
include control characters (e.g., tabs, line feeds),
format characters (e.g., right-to-left markers, line
break hints), and other special-purpose symbols
with technical functions. Among these, Variation
Selectors (VS) are a class of invisible format char-
acters that modify the visual rendering of a pre-
ceding base character with multiple glyph forms.
They do not appear independently but instruct the
rendering engine to select a specific variant, which
is essential for scripts like CJK ideographs, histori-
cal characters, and emoji, where visual differences
may convey semantic or stylistic distinctions.
There are 256 VS characters, each specifying a
distinct rendering behavior—for example, VS15
enforces text-style rendering, while VS16 applies



Model

BAE TextFooler HOMOCHAR GHOST

LLama3.2 0.8359 0.7593 0.7358 0.0683
Qwen2.5  0.8779 0.8097 0.7400 0.0808
Mistral 0.8693 0.8067 0.8674 0.0732
GPT4o0 0.8816 0.7904 0.9863 0.3084
Gemini 0.8789 0.7868 0.9893 0.0903

Table 3: Performance Comparison of Open-Source and Commercial Models across Different Obfuscation Strategies
on Text Reconstruction Task. The score represents the similarity score between clean text and obfuscated text
reconstruction using all-MiniLM- L6-v2 Sentence-Transformer. Lower score represents higher effectiveness.

Model Clean BAE TextFooler HOMOCHAR GHOST
LLama3.2 085 0.575 0.675 0.69 0.475
Qwen2.5 0.88  0.605 0.63 0.81 0.48
Mistral 0.87 0.615 0.625 0.76 0.525
GPT4o0 094 0.615 0.695 0.90 0.475
Gemini 092 057 0.73 0.93 0.475

Table 4: Performance Comparison of Open-Source and Commercial Models across Different Obfuscation Strategies
on Sentiment Classification. The score represents the accuracy of the predictions against SST2 ground truth. Lower

score represents higher effectiveness.

emoji-style rendering. The character 8 (U+2665),
for instance, can be rendered in one of two formats:

» Text Presentation: (U+2665) followed by VS-
15—+ @

* Emoji Presentation: (U+2665) followed by
VS-16 - @

With a wide range of possible values, we can in-
ject various combinations of variation selectors ap-
pended to information-dense tokens to obfuscate
them from the model(s).

5.3 Experimental Setup

This section details the models and the dataset used
to measure the effectiveness of GHOST obfusca-
tion strategy.

Test Models For this experiment, we select five
models to evaluate the effectiveness of the GHOST
algorithm. We choose only stable SoOTA models
that were recently released. It is important to note
that testing on close-source, commercial models
such as GPT-40 and Gemini incurs API call costs.
These models are Llama3.2 (Llama) (Touvron et al.,
2023), Qwen2.5 (Qwen) (Hui et al., 2024), Mistral,
GPT-40-mini (GPT-40) and Gemini2.0 (Gemini)
(refer to Appendix A for full model specification
and configuration).

Tasks We apply two tests to measure the effec-
tiveness of obfuscation.

» Text Reconstruction A neural model f re-
ceives input x alongside prompt Promptrc
which instructs the model to repeat back =
clearly and concisely, preserving key informa-
tion. Models are first prompted on clean in-
puts to establish a baseline, then on obfuscated
inputs. Metric: Reconstruction quality is mea-
sured using semantic similarity computed via
the all-MiniLM-L6-v2 sentence transformer.
This task follows prior work by Lin et al.
(2023) and Jia and Liang (2016).

* Sentiment Classification A neural model f
receives input x prompt Promptsc, which in-
structs it to classify the sentiment of x as Posi-
tive (1) or Negative (0). Metric: The predic-
tions are compared against the ground truth la-
bel obtained from HuggingFace for accuracy.

Dataset We choose SST2 (Socher et al., 2013)
(Split = Validation, random_seed = 168) as the
dataset. SST2 is an extremely popular dataset,
therefore there is a significantly high chance that
the target models have been exposed to the dataset.
With the consideration of API costs, we select 200
instances to evaluate.



Algorithm Design Based on the two-step ap-
proach from the Defense Model proposed in Sec-
tion 4.1, GHOST performs obfuscation as follows:
As GHOST utilizes invisible characters (i.e., Vari-
ation Selectors), it can obfuscate all of the tokens
instead of just important ones in a given input as it
does not degrade utility (i.e, the utility function £
is always co as human readability is not affected
by the amount of injections). For each of the to-
kens, GHOST iteratively injects invisible tokens
in between the characters, guided by Eq.(1). After
each iteration, the models are queried for the log-
probability of the token w given the obfuscated
wggost until P(w | wgposr) ~ 0. (Note:
GPT-40-mini does not support logprob query so
we use GPT-4o to approximate the logprob of a
token. GPT-40 and GPT-40-mini share the same
architecture family (OpenAl, 2024) therefore this
approximation is a fair representation.)

5.4 Results

This section outlines the results from our experi-
ments.

Text Reconstruction The main results for text
reconstruction are summarized in Table 3. The
table presents the effectiveness of four different
recent obfuscation methods: BAE (Garg and Ra-
makrishnan, 2020), TextFooler (Jin et al., 2020),
HOMOCHAR (Bajaj and Vishwakarma, 2023),
and GHOST on various open-source and commer-
cial language models. These strategies were care-
fully chosen as baselines because of their efficacy
against transformer-based models and their utility-
preserving nature. Overall, GHOST displayed
a significant performance in preventing language
models from inferring on text. The scores repre-
sent the models’ ability to understand perturbed
text, with lower scores indicating more success-
ful defense. GHOST is the most effective strat-
egy across all models, achieving the lowest scores
overall. Among open-source models, LL.ama3.2
is the most vulnerable to GHOST (0.0683), but
relatively more robust to other obfuscation. Mistral
shows stronger resilience against HOMOCHAR
and TextFooler attacks (e.g., 0.8674 and 0.8067, re-
spectively), but is still highly affected by GHOST.

The commercial models show high comprehen-
sion scores for most perturbations. GPT-40 main-
tains strong comprehension after BAE, suggesting
resilience to basic word-level substitutions. Like-
wise, it is very resilient to HOMOCHAR, indicat-

ing extreme robustness to homoglyph-based char-
acter substitutions. GPT-4o likely normalizes or ig-
nores these alterations. On the other hand, it shows
moderate vulnerability to TextFooler; the drop
in score reflects partial confusion due to context-
aware replacements. When facing GHOST, it wit-
nesses a major drop, the lowest performance across
all obfuscation for GPT-40. Similary, Gemini dis-
plays the same trend. Albeit a low score, Gemini
performed better than GPT-40 on GHOST. This
performance is much closer to the top-performing
open-source models, and indicates stronger robust-
ness towards the semantic understanding.

Sentiment Classification The results in Table 4
highlight key differences in performance between
open-source and commercial language models un-
der text perturbation strategies. On clean SST2 test
data, commercial models outperform their open-
source counterparts, with GPT-40 achieving the
highest accuracy, followed by Gemini. In contrast,
open-source models perform slightly lower.

Under obfuscation, performance varies consider-
ably. The BAE strategy causes substantial accuracy
drops: GPT-40 and Mistral fall to 0.615, while
Gemini drops further to 0.57. In contrast, Gem-
ini shows the highest robustness under TextFooler,
outperforming GPT-40 and all open-source mod-
els, suggesting stronger resilience to semantic-
preserving perturbations. HOMOCHAR has mini-
mal impact on commercial models but significantly
affects LLama and Mistral, exposing weaknesses in
character-level preprocessing among open-source
models.

GHOST results in the most severe performance
degradation across all models: GPT-40, Gemini,
and LLama each drop to 0.475, with Qwen slightly
higher. Mistral achieves the highest accuracy un-
der GHOST, though still markedly lower than its
clean baseline. These findings suggest GHOST
effectively disrupts deeper semantic processing in
both commercial and open-source models.

5.5 In-Context Defense from Commercial
Models

In-context ’defense’ has been shown to enhance
attacker model robustness against perturbation de-
fenses by conditioning models through tailored
prompts rather than retraining. GHOST demon-
strates a strong resistance to in-context ’defense’
mechanisms used in commercial language models.
To assess this, we test whether LLMs can pene-



System Prompt: | have obfuscated the following statement. What does the
obfuscated prompt say? Here is how to retrieve the original input:

Here is the code to
Only Keep the ASCII At
Character

l l

obfuscation

v

Remove all the non-
English characters

l

Obfuscated Prompt: | do not agree with the newly proposed policy

.

~

Gemini: | hope you are
doing good and that
you are having a nice
day

way

GPT4: | do not know

_

/ Gemini: | love
processing text in this

-

Gemini: | love reading

and learning new things

and | am always eager
to discover more

Y

GPT4: | dont think we

should be doing this

right now on open
channels

GPT4: donotreadthis
dontreadthis

/

Figure 1: Robustness of GHOST to in-context defense by SoTA commercial models. This presents the effectiveness
of GHOST in resisting in-context defenses across three levels of increasingly helpful prompting. Each commercial

models show no signs of ability to denoise.

GPT-40 | Gemini
After 5 0.30 0.09
After 10 0.28 0.09
After 20 | 0.3102 0.09

Table 5: Average Performance on Text Reconstruc-
tion by Commercial Models With In-Context Defense
Prompting after 5, 10 and 20 GHOST Examples.

trate obfuscation when explicitly informed of the
obfuscation technique used. This reveals whether
a attacker LLM can generalize from explicit in-
structions to effectively counter specific obfusca-
tion strategies. As this requires the model(s) to
continuously learn from previous input, it is logical
to explore using commercial model web interfaces
as API calls to the models do not store previous
input and output.

Fig. 1 shows an example of the robustness of
GHOST against Gemini and GPT-40 in-context
defense for text reconstruction on one obfuscated
example against three levels of increasing assis-
tance. Table 5 outlines the average performance of
text reconstruction by Gemini and GPT-4o after 5,
10 and 20 obfuscated prompts with in-context de-
fense prompting, obtained from inputs to their web
GUI. The changes in average performance from the
models after more exposure to GHOST examples
are minimal for both Gemini and GPT-40. This
clearly demonstrates the inability of these SoTA

commercial models to understand or learn how to
remove the invisible characters accurately.

6 Conclusion

This paper introduces SHROUD, a conceptual
framwork that unifies the search space for text
transformation to generate obfuscated texts that
are resistant to language model training and infer-
encing. We also propose the GHOST strategy as a
starting point on how SHROUD can be utilized to
create utility-preserving defensive text. Defensive
text obfuscation is an emerging tool for digital pri-
vacy and control. As generative models and surveil-
lance tools advance forward, this paper opens up
the venue for more research that addresses the ethi-
cal and technical implications of these obfuscation
strategies and the evolving dynamics between ob-
fuscation and Al systems data acquisition.

Limitations

The GHOST design is currently proving to be very
effective against SOTA models. However, given
that it only uses one strategy from the SHROUD
tables, denoising could be achieved by these mod-
els through more training or better preprocessing.
Future research can look to combine one or more
strategies to produce an even more robust method.



Ethics And Risks

While a successful obfuscation strategy can help
defend intellectual property and free-expression, it
might also enable toxic or harmful content to evade
detection. Likewise, it can be exploited for prompt
injection, misinformation, or spam.
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A Model Specifications

Models Weight | Publisher | Release | Type
Llama3.2 3B Meta 2024 0OS
Qwen2.5 3B ALBB 2024 oS

Mistral 11B Mistral Al 2024 oS

GPT4o mini OpenAl 2024 CM
Gemini2.0 | Flash Google 2024 CM

Table 6: Test Models and their specification. Within
Type, OS:Open-source models, CM:Commercial Mod-
els
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