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ABSTRACT

Multimodal learning faces a task-generation dilemma: discriminative tasks re-
quire a purified, task-specific subset of semantics, whereas generative tasks de-
mand the complete shared information, forcing a trade-off in a single model.
To resolve this, we propose task-adaptive disentanglement (TADL), a paradigm
that dynamically disentangles representations guided by task-specific supervised
signals. We instantiate this paradigm with the dual-level disentanglement (DL2)
framework, which leverages contrastive signals as a practical and efficient form of
weak supervision. DL2 first separates modality private information from shared
information (Level-1) and then adaptively decomposes the shared representation
into a task-relevant component and a residual component that preserves generative
integrity (Level-2). This second-level disentanglement is driven by two regulariz-
ers: a virtual modality pair method for positive pairs and a common-cause mutual
information (CCMI) metric for negative pairs. Extensive experiments on multi-
modal clustering demonstrate that DL2 achieves state-of-the-art task performance
without compromising generative quality within a single model.
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Figure 1: The task-generation dilemma
on CelebA-HQ. CMVAE (Palumbo et al.
(2024)) captures complete shared informa-
tion, while DL extracts more purified task-
relevant information. DL2 achieves both pure
task-relevant information and complete in-
formation preservation. See Appendix I.1 for
details.

Multimodal data (e.g., image-text) provide richer
semantics than unimodal data, making the extrac-
tion of shared information key for cross-modal un-
derstanding and generation. Multimodal Variational
Autoencoders (MVAEs) are widely used to disentan-
gle this shared information from modality-specific
data. However, most existing MVAEs treat the
shared information as an indivisible whole (Boucha-
court et al. (2018); Sutter et al. (2020)), overlook-
ing a critical point: different downstream tasks rely
on distinct semantic subsets. This leads to the task-
generation dilemma.

As shown in Figure 1, this assumption forces a trade-
off between task performance and generative capa-
bility, limiting model versatility:

Task Performance Demands Purity: Discriminative tasks (e.g., clustering) require highly puri-
fied representations of task-relevant features (e.g., facial features without backgrounds). Using
the full shared representation introduces noise, degrading performance and manifold structure
(Wu et al. (2025)), as evidenced by CMVAE’s 56% and 43% ACC decrease versus DL2 and DL.

Generation Fidelity Demands Completeness: High-quality generation (e.g., text-to-image) re-
quires complete shared information to preserve semantic integrity. Losing any component com-
1Part of the Abbreviations Used in This Paper: Unconditional FID (U FID), Conditional FID (C FID),

Conditional Coherence (CC), Unconditional Coherence (UCC). U/C FID measure generation quality; UCC/CC
measure consistency. These will be used without further explanation.
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promises consistency, demonstrated by DL’s 15% and 8% reduction in CC, and 4% and 3%
decline in UCC relative to DL2 and CMVAE.

We term this conflict the task-generation dilemma. Addressing it enables unified models that
achieve: i) superior task specialization through cleaner, more interpretable features; ii) controlled
feature editing via task-relevant latent representations; and iii) efficient deployment by eliminating
separate task-specific and generative models. A detailed analysis and experimental verification of
the Task-Generation Dilemma can be found in Appendix I.1.

Resolving the task-generation dilemma requires disentangling task-relevant information. Although
disentangled representation learning (DRL) provides a framework for factorizing data, its main-
stream paradigms are unsuitable for this challenge. The fundamental limitation is incomplete in-
formation perception—we lack prior knowledge of the full factor set and their relationships. This
leads to critical shortcomings in existing approaches: Independence-prior methods (e.g., β-VAE
Higgins et al. (2017)) enforce factor independence at the cost of information loss, harming genera-
tion. Causal DRL methods (Yang et al. (2021); Shen et al. (2020)) rely on a predefined causal graph;
but an incorrect graph leads to latent space misalignment, compromising both interpretability and
generation quality. Therefore, a new paradigm of task-adaptive disentanglement is needed.

Resolving the task-generation dilemma requires disentangling task-relevant information. While dis-
entangled representation learning (DRL) provides a framework for data factorization, its mainstream
paradigms remain unsuitable for this challenge due to incomplete information perception—we lack
prior knowledge of the full factor set and their relationships. This results in critical limitations:
independence-prior methods (e.g., β-VAE Higgins et al. (2017)) enforce factor independence at the
cost of information loss, harming generation; causal DRL methods (Yang et al. (2021); Shen et al.
(2020)) depend on predefined causal graphs, where incorrect specifications misalign the latent space
and compromise both interpretability and generation quality. These limitations necessitate a new
paradigm of task-adaptive disentanglement.
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Figure 2: Task-Adaptive dis-
entanglement analogy. (a)
Complete factorization of z.
(b) Multiple decompositions
are possible. (c) Task signals
define z(t) semantics. (d) z(r)

complements z(t), preserving
z = z(t) + z(r).

To resolve the task-generation dilemma, We propose a new paradigm:
Task-Adaptive DisentangLement (TADL). Unlike prior approaches,
TADL does not seek the full latent factorization depicted in Figure
2a. Instead, it decomposes the shared representation z into a task-
specific component z(t) and a residual component z(r). However, as
Locatello et al. (2019) notes, unsupervised disentanglement requires
inductive biases. Without guidance, z can be decomposed infinitely
many ways (Figure 2b), making task-relevant separation challenging.
TADL’s core principle is that task-derived signals define z(t), with
z(r) adapting as its complement. This ensures holistic preservation:
z = (z(t), z(r)) (Figures 2c and 2d). The residual acts as a “reser-
voir” for task-irrelevant information, preventing loss (see Appendix
I.1). Thus, z(t) is purified for downstream tasks while z remains com-
plete for generation, resolving the dilemma at its source. A successful
implementation of the TADL paradigm should exhibit the following measurable properties:

Task-Adaptive Purity: z(t) should contain minimal sufficient task information, achieving perfor-
mance (e.g., ACC, NMI) comparable or superior to using z.

Information Preservation: The process must ensure no information loss in z = (z(t), z(r)),
guaranteeing high reconstruction fidelity (e.g., low FID).

Dynamic Functional Allocation: The information partition between z(t) and z(r) should dynam-
ically adapt to each input and supervisory signal, distinguishing TADL from static methods.

To materialize the task-adaptive disentanglement paradigm, we instantiate the Dual-Level
DisentangLement (DL2) framework upon a MVAE. As Figure 3 shows, DL2 employs a structured
approach: it first separates modality-private from shared information (Level-1), then adaptively de-
composes the shared representation into task-relevant (z(t)) and residual (z(r)) components (Level-
2). This adaptive decomposition is guided by contrastive signals (CSs), a naturally available form
of weak supervision. We introduce two novel regularizations: i) For positive signals (PSs), we treat
a positive sample pair as a “virtual modality pair”, extending the MVAE’s inference framework to
induce a regularization (RPS) that identifies consistent semantics while preserving generation. ii)
For negative signals (NSs), we propose Common-Cause Mutual Information (CCMI), a new metric

2
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Figure 3: The illustration of DL2. LDL(X) dominates the first-level disentanglement. It can
separate the shared information and the private information from each modality. RPS(X

k,X l)
and RNS(X

i,Xj) dominate the second-level task-adaptive disentanglement. Among them,
RPS(X

k,X l) directly captures the similarity information between (Xk,X l). Furthermore,
RNS(X

i,Xj) minimizes the ICCMI(z
i
(t); z

j
(t)) between negative sample pairs, which helps zi

(t) and

zj
(t) model the dissimilarity information between (Xi,Xj).

quantifying the probability that two samples share the same semantic cause. A dedicated regular-
ization (RNS) minimizes CCMI to encourage z(t) to encode discriminative information between
negative pairs. Integrating these into a unified objective enables DL2 to achieve task-adaptive disen-
tanglement, effectively resolving the dilemma. Our key contributions are as follows:

• The Task-Generation Dilemma. We identify and formalize a fundamental conflict in multimodal
learning between task performance and generation fidelity.

• The Task-Adaptive Disentanglement Paradigm. We propose a novel paradigm that dynamically
disentangles representations based on task-derived signals.

• The DL2 Framework. We introduce a structured MVAE-based framework with a dual-level latent
space that enables fine-grained semantic separation while maintaining generative integrity.

• Novel Weakly-Supervised Mechanisms. We develop disentanglement techniques utilizing con-
trastive signals, including: i) The “virtual modality pair” concept and its regularization for PSs.
ii) CCMI metric and its regularization for NSs, effectively capturing discriminative semantics.

2 DUAL-LEVEL DISENTANGLEMENT (DL2) FRAMEWORK
To resolve the task-generation dilemma, we propose a novel task-adaptive disentanglement
paradigm, instantiated via the Dual-Level DisentangLement (DL2) framework. DL2 extends mul-
timodal variational autoencoders with a structured two-level latent space for fine-grained semantic
separation. We instantiate and validate DL2 on multimodal clustering—an ideal testbed where con-
trastive signals naturally arise as pairwise constraints and clustering performance is highly sensitive
to representation purity. The following sections detail DL2’s primary loss function and its two regu-
larization terms.

2.1 LEVEL-1 DISENTANGLEMENT: SEPARATING PRIVATE AND SHARED INFORMATION

Consider a multimodal dataset comprising N samples and M modalities. The dataset can be

represented in two equivalent forms: X :=
{
xm =

{
xi
m

}N

i=1

}M

m=1
(grouped by modality) or

X :=
{
Xi =

{
xi
m

}M

m=1

}N

i=1
(grouped by sample). The generative process for each data point

Xi = {xi
m}Mm=1, where i = 1, . . . , N , is defined as follows. First, the cluster assignment ci

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

follows a discrete distribution with parameters π = {π1, π2, . . . , πK}. The shared latent code
zi consists of two components: the task-driven component zi

(t), which captures cluster-relevant
information, and the residual component zi

(r), which contains unrelated variations, satisfying
zi = (zi

(t), z
i
(r)). The task-driven component is generated conditional on the cluster assignment

as zi
(t) ∼ p(z(t) | ci), while the residual component zi

(r) ∼ p(z(r)) and modality-specific latent
codes {wi

m ∼ p(wm)}Mm=1 are sampled from their respective priors. Each data point is then gener-
ated as Xi = {xi

m ∼ pθm(xi
m | wi

m, zi)}Mm=1. Typically, both priors and likelihoods are assumed
to belong to specific distribution families (e.g., Gaussian, Laplacian, or mixture distributions), with
the likelihood parameterized by neural network decoders. Crucially, z(t), z(r), and {wi

m}Mm=1 are
assumed mutually independent. Under these assumptions, the generative model is formalized as:
pΘ(X,W , z, c) = pπ(c) · p(z(r)) · p(z(t) | c) ·

∏M
m=1 p(wm) · pθm(xm | wm, z).

To achieve tractable optimization, we introduce variational encoders {qϕwm
(wm | xm)}Mm=1 and

qΦz (z | X) to approximate posterior inference for each latent variable. Consistent with the genera-
tive assumption, the shared and modality-specific encoders are conditionally independent given the
observed data. We further assume that given a single modality, the task-driven component z(t) and
residual component z(r) are independent. To ensure scalability across varying numbers of modali-
ties, we model the joint encoder for z as a mixture-of-experts (MOE):

qΦz (z | X) =
1

M

M∑
m=1

qϕzm
(z | xm) =

1

M

M∑
m=1

qϕzm
(z(t), z(r) | xm)

=
1

M

M∑
m=1

qϕtm
(z(t) | xm) · qϕrm

(z(r) | xm).

(1)

Marginalizing the joint encoder for z yields two marginal MOE encoders: qΦt
(z(t) | X) =

1
M

∑M
m=1 qϕtm

(z(t) | xm) and qΦr
(z(r) | X) = 1

M

∑M
m=1 qϕrm

(z(r) | xm). Following Palumbo
et al. (2023), we introduce auxiliary distributions r1(w1), . . . , rM (wM ) to precisely model the
shared information z = (z(t), z(r)) and modality-specific information W for each sample.

The primary objective of DL2, denoted LDL(X), forms a valid evidence lower bound for log pΘ(X)
under Lemma 1, with proof provided in Appendix C:

LDL(X) =
1

M

M∑
m=1

Eqϕzm
(z(t),z(r)|xm)

qϕwm
(wm|xm)

{w̃n∼rn(wn)}n̸=m

[
Jπ,Φt ,Φr ,ϕwm,Θ

(X, c, z(t), z(r),wm)
]
, (2)

where
Jπ,Φt,Φr,ϕwm ,Θ(X, c, z(t), z(r),wm)

= log pθm(xm | z(t), z(r),wm) +
∑
n ̸=m

log pθn(xn | z(t), z(r), w̃n)

+β log
p(z(r))p(wm)

∑
c p(c)p(z(t) | c)

qΦr
(z(r) | X)qϕwm

(wm | xm)qΦt
(z(t) | X)

.

(3)

Lemma 1. The primary objective LDL(X) (Equation 2) is a valid lower bound on log pΘ(X).

2.2 LEVEL-2 TASK-ADAPTIVE DISENTANGLEMENT VIA CONTRASTIVE SIGNALS

DL2 integrates information from CSs via two carefully-designed regularizations to facilitate task-
adaptive disentanglement at the second level.

2.2.1 REGULARIZATION OF POSITIVE SIGNALS BASED ON VIRTUAL MODALITY PAIRS

Given the set of positive sample pairs (must-link sample pairs), which is denoted as M ={
(Xk,X l) | ck = cl

}
. We hope to guide the model to identify and decouple z(t) through their

weakly supervised positive signals.

MVAEs leverage inter-modal matching relationships as weak supervision to disentangle shared and
private information. We observe that the positive signals (PSs) between sample pairs is isomor-
phic to multimodal matching, both indicate semantic consistency. This inspires a novel paradigm:

4
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treating positive sample pair as “virtual modality pair” to disentangle task-driven semantic subsets
via extended variational inference. Specifically, we treat each sample of a positive pair as a “vir-
tual modality”. The virtual shared information in this virtual modality pair is z(t) ≈ zk

(t) ≈ zl
(t),

while the virtual modality-specific information corresponds to (W k, zk
(r)) and (W l, zl

(r)). Then,
for virtual modality pairs (Xk,X l), we derive RPS(X

k,X l) to maximize log p(Xk,X l):

RPS(X
k,X l) =

1

2M

∑
h∈{k,l}

M∑
m=1

E qϕzm
(z(t),z(r)|xh

m)

qϕwm
(wm|xh

m),z̃(r)∼f(z(r))

{w̃n∼rn(wn)}n ̸=m

G π,Θ,
Φt ,Φr ,
ϕwm

(Xk,X l, c, z,wm),
(4)

where z = (z(t), z(r)),

Gπ,Θ,Φt ,Φr ,ϕwm
(Xk,X l, c, z,wm)

=

M∑
n=1

log pθn(x
h
n | z(t), z̃(r), w̃m) +

∑
n̸=m

log pθn(x
h
n | z(t), z(r), w̃n)

+ log pθm(xh
m | z(t), z(r),wm) + β log

p(z(r))p(wm)
∑

c p(c)p(z(t) | c)
qΦr

(z(r) | Xh)qϕwm
(wm | xh)qΦt

(z(t) | Xk,X l)

(5)

and qΦt(z(t) | Xk
m,X l

m) represents the positive sample pair MOE encoder:

qΦt
(z(t) | Xk,X l) =

1

2

[
qΦt

(z(t) | Xk) + qΦt
(z(t) | X l)

]
=

1

2

[
1

M

M∑
m=1

[
qϕtm

(z(t) | xk) + qϕtm
(z(t) | xl)

]]
.

(6)

Notably, analogous to Section 2.1, we introduce an auxiliary distribution f(z(r)) for z(r) to achieve
precise separation between the consistent information and specific components within positive sam-
ple pairs. The following Lemma 2, for which we provide a proof in Appendix D, proves that
RPS(X

k,X l) is a valid ELBO of log pΘ(X
k,X l). Therefore, while traditional MVAE match-

ing operates on cross-modal samples (e.g., image–text pairs), RPS(X
k,X l) operates on virtual

modality pairs. Maximizing RPS(X
k,X l) compels the model to extract common semantics from

Xk and X l. From an information-theoretic perspective, the first term in RPS(X
k,X l) exerts an

effect analogous to maximizing the mutual information between zh
(t) and Xh. The formal proof is

provided in Appendix E.
Lemma 2. The similarity regularization RPS(X

k,X l) (Equation 4) is a valid lower bound on
log pΘ(X

k,X l).

2.2.2 REGULARIZATION OF NEGATIVE SIGNALS BASED ON COMMON-CAUSE MUTUAL
INFORMATION

Given the set of negative sample pairs (cannot-link sample pairs), which is denoted as C ={
(Xi,Xj) | ci ̸= cj

}
. We hope that the model can identify and decouple z(t) through the weakly

supervised negative signals between them.

Minimizing the joint likelihood log pΘ(X
i,Xj) for dissimilar pairs fails to reliably identify incon-

sistent semantics, because the model can cheat by collapsing to low-energy states. We thus pivot to
mutual information (MI): Minimizing I(zi

(t); z
j
(t)) directly severs task-semantic correlation. How-

ever, the standard mutual information exhibits limitations in the current scenario.

Consider a generative process z(t) ∼ p(z(t) | c) with latent variables c ∼ p(c). When two samples
zi
(t) and zj

(t) are independently generated via:

ci ∼ p(c), zi
(t) ∼ p(z(t) | ci); cj ∼ p(c), zj

(t) ∼ p(z(t) | cj), (7)

they are marginally independent: p(zi
(t), z

j
(t)) = p(zi

(t))p(z
j
(t)). This independence renders standard

mutual information I(zi
(t); z

j
(t)) identically zero, failing to capture their intrinsic relationship.

5
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Thus, we introduce a new metric to quantify the probability that zi
(t) and zj

(t) share the same latent
cause c (i.e. ci = cj), despite the fact that ci and cj are sampled independently, and refer to it as
common-cause mutual information (CCMI), whose form is given in Definition 1.

Definition 1 (Common-Cause Mutual Information (CCMI)). Assume that zi
(t) and zj

(t) are two
observations, which are generated conditional on ci and cj respectively, where ci and cj are derived
from the same underlying semantic space. Then, we define the CCMI between zi

(t) and zj
(t) as

ICCMI(z
i
(t); z

j
(t)) = Ep(zi

(t)
)p(zj

(t)
)

log Ec

[
p(zi

(t) | c) · p(c | zj
(t))

]
Ec

[
p(zi

(t) | c)
]

 . (8)

Moreover, we can deduce that ICCMI(z
i
(t); z

j
(t)) = Ep(zi

(t)
)p(zj

(t)
) logP (ci = cj | zi

(t), z
j
(t)) ,

which provides a more intuitive semantic interpretation for ICCMI(z
i
(t); z

j
(t)). The derivation pro-

cess is shown in Appendix F. It follows that ICCMI(z
i
(t); z

j
(t)) exhibits symmetry and a higher

ICCMI(z
i
(t); z

j
(t)) value indicates stronger evidence that zi

(t) and zj
(t) encode the same underlying

semantic c.

We can estimate ICCMI(z
i
(t); z

j
(t)) using the variational encoders p(zi

(t)) ≈ qΦt(z(t) | Xi) and

p(zj
(t)) ≈ qΦt

(z(t) | Xj). However, it should be noted that numerical instability may arise during
minimization due to the logarithm of zero. Hence, we propose maximizing

RNS(X
i,Xj) = Ezi

(t)∼qΦt (z(t)|Xi)

zj
(t)

∼qΦt (z(t)|Xj)

log

1− Ec

[
p(zi

(t) | c) · p(c | zj
(t))

]
Ec

[
p(zi

(t) | c)
]

 (9)

instead, and calculate it by equation 44 in Appendix F.1.
Remark 1 (The generality of regularization for negative sample pairs). While instantiated with clus-
tering, DL2’s core regularization RNS (based on CCMI) has broad applicability. For non-clustering
tasks (e.g., classification/retrieval), modeling p(z(t)) as a mixture distribution (e.g., Gaussian Mix-
ture) allows this regularizer to capture discriminative semantics between sample pairs. This ap-
proach is justified by the inherently multimodal nature of real-world semantic spaces.

Remark 2 (The design rationale of asymmetrical regularizations). While applying reversed RNS to
positive signals may seem intuitive, it captures semantic consistency less effectively than our RPS
and significantly impairs generative performance, thereby contradicting the core goal of resolving
the task-generation dilemma. In contrast, RPS is specifically designed to disentangle information
within virtual modality pairs while preserving generative capability. See Appendix I.2 for analysis.

2.3 UNIFIED OPTIMIZATION OBJECTIVE OF DL2

DL2’s final LDL2 objective integrates the variational lower bound and dual CSs regularization, en-
abling end-to-end learning of dual-level disentanglement:

LDL2(X,M,C) = LDL(X) +
λ

|M|
∑

(Xk,Xl)∈ M
RPS(X

k,X l) +
γ

|C|
∑

(Xi,Xj)∈ C
RNS(X

i,Xj).

(10)
Among them, λ and γ represent the hyperparameters of balanced regularization RPS and RNS, re-
spectively. LDL(X) dominates the first-level disentanglement. RPS(X

k,X l) and RNS(X
i,Xj)

dominate the second-level task-adaptive disentanglement.

3 EXPERIMENTS
We evaluate DL2 on a semi-synthetic dataset (DDMNISTMM) and two real-world benchmarks (CU-
BICC and CelebA-HQ), comparing against state-of-the-art methods. As shown in Figure 4, DDM-
NISTMM contains three modalities, each displaying two independent MNIST digit sets against
modality-specific backgrounds. Crucially, digit labels are shared across modalities, making them the
ground-truth shared information. This provides a clean benchmark for multimodal disentanglement.
CUBICC, a challenging image-text clustering benchmark (Palumbo et al. (2024)), tests real-world

6
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Table 1: The clustering comparison results (mean(std)) on the three datasets. The best and second
best results in all methods are represented by bold value and underline value, respectively.

Dataset DDMNISTMM CUBICC

Method ACC(↑) NMI(↑) ARI(↑) ACC(↑) NMI(↑) ARI(↑)

VaDE 0.12(0.02) 0.01(0.02) 0.00(0.01) 0.18(0.00) 0.02(0.00) 0.00(0.00)
DC-GMM 0.17(0.02) 0.04(0.01) 0.02(0.01) 0.35(0.02) 0.24(0.03) 0.15(0.03)
SDEC 0.13(0.00) 0.01(0.00) 0.00(0.00) 0.15(0.01) 0.01(0.00) -0.01(0.00)
C-IDEC 0.14(0.00) 0.01(0.00) 0.00(0.00) 0.28(0.01) 0.40(0.00) 0.18(0.04)
VolMaxDCC 0.28(0.16) 0.17(0.20) 0.14(0.16) 0.80(0.04) 0.82(0.04) 0.74(0.05)
CMVAE 0.11(0.00) 0.00(0.00) 0.00(0.00) 0.55(0.13) 0.52(0.11) 0.35(0.16)
DL2 0.99(0.00) 0.99(0.00) 0.99(0.00) 0.95(0.00) 0.90(0.01) 0.88(0.02)
Dataset CelebA-HQ (Smiling Intensity) CelebA-HQ (Gender)

Method ACC(↑) NMI(↑) ARI(↑) ACC(↑) NMI(↑) ARI(↑)

VaDE 0.51(0.00) 0.00(0.00) 0.00(0.00) 0.64(0.04) 0.06(0.03) 0.07(0.04)
DC-GMM 0.56(0.04) 0.22(0.02) 0.36(0.05) 0.98(0.00) 0.85(0.00) 0.92(0.00)
SDEC 0.52(0.00) 0.02(0.00) 0.01(0.00) 0.66(0.03) 0.07(0.07) 0.05(0.05)
C-IDEC 0.72(0.05) 0.43(0.03) 0.58(0.01) 0.97(0.00) 0.83(0.02) 0.90(0.00)
VolMaxDCC 0.67(0.18) 0.70(0.24) 0.68(0.33) 0.63(0.00) 0.00(0.00) 0.00(0.00)
CMVAE 0.30(0.00) 0.03(0.03) 0.02(0.02) 0.59(0.05) 0.04(0.05) -0.03(0.02)
DL2 0.86(0.01) 0.71(0.03) 0.88(0.01) 0.99(0.00) 0.97(0.00) 0.99(0.00)

On DDMNIST, unimodal methods show average performance across modalities; on CUBICC and
CelebA-HQ, only the best-modal result is shown due to high variance. For fair comparison, CMVAE’s z prior
uses the number of clusters rather than the original large value, resulting in different CUBICC outcomes.

performance. To assess high-level semantic disentanglement, we use CelebA-HQ (image-text) with
gender and smiling intensity as distinct semantic attributes. All results report mean (std) over three
random seeds. Technical details and extended results are in Appendices G and I, with metrics in
Appendix H.

3.1 PERFORMANCE OF DL2 AGAINST THE TASK-GENERATION DILEMMA

(a) modality 1 (b) modality 2 (c) modality 3
Figure 4: Illustrative samples of DDMNISTMM.
Each subplot position corresponds to an individ-
ual sample, with a total of 100 samples displayed.

We evaluate DL2 on DDMNISTMM, CUBICC,
and CelebA-HQ to assess its performance un-
der the task-generation dilemma. For DDM-
NISTMM, we focus on left-digit labels with
0.1 ·N unique CSs. For CUBICC, we use bird
species labels to generate N unique CSs. For
CelebA-HQ, we employ gender (binary) and
smile intensity (6-point scale) labels, with N
unique CSs per attribute.

Clustering performance. To evaluate DL2’s ca-
pability for targeted information disentanglement, we employ representation-sensitive clustering
tasks as downstream evaluations, where clustering performance serves as the metric for disentan-
glement efficacy. Table 1 presents the clustering results. Unsupervised methods such as VaDE and
CMVAE yield suboptimal performance due to the absence of weak supervision. More importantly,
the encoder-only method VolMaxDCC generally outperforms weakly-supervised encoder-decoder
approaches (e.g., DC-GMM, SDEC, C-IDEC). This advantage stems from an inherent conflict in
the objective functions of the latter: the reconstruction loss encourages latent variables to encode all
information, while the regularization term that incorporates CSs pushes them to capture only task-
relevant information. Consequently, these models converge to a suboptimal balance between the
two objectives (see Appendix I.1 for detailed analysis). In contrast, DL2 achieves the best clustering
performance across all datasets, as its dual-level disentanglement design effectively circumvents this
conflict and enables a mutually beneficial solution.

Generative capabilities. To investigate whether DL2 maintains generative capabilities without
degradation during disentanglement, we perform both unconditional generation (using latent codes
from prior distributions) and conditional generation (cross-modal generation). We compare DL2’s
generative capabilities against the two most advanced and relevant MVAEs (CMVAE and MM-
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Table 2: The generative capabilities of DL2,CMVAE and MMVAE+ on the three datasets. Bold and
underline denote best and second-best results, respectively.

Dataset DDMNISTMM CUBICC

Method U FID (↓) C FID (↓) CC (↑) UCC (↑) U FID (↓)

MMVAE+ 103.82(1.29) 99.32(1.76) 0.82(0.01) 0.36(0.01) 168.32(3.57)
CMVAE 109.77(5.10) 106.28(3.10) 0.76(0.04) 0.26(0.02) 149.37(10.57)
DL2 106.00(1.82) 103.97(2.35) 0.83(0.01) 0.43(0.01) 144.54(10.16)
Dataset CelebA-HQ (Smiling Intensity) CUBICC

Method U FID (↓) C FID (↓) CC (↑) - C FID (↓)

MMVAE+ 55.58(1.11) 58.67(1.32) 0.41(0.03) - 164.94 (1.50)
CMVAE 53.43(1.69) 60.39(4.62) 0.47(0.03) - 160.13(9.36)
DL2 55.52(0.80) 57.89(0.95) 0.51(0.06) - 158.75(11.91)

VAE+). Results for generation quality and consistency are reported in Table 2 and Table 3 in Ap-
pendix I (consistency is not measured on CUBICC due to the lack of reliable labels for residual
shared information; on CelebA-HQ, we report only conditional consistency to avoid potential noise
from evaluating unconditional generation across highly heterogeneous modalities). Across the three
datasets, DL2 achieves the best performance in 5 out of 8 generative quality (FID) comparisons
and in all four consistency evaluations, ranking second-best in the remaining tests. These results
demonstrate that DL2’s generative capability matches or even slightly surpasses that of CMVAE
and MMVAE+. Qualitative results on DDMNISTMM provided in Appendix I.3 are consistent with
these quantitative findings.
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(b) CelebA-HQ
Figure 5: Classifier accuracy in each
representation on DDMNISTMM and
CelebA-HQ (smile intensity).

The experiments demonstrate DL2’s superior task-adaptive
disentanglement capability, i.e., effectively isolating target
information while maintaining full information integrity.

3.2 VERIFYING TASK-ADAPTIVE PURITY OF z(t)

A core claim of our task-adaptive disentanglement frame-
work is that the task-driven component z(t) should capture
the minimal sufficient information for the downstream task.
While clustering performance provides initial evidence, we
further quantify task-relevant information in each represen-
tation component to substantiate DL2’s successful imple-
mentation of task-adaptive disentanglement. Specifically,
we train classifiers using five distinct representations: the task-driven encoding z(t), residual en-
coding z(r), modality-private encoding w, full shared representation z = (z(t), z(r)), and full latent
encoding u = (z,w). As shown in Figure 5, classifiers using only z(t) achieve accuracy comparable
to those using z or u, while classifiers based on z(r) or w perform near random chance.
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Figure 6: The TADL performance of
DL2 with varying number of CSs.

These results provide strong empirical evidence that: i)
z(t) successfully captures nearly all task-relevant infor-
mation present in both the full shared representation and
the full latent encoding, satisfying the sufficiency cri-
terion; ii) z(r) and w are effectively purified of task-
relevant semantics, containing primarily task-irrelevant
information and thereby satisfying the minimality crite-
rion. This demonstrates that DL2 successfully disentan-
gles modality-specific information from shared informa-
tion at the first level, and further decouples task-relevant
information from residual information at the second level
through task-adaptive disentanglement.

3.3 ANALYSIS OF DL2

This conclusion is further supported by the latent space
interpolation and semantic traversals on the DDMNISTMM dataset provided in Appendix I.4, which
offer intuitive visualizations of the information encoded within each latent variable.
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Impact of Contrastive Signals Quantity. We evaluate how the amount of weak supervision affects
DL2’s performance by varying the number of CSs as a ratio of total sample size N (0.2, 0.4, 0.6,
0.8, 1.0) on CUBICC and CelebA-HQ datasets. Figure 6 shows that DL2’s representation learning
performance (ACC, NMI, ARI) exhibits a positive correlation with CS quantity. On both datasets,
these metrics show stable and significant improvement as signal proportion increases, demonstrating
DL2’s ability to effectively utilize weak supervision for enhanced disentanglement quality. Concur-
rently, generation quality (FID) and consistency (Coherence) remain stable across supervision lev-
els, indicating DL2’s generative robustness to weak signal quantity. This highlights a key advantage:
DL2 maintains high generation quality while leveraging additional supervisory signals to improve
disentanglement performance.
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Figure 7: The TADL perfor-
mance of DL2 with varying val-
ues of λ and γ.

Impact of Regularization Strength on Performance. DL2 em-
ploys hyperparameters λ and γ to balance the RPS and RNS
regularization terms, respectively. To investigate their effects
on task-adaptive disentanglement, we vary one hyperparameter
while keeping the other fixed, testing γ in 0, 0.1, 1, 10, 100
and λ in 0, 0.01, 0.1, 1. Results in Figure 7 and Appendix Fig-
ure 12 show that both regularization terms are essential for im-
proving representation quality (ACC/NMI/ARI). As either value
increases from zero, clustering performance first improves then
gradually declines, indicating that moderate regularization en-
hances disentanglement. However, excessive constraints (e.g.,
λ = 1 or γ = 100 on DDMNISTMM) cause overfitting and
degrade representation. Across a wide hyperparameter range
(excluding extremes), generation quality (FID) and consistency
remain stable, demonstrating DL2’s robustness to regularization
strength. This key advantage confirms that DL2 effectively im-
proves disentangled representations without compromising gen-

eration quality, validating its success as a task-adaptive disentanglement framework.
CMVAE DL2 RPS DL2 RNS DL2
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Figure 8: Ablation study re-
sults on CUBICC and CelebA-
HQ (smile intensity) datasets.

Ablation Study. We conduct systematic ablation studies to val-
idate the necessity of both RPS and RNS regularizers. Figure 8
shows that on DDMNIST and CelebA-HQ (Smile), the variants
employing only RPS or RNS already achieve significantly higher
ACC, NMI, and ARI than the unsupervised CMVAE. Further-
more, the complete DL2 model consistently outperforms these
partial variants. This confirms that both regularizers are indis-
pensable and work synergistically for high-quality task-adaptive
disentanglement. Generation quality (FID) and consistency re-
main stable across all variants, consistent with sensitivity analy-
sis results and reaffirming DL2’s inherent robustness in preserv-
ing generative capabilities.

4 CONCLUSION

This work identified and addressed a fundamental challenge in multimodal learning: the task-
generation dilemma. We introduced Task-Adaptive Disentanglement (TADL), a novel paradigm that
moves beyond universal factorization towards dynamic, task-guided separation of representations.
The proposed Dual-Level Disentanglement (DL2) framework provides a principled instantiation of
this paradigm, demonstrating that the shared information in multimodal data can and should be
adaptively decomposed into a task-relevant component for discriminative purity and a residual com-
ponent for generative completeness. Crucially, DL2 achieves this through innovative use of readily
available contrastive signals, introducing the virtual modality pair and Common-Cause Mutual In-
formation (CCMI) regularizers to enable effective weakly-supervised disentanglement. Extensive
empirical validation confirms that DL2 not only achieves state-of-the-art performance on challeng-
ing tasks like multimodal clustering but also maintains high-generation fidelity, effectively resolving
the dilemma within a single model. Our work opens up new possibilities for building versatile and
efficient multimodal systems that require no sacrifice between specialization and generality.
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REPRODUCIBILITY STATEMENT

To facilitate the reproducibility of our work, we have made extensive efforts to document our the-
oretical contributions and experimental procedures. For the theoretical results, detailed proofs of
Lemma 1 and Lemma 2 are provided in Appendix C and Appendix D, respectively. Appendix E
presents an information-theoretic proof elucidating the role of the first term in RPS(X

k,X l). Fur-
thermore, Appendix F contains the proof of the properties of common-cause mutual information
(CCMI) (Appendix F.1) and offers an intuitive semantic interpretation (Appendix F.2).

On the experimental side, Appendix G.1 provides a comprehensive description of all datasets used,
including the detailed synthesis process of our proposed semi-synthetic dataset, DDMNISTMM. A
brief introduction to the baseline methods is given in Appendix G.2, while Appendix G.3 specifies
the detailed experimental settings. The evaluation metrics for clustering performance and generation
quality are elaborated in Appendix H. Additional experimental results and analyses are presented
in Appendix I, which offers further insights into the task-generation dilemma (Appendix I.1 and
Appendix I.2), qualitative comparisons (Appendix I.3), and latent space interpolations (Appendix
I.4).

Finally, to support the replication of our methods, we will share the anonymized source code via a
private anonymous repository link, which will be made available to the reviewers and Area Chairs
in the discussion forum after it opens.

ETHICS STATEMENT

We have read and adhere to the ICLR Code of Ethics in conducting this research. Our work presents
a novel algorithm and is evaluated on both fully public benchmarks and a semi-synthetic dataset.
This semi-synthetic dataset is derived entirely from public source data and does not involve any
private or sensitive information. The detailed process for creating this dataset is transparently doc-
umented in Appendix G.1 to ensure reproducibility and scrutiny. To the best of our knowledge, our
work does not raise any immediate or pressing ethical concerns. We will continue to be mindful of
the potential societal impacts of our research.
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Francesco Locatello, Ben Poole, Gunnar Rätsch, Bernhard Schölkopf, Olivier Bachem, and Michael
Tschannen. Weakly-supervised disentanglement without compromises. In International confer-
ence on machine learning, pp. 6348–6359. PMLR, 2020.

Laura Manduchi, Kieran Chin-Cheong, Holger Michel, Sven Wellmann, and Julia Vogt. Deep con-
ditional gaussian mixture model for constrained clustering. Advances in Neural Information Pro-
cessing Systems, 34:11303–11314, 2021.

Tri Nguyen, Shahana Ibrahim, and Xiao Fu. Deep clustering with incomplete noisy pairwise anno-
tations: A geometric regularization approach. In International Conference on Machine Learning,
pp. 25980–26007. PMLR, 2023.

Emanuele Palumbo, Imant Daunhawer, and Julia E Vogt. Mmvae+: Enhancing the generative quality
of multimodal vaes without compromises. In The Eleventh International Conference on Learning
Representations. OpenReview, 2023.

Emanuele Palumbo, Laura Manduchi, Sonia Laguna, Daphné Chopard, and Julia E Vogt. Deep
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this manuscript, we utilized large language models (LLMs), specifically GPT-4
and Claude 3, solely as a tool to assist with the writing and polishing of the text.

The use of LLMs was strictly limited to the following aspects:

• Improving grammatical correctness and fluency.
• Rephrasing sentences for better clarity and readability.
• Checking and adjusting the tone of the writing to maintain a formal academic style.

Crucially, the core intellectual content of this work—including the central research ideas, al-
gorithmic development, theoretical derivations, experimental design and interpretation of re-
sults—originates entirely from the human authors. The LLM was not involved in generating any key
ideas, formulating hypotheses, designing experiments, performing mathematical proofs, or drawing
scientific conclusions.

The authors have thoroughly reviewed, edited, and verified all content generated by the LLM to
ensure its accuracy and alignment with the intended meaning. We take full responsibility for the
entire content of this paper, including any portions that were initially drafted or polished with LLM
assistance.

In accordance with the ICLR policy, we affirm that no LLM is listed as an author of this work.
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B RELATED WORK

Our work lies at the intersection of multimodal representation disentanglement and weakly super-
vised disentangled representation learning. We review key related literature below.

B.1 MULTIMODAL REPRESENTATION DISENTANGLEMENT

Learning unified representations from multimodal data remains a core challenge. Early MVAEs
predominantly modeled latent information within a single shared space. For instance, MVAE (Wu
& Goodman (2018)) adopted a product-of-experts encoder to integrate multimodal information into
a unified latent space, while MMVAE (Shi et al. (2019)) used a mixture-of-experts structure for
joint modeling, both ignoring modality-specific variations. Similarly, MoPoE-VAE (Sutter et al.
(2021)) and MVTCAE (Hwang et al. (2021)) retained a single latent space, focusing on improving
scalability or adding regularization without disentangling private information. These models assume
that a common latent variable can capture all shared information across modalities, but they often
fail to model modality-specific variations, leading to blurred generations and limited expressiveness.

Consequently, another line of work focuses on disentangling the latent space into shared and
modality-specific components. Bouchacourt et al. (Bouchacourt et al. (2018)) proposed a multi-level
VAE to decompose latent spaces into shared and group-specific components. Sutter et al. (Sutter
et al. (2020)) extended mixture-based VAEs by introducing modality-specific subspaces alongside
a shared subspace, though this led to hyperparameter sensitivity in balancing coherence and qual-
ity. MMVAE+ (Palumbo et al. (2023)) further refined this framework using auxiliary priors for
cross-modal reconstruction, ensuring robust disentanglement of shared and private information.

Although these methods successfully separate shared from private information, they typically treat
the shared representation as an indivisible unit. This can be suboptimal, as different semantic aspects
within the shared space may be relevant for different downstream tasks. Using the entire shared
representation for downstream task may introduce irrelevant features, while neglecting parts of it
can harm fidelity. Our method addresses this by further decomposing the shared space into a task-
relevant subset and residual shared information.

B.2 DISENTANGLED REPRESENTATION LEARNING

Disentangled Representation Learning (DRL) aims to encode data into representations where dis-
tinct latent units correspond to semantically meaningful factors of variation (Bengio et al. (2013)).

A common approach builds upon variational autoencoders (VAEs) by introducing regularizers that
encourage statistical independence among latent dimensions. For instance, β-VAE (Higgins et al.
(2017)) strengthens the KL divergence term to promote factorized representations. FactorVAE (Kim
& Mnih (2018)) and β-TCVAE (Chen et al. (2018)) explicitly minimize the total correlation to
enhance dimension-wise independence. DIP-VAE (Kumar et al. (2017)) aligns the moments of the
aggregate posterior with the prior distribution to encourage disentanglement.

These methods typically assume a dimension-wise disentanglement structure, where each scalar la-
tent dimension controls one fine-grained factor (e.g., object color or size in synthetic datasets like
Shapes3D (Burgess & Kim (2018))). However, many real-world tasks require vector-wise disentan-
glement, where a group of dimensions encodes a coarse-grained semantic concept (e.g., identity in
faces (Tran et al. (2017)) or motion in videos (Denton et al. (2017))).

In this work, we further decompose the shared multimodal space in a vector-wise manner, isolating
a task-relevant subset z(t) and a residual subset z(r) from the complete shared space z.

B.3 WEAKLY SUPERVISED DISENTANGLED REPRESENTATION LEARNING

While fully unsupervised disentanglement has achieved encouraging progress, recent studies sug-
gest that it remains highly challenging without introducing certain inductive biases (Locatello et al.
(2019)). This has motivated the use of weak supervision to guide the disentanglement process with
minimal annotation. Weakly supervised methods often leverage:
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• Group-level labels: DC-IGN (Kulkarni et al. (2015)) restricts variation to one factor per
mini-batch, aligning a latent dimension with that factor.

• Partial labels: DisUnknown (Xiang et al. (2021)) assumes N − 1 factors are labeled and
distills the remaining unknown factor adversarially.

• Pairwise similarities: Some methods use similarity constraints between samples to isolate
factors without explicit labels (Locatello et al. (2020)).

These approaches demonstrate that even limited supervisory signals can significantly improve iden-
tifiability and disentanglement quality.

In line with this paradigm, we propose using a Contrastive Signals (CSs) —e.g., pairwise semantic
similarities—to isolate the task-relevant factors within the shared multimodal space. Unlike con-
trastive methods that learn general representations (Chen et al. (2020)), we integrate CSs into a
MVAE to explicitly disentangle task-specific component z(t) and a residual component z(r) from
the complete shared space z without sacrificing generative coherence.
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C THE PROOF OF LEMMA 1

Lemma 1. The primary objective LDL(X) (Equation 2) is a valid lower bound on log pΘ(X).

Proof. Building upon the generative process assumptions, we derive the following:

log pΘ(X)

=EqΦt (z(t)|X) log pΘ(X)

=EqΦt (z(t)|X) log
pΘ(X | z(t))

∑
c p(c)p(z(t) | c)

p(z(t) | X)

=EqΦt (z(t)|X) log

[
pΘ(X | z(t))

∑
c p(c)p(z(t) | c)

p(z(t) | X)
·
qΦt(z(t) | X)

qΦt
(z(t) | X)

]
=EqΦt (z(t)|X) log

pΘ(X | z(t))
∑

c p(c)p(z(t) | c)
qΦt

(z(t) | X)

+DKL

[
qΦt

(z(t) | X)∥p(z(t) | X)
]
.

(11)

By leveraging the non-negativity property of the Kullback-Leibler divergence, we obtain:

log pΘ(X)

≥EqΦt (z(t)|X) log
pΘ(X | z(t))

∑
c p(c)p(z(t) | c)

qΦt
(z(t) | X)

=EqΦt (z(t)|X) log pΘ(X | z(t)) + EqΦt (z(t)|X) log
p(c)p(z(t) | c)
qΦt

(z(t) | X)

=EqΦt (z(t)|X)

[
EqΦr (z(r)|X, z(t)) log pΘ(X | z(t))

]
+ EqΦt (z(t)|X) log

p(c)p(z(t) | c)
qΦt(z(t) | X)

=EqΦt,Φr (z(t),z(r)|X) log pΘ(X | z(t)) + EqΦt (z(t)|X) log
p(c)p(z(t) | c)
qΦt(z(t) | X)

.

(12)

Then, we can use the following two equation relationships:

pΘ(X | z(t)) · p(z(r) | X) = pΘ(X, z(r) | z(t)) (13)

and

pΘ(X | z(t), z(r)) · p(z(r)) = pΘ(X, z(r) | z(t)). (14)

It can be obtained

pΘ(X | z(t)) =
pΘ(X | z(t), z(r)) · p(z(r))

p(z(r) | X)
. (15)

Then, we have:
log pΘ(X)

≥EqΦt,Φr (z(t),z(r)|X) log pΘ(X | z(t)) + EqΦt (z(t)|X) log
p(c)p(z(t) | c)
qΦt(z(t) | X)

=EqΦt,Φr (z(t),z(r)|X) log

[
pΘ(X | z(t), z(r))p(z(r))

p(z(r) | X)
·
qΦr

(z(r) | X)

qΦr (z(r) | X)

]
+ EqΦt (z(t)|X) log

p(c) · p(z(t) | c)
qΦt

(z(t) | X)

=EqΦt,Φr (z(t),z(r)|X) log pΘ(X | z(t), z(r))

+ EqΦt (z(r)|X) log
p(z(r))

qΦr (z(r) | X)
+DKL

[
qΦr (z(r) | X)∥p(z(r) | X)

]
+ EqΦt (z(t)|X) log

p(c)p(z(t) | c)
qΦt

(z(t) | X)
.

(16)
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By leveraging the non-negativity property of the Kullback-Leibler divergence, we obtain:

log pΘ(X)

≥EqΦt,Φr (z(t),z(r)|X) log pΘ(X | z(t), z(r))

+ EqΦt (z(r)|X) log
p(z(r))

qΦr
(z(r) | X)

+DKL

[
qΦr

(z(r) | X)∥p(z(r) | X)
]

+ EqΦt (z(t)|X) log
p(c)p(z(t) | c)
qΦt

(z(t) | X)

≥EqΦt,Φr (z(t),z(r)|X) log pΘ(X | z(t), z(r))

+ EqΦt (z(r)|X) log
p(z(r))

qΦr
(z(r) | X)

+ EqΦt (z(t)|X) log
p(c)p(z(t) | c)
qΦt

(z(t) | X)
.

(17)

We can then expand qΦt,Φr
(z(t), z(r) | X) and pΘ(X | z(t), z(r)) over their modalities to obtain:

log pΘ(X)

≥EqΦt,Φr (z(t),z(r)|X) log pΘ(X | z(t), z(r))

+ EqΦt (z(r)|X) log
p(z(r))

qΦr
(z(r) | X)

+ EqΦt (z(t)|X) log
p(c)p(z(t) | c)
qΦt

(z(t) | X)

=
1

M

M∑
m=1

Eqϕzm
(z(t),z(r)|xm) log pθm(xm | z(t), z(r))︸ ︷︷ ︸

I1: intra-modal reconstruction likelihood term

+
1

M

M∑
m=1

Eqϕzm
(z(t),z(r)|xm)

∑
n ̸=m

log pθn(xn | z(t), z(r))︸ ︷︷ ︸
I2: cross-modal reconstruction likelihood term

+ EqΦt (z(t)|X) log
p(c)p(z(t) | c)
qΦt

(z(t) | X)
+ EqΦt (z(r)|X) log

p(z(r))

qΦr
(z(r) | X)︸ ︷︷ ︸

Kullback-Leibler term

.

(18)

For the intra-modal reconstruction likelihood term I1, we derive its evidence lower bound (ELBO)
via the variational encoders {qϕwm

(wm | xm)}Mm=1:

1

M

M∑
m=1

Eqϕzm
(z(t),z(r)|xm) log pθm(xm | z(t), z(r))

=
1

M

M∑
m=1

Eqϕzm
(z(t),z(r)|xm)

qϕwm
(wm|xm)

log pθm(xm | z(t), z(r))

=
1

M

M∑
m=1

Eqϕzm
(z(t),z(r)|xm)

qϕwm
(wm|xm)

[
log

pθm(xm | z(t), z(r),wm)p(wm)

p(wm | xm)
·
qϕwm

(wm | xm)

qϕwm
(wm | xm)

]

=
1

M

M∑
m=1

Eqϕzm
(z(t),z(r)|xm)

qϕwm
(wm|xm)

log
pθm(xh

m | z(t), z(r),wm)p(wm)

qϕwm
(wm | xm)

+
1

M

M∑
m=1

DKL(qϕwm
(wm | xm)∥p(wm | xm)).

(19)
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According to the non-negativity of the Kullback-Leibler divergence, equation 19 can be obtained:

1

M

M∑
m=1

Eqϕzm
(z(t),z(r)|xm) log pθm(xm | z(t), z(r))

≥ 1

M

M∑
m=1

Eqϕzm
(z(t),z(r)|xm)

qϕwm
(wm|xm)

log
pθm(xm | z(t), z(r),wm)p(wm)

qϕwm
(wm | xm)

=
1

M

M∑
m=1

Eqϕzm
(z(t),z(r)|xm)

qϕwm
(wm|xm)

log pθm(xm | z(t), z(r),wm)

+
1

M

M∑
m=1

Eqϕwm
(wm|xm) log

p(wm)

qϕwm
(wm | xm)

.

(20)

For the cross-modal reconstruction likelihood term I2, we establish its lower bound by applying
Jensen’s inequality:

1

M

M∑
m=1

Eqϕzm
(z(t),z(r)|xm)

∑
n ̸=m

log pθn(xn | z(t), z(r))

≥ 1

M

M∑
m=1

Eqϕzm
(z(t),z(r)|xm)

{w̃n∼rn(wn)}M
n=1

∑
n ̸=m

log pθn(xn | z(t), z(r), w̃n).

(21)

By combining equations 18, 20 and 21, we derive the evidence lower bound for log pΘ(X):

log pΘ(X)

≥ 1

M

M∑
m=1

Eqϕzm
(z(t),z(r)|xm) log pθm(xm | z(t), z(r))︸ ︷︷ ︸

I1: intra-modal reconstruction likelihood term

+
1

M

M∑
m=1

Eqϕzm
(z(t),z(r)|xm)

∑
n̸=m

log pθn(xn | z(t), z(r))︸ ︷︷ ︸
I2: cross-modal reconstruction likelihood term

+ EqΦt (z(t)|X) log
p(c)p(z(t) | c)
qΦt

(z(t) | X)
+ EqΦt (z(r)|X) log

p(z(r))

qΦr
(z(r) | X)︸ ︷︷ ︸

Kullback-Leibler term

≥ 1

M

M∑
m=1

Eqϕzm
(z(t),z(r)|xm)

qϕwm
(wm|xm)

log pθm(xm | z(t), z(r),wm)︸ ︷︷ ︸
I1: intra-modal reconstruction likelihood term

+
1

M

M∑
m=1

Eqϕzm
(z(t),z(r)|xm)

{w̃n∼rn(wn)}M
n=1

∑
n ̸=m

log pθn(xn | z(t), z(r), w̃n)︸ ︷︷ ︸
I2: cross-modal reconstruction likelihood term

+ EqΦt (z(t)|X) log
p(c)p(z(t) | c)
qΦt(z(t) | X)

+ EqΦt (z(r)|X) log
p(z(r))

qΦr (z(r) | Xh)

+
1

M

M∑
m=1

Eqϕwm
(wm|xm) log

p(wm)

qϕwm
(wm | xm)

.

(22)
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D THE PROOF OF LEMMA 2

Lemma 2. The similarity regularization RPS(X
k,X l) (Equation 4) is a valid lower bound on

log pΘ(X
k,X l).

Proof. To establish a novel paradigm that treats positive sample pairs as “virtual modality pairs”
and disentangles task-driven semantic subsets via extended variational inference, we first posit that
such pairs could be generated by:

pΘ(X
k,X l,W k,W l, zk

(r), z
l
(r), z(t), c)

=pΘ(X
k,W k, zk

(r), z(t), c) · pΘ(X
l,W l, zl

(r), z(t), c),
(23)

where

pΘ(X
k,W k, zk

(r), z(t), c)

=pπ(c) · p(zk
(r)) · p(z(t) | c) ·

M∏
m=1

p(wk
m) · pθm(xk

m | wk
m, zk

(r), z(t))
(24)

and

pΘ(X
l,W l, zl

(r), z(t), c)

=pπ(c) · p(zl
(r)) · p(z(t) | c) ·

M∏
m=1

p(wl
m) · pθm(xl

m | wl
m, zl

(r), z(t)).
(25)

It is obvious that z(t) captures consistent semantics between positive sample pairs. We estimate z(t)
through a mixture-of-experts (MOE) encoder for similarity sample pairs, as formalized in equation
6.

Then, we can derive the following.

log pΘ(X
k,X l)

=EqΦt (z(t)|Xk,Xl) log pΘ(X
k,X l)

=EqΦt (z(t)|Xk,Xl) log
pΘ(X

k,X l | z(t))
∑

c p(c)p(z(t) | c)
p(z(t) | Xk,X l)

=EqΦt (z(t)|Xk,Xl) log

[
pΘ(X

k,X l | z(t))
∑

c p(c)p(z(t) | c)
p(z(t) | Xk,X l)

·
qΦt(z(t) | Xk,X l)

qΦt
(z(t) | Xk,X l)

]

=EqΦt (z(t)|Xk,Xl) log
pΘ(X

k,X l | z(t))
∑

c p(c)p(z(t) | c)
qΦt(z(t) | Xk,X l)

+DKL

[
qΦt

(z(t) | Xk,X l)∥p(z(t) | Xk,X l)
]
.

(26)

According to the non-negativity of the Kullback-Leibler divergence, it can be obtained:

log pΘ(X
k,X l)

≥EqΦt (z(t)|Xk,Xl) log
pΘ(X

k,X l | z(t))
∑

c p(c)p(z(t) | c)
qΦt

(z(t) | Xk,X l)
.

(27)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Building on the virtual modality pair generator (Equation 23), we derive:

log pΘ(X
k,X l)

≥EqΦt (z(t)|Xk,Xl) log
pΘ(X

k,X l | z(t))
∑

c p(c)p(z(t) | c)
qΦt(z(t) | Xk,X l)

=EqΦt (z(t)|Xk,Xl) log
pΘ(X

k | z(t))pΘ(X l | z(t))
∑

c p(c)p(z(t) | c)
qΦt(z(t) | Xk,X l)

=
1

2

∑
h∈{k,l}

EqΦt (z(t)|Xh)

[
log pΘ(X

h | z(t)) + log pΘ(X
h | z(t)) + log

∑
c p(c)p(z(t) | c)

qΦt(z(t) | Xk,X l)

]

=
1

2

∑
h∈{k,l}

[
EqΦt (z(t)|Xh)

M∑
n=1

log pθn(x
h
n | z(t))︸ ︷︷ ︸

self-sample reconstruction likelihood term

+EqΦt (z(t)|Xh)

M∑
n=1

log pθn(x
h
n | z(t))︸ ︷︷ ︸

similar sample reconstruction likelihood term

+ EqΦt (z(t)|Xh) log

∑
c p(c)p(z(t) | c)

qΦt(z(t) | Xk,X l)︸ ︷︷ ︸
Kullback-Leibler term

]
.

(28)

Then, we can derive the evidence lower bounds for the self-sample reconstruction likelihood
term and the similar sample reconstruction term, respectively. First, by invoking Jensen’s
inequality, we derive the evidence lower bound for the similar sample reconstruction term

EqΦt (z(t)|Xh)

M∑
n=1

log pθn(x
h
n | z(t)) :

EqΦt (z(t)|Xh)

M∑
n=1

log pθn(x
h
n | z(t))

=EqΦt (z(t)|Xh)

M∑
n=1

logEz̃(r)∼f(z(r))

w̃n∼rn(wn)

pθn(x
h
n | z(t), z̃(r), w̃n)

≥EqΦt (z(t)|Xh)

M∑
n=1

Ez̃(r)∼f(z(r))

w̃n∼rn(wn)

log pθn(x
h
n | z(t), z̃(r), w̃n)

=E qΦt (z(t)|Xh)

z̃(r)∼f(z(r))

{w̃n∼rn(wn)}M
n=1

M∑
n=1

log pθn(x
h
n | z(t), z̃(r), w̃n).

(29)

For the self-sample reconstruction likelihood term, we can make the following derivation.

EqΦt (z(t)|Xh)

M∑
n=1

log pθn(x
h
n | z(t)) = EqΦt (z(t)|Xh) log pΘ(X

h | z(t))

=EqΦt (z(t)|Xh)

[
EqΦr (z(r)|Xh, z(t)) log pΘ(X

h | z(t))
]

=EqΦt (z(t),z(r)|Xh) log pΘ(X
h | z(t))

=EqΦt (z(t),z(r)|Xh) log

[
pΘ(X

h | z(t), z(r))p(z(r))
p(z(r) | Xh)

·
qΦr

(z(r) | Xh)

qΦr (z(r) | Xh)

]

=EqΦt (z(t),z(r)|Xh) log

[
pΘ(X

h | z(t), z(r))p(z(r))
qΦr

(z(r) | Xh)

]
+DKL

[
qΦr

(z(r) | Xh)∥p(z(r) | Xh)
]
.

(30)
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According to the non-negativity of the Kullback-Leibler divergence, equation 30 can be obtained:

EqΦt (z(t)|Xh)

M∑
n=1

log pθn(x
h
n | z(t))

=EqΦt (z(t),z(r)|Xh) log

[
pΘ(X

h | z(t), z(r))p(z(r))
qΦr

(z(r) | Xh)

]
+DKL

[
qΦr

(z(r) | Xh)∥p(z(r) | Xh)
]

≥EqΦt (z(t),z(r)|Xh) log pΘ(X
h | z(t), z(r)) + EqΦt (z(r)|Xh) log

p(z(r))

qΦr
(z(r) | Xh)

=
1

M

M∑
m=1

Eqϕzm
(z(t),z(r)|xh

m) log pθm(xh
m | z(t), z(r))︸ ︷︷ ︸

intra-modal reconstruction likelihood term

+
1

M

M∑
m=1

Eqϕzm
(z(t),z(r)|xh

m)

∑
n ̸=m

log pθn(x
h
n | z(t), z(r))︸ ︷︷ ︸

cross-modal reconstruction likelihood term

+ EqΦt (z(r)|Xh) log
p(z(r))

qΦr (z(r) | Xh)︸ ︷︷ ︸
Kullback-Leibler term

.

(31)

By combining equations 31, 20 and 21, we derive the evidence lower bound for the self-sample
reconstruction likelihood term:

EqΦt (z(t)|Xh)

M∑
n=1

log pθn(x
h
n | z(t))

≥EqΦt (z(r)|Xh) log
p(z(r))

qΦr (z(r) | Xh)︸ ︷︷ ︸
Kullback-Leibler term

+
1

M

M∑
m=1

Eqϕzm
(z(t),z(r)|xh

m) log pθm(xh
m | z(t), z(r))︸ ︷︷ ︸

intra-modal reconstruction likelihood term

+
1

M

M∑
m=1

Eqϕzm
(z(t),z(r)|xh

m)

∑
n ̸=m

log pθn(x
h
n | z(t), z(r))︸ ︷︷ ︸

cross-modal reconstruction likelihood term

≥ 1

M

M∑
m=1

Eqϕzm
(z(t),z(r)|xh

m)

qϕwm
(wm|xh

m)

log pθm(xh
m | z(t), z(r),wm)

+
1

M

M∑
m=1

Eqϕzm
(z(t),z(r)|xh

m)

{w̃n∼rn(wn)}M
n=1

∑
n ̸=m

log pθn(x
h
n | z(t), z(r), w̃n)

+ EqΦt (z(r)|Xh) log
p(z(r))

qΦr
(z(r) | Xh)

+
1

M

M∑
m=1

Eqϕwm
(wm|xh

m) log
p(wm)

qϕwm
(wm | xh

m)
.

(32)
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Then, we can derive the evidence lower bound for log pΘ(Xk,X l) by combining equations 28, 29
and 32:

log pΘ(X
k,X l)

≥1

2

∑
h∈{k,l}

[
EqΦt (z(t)|Xh)

M∑
n=1

log pθn(x
h
n | z(t))︸ ︷︷ ︸

self-sample reconstruction likelihood term

+EqΦt (z(t)|Xh)

M∑
n=1

log pθn(x
h
n | z(t))︸ ︷︷ ︸

similar sample reconstruction likelihood term

+ EqΦt (z(t)|Xh) log

∑
c p(c)p(z(t) | c)

qΦt(z(t) | Xk,X l)︸ ︷︷ ︸
Kullback-Leibler term

]

≥1

2

∑
h∈{k,l}

[
1

M

M∑
m=1

Eqϕzm
(z(t),z(r)|xh

m)

qϕwm
(wm|xh

m)

log pθm(xh
m | z(t), z(r),wm)

+
1

M

M∑
m=1

Eqϕzm
(z(t),z(r)|xh

m)

{w̃n∼rn(wn)}M
n=1

∑
n ̸=m

log pθn(x
h
n | z(t), z(r), w̃n)

+ E qΦt (z(t)|Xh)

z̃(r)∼f(z(r))

{w̃n∼rn(wn)}M
n=1

M∑
n=1

log pθn(x
h
n | z(t), z̃(r), w̃n)

+ EqΦt (z(t)|Xh) log

∑
c p(c)p(z(t) | c)

qΦt(z(t) | Xk,X l)
+ EqΦt (z(r)|Xh) log

p(z(r))

qΦr (z(r) | Xh)

+
1

M

M∑
m=1

Eqϕwm
(wm|xh

m) log
p(wm)

qϕwm
(wm | xh

m)

]
.

(33)
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E THE EFFECT OF THE FIRST TERM IN RPS(X
k,X l)

In this section, we analyze the effect of the first term in RPS (Equation 4), defined as:

Lssr(X
k,X l)

=
1

2

∑
h∈{k,l}

1

M

M∑
m=1

E qϕt (z(t)|xh
m)

z̃(r)∼f(z(r))

{w̃n∼rn(wn)}n̸=m

[
M∑
n=1

log pθn(x
h
n | z(t), z̃(r), w̃m)

]
, (34)

Assuming zk
(t) and zl

(t) represent features capturing the similarity between similarity sample pair

(Xk,X l), then Xh and z(t) ∼ p(z(t) | Xh) (h ∈ {k, l}) should exhibit high mutual information:

I(Xh; z(t)), z(t) ∼ p(z(t) | Xh). (35)

We can maximize this objective by maximizing its lower bound. Thus, we derive a lower bound for
equation 36:

I(Xh; z(t))

=EpΘ(Xh,z(t))
log

pΘ(X
h | z(t))

pΘ(Xh)

≈E
pΘ(Xh)

qΦt (z(t)|Xh)

log pΘ(X
h | z(t))− EpΘ(Xh)pΘ(X

h)

=E
pΘ(Xh)

qΦt (z(t)|Xh)

log pΘ(X
h | z(t))−H(Xh)

≥E
pΘ(Xh)

log pΘ(X
h | z(t))

=EpΘ(Xh)

[
EqΦt (z(t)|Xh) log pΘ(X

h | z(t))
]
.

(36)

The approximately equal employs the relation:

pΘ(X
h, z(t)) = pΘ(X

h) · pΘ(z(t) | Xh) ≈ pΘ(X
h) · qΦt(z(t) | Xh). (37)

Critically, note that pΘ(Xh | z(t)) in log pΘ(X
h | z(t)) must be interpreted as the function pΘ(X |

z(t)) evaluated at X = Xh, denoted as pΘ(X | z(t))
∣∣
X=Xh . Consequently, the term log pΘ(X

h |
z(t)) cannot be decomposed by separating Xk and z(t) as done in expectation operations.

From equation 29, we derive:

I(Xh; z(t))

≥EpΘ(Xh)

[
EqΦt (z(t)|Xh) log pΘ(X

h | z(t))
]

=EpΘ(Xh)

E qΦt (z(t)|Xh)

z̃(r)∼f(z(r))

{w̃n∼rn(wn)}M
n=1

M∑
n=1

log pθn(x
h
n | z(t), z̃(r), w̃n)



=EpΘ(Xh)

 1

M

M∑
m=1

E qϕt (z(t)|xh
m)

z̃(r)∼f(z(r))

{w̃n∼rn(wn)}n ̸=m

[
M∑
n=1

log pθn(x
h
n | z(t), z̃(r), w̃m)

] .

(38)
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Consequently, maximizing

1

M

M∑
m=1

E qϕt (z(t)|xh
m)

z̃(r)∼f(z(r))

{w̃n∼rn(wn)}n ̸=m

[
M∑
n=1

log pθn(x
h
n | z(t), z̃(r), w̃m)

]
(39)

maximizes I(Xh; z(t)), z(t) ∼ p(z(t) | Xh). Recalling the objective Lssr(X
k,X l), we establish

that maximizing Lssr(X
k,X l) maximizes

1

2
(I(Xk; zl

(t)) + I(X l; zk
(t))). (40)

This reaffirms that RPS facilitates the extraction of similarity information between positive sample
pairs.
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F ANALYSIS OF ICCMI(z
i
(t); z

j
(t))

Definition 1 (Common-Cause Mutual Information (CCMI)). Assume that zi
(t) and zj

(t) are two
observations, which are generated conditional on ci and cj respectively, where ci and cj are derived
from the same underlying semantic space. Then, we define the CCMI between zi

(t) and zj
(t) as

ICCMI(z
i
(t); z

j
(t)) = Ep(zi

(t)
)p(zj

(t)
)

log Ec

[
p(zi

(t) | c) · p(c | zj
(t))

]
Ec

[
p(zi

(t) | c)
]

 . (41)

F.1 SYMMETRY

At first, ICCMI(z
i
(t); z

j
(t)) and RNS(X

i,Xj) exhibits symmetry. Based on Bayes’ formula:

p(c | zj
(t)) =

p(zi
(t) | c) · p(c)

Ecp(z
i
(t) | c)

(42)

we can reformulate both ICCMI(z
i
(t); z

j
(t)) and RNS(X

i,Xj) as follows:

ICCMI(z
i
(t); z

j
(t)) = Ep(zi

(t)
)p(zj

(t)
)

log Ec

[
p(zi

(t) | c) · p(c | zj
(t))

]
Ec

[
p(zi

(t) | c)
]


= Ep(zi

(t)
)p(zj

(t)
)

log Ec

[
p(zi

(t) | c) · p(z
j
(t) | c) · p(c)

]
Ec

[
p(zi

(t) | c)
]
· Ec

[
p(zj

(t) | c)
]
 .

(43)

RNS(X
i,Xj) =Ezi

(t)∼qΦt (z(t)|Xi)

zj
(t)

∼qΦt (z(t)|Xj)

log

1− Ec

[
p(zi

(t) | c) · p(c | zj
(t))

]
Ec

[
p(zi

(t) | c)
]


=Ezi

(t)∼qΦt (z(t)|Xi)

zj
(t)

∼qΦt (z(t)|Xj)

log

1− Ec

[
p(zi

(t) | c) · p(z
j
(t) | c) · p(c)

]
Ec

[
p(zi

(t) | c)
]
· Ec

[
p(zj

(t) | c)
]


(44)

Therefore, ICCMI(z
i
(t); z

j
(t)) = ICCMI(z

j
(t); z

i
(t)) and RNS(X

i,Xj) = RNS(X
j ,Xi).

F.2 A MORE INTUITIVE SEMANTIC INTERPRETATION FOR ICCMI(z
i
(t); z

j
(t))

As established in Section 2.2.2, a higher ICCMI(z
i
(t); z

j
(t)) value indicates stronger evidence that zi

(t)

and zj
(t) encode the same underlying semantic c; this relationship becomes particularly clear when

c is modeled as a discrete random variable. In this section, we conduct a comprehensive analysis of
CCMI and provide its formal semantic interpretation.
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When c is a continuous random variable. Based on equation 43 and Bayes’ formula, ICCMI can be
further developed as:

ICCMI(z
i
(t); z

j
(t)) = Ep(zi

(t)
)p(zj

(t)
)

log Ec

[
p(zi

(t) | c) · p(z
j
(t) | c) · p(c)

]
Ec

[
p(zi

(t) | c)
]
· Ec

[
p(zj

(t) | c)
]


= Ep(zi
(t)

)p(zj
(t)

)

log ∫
c
p(zi

(t) | c) · p(z
j
(t) | c) · p(c) · p(c)dc

Ec

[
p(zi

(t) | c)
]
· Ec

[
p(zj

(t) | c)
]


= Ep(zi

(t)
)p(zj

(t)
) log

∫
c

p(zi
(t) | c) · p(c)

Eci

[
p(zi

(t) | c
i)
] ·

p(zj
(t) | c) · p(c)

Ecj

[
p(zj

(t) | c
j)
]dc

= Ep(zi
(t)

)p(zj
(t)

) log

∫
c

p(c | zi
(t)) · p(c | zj

(t))dc

= Ep(zi
(t)

)p(zj
(t)

) logP (ci = cj | zi
(t), z

j
(t)),

(45)

where P (ci = cj | zi
(t), z

j
(t)) denotes the conditional probability that the underlying semantic ci

and underlying semantic cj share identical values, given the observed representations zi
(t) and zj

(t).

When c is a discrete random variable. Based on equation 43 and Bayes’ formula, ICCMI can be
further developed as:

ICCMI(z
i
(t); z

j
(t)) = Ep(zi

(t)
)p(zj

(t)
)

log Ec

[
p(zi

(t) | c) · p(z
j
(t) | c) · p(c)

]
Ec

[
p(zi

(t) | c)
]
· Ec

[
p(zj

(t) | c)
]


= Ep(zi
(t)

)p(zj
(t)

)

log ∑
c p(z

i
(t) | c) · p(z

j
(t) | c) · p(c) · p(c)

Ec

[
p(zi

(t) | c)
]
· Ec

[
p(zj

(t) | c)
]


= Ep(zi

(t)
)p(zj

(t)
) log

∑
c

p(zi
(t) | c) · p(c)

Eci

[
p(zi

(t) | c
i)
] ·

p(zj
(t) | c) · p(c)

Ecj

[
p(zj

(t) | c
j)
]

= Ep(zi
(t)

)p(zj
(t)

) log
∑
c

p(c | zi
(t)) · p(c | zj

(t))

= Ep(zi
(t)

)p(zj
(t)

) logP (ci = cj | zi
(t), z

j
(t)),

(46)

where P (ci = cj | zi
(t), z

j
(t)) denotes the conditional probability that the underlying semantic ci

and underlying semantic cj share identical values, given the observed representations zi
(t) and zj

(t).

In summary, ICCMI(z
i
(t); z

j
(t)) serves as a robust indicator of the capability of zi

(t) and zj
(t) to encode

identical underlying semantics c, regardless of whether c is modeled as a continuous or discrete
random variable.
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G DETAILS ON DATASETS, BASELINES AND IMPLEMENTATION

G.1 DATASETS

In this section, we provide comprehensive details regarding the three datasets employed in our study.

The first dataset is the Double-Digit MNIST MultiModal Dataset (DDMNISTMM), a semi-
synthetic yet challenging benchmark specifically designed for multimodal disentanglement learning
and representation learning. DDMNISTMM comprises three distinct modalities, each depicting two
completely independent MNIST digits (left/right position). These digits are systematically patched
onto randomly cropped regions derived from three unique background images (one per modality).
As illustrated in Figure 4, while the digit labels (left/right) are shared across modalities in DDM-
NISTMM, the actual digit instances are sampled independently within each digit class, and back-
ground crops originate from different source images. Consequently, the left and right digit labels
constitute the only inter-modal shared information, whereas both background content and hand-
writing characteristics exhibit modality-specific variations across data points. The formal synthesis
procedure for DDMNISTMM is detailed in Algorithm 1.

Algorithm 1 DDMNISTMM Synthesis Protocol

Require: MNIST dataset, target sample size N , background images {img1, img2, img3}
Ensure: Generated DDMNISTMM dataset

1: for n = 1 to N do
2: for m = 1 to 3 do
3: Sample label left, label right ∼ U{0, 9} with replacement
4: Select dleft randomly from MNIST class label left
5: Select dright randomly from MNIST class label right
6: Crop 56× 56 sub-image sub imgm from imgm at random position
7: Generate position masks mask left, mask right from dleft, dright
8: Apply color inversion to left/right regions of sub imgm using mask left, mask right
9: end for

10: end for

Published as a conference paper at ICLR 2024

Figure 15: D-CMVAE random generations of CUBICC data by conditioning the reverse diffusion
process on only the self reconstructions of CMVAE. This results in sub-optimal generative quality.

D DETAILS ON DATASETS, METRICS AND IMPLEMENTATION

D.1 DATASETS

In this section, we provide detailed information about the datasets used in this work. The first
dataset we use is the PolyMNIST dataset (Sutter et al., 2021), a semi-synthetic yet challenging
dataset consisting of five image modalities: each modality depicts MNIST (LeCun et al., 2010) digits
patched on random crops from five distinct background images, one for each modality. Figure 2a
showcases some illustrative samples from the dataset. Note that the digit label is the only shared
information across modalities, while the background features and the handwriting style differ across
modalities in each data point.

As a second experimental setting, we introduce a modified version of the CUB Image-Captions
dataset (Wah et al., 2011; Shi et al., 2019). This dataset originally consists of images of birds
paired with corresponding descriptive captions. Our version, named the CUB Image-Captions for
Clustering (CUBICC) dataset, serves as a benchmark for evaluating multimodal clustering methods
under more realistic conditions. To create this dataset, we grouped sub-species of birds into a single
species category, as illustrated in Figure 16. As a result, the CUBICC dataset consists of eight
classes, each representing a different bird species. The grouping of sub-species into a single class
introduces significant variability within each class, posing a considerable modeling challenge.

Figure 16: CUBICC dataset structure. Bird sub-species are grouped together in a single category.

D.2 IMPLEMENTATION DETAILS

To implement all multimodal VAEs (Wu & Goodman, 2018; Shi et al., 2019; Sutter et al., 2020;
2021; Hwang et al., 2021; Palumbo et al., 2023) included in Section 4.1 for comparison in terms of
generative performance we follow the same settings as in Palumbo et al. (2023) for training these

19

Figure 9: CUBICC dataset structure. Bird sub-species are grouped together in a single category.
Images taken from Palumbo et al. (2024).

The second dataset, CUB Image-Captions for Clustering (CUBICC) dataset (Palumbo et al. (2024)),
constitutes a modified variant of the CUB Image-Captions dataset (Wah et al. (2011); Shi et al.
(2019)). The original CUB Image-Captions dataset contains fine-grained bird images paired with
descriptive captions. CUBICC was specifically developed to evaluate multimodal clustering meth-
ods under more realistic conditions. As illustrated in Figure 9, this modification employs hierarchical
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Algorithm 1 Post-hoc selection of optimal latent clusters.
H̄ denotes normalized entropy, |·| indicates the number of dimensions of a given latent variable, assignc defines
the cluster assignment step, and computeπ the prior probability update operation.

Input: pπK (c), p(z|c), qϕz1
(z|x1) . . . , qϕzM

(z|xM ) from trained CMVAE with K > K̄, data X1:N

Output: pπ
K̂

, with πK̂ s.t.
∑K̂

k=1 1πk ̸=0 = K̂
for k = K to 2 do

for xi
1, . . ., xi

M in x1:N
1 , . . ., x1:N

M do
zi
1, . . . , z

i
M ∼ qϕz1

(z|xi
1), . . . , qϕzM

(z|xi
M )

for m = 1 to M do
p(c|zm) =

pπk
(c)p(zm|c)

∑k
c′=1

pπk
(c′)p(zm|c′)

end for
cias = assignc(p(c|z1), . . . , p(c|zM ))

hi
k = 1

M

∑M
m=1 H̄(p(c|zm))− log p(z,c)

|z|
end for
hk = 1

N

∑N
n=1 h

n
k

πk−1 = computeπ(c
1:N
as ,πk)

end for
pπ

K̂
where K̂ = argmink(h1, . . . , hk, . . . , hK)

4 EXPERIMENTS

We test the performance of CMVAE, in comparison with alternative approaches, on both semi-
synthetic and real-world datasets. We first validate our contributions on the PolyMNIST dataset
(Sutter et al., 2021), a semi-synthetic five-modality dataset depicting MNIST (LeCun et al., 2010)
digits with modality-specific backgrounds, well-established as a benchmark for multimodal VAEs
(Sutter et al., 2021; Hwang et al., 2021; Palumbo et al., 2023). In Section 4.1, we compare the
generative capabilities of our approach with alternative multimodal VAEs: CMVAE outperforms
existing approaches, particularly in unconditional generation. In Section 4.2 we test the clustering
capabilities of CMVAE in comparison with alternative unimodal and scalable weakly-supervised
approaches. In particular, we validate our proposed post-hoc procedure to determine the optimal set
of latent clusters at inference time, hence avoiding the need for a-priori knowledge of the true number
of clusters. Finally, in Section 4.3 we validate our contributions in a real-world experiment. We
introduce a variation of the CUB Image-Captions dataset (Wah et al., 2011; Shi et al., 2019), which
we name the CUB Image-Captions for Clustering (CUBICC) dataset. As the original CUB Image-
Captions dataset consists of images of birds paired with matching captions, we group sub-species of
birds in the original dataset in eight single species—namely Blackbird, Gull, Jay, Oriole, Tanager,
Tern, Warbler, Wren—obtaining a challenging realistic multimodal clustering dataset illustrated in
Figure 2b. Details for the datasets are in Appendix D.1.

(a) PolyMNIST dataset: Each column
is a single data point in this dataset,
consisting of five image modalities
with matching digit. Each row show-
cases samples from a given modality.

(b) CUBICC dataset: Example of the variability within a single
bird class, Oriole. Here we show the images (modality 1) with
their corresponding captions (modality 2).

Figure 2: Illustrative samples for the PolyMNIST (a) and CUBICC (b) datasets.

4.1 IMPROVED GENERATION PERFORMANCE OVER EXISTING MULTIMODAL VAES

In this section, we compare the generative capabilities of our model against the main existing formu-
lations of multimodal VAEs on the PolyMNIST dataset. Successful generative performance of mul-

6

Figure 10: Illustrative samples for the CUBICC: Example of the variability within a single bird
class, Oriole. Here we show the images (modality 1) with their corresponding captions (modality
2). Images taken from Palumbo et al. (2024).

grouping of avian subspecies into consolidated species categories, resulting in 8 broad taxonomic
classes. This grouping strategy significantly amplifies intra-class variability by incorporating di-
verse morphological variations within each species cluster, thereby presenting substantially greater
challenges for clustering algorithms. Figure 10 exemplifies this characteristic variability through a
representative sampling within the Oriole bird class.

To further validate DL2’s capacity for targeted semantic disentanglement, we introduce CelebA-HQ
(Lee et al. (2020)) as the third benchmark dataset. CelebA-HQ comprises dual modalities: facial
images paired with corresponding textual descriptions. Notably, the dataset provides annotations for
multiple attributes, each representing distinct high-level semantic concepts. Specifically, we con-
duct experiments using two attribute labels: gender (binary) and smile intensity (6-point scale). By
evaluating clustering performance across these disparate semantic targets, we establish a robust as-
sessment framework for DL2’s ability to disentangle specified high-level semantics. Representative
samples under both attribute conditions are visualized in Figure 11.

Smile Intensity (6-point scale)

G
en

de
r 
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y)

No Smile Big Smile

Fe
m

al
e

M
al

e

This guy is smiling with the mouth wide open 
and teeth visible and has no bangs.  This 
gentleman looks very young and has no glasses.

This gentleman is a young 
adult and has no smile, short 
beard , and no fringe.

This person has no fringe, 
no smile, and no glasses.

This female has no eyeglasses, no 
bangs, and a extremely big smile 
with her mouth wide open. 

Figure 11: Illustrative samples for the CelebA-HQ: The first row illustrates six female-labeled sam-
ples, while the second row displays six male-labeled samples. Each column corresponds to a distinct
smile intensity level, with expression magnitude progressively intensifying from left to right (i.e.,
spanning no smile to big smile).
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G.2 BASELINES

We compare our approach with the following state-of-the-art deep clustering methods, which cover a
wide range of settings including single-modal and multi-modal, as well as unsupervised and weakly-
supervised paradigms.

Single-Modal Methods:

• VaDE (Jiang et al. (2016)). An unsupervised deep clustering method based on the Variational
Autoencoder (VAE) framework, which models the latent variables with a Gaussian Mixture Model
(GMM) prior.

• DC-GMM (Manduchi et al. (2021)). A weakly-supervised deep clustering method also built
upon the VAE framework. It introduces a Conditional Gaussian Mixture prior for the latent vari-
ables that is guided by pairwise constraints, integrating domain knowledge in a probabilistic gen-
erative manner.

• SDEC (Ren et al. (2019)). A weakly-supervised deep clustering method based on an Autoencoder
(AE) architecture. It enhances the Deep Embedded Clustering (DEC) framework by integrating
pairwise constraints to simultaneously learn feature representations and perform cluster assign-
ments.

• C-IDEC (Zhang et al. (2019)). A weakly-supervised deep clustering framework based on an
Autoencoder (AE) structure. It introduces a flexible constraint framework to incorporate various
forms of prior knowledge, such as pairwise constraints, instance difficulty constraints, and triplet
constraints.

• VolMaxDCC (Nguyen et al. (2023)). A weakly-supervised deep clustering method with a unique
encoder-only architecture (i.e., no decoder). It learns discriminative representations by maxi-
mizing the volume of the latent space through a geometric regularization approach, specifically
designed to handle incomplete and noisy pairwise annotations in a provably identifiable manner.

Multi-Modal Method:

• CMVAE (Palumbo et al. (2024)). An unsupervised multi-modal clustering method based on the
VAE framework, designed to learn a common latent representation from multiple modalities for
clustering.

• MMVAE+ (Palumbo et al. (2023)). A weakly-supervised multimodal generative model based on
the Mixture-of-Experts Multimodal VAE (MMVAE) framework. It enhances generative quality by
modeling shared and modality-specific information in separate latent subspaces, while maintain-
ing high semantic coherence through a novel objective that uses auxiliary priors to avoid shortcuts
during cross-modal reconstruction.

G.3 IMPLEMENTATION DETAILS

DDMNISTMM (results in Section 4.1 and Appendix G) MNIST

For all datasets, we employed identical encoder and decoder networks for all comparative methods
(CMVAE (Palumbo et al. (2024)), MMVAE+ (Palumbo et al. (2023)), VaDE (Jiang et al. (2016)),
DC-GMM (Manduchi et al. (2021)), SDEC (Ren et al. (2019)), and C-IDEC (Zhang et al. (2019)))
based on the encoder-decoder architecture. For VolMaxDCC (Nguyen et al. (2023)), which only
requires projecting samples into the category space, the same encoder followed by a two-layer MLP
was used during training to project samples first into a feature space and then into the category space.

DDMNISTMM On the DDMNISTMM dataset, the dimensionalities of DL2’s task-relevant
shared latent subspace, residual shared latent subspace, and modality-specific latent subspaces were
set to 32, 32, and 64, respectively. For CMVAE and MMVAE+, the shared and modality-specific
latent subspace dimensions were set to 64 and 64. The latent space dimensionality for VaDE, DC-
GMM, SDEC, and C-IDEC was set to 128, while VolMaxDCC’s feature space dimensionality was
set to 128 to ensure a fair comparison. All methods were trained for 250 epochs with a learning
rate of 5e-4 on DDMNISTMM, following the best practices from their original works but without
any pretraining (e.g., for VaDE and SDEC). Specifically for SDEC, the reconstruction loss from
its pretrained feature extraction encoder was incorporated into the training objective for end-to-end
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training. For VAE-based methods, the ELBO was estimated using the IWAE estimator with one
sample.

CUBICC On the CUBICC dataset, DL2 used ResNet and convolutional encoder/decoder net-
works for image and text modalities, respectively. The dimensionalities of its task-relevant shared,
residual shared, and modality-specific latent subspaces were set to 48, 16, and 32. For CMVAE and
MMVAE+, the corresponding dimensions were 64 and 32; for VaDE, DC-GMM, SDEC, and C-
IDEC, the latent dimensionality was 96; and for VolMaxDCC, the feature space dimensionality was
96. All methods were trained for 150 epochs with a learning rate of 1e-3, again without pretraining.
On the CUBICC dataset, we followed the practice of Palumbo et al. (2024). for training VAE-based
methods. Specifically, the loss was estimated using 10 samples, and the DReG estimator (Tucker
et al. (2018)) was applied for gradient calculation.

CelebA-HQ The training setup for the CelebA-HQ dataset was largely consistent with that for
CUBICC. For the smile intensity discrimination task, DL2’s task-relevant shared, residual shared,
and modality-specific latent subspace dimensions were set to 32, 32, and 32; for the gender discrim-
ination task, they were set to 48, 16, and 32. The comparative methods used the same dimension-
alities as on CUBICC. All models were trained for 250 epochs with a learning rate of 1e-3. For
VAE-based methods, the IWAE estimator with one sample was used.

Finally, for DDMNISTMM, the dataset is partitioned into 60,000 training samples, 5,000 validation
samples, and 5,000 test samples. For CUBICC, it comprises 11,834 training, 638 validation, and
659 test samples. For CelebA-HQ, the dataset consists of 20,999 training, 3,000 validation, and
6,000 test samples.

Note that during training on all datasets, the correct number of clusters was provided. Consequently,
the results for CMVAE on CUBICC differ from those reported in the original paper.
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H EVALUATION METRICS

In this work, we employ a comprehensive set of metrics to evaluate the performance of our model
from both generative and clustering perspectives. Below we provide detailed definitions and formu-
lations for each metric.

H.1 EVALUATION METRICS OF GENERATIVE CAPACITY

First, regarding generative capabilities, we focus on both generation quality and generation consis-
tency. This is because an effective MVAE should not only possess the ability to produce diverse
samples but also ensure high semantic consistency across different modalities.

H.1.1 FRÉCHET INCEPTION DISTANCE (FID)

The FID score measures the similarity between the distribution of generated images and the distri-
bution of real images (Heusel et al. (2017)). It is computed by modeling the feature representations
of both sets of images using a pre-trained Inception-v3 network (Szegedy et al. (2016)). A lower
FID score indicates higher quality and diversity of the generated images, meaning the generated
distribution is closer to the real data distribution (Benny et al. (2021)).

Let µr, µg be the mean feature vectors, and Σr, Σg be the covariance matrices of the real and
generated data distributions, respectively. The FID is calculated asHeusel et al. (2017):

FID = ∥µr − µg∥22 +Tr(Σr +Σg − 2(ΣrΣg)
1/2)

where Tr denotes the trace of a matrix.

H.1.2 GENERATIVE COHERENCE

To quantitatively evaluate generative coherence across the two multimodal datasets (DDMNISTMM
and CelebA) used in our study, we adopt task-specific coherence metrics that align with the semantic
structure of each dataset. Specifically, we employ modality-specific classifiers trained to identify
shared semantic content. This approach is consistent with conventional practices in multimodal
generative modeling (e.g., Shi et al. (2019); Palumbo et al. (2023; 2024)), which utilize classifiers
as proxies for assessing semantic preservation during generation.

Generative coherence: DDMNISTMM To quantitatively evaluate generative coherence on the
DDMNISTMM dataset, we adopt a strategy that aligns with the structure of the data. Since each
modality depicts two independent MNIST digits (left/right) against modality-specific backgrounds,
and the digit labels represent the shared information across modalities, we train six separate classi-
fiers—one for each digit position (left or right) within each modality. All classifiers achieve an ac-
curacy exceeding 98.97% on the test set, ensuring reliable assessment. For cross-modal generation,
we compute the coherence for left and right digits separately by comparing the classifier-predicted
labels with the ground-truth labels. The overall shared consistency is then defined as the product
of the left and right coherence scores. For unconditional generation, we generate samples for all
modalities and apply the corresponding classifiers to verify whether the predicted digit labels are
consistent across modalities.

Generative coherence: CelebA In the CelebA dataset, we focus on two attributes: gender (bi-
nary) and smile intensity (6-point scale). We train four classifiers in total: for each modality (image
and text), we train one classifier for gender and one for smile intensity. The classifiers achieve
accuracies of 100% (text-gender), 100% (text-smile), 97.82% (image-gender), and 83.17% (image-
smile) on the test set. For cross-modal generation, we compute attribute-level coherence by compar-
ing the classifier predictions for the generated sample with the true labels. The overall coherence is
defined as the product of gender coherence and smile coherence. For unconditional generation, we
check whether the predictions for both attributes are consistent across modalities.

Rationale and Validity This evaluation strategy is designed to ensure a rigorous and semantically
meaningful assessment of generative coherence. By leveraging highly accurate modality-specific
classifiers, we establish a reliable proxy for measuring whether the generated content preserves the
underlying shared information—be it digit labels or semantic attributes. The use of separate classi-
fiers for distinct components (e.g., left/right digits in DDMNISTMM) or attributes (e.g., gender and
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smile in CelebA) allows for fine-grained and interpretable evaluation. Moreover, the multiplicative
aggregation of coherence scores emphasizes the necessity of holistic consistency across all relevant
factors. This approach is particularly suitable for evaluating multimodal generative models where
high-dimensional raw data (e.g., images or text) must be evaluated in terms of discrete semantic
concepts.
Remark 3 (For the CUBICC dataset, this paper does not calculate the generative coherence). On
the DDMNISTMM dataset, we selected the left-digit labels as the clustering target. Thus, the task-
relevant information corresponds to the left digits, while the residual shared information corre-
sponds to the right digits. On the CelebA-HQ dataset, when smiling intensity was chosen as the
target, the task-relevant information captured smiling intensity, and the residual information con-
tained other attributes. Although we lack complete labels for the residual information, gender is
included within it, so we used gender as a proxy. Similarly, when gender was selected as the target,
the residual information contained attributes such as smiling intensity, which served as the proxy.
In contrast, for the CUBICC dataset, we completely lack annotated labels for the residual shared
information. Therefore, consistency measurements were omitted on this dataset.

H.2 EVALUATION METRICS OF CLUSTERING PERFORMANCE

To quantitatively assess the clustering performance, we adopt three widely-used metrics: Accuracy
(ACC), Normalized Mutual Information (NMI) and Adjusted Rand Index (ARI) (Xu & Tian (2015)).
Given the set of ground-truth labels L and the set of cluster assignments C obtained from the model,
these metrics are defined as follows.

H.2.1 ACCURACY (ACC)

Clustering Accuracy is defined as the maximum matching accuracy between cluster assignments
and ground-truth labels. It is computed by finding the optimal one-to-one mapping between clusters
and classes using the Hungarian algorithm.

ACC = max
m

1

N

N∑
i=1

I(li = m(ci))

where N is the total number of samples, li is the ground-truth label of sample i, ci is its assigned
cluster label, m is a permutation mapping function that maps each cluster index to a class index, and
I(·) is the indicator function.

H.2.2 NORMALIZED MUTUAL INFORMATION (NMI)

NMI quantifies the mutual dependence between the cluster assignments and the true labels, nor-
malized by the entropy of each (Strehl & Ghosh (2002)). It measures the amount of statistical
information shared by the two sets of distributions.

NMI(L,C) =
2 · I(L;C)

H(L) +H(C)

where I(L;C) is the mutual information between L and C, and H(·) is the entropy.

H.2.3 ADJUSTED RAND INDEX (ARI)

The ARI is a chance-adjusted version of the Rand Index (RI) (Hubert & Arabie (1985)). It compares
the similarity between two data clusterings while accounting for the similarity that would occur by
random chance. An ARI score of 1 indicates perfect clustering, and a score around 0 indicates
random labeling.

Let a be the number of pairs of samples that are in the same cluster in C and in the same class in L
(TP), b be the number of pairs in the same cluster in C but not in the same class in L (FP), c be the
number of pairs not in the same cluster in C but in the same class in L (FN), and d be the number of
pairs in different clusters and different classes (TN). The total number of pairs is n =

(
N
2

)
.

The Rand Index (RI) is:

RI =
a+ d

a+ b+ c+ d
=

a+ d

n
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The Adjusted Rand Index is then computed as (Hubert & Arabie (1985)):

ARI =
RI − E[RI]

max(RI)− E[RI]

A common formulation based on the contingency table is:

ARI =

∑
ij

(
nij

2

)
− [

∑
i (

ai
2 )

∑
j (

bj
2 )]

(n2)

1
2 [
∑

i

(
ai

2

)
+

∑
j

(
bj
2

)
]− [

∑
i (

ai
2 )

∑
j (

bj
2 )]

(n2)

where nij is an entry in the contingency table (the number of samples common to cluster i and class
j), ai is the sum of the i-th row (size of cluster i), and bj is the sum of the j-th column (size of class
j).
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I ADDITIONAL RESULTS

Table 3: The generative capabilities of DL2,CMVAE and MMVAE+ on the CelebA-HQ (Gender)
dataset. Bold and underline denote best and second-best results, respectively.

Method U FID (↓) C FID (↓) CC (↑)
MMVAE+ 55.58(1.11) 58.67(1.32) 0.41(0.03)
CMVAE 54.25(1.58) 60.58(3.32) 0.38(0.04)
DL2 53.50(1.52) 56.75(1.95) 0.45(0.00)

Abbreviations: U FID = Unconditional FID; C FID = Conditional FID; CC = Conditional Coherence; UCC =
Unconditional Coherence.
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Figure 12: The task-adaptive disentanglement performance of DL2 on CelebA-HQ with varying
values of λ and γ.

I.1 ANALYSIS AND EXPERIMENTAL VERIFICATION OF THE TASK-GENERATION DILEMMA
AND THE EFFECT OF EXPLICITLY MODEL RESIDUAL SHARED INFORMATION

�1: Modal-specific information �2: Modal-specific information

�: Complete shared information 

�(�): Residual shared information �(�): Task-driven shared information

Modality 1 Modality 2

�(�)
’ : Fake task-driven shared information

Figure 13: Schematic diagram of information structure. The blue and red ellipses represent two
distinct modalities. The non-overlapping regions, filled with solid blue and red colors, correspond
to modality-specific information (w1 and w2). Their overlapping area, outlined by a purple dashed
line, denotes the complete shared information z. Within this shared region, an ellipse with a black
border and green mesh filling represents the task-relevant shared information z(t). The remaining
area (i.e., the complete shared information excluding the task-relevant part) constitutes the residual
shared information z(r). Note that the task-relevant shared information is contained within a green
dashed ellipse, which indicates the pseudo task-relevant shared information z

′
(t), as formally defined

in Appendix I.1.
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This section begins with a theoretical dissection of the intrinsic conflict in the task–generation
dilemma within multimodal data. Subsequently, we validate this theoretical analysis through a con-
trolled experiment, ultimately demonstrating that the dual-level disentanglement (DL2) framework
serves as a critical mechanism for resolving this fundamental conflict (or, Dual-Level Disentan-
gLement is necessary for the task-generation dilemma in multimodal data).

We first introduce a variant of DL2, referred to as DL, which performs only single-level disentan-
glement by reducing the dimensionality of z(r) to zero and setting the dimension of z(t) to the sum
of the original z(r) and z(t) dimensions. Thus, we have z = z(t) in DL.

Analysis Verification of the Task-Generation Dilemma Figure 13 shows the information struc-
ture in a multimodal data with two modalities. The primary objective LDL (Equation 2) encourages
the separation of modality-specific information and shared information, enabling z to capture the
complete shared information. The regularization terms RPS (Equation 4) and RNS (Equation 9)
promote the disentanglement of task-relevant shared information from residual shared information,
thereby guiding z(t) to encode primarily task-related semantics. In DL, since z = z(t), an inherent
conflict arises: LDL pushes z to capture all shared information, while the contrastive losses constrain
it to only task-relevant information. This leads to a suboptimal equilibrium where z encodes neither
complete shared information nor purely task-specific information, but an intermediate representa-
tion (denoted as “Fake task-driven shared information z

′
(t)” in Figure 13). Our analysis therefore

supports the following inference: while DL improves clustering over unsupervised baselines such as
CMVAE, it is expected to underperform relative to DL2 and exhibit reduced generative consistency
due to partial information loss.

Experimental Verification of the Task-Generation Dilemma We trained DL2, CMVAE, and
DL on the CelebA-HQ dataset using smiling intensity as the target label. Results in Figure 1 show
that both DL2 and DL achieve better clustering than CMVAE, confirming the benefit of weak super-
vision. However, DL2 surpasses DL in clustering accuracy, indicating higher purity of task-relevant
information in z(t). Moreover, DL exhibits significantly lower conditional and unconditional coher-
ence compared to DL2 and CMVAE, confirming the loss of shared information under single-level
disentanglement. These results collectively indicate that DL’s representation is neither sufficiently
pure for task relevance nor complete for generation.

In summary, our theoretical and experimental results are consistent and mutually reinforcing,
demonstrating that dual-level disentanglement is necessary to resolve the task–generation dilemma
in multimodal data. This approach can be naturally extended to unimodal settings or general infor-
mation purification tasks: directly regularizing the full encoder output may be suboptimal. Instead,
explicitly modeling residual information provides a “reservoir” for irrelevant content, avoiding in-
ternal optimization conflicts and enabling both high purity and integrity in the representations.

I.2 A KEY IN RESOLVING THE TASK–GENERATION DILEMMA IS MAINTAINING GENERATIVE
CAPABILITY WHILE ACHIEVING DISENTANGLEMENT.

A key in addressing the task–generation dilemma is to achieve disentanglement without compro-
mising generative capability, or equivalently, to ensure minimal loss of overall information during
task-adaptive disentanglement. We argue that simply incorporating weak supervision in a straight-
forward manner to identify task-relevant information may be inadequate to resolve this dilemma, as
it can impair generative quality. To validate this claim, we conducted an ablation experiment that
also addresses the question raised in Remark 2: why a reversed RNS (or equivalently, CCMI) was
not applied to positive signals to unify the framework.

R∗
PS(z

k
(t); z

l
(t)) = ICCMI(z

k
(t); z

l
(t)) = Ep(zk

(t)
)p(zl

(t)
)

log Ec

[
p(zk

(t) | c) · p(c | zl
(t))

]
Ec

[
p(zk

(t) | c)
]

 . (47)

Specifically, we replaced the proposed RPS with R∗
PS (as defined in equation 47), resulting in a

variant named DL2∗ that is trained with the loss function in equation 48. DL2∗ can be viewed as a
purely weakly-supervised model that attracts positive sample pairs and repels negative pairs in the
z(t) space.
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Figure 14: Experimental results of CMVAE, DL2, DL2∗ on the CUBICC dataset demonstrate that
while simple weakly-supervised techniques can enhance disentanglement performance, they often
do so at the cost of generative quality. Note: For a fair comparison, we set the number of components
in the prior distribution of CMVAE’s z to match the number of clusters, rather than using a large
value as in the original implementation. Therefore, the results on CUBICC differ from those reported
in the original paper.

We trained DL2, DL2∗, and CMVAE on the CUBICC dataset; results are shown in Figure 14. Both
DL2 and DL2∗ substantially outperform CMVAE in clustering performance, confirming their effec-
tiveness in leveraging contrastive signals. And DL2 slightly surpasses DL2∗ in clustering accuracy,
it demonstrates that our RPS design, while less intuitive than R∗

PS, is no less effective in identify-
ing task-relevant information. Moreover, while DL2 matches CMVAE in generative quality, DL2∗
exhibits significantly worse performance. This suggests that although simplistic weak supervision
may enhance the purity of task-specific components, it can adversely affect generative performance.
In contrast, DL2 achieves the best clustering results without degrading generative quality.

LDL2∗(X,M,C) = LDL(X) +
λ

|M|
∑

(Xk,Xl)∈ M
R∗

PS(X
k,X l) +

γ

|C|
∑

(Xi,Xj)∈ C
RNS(X

i,Xj).

(48)

I.3 QUALITATIVE COMPARISON OF GENERATED SAMPLES

To complement the quantitative metrics (FID and Coherence) presented in the main text, we report
a qualitative comparison of generated samples from DL2, CMVAE, and MMVAE+ on the DDM-
NISTMM dataset. For a fair comparison, all three methods were evaluated using the same β values
on each dataset: β = 2.5 for DDMNIST, and β = 1.0 for both CUBICC and CelebA-HQ. The
visual results as shown in Figure 15, Figure 16, Figure 17, Figure 18, Figure 19 and Figure 20.

We begin by examining the conditional generation outcomes on the DDMNISTMM dataset, as pre-
sented in Figure 15, Figure 16 and Figure 17. While the overall sample quality appears broadly
comparable across all three methods, closer inspection reveals that digits generated by DL2 and
MMVAE+ exhibit noticeably sharper handwriting strokes and more consistent digit labels com-
pared to those produced by CMVAE. We further analyze the unconditional generation results on
the DDMNISTMM dataset, illustrated in Figure 18, Figure 19 and Figure 20. For this experiment,
100 samples were drawn from each component of the latent variable z for both MMVAE+ and CM-
VAE, and from each component of z(t) for DL2. Given that the prior distributions of z in CMVAE
and z(t) in DL2 are modeled as mixtures of 10 components, this sampling strategy yielded 1000
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(a) modality 2 (b) modality 3

Figure 15: Conditional generation from the first modality to the remaining ones for DL2 trained
with β = 2.5 on the DDMNISTMM dataset. In each image, on the top row are starting samples,
and below ten instances of conditional generation for the corresponding target modality. Qualitative
results complement the analysis in Table 2.

(a) modality 2 (b) modality 3

Figure 16: Conditional generation from the first modality to the remaining ones for CMBVAE
trained with β = 2.5 on the DDMNISTMM dataset. In each image, on the top row are starting
samples, and below ten instances of conditional generation for the corresponding target modality.
Qualitative results complement the analysis in Table 2.

unconditional generated samples for each of these two methods. A clear visual hierarchy emerges:
DL2 produces samples of superior perceptual quality, outperforming MMVAE+ and substantially
surpassing CMVAE. The latter not only demonstrates poorer visual effect but also generates digits
with reduced sharpness and cross-modal consistency.

A particularly telling observation is the detectable correlation between modal backgrounds and spe-
cific components of z in CMVAE’s generated samples. For instance, in the first modality, certain
components yield samples with predominantly black backgrounds, while others produce samples
with yellow backgrounds. This phenomenon provides tangible evidence that CMVAE fails to ade-
quately disentangle modality-specific information (e.g., background) from the shared information,
resulting in the leakage of modal variations into the shared latent representation z.

This finding highlights a fundamental limitation common to MVAE-based clustering approaches.
The framework often requires a predefined and potentially incomplete prior structure for the shared
latent space z. In cases like DDMNISTMM, where prior knowledge might only extend to the num-
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(a) modality 2 (b) modality 3

Figure 17: Conditional generation from the first modality to the remaining ones for MMVAE+
trained with β = 2.5 on the DDMNISTMM dataset. In each image, on the top row are starting
samples, and below ten instances of conditional generation for the corresponding target modality.
Qualitative results complement the analysis in Table 2.

ber of classes for the left-digit (the target clusters), but remain absent for other shared factors (e.g.,
the right-digit label), the model is forced to compress the entirety of the shared information into an
inadequately structured space (e.g., a 10-component mixture). This overly restrictive prior can make
it infeasible for the model to properly structure the entire shared latent space, consequently impair-
ing its ability to disentangle shared and modality-specific factors, which in turn degrades generative
performance. Furthermore, this aligns with the established understanding in disentanglement litera-
ture (Locatello et al. (2019)) that unsupervised identification and isolation of factors is challenging
without appropriate inductive biases. When the shared latent space encompasses information be-
yond the target clustering structure, unsupervised multimodal clustering methods lack the necessary
signals to identify the intended factors, leading to nearly random-level clustering performance for
CMVAE on DDMNISTMM, as quantitatively confirmed in Table 2.

These qualitative analyses complement the quantitative findings in Table 2, demonstrating that DL2

produces samples of comparable visual fidelity and semantic clarity. Crucially, they confirm that
its superior disentanglement performance does not come at the cost of degraded generative capabil-
ity—that is, DL2 achieves more disentangled representations without compromising the ability to
generate high-quality data, thereby providing visual and explanatory support for the efficacy of the
proposed task-adaptive disentanglement paradigm and the DL2 framework.

(a) modality 1 (b) modality 2 (c) modality 3

Figure 18: Unconditional generation for MMVAE+ traind with β = 2.5 on the DDMNISTMM
dataset. A hundred instances across modalities are shown. Qualitative results complement the anal-
ysis in Table 2.
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(a) modality 1

(b) modality 2

(c) modality 3

Figure 19: Unconditional generation for DL2 trained with β = 2.5 on the DDMNISTMM dataset.
A thousand instances across modalities are shown. Qualitative results complement the analysis in
Table 2.

I.4 LATENT SPACE INTERPOLATION AND SEMANTIC TRAVERSALS

To more intuitively understand what information is encoded in the task-driven encoding z(t), the
residual encoding z(r), and the modality-private encoding w, we performed latent space interpo-
lation and generation experiments on DDMNIST. The results are shown in Figure 21, Figure 22,
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(a) modality 1

(b) modality 2

(c) modality 3

Figure 20: Unconditional generation for CMVAE traind with β = 2.5 on the DDMNISTMM
dataset. A thousand instances across modalities are shown. Qualitative results complement the
analysis in Table 2.

Figure 23 and Figure 24. Each semantic traversal grid displays a 10×10 image matrix. The first and
last rows of each grid use z(t), z(r), and w sampled from the prior distribution, while the middle
eight rows are generated by linearly interpolating a specified latent code while keeping the others
fixed. All latent variables remain unchanged in the corresponding columns of the grid, except for
the latent encoding being traversed.
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We observe that when interpolating the modality-private encoding w, only the background and
handwriting style change across the three modalities, while the central digit label remains almost
unchanged (Figure 21). When interpolating the task-driven encoding z(t), the background and the
right digit remain largely consistent, with only the left digit varying gradually (Figure 22). Similarly,
interpolating the residual encoding z(r) leaves the background and left digit mostly unchanged, with
smooth variation only in the right digit (Figure 23). Finally, Figure 24 shows the semantic traversal
when interpolating the entire z = (z(t), z(r)), where both digits change simultaneously while the
background remains stable.

Thus, by interpolating different components of the latent space and analyzing the resulting semantic
traversals, we conclude that: the modality-private encoding w captures modality-specific informa-
tion; the task-driven encoding z(t) represents the left digit label (the target indicated by the CSs);
and the residual encoding z(r) adaptively encodes the right digit label, enabling z = (z(t), z(r))

to fully capture the shared information. These results demonstrate that DL2 successfully achieves
task-adaptive disentanglement.

(a) modality 1 (b) modality 2 (c) modality 3

Figure 21: The semantic traversal images generated by interpolation in the latent space of w.

(a) modality 1 (b) modality 2 (c) modality 3

Figure 22: The semantic traversal images generated by interpolation in the latent space of z(t).
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(a) modality 1 (b) modality 2 (c) modality 3

Figure 23: The semantic traversal images generated by interpolation in the latent space of z(r).

(a) modality 1 (b) modality 2 (c) modality 3

Figure 24: The semantic traversal image generated by interpolation in the latent space of z.
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