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ABSTRACT

Affinity matrix-based clustering constitutes an eminent approach within the do-
main of data mining. Nevertheless, prior research overlooked the opportunity to
directly exploit the block-diagonal structure of the affinity matrix for the purpose
of identifying cluster formations. In this paper, we propose an affinity matrix-
based clustering strategy, termed as DAM, which employs a traversal algorithm
to discern high-density clusters within the graph weighted by the affinity matrix,
thereby establishing a traversal sequence. This sequence is subsequently utilized
to permute the affinity matrix, thereby revealing its intrinsic block-diagonal struc-
ture. Moreover, we introduce an innovative split-and-refine algorithm that au-
tonomously detects all diagonal blocks within the permuted matrix, ensuring theo-
retical optimality in the presence of well-separated clusters. Extensive evaluations
on six real-world benchmark image clustering datasets demonstrate the superiority
of our method over contemporary state-of-the-art clustering techniques.

1 INTRODUCTION

In the present era, characterized by an abundance of data, vast quantities of information are continu-
ously amassed and stored across numerous databases, necessitating the development of sophisticated
analytical techniques to extract meaningful insights Jain et al. (1999). Among such techniques, clus-
ter analysis is instrumental in unveiling the inherent groupings or structures within datasets. Cluster-
ing algorithms, being unsupervised, exhibit remarkable versatility and are employed across diverse
fields, including data analytics, computer vision, and image processing Xu & Tian (2015); Xing &
Zhao (2024).

Despite the emergence of a plethora of clustering algorithms derived from various theoretical frame-
works, accurately identifying clusters based on spatial data distribution remains a formidable chal-
lenge, particularly when the number, density, orientation, and shape of the clusters are undefined
Fraley & Raftery (1998). Addressing these complexities necessitates the use of robust and adaptable
clustering methods, capable of discerning intricate data characteristics.

Traditional clustering algorithms may be broadly categorized into four principal types Fraley &
Raftery (1998): partition-based MacQueen (1967); Liu et al. (2023a); Hu et al. (2023); Mussabayev
et al. (2023), hierarchical Menon et al. (2020); Huang et al. (2023), affinity matrix-based Sun &
Du (2018); Dong et al. (2023); Liu et al. (2023c), and density-based methods Ding et al. (2023);
Qiu & Li (2023); Ester et al. (1996). Among these, affinity matrix-based methods have garnered
considerable attention in recent years, owing to affinity matrix construction advancements in convex
optimization techniques and the adoption of deep neural networks Xie & Wang (2021); Tastan et al.
(2023); Zhang et al. (2021); Fan et al. (2022); Liu et al. (2022); Li et al. (2023b); Kong et al.
(2023); Xu et al. (2020); Liu et al. (2023b; 2020a; 2021); Zhang et al. (2019a). Data naturally
tends to form distinct clusters; hence, the affinity matrix learned from the data ideally exhibits a
block-diagonal structure, wherein each block represents a cluster characterized by high intra-block
similarity and low inter-block similarity. Nevertheless, despite the potential utility of this structure,
existing methods have predominantly focused on enhancing the structure of the affinity matrix itself,
rather than thoroughly exploring the relationship between the block-diagonal structure of the affinity
matrix and the resultant clustering outcomes Tastan et al. (2023). Consequently, current research
lacks strategies that directly leverage the block-diagonal form of the affinity matrix to reveal the
underlying clustering structure.
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quence. This density-based traversal algorithm

transforms the affinity matrix into a block-diagonal form, thereby facilitating both automatic and
interactive cluster analysis, whilst enhancing comprehension of data distribution and correlations.
Furthermore, we propose an innovative split-and-refine algorithm that autonomously detects all di-
agonal blocks within the permuted matrix by determining segmentation index that maximize the
sum of elements within these blocks, ensuring theoretical optimality in instances of well-separated
clusters.

Our contributions are summarized as follows:

* Learning Diagonal Blocks for Clustering: We introduce a strategy that exploits the po-
tential block-diagonal structure of the affinity matrix. We associate each diagonal block
with a distinct cluster, thereby identifying the clustering structure from block-diagonal rep-
resentation.

* Block-Diagonal Generation and Identification: We develop a density-based search strat-
egy capable of discovering clusters in the graph weighted by the affinity matrix, accommo-
dating varying densities. The affinity matrix is permuted according to the traversal order,
and a rapid block-diagonal identification method is proposed, ensuring theoretical optimal-
ity in the case of well-separated clusters.

We evaluate the performance of the proposed clustering method on six benchmark image clustering
datasets, demonstrating that the proposed DAM achieves superior clustering performance compared
to contemporary state-of-the-art methods.

2 RELATED WORKS

2.1 EXPLORING BLOCK-DIAGONAL STRUCTURE OF AFFINITY MATRIX IN CLUSTERING

Numerous studies have explored the block-diagonal properties of the affinity matrix for clustering.
Yang et al. Yang et al. (2019) propose a joint robust multiple kernel clustering method that promotes
an affinity matrix with optimal block-diagonal properties using a regulariser and self-expressiveness.
Liu et al. Liu et al. (2020b) seek a block-diagonal structure by imposing a K -block-diagonal con-
straint, while Wang et al. Wang et al. (2020) enforce such structure through a non-convex regulariser.
Qin et al. Qin et al. (2021) introduce a semi-supervised clustering approach that enforces the block-
diagonal structure, addressing both sparsity and smoothness. Lin et al. Lin & Chen (2022) present
an adaptive block-diagonal representation that maintains convexity, whereas Liu et al. Liu et al.
(2022) propose an adaptive low-rank kernel block-diagonal representation, mapping the input space
to a linearly separable Hilbert space. Qin et al. Qin et al. (2022) establish a theoretical link between
spectral clustering and graph construction using block-diagonal representation. Xu et al. Xu et al.
(2023) and Li et al. Li et al. (2023b) develop efficient block-diagonal graph learning approaches,
while Kong et al. Kong et al. (2023) ensure a k-block-diagonal representation matrix, and Li et al.
Li et al. (2023a) construct a block-diagonal similarity matrix using ordered partition points. The ex-
ploration of block-diagonal properties has also extended to multi-view clustering, as shown by Yin
et al. Yin et al. (2021) and Liu et al. Liu et al. (2023b). Other matrix optimisation-based methods
are discussed in Xie & Wang (2021); Tastan et al. (2023); Zhang et al. (2021); Fan et al. (2022);
Liu et al. (2022); Li et al. (2023b); Kong et al. (2023). Recently, neural network-based approaches
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have garnered significant attention. Xu et al. Xu et al. (2020) propose a latent block-diagonal rep-
resentation model for nonlinear graph construction, while Liu et al. Liu et al. (2023b) incorporate
both block-diagonal and diverse representations into a multi-view clustering network. Other notable
neural network-based works include Liu et al. (2020a; 2021); Zhang et al. (2019a).

However, all these methods predominantly focus on enhancing the potential block-diagonal struc-
ture within the affinity matrix to better represent the underlying clustering structure. Subsequently,
they rely on spectral clustering to identify clusters, utilizing the spectrum (i.e., eigenvalues) of the
affinity matrix for dimensionality reduction, followed by the application of K-means clustering in
the reduced dimensional space. These approaches neglect to directly exploit the block-diagonal
structure of the affinity matrix to derive clustering results.

2.2 BLOCK-DIAGONAL GENERATION AND IDENTIFICATION

A variety of methods have been developed to enhance data analysis by optimizing the ordering of
affinity matrices. Arabie and Carroll Arabie et al. (1978) introduced matrix permutation techniques
to unveil block structures, thereby improving the understanding of network relationships. Wei et al.
Wei et al. (2016) proposed GO-PQ, a strategy aimed at minimizing CPU cache misses by optimizing
node arrangement. Zhao et al. Zhao et al. (2021) developed the DON model, which leverages a
learned evaluation function to replace heuristics and capture the hidden locality of vertices. Further
advancements include AutoLL by Watanabe et al. Watanabe & Suzuki (2021), which utilizes neural
networks to reorder elements and elucidate the structures of adjacency matrices, and DeepTMR
Watanabe & Suzuki (2022), which extracts nonlinear features for reordering based on a latent block
model. However, these block diagonal generation methods generally require affinity matrix values
to be limited to O or 1 and focus solely on rearranging the matrix without ensuring a fully block-
diagonal form.

Block-diagonal identification, primarily developed for analyzing Hi-C data, has also seen significant
advancements. Brault et al. Brault et al. (2017) explored methods for estimating block boundaries in
diagonal blockwise matrices of Hi-C data, using a non-penalized approach to determine the number
of block boundaries. They developed least squares estimators for both block boundaries and the
number of blocks, which are theoretically proven to be consistent. Building on this work, Brault et
al. Brault et al. (2018) introduced a nonparametric method for estimating block boundary locations
in large Hi-C data matrices. However, these methods are specifically tailored for Hi-C data and lack
broader applicability.

3 METHODOLOGY

In this section, we first introduce a method for permuting the affinity matrix into a block-diagonal
form using density-based traversal. Following this, we outline the process for identifying diagonal
blocks within the affinity matrix.

3.1 PERMUTING AFFINITY MATRIX INTO BLOCK-DIAGONAL FORM USING
DENSITY-BASED TRAVERSAL

Consider a graph where the weights are defined by the affinity matrix; we begin with an affin-
ity matrix-based density analysis. Subsequently, we introduce a density-based traversal algorithm
designed to traverse all nodes within one cluster in the graph before proceeding to another. By
reordering the row and column of the affinity matrix according to the traversal order, the affinity
matrix can be permuted into a block-diagonal form.

3.1.1 AFFINITY MATRIX-BASED DENSITY ANALYSIS:

For a node 4, the weight (or similarity) w; ; in the affinity matrix W indicates that node j is closer
to node ¢ when w; ; is larger. Let c; denote the weight between the ith node and its Jth-largest-
similarity neighbor, where J is a positive integer parameter. Thus, a larger ¢; implies that node i is
located in a denser region. Clearly, points with lower density have smaller values of c;, while points
with higher density have larger values of ¢;. This way, the density information of different clusters
is encapsulated within the ¢; values of different nodes.
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Definition 1 (reachable similarity). The reachable similarity of jth node to the ith node is defined
as s; ; = min (¢;, w; ;).

Intuitively, for a node ¢, any node j satisfying w; ; > c¢; is considered equally as a close neighbor of
node 4, without any discrimination. However, for nodes j satisfying w; ; < ¢;, the closeness to node
1 is determined by the magnitude of w; ;.

We propose a methodical approach to sequentially process clusters based on their density charac-
teristics, i.e., reachable similarity and Jth-largest-similarity. Our method begins by identifying a
starting point within a high-density cluster, specifically selecting the point with the highest ¢;. The
process then involves an iterative exploration of neighboring points that exhibit a high degree of
reachable similarity, continuing until no unprocessed points remain that are connected to already
processed points. This exploration is conducted for each cluster until all points in the dataset have
been evaluated.

By focusing on reachable similarity, our procedure systematically progresses through clusters, thus
preventing the misclassification of distinct clusters as a single entity due to intervening noise points.
The process initiates from the highest density node and proceeds to explore all connected points
within the same cluster. Following the completion of one cluster, the method advances to an ad-
jacent cluster, and repeats the process until all clusters are processed. This systematic exploration
effectively manages varying densities and facilitates more precise cluster delineation. Importantly,
our method does not require direct cluster assignment during the process, thus bypassing the output
of conventional clustering results.

3.1.2 DENSITY-BASED TRAVERSAL ALGORITHM:

Based on the preceding analysis, the following traversal procedure has been developed. Initially,
all points are designated as unprocessed. The cluster order expansion procedure is initiated by
selecting an unprocessed core point with the highest density indicator ¢;. This point is then marked
as processed and appended to the order list O.

Subsequently, a priority queue @ is instantiated and remains empty until the indices of all nodes
within the d-neighborhood of the selected core point are enqueued. These nodes are ordered in
descending sequence based on their existing reachable similarity s;. The procedure continues as
long as @ is not empty, involving the subsequent steps: a) Dequeue the element m from (), which
has the highest existing reachable similarity. b) For each index j within the §-neighborhood of the
element m, the existing similarity s; is updated if the reachable similarity between index j and the
node m exceeds the current value of s;. ¢) If the m-th node qualifies as a core point, then all indices
of its d-neighborhood are re-enqueued into (), where the queue maintains an automatic sort based on
existing reachable similarity. Upon completion of these steps, the order of clusters is systematically
documented in the list O. Consequently, the affinity matrix W, when permuted according to the
order list O, will manifest a block-diagonal structure.

The parameter § is used to indicate the density of nodes in the region where each node is located. It
does not require a precise setting. This paper proposes a rough yet effective approach for determining
0. Specifically, we first calculate the average distance between nodes. We then use this value as
the ¢; value for each point and calculate the recommended ¢ for each point. The final § value is

: _ 1 N N dec __ 7 o —
the average of all recommended ¢ values, i.e., § = ~ ) j—1 arg min; (|wm w ), where w =
N N . . . .
% > a1 > p—1 Wap 1s the average weight. We reorder {wi,1,w; 2, ..., w; n} in descending order
: dec dec dec
to obtain {wiT, wis, ..., Wi }-

The cluster ordering of a dataset can be graphically represented and interpreted. Let the traversal
order be stored in o. The potential L boundaries between diagonal blocks are then identified as the
troughs in the curve {c,(;|i € {1,2,..., N}}. It is important to note that these boundaries are not
entirely precise, as they are based on local information and do not account for a global trade-off
across all diagonal blocks.

While the traversal procedure bears certain similarities to DBSCAN in that both employ a density-
based search within the graph, DBSCAN is reliant upon parameters such as eps and minPts. These
parameters are often challenging to determine, and the clustering performance is highly sensitive to
their configuration. Furthermore, DBSCAN may fail to distinguish between clusters separated by
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regions of low density. By contrast, the proposed procedure obviates the need for manual parameter
tuning, instead focusing solely on traversing data points to establish a traversal order without directly
yielding clustering results.

3.2 IDENTIFYING DIAGONAL BLOCKS IN THE AFFINITY MATRIX

In this section, we aim to delineate the clustering outcome by pinpointing the diagonal blocks in
the permuted affinity matrix. It is identified that only & — 1 partition indices {t1,t2,...,tx—1} C
{1,2,..., N} are required, which segregate the affinity matrix into a block-diagonal configuration
with K distinct blocks. These indices are ordered and unique, ensuring that each cluster contains at
least one node and t_; < ¢ forall k € {1,2,..., K}. Auxiliary indices are defined as ¢y := 0
and tx := N to facilitate analysis.

1) Optimization Target: The objective is to maximize the internal similarity of the diagonal blocks
by determining the partition indices {tk}kK:_ll. Let {7} } represent the segmentation variables, where
the k-th diagonal block comprises data points indexed by C, = {74,—1 + 1,...,7%}. The sum of

weights within the k-th block is given by Zi’ jecy, Wi Our initial approach is to maximize the total

weight across all blocks, expressed as E,f:l > w; ;. To mitigate potential biases towards

4,jECk
smaller clusters, a normalization term ;. Zjil wj,; 1s incorporated into the objective function,
ensuring a balanced consideration of cluster sizes. Mathematically, the problem is formulated as
K S o Wi
maximize Z mec’j\, Y subjectto 0< T <7y <..<Tk_1 <N (1)
S iy =1 Eieck Ej:l Wi, j

Problem (1) can be reformulated as minimizing the normalized cut (Ncut) value across

%’EIS’“) Here, the term cut(Cy,Cy) is defined as

Zz‘eck Zje{1727--«7N},j¢Ck w; 4, and vol(Cy,) is given by Zieck Zje{m,“.,N} w; j, aligning with
the traditional Ncut problem as discussed in Shi & Malik (2000). Despite extensive studies over
many years, the NP-hard characteristic of the Ncut problem limits solutions to approximations, typ-
ically via methods like spectral clustering. This paper proposes a novel approach whereby, under
the assumption that W is block-diagonal, an optimal solution to the Ncut problem may be achieved
in cases of well-separated clusters.

K
clusters, expressed as > .

Define the block function as

Felrmire) & > ijecy Wi i jeChsy Wi

k Tk’Tik - Tk N . Tk+1 N o
Zi:rk,l-s-l Zj:l Wi Dt Zj:l Wi,

fork=1,2,..., K — 1, where 7_, £ (74_1, 74 1). In addition, define

Zi,j€{1,2,...,7—1} Wi, 5 Fre (i) = Ei,jG{TK71+1,7'K71+2,.H,N} Wi, 5
, —

T1 N N N
dim1 Zj:l Wi, j Zv’,:-r;(,1+1 Zj:l Wi, j
for mathematical convenience. The problem (1) is equivalent to
K

maxi&ni%e 3 ka(Tk;T,k),subject to 0<Tm<m<..<Tg_1<N
{6}y k=0

Jo(mo) =

In the remaining part of the paper, we may omit the argument 7_j, and write f;(7x) for simplicity,
as long as it is clear from the context.

2) Properties of the fj(7;) in cases of well-separated clusters. Consider that the clusters are
well-separated, resulting in the weights in W between clusters being zero. Suppose the clusters
have been ordered correctly. The intra-cluster similarity for the kth cluster can be assumed to be
w; ; = pu, where 4,5 € {t_1+1,t,_1+2,..., ¢}, and k € {1,2,..., K}, while the inter-cluster
similarity is zero. Under these conditions, we observe the following properties for fi (7%).
Proposition 1 (Unimodality). Suppose that, for some k, 7i,—1,Tr+1 € {to,t1, ..., tx }, there exists
onlyoneindext;, j € {1,2,..., K—1}, within the interval (Ty—1, Ti41). Then, fi(7)— fu(7—1) >
0for Tp—1 < 7 < tj, and fi(7) — fiu(tr — 1) < 0fort; < 7 < Tpy1. In addition, t; minimizes
fe(7) in (Tg—1, Tk+1). (Proof see Appendix A.1.)
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This result implies that, once the condition is satisfied, there exists an unique local minima ¢; of
fi(T) over (Ti—1, Tht1)-

Proposition 2 (Flatness). Suppose that, for some k, 1,1, Tg+1 € {to,t1, ..., LK }, there is no index
t; € {t1,t2,...,tx_1} in the interval (Tj_1,Tg4+1). Then, fi(7) — fr(t — 1) is constant for
T € (Tk—1, Tk+1)- (Proof see Appendix 2.)

It follows that, when the interval (74_1, 7x+1) does not contain ¢;, the function fi(7) appears as a
flat function for 7 € (Tg—1, Tk+1)-

Proposition 3 (Monotonicity). Suppose that, for some k, Ti,—1, k41 € {t1,t2,...,t K1}, there are
multiple partition indexes tj,tj11,...,tjy; € {to,t1,...,tx} within the interval (Tp_1, Tr41).
Then, f(1) — f(r —1) > 0 for T € [1_1,t;], and f(1) — f(r — 1) < O for T € [tj41, Tht1].
Moreover, for any interval (tg,tg+1), k € {4, 7, ...,J + J — 1}, there exists a constant 7, such that

1) If7 € (ti,tis1), then f(1) — f(r — 1) > O for 7 € [ty, 7] and f(1) — f(r — 1) < O for
TE [f-atk+1]’.

2)If7 € [tg1, N), then f(7) — f(r — 1) > 0 for 7 € [tg, txr1];
3)If 7 € (0,tg), then f(7) — f(r — 1) < Ofor T € [tg,tgs1]- (Proof see Appendix A.3.)

3) Split-and-Refine Algorithm. Based on the above property, we develop a method to address prob-
lem (1), providing an optimal solution in cases of well-separated clusters. The method iteratively
alternates between introducing a new segmentation to the existing set and refining the positions of
all segmentations until a stationary state is reached, that is, until no further modifications to any
segmentation result in an improvement in the objective function value.

In the m-th iteration, where m = 1,2, 3, . . ., there exist m intervals (751, 7%) fork € {1,2,...,m}
with 7,,, = N. The k-th interval among these m intervals is selected for division into two new
intervals, thereby expanding the set to m + 1 intervals. The segmentation indices corresponding
to this configuration are represented by an m-tuple 7("™*) = (Tl(m’k),TQ(m’k),. T,(,Z”’k)). The

)

function fi,(7; 77"} is then maximized subject to the constraint + € (7.";", TIETik)), with the
minimal value being denoted as f\"™"*). In addition, denote the benefit of splitting as
m,k m,k m,k m,k
A = (I () @
(mk), _(m,k)

where fi (7, ;7T " ) represents the objective function value in the absence of any split.
Consequently, A f,Sm’k) quantifies the incremental benefit derived from optimally splitting the k-
th interval among the m intervals. To ascertain the most advantageous segmentation, the benefit
increase is evaluated across all possible m combinations of the split. This iterative evaluation facil-
itates the identification of the optimal segmentation variable 7(™*1) which maximizes the overall
benefit. This entire procedure is methodically outlined in Alg. 1 in the appendix.

The proposed splitting procedure operates by sequentially searching for segmentation adjustments.
However, it cannot be guaranteed that the resultant set of segmentations is stationary. To address
this, we introduce a refining process post-insertion of each new segmentation. This refining stage
entails iterating over the current segmentations, individually refining each to maximize the objective
function. The objective may either increase or remain unchanged during this process, and refinement
continues until no further changes in the segmentation can be made. Notably, if no modifications
have occurred in the segmentations, there is no necessity for multiple refining calls.

In practical applications, the exact number of clusters is often undetermined. Therefore, we handle
scenarios where the number of clusters, K, is unknown by setting an upper limit, L. Segmentations
are inserted sequentially until the number of segmentations reaches L. Within Alg. 1, lines 6 and 7
can execute in parallel across the m segments. Additionally, the refinement of the m — 1 segmen-
tations can be parallelized by alternating between refining even and odd-numbered segmentations
until a stationary state is achieved.

To determine the optimal number of clusters, we record the maximum objective value for problem
(1) as g(m) for cluster numbers ranging from m = 1to m = L — 1, under the assumption that
the objective value escalates with an increase in K. The identification of the inflection point on
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the curve g(m) is facilitated through the computation of the second derivative g,, = (g(m) —
glm —1)) — (g(m + 1) — g(m)). The optimal number of clusters is then determined as K* =

argmMaxgec{2.3,...,.L—1} Ym-

Lemma 1 (Cost Reduction). Consider two distinct intervals ("}, T,gfik)) and (v, T,Si’fl))

constructed from the wmth iteration of Step 1) in Alg. 1 in the appendix, where

T,gTik)7 T,STik), T]Sri]f ), T,gﬁf ) € to,t1,...,tx. Suppose that there exists at least one index t; €
{ti,t,. o tia} in (TliTik),TliTik)), and no such t; in (T,if’i]f )aTlg?lf )). Then, Afim’k) >

Afim’k/). (Proof see Appendix A.4.)
Lemma 1 can be intuitively understood from Propositions 1 and 2, which suggest that f (7; TYZ’IC))

is unimodal in (T,ETik), T,Eilik)), but fi (7 TYZ/k )} is flatin (T,E?i’f ), T,gfj_f ), and hence, the former

one has a larger potential to increase the total benefit Y ,"  fi(7%; T—1).

Theorem 4 (Optimality). The proposed split-and-refine Alg. 1 in the appendix will output T* =
(T, 75 They), With T = tg, k=1,2,..., K — 1. (Proof see Appendix A.5.)

Theorem 4 provides the optimality guarantee of the proposed split-and-merge method in cases of
well-separated clusters. Finally, the clustering assignment is given by the segmentation and the
transversal order.

4 EXPERIMENTAL RESULT

4.1 EXPERIMENTAL SETUP
4.1.1 DATASET

We extensively evaluated the proposed DAM algorithm on six publicly available datasets: CIFAR-
100 Krizhevsky et al. (2009), consisting of 60,000 images of 100 objects, each of size 32x32 pixels,
categorized into 100 classes; ImageNet-10 Chang et al. (2017), which includes 13,000 images of
10 objects selected from the ILSVRC2012 1K dataset Deng et al. (2009), each with dimensions
of 224 %224 pixels; EYaleB Georghiades et al. (2001), comprising 2,432 images of 38 subjects
under 9 illumination conditions, downsampled to 48 x42 pixels following Ji et al. (2017b); MNIST
LeCun et al. (1998), which contains 70,000 grayscale images, each 28 x28 pixels, categorized into
10 classes, and preprocessed using scattered convolutional features Bruna & Mallat (2013) with
PCA for dimensionality reduction to 2000; COIL-100 Nene et al. (1996), which has 7,200 images
of 100 objects, each of size 128 x 128 pixels, taken at 5-degree pose intervals; and ORL Samaria
& Harter (1994), consisting of 400 face images of 40 subjects, each of size 112x92 pixels, with
variations in expressions, lighting, and accessories.

4.1.2 COMPARISONS

We compare with fifty-three existing state-of-the-art approaches including: S°C Matsushima & Br-
bic (2019), SSCOMP You et al. (2016b), SC-LALRG Yin et al. (2018) , KCRSC Wang et al. (2018),
S2COMP-C Chen et al. (2020) , FTRR Ma et al. (2020) , PSSC; Lv et al. (2022), PSSC Lv et al.
(2022), DCFSC Seo et al. (2019), Struct-AE Peng et al. (2018) , DEC Xie et al. (2016), IDEC Guo
et al. (2017), SR-SSC Abdolali et al. (2019), EDESC Cai et al. (2023), EnSC-ORGEN You et al.
(2016a), NCSC Zhang et al. (2019¢c), DSC-Net-L1 Ji et al. (2017a), ACC_CN Li et al. (2020b),
DSC-Net-L2 Ji et al. (2017a), DLRSC Kheirandishfard et al. (2020a), RGRL-L2 Kang et al.
(2020), ODSC Valanarasu & Patel (2021), MESC-NetPeng et al. (2022), Cluster-GAN Ghasedi
et al. (2019), DEPICT Ghasedi Dizaji et al. (2017), SENet Zhang et al. (2022), SpecNet Sha-
ham et al. (2018), S?Conv-SCN-L2 Zhang et al. (2019b), S2Conv-SCN-L1 Zhang et al. (2019b),
RED-SC Yang et al. (2020), DASC Zhou et al. (2018), MLRDSC Kheirandishfard et al. (2020b),
DSC-DLHuang et al. (2020), MLRDSC-DA Abavisani et al. (2020), DAE Vincent et al. (2010),
DCGAN Radford et al. (2015), DeCNN Zeiler et al. (2010), JULE Yang et al. (2016), VAE
Kingma & Welling (2013), ADC Haeusser et al. (2019), AE Bengio et al. (2006), DAC Chang
et al. (2017), IIC Ji et al. (2019), DCCM Wau et al. (2019), PICA Huang et al. (2020), CC Li
et al. (2021), SPICE Niu et al. (2023), SCAN Van Gansbeke et al. (2020), PCL Li et al. (2020a),
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TCL Lietal. (2022), RCFE
Lietal. (2018), S?’ESC Zhu
et al. (2021), SSRSC Xu

Table 1: Comparison of the proposed DAM algorithm with existing
SOTA methods across various datasets.

et al. (2019). EYaleB MNIST ORL COIL-100
. Methods ACC NMI | ACC NMI | ACC NMI | ACC NMI
In all experiments, clus- 50 6070 - 135960 - - 5310 -
tering  accuracy  (Acc) SSCOMP 77.59 83.25| - - - - - -
and normalized mutual SC-LALRG 79.66 84.52 | 7820 76.01 | - - - -
. . KCRSC 81.40 88.10 | 64.70 64.30 | 72.30 86.30 - -
information  (NMD  are  &qyp 87.41 8632|9632 - - - | 788 -
employed as evaluation FTRR ) = 17070 6672 | - ) ) ;
metrics. The performance PSSC, - - | 7850 7276 | 8525 92.58| - -
data for the baseline PSSC - - | 8430 76.76|86.75 93.49| - -
methods is sourced from DCESC B8 - ) | 820 - 7270
_ i - . Struct-AE 94.70 - 65.70 68.98 - - - -
their original publications. IDEC ) _ 18806 86721 - _ _ _
Notably, the proposed  SR-SSC - - | 9109 93.06 | - - - -
EDESC - - 91.30 86.20 - - - -
DAM method - operates g o op ey | - 9379 - } - 6924 -
without the need for man- NCSC ) - o409 8612 - ) ) )
ually set parameters. The DSC-Net-L2 9733 - - - 8600 - [69.04 -
afﬁnity matrix employed in ACC_CN 97.31 99.34 | 78.60 74.21 - - - -
- . DLRSC 9753 - - - - - | 7186 -
DAM is constructed using
RGRL-L2 97.53 96.61 | 8140 75.52| - - - -
BDR-B Lu et al. (2018),  opsc 9778 - |8120 - . ; ; ;
a classical and effective MESC-Net 98.03 97.27 | 81.11 8226 - - | 71.88 90.76
method that incorporates gg;tlecr'TGAN - - gg-‘s‘g g?-;g - - - -
block-diagonal priors. . ppr.p 8251 79.15 | 67.55 72.83 | 70.54 74.26 | 71.56 8211
The primary focus of this SENet B - |o9680 9180 - ) ) _
paper does not lie in the SpecNet - - 197.10 9240 | - - - -
construction techniques for ~ S?Conv-SCN-L1 | 98.48 - - - |8830 - 17333 -
the affinity matrix. The RED-SC 9852 - | 7434 73.16|86.13 91.16| - -
X : DASC 98.56 98.01 | 80.40 78.00 | 88.25 93.15 - -
results in Tab. 1 and Tab. 2 MLRDSC 08.64 - B} 18875 - 7672 -
will demonstrate that the DSC_DéC gg?g 97.40 | 81.20 76.10 | - - 9—3% -
. MLRDSC-DA . - - - - - 1793 -
proposed ~ DAM yields ¢ cp - ] - - } - 17963 96.23
.Substant]a] pel‘formance SQESC _ _ _ _ 89.00 93.52 _ _
1mprovements compared to SSRSC - - - - 78.25 - - -
the use of BDR-B solely. DAM 99.95 99.95 | 97.35 92.81 | 90.75 94.66 | 84.95 93.91

4.2 EVALUATIONS ON DIFFERENT DATASETS

Table 2: Comparison of the proposed
DAM algorithm with existing SOTA
methods across various datasets.

EYaleB dataset: As shown in Tab. I, the proposed DAM
achieves an accuracy of 99.95% and an NMI of 99.95%
on the EYaleB dataset, surpassing all baseline methods.
MLRDSC-DA Abavisani et al. (2020) records the second-

highest accuracy at 99.18%, while ACC_CN Li et al. (2020b) CIFAR-100 | ImageNet-10
achieves the second-best NMI performance at 99.34%. The _Methods | ACC NMI | ACC NMI
DAM method outperforms the second-best by 0.77% in ac- Bi(é ig? 3? ggi %gé
curacy and 0.61% in NML DCGAN | 15.1 120 | 346 225
MNIST dataset: As indicated in Tab. 1, DAM attains an ?58; N g; 19(;.23 ;(1)(3) igg
accuracy of 97.35% and an NMI of 92.81% on the MNIST VAE 152 108 | 334 193
dataset. SpecNet Shaham et al. (2018) achieves the second- ~ ADC 16.0 - - -
best accuracy at 97.10%, and SR-SSC Abdolali et al. (2019) g}i o ég’; 11()8()50 gé; g;g
achieves the highest NMI at 93.06%. DAM slightly exceeds  gprp | 225 237 | 316 509
SpecNet in accuracy by 0.25% but trails SR-SSC in NMI by 11 25.7 _ ) N
0.25%. DCCM | 327 285 | 71.0 60.8
PICA 33.7 310 | 87.0 80.2
ORL dataset: The proposed DAM achieves 90.75% accu-  CC 429 431 | 893 859
racy and 94.66% NMI on the ORL dataset, outperforming all ~ SPICE 46.8 448 - -
baselines as shown in Tab. 1. Specifically, DAM surpasses E%v[ 4573'715 4552:/97 9?197659 577—'553

the second-best, S2Conv-SCN-L.2 Zhang et al. (2019b), by
1.25% in accuracy, and S?ESC Zhu et al. (2021) by 1.14%
in NMIL.
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COIL-100 dataset: For the COIL-100 dataset, as shown in Tab. 1, DAM achieves an accuracy of
84.95% and an NMI of 93.91%. While DAM leads in accuracy, RCFE Li et al. (2018) records the
highest NMI at 96.23%, with DAM being the second-best in NMI.

CIFAR-100 dataset: As presented in Tab. 2, DAM achieves 47.75% accuracy and 45.77% NMI
on the CIFAR-100 dataset, falling short by 5.35% in accuracy and 7.13% in NMI compared to the
baseline TCL Li et al. (2022). Despite this, DAM outperforms all baselines except SCAN, with
TCL’s superior performance attributed to fine-tuned contrastive clustering.

ImageNet-10 dataset: DAM achieves 91.69% accuracy and 87.53% NMI on the ImageNet-10
dataset, as shown in Tab. 2, surpassing all state-of-the-art methods. It improves upon the second-
best method, TCL Li et al. (2022), by 2.19% in accuracy and 0.03% in NMI.

4.3 QUANTITATIVE RESULT

Fig. 2 illustrates the block-diagonal form gen-
erated by the proposed density-based traver-
sal algorithm, along with the block diagonal
results produced by the split-and-refine algo-
rithm. First, we observe that our method ef- Figure 2: An example of the block-diagonal gen-
fectively orders the affinity matrix into a block- eration and segmentation procedure applied to
diagonal structure. Secondly, our approach the MNIST LeCun et al. (1998) dataset. White
demonstrates a high accuracy in segmenting the points indicate high similarity values, whereas
individual diagonal blocks. black points represent zero similarity.

4.4 ABLATION STUDY

Behold the re- Table 3: Ablation (ACC performance) of permutation (Perm.) and segmentation
sults presented (Seg.) in the proposed DAM.
in Tab. 3, which

elucidate the CIFAR-100 ImageNet-10 EYaleB MNIST COIL-100 ORL

: GO+Seg. 4124 80.42 8554 8732 7053 7447
subtleties of DON-RgL+Seg. 4251 80.14 8467 8824 7264 7828
block-diagonal DeepTMR+Seg. 4047 81.01 80.11 8675 7327 807l
identification Perm +DBM D13 86.07 %222 9237 1232 8244
and  segmenta-  Perm+NMC 43.15 85.33 9404 9156 7441 8147
tion within the DAM 775 91.69 9995 9735 9075 84.95

proposed DAM

algorithm. Although we are the pioneers in employing these techniques for clustering, we undertake
experiments by substituting certain stages of the proposed method with several related existing
graph ordering and segmentation techniques. When graph ordering methods such as GO Wei et al.
(2016), DON-RL Zhao et al. (2021), and DeepTMR Watanabe & Suzuki (2022) are applied to
the affinity matrix, followed by the proposed block-diagonal segmentation, a significant decline in
performance is observed. This degradation arises because these methods were originally designed
for value ordering rather than clustering. Likewise, employing DBM Brault et al. (2017) and
NMC Brault et al. (2018) on the permuted affinity matrix also results in a marked reduction in
performance, as these approaches were specifically developed for the unique structure of Hi-C
matrices and do not accommodate the particular requirements of clustering tasks.

5 CONCLUSION

In this paper, we introduce a novel clustering method, termed DAM. This approach employs a cluster
traversal algorithm to determine a permutation that reorders the affinity matrix into a block-diagonal
structure. Subsequently, we propose a split-and-refine algorithm to identify the diagonal blocks
within the permuted affinity matrix, with the clustering results derived from the successful identifi-
cation of these blocks. The proposed DAM method consistently achieves the highest or second-best
clustering performance across six real-world benchmark image clustering datasets, in comparison
with state-of-the-art methods.
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A APPENDIX

A.1 PROOF OF PROPOSITION 1

Without loss of generality, suppose & = 1, and 7,1 = to, Tg+1 = t2,t; = t1. Consider 7 € (0,t1],
we have

(t1 — 7)%p1 + (t2 — t1)2peo 11

(t1 — Tt + (t2 —t1)?pue Tt

T 1+ (t —7)2C4

St 1+ (B —1)hC

fi(r) =

where C, . Then, we have

- (t2—,ttll)2/t
T(1 + (tl — T>t101> + tl(l + (tl — T)ch)
tl(l + (tl — T)tlcl)
1
(1 + t%Cl)tlr—l — t%c&

fi(r) =

The function f7(7) is monotonically increasing for 7 € (0, ¢1].

Consider 7 € [t1,t2), we have

ty — 7)2
fi(r) = 2 =)
(ta = 7)(t2 — t1)m
tpn + (t2 — t1)%po + (7 — £1) %o
201 + (t2 — t1)2pe + (7 — t1)(t2 — 1) po
_ta—T 1+ (7 —t1)%Cy
to — 11 1+(T—t1)(t2—t1)02
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where Cy = . Then, we have

12
T +(t2—t1)2pe
t2 — T
to —t1 + (tg — t1)202(7' — tl)
1
1 + 2 1 2
Agl(l + A21CQ)(t2 — 7')7 — A2102

fl('r):1+

where A9y = to — t1. The function f; (7) is monotonically decreasing for 7 € [t1, t3).

A.2 PROOF OF PROPOSITION 2
Without loss of generality, suppose & = 1, and 74,1 = tg, Te+1 = t1.

Zi,je[l,r] Wi, Zi,je[-:——&-l,tﬂ Wi,
Zie[l,r] Zje[l,tl] Wi, j Zi€[7—+1,t1] Zje[l,tl] Wi, j

_ 72 (t1 —7) %
Ttipr (b — Tt

fi(r) =

=1
The function f; () is constant for 7 € (¢o,1).

A.3 PROOF OF PROPOSITION 3

Without loss of generality, suppose k = 1, and 7,1 = 0, 7441 = tr, L > 3.

e Consider 7 € (0, 1], we have

(t1 —7)2u1 + (t2 — t1)?po + o+ (b — tr—1)?pr
(t1 — T)tipr + (t2 — t1)2pe + ... + (tr — tr—1)%pL
T2,u,1
TE141
T 14 (t1 —7)2C,
E 1+(t1 —T)t101

fi(r) =

— 2 —
where C) = gy and b(2, L) = (=hlue bttty

2
VUL £ (1) can also be written as

7(1+ (t1 — T)t1C1) + t1 (1 + (81 — 7)%Ch)
fi(r) = 7 —
1(1 + (tl T)thl)

 THt 4 (- T8 C(T -t —T)

N ty + (t1 — 7)t2Cy

TH A+ (b - T

b+ (b —-T)BG

1

(1+8CHtr 1 -3¢

The function f7(7) is monotonically increasing for 7 € (0, ¢1].

e Consider 7 € [tr,_1,t1,), we have

_ (tr = 7)°m
fl(T)_ (thT)(thtL—l),Ufl +¢
_ (tr —7)%m
S (tp—T)(tp —to—1)m +¢
tr, — T 1+(T7tL_1)202

Ctp—tpy L+ (t—tr1)(tr —tr_1)Ca
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where L
o= —"—"—
T2 b1, L—1)
6= 7 01, L—1)+ (1 —tr—1)*ur
t7_b(1L,L—1)+ (1 —tr_1)(tr —to—1)ur’
e 21 + (12— t)? ( ?
tipr + (b2 —t1)“pe + ... + (bp—1 —tp—2)“pr—1
b(1,L—1) =2 > :
-1
f1(7) can also be written as
tL — T
T)=14+
i) tr —tr—1+ (tr —tn—1)2Ca(T —tr—1)

1
1
T ALA T A0 — 1) - AIC,

where Ay, = t;, — t7,_1. The function f;(7) is monotonically decreasing for T € [tf,_1,1r,).

o Consider 7 € [ty, tgy1], forany k € {1,2,...,L — 2}.

fi(r)

_ 301+ oo A (b — ti1)? g + (7 — t3) 2
g+ o+ (e — trm1)” e + (Egr — te) (7 — t) s
(tiye — teg1)” puse + .

(trz — tis1)” psa + ..o

_ teb(1, k) 4+ (1 — ) ey

tRb(L k) + (ter — te) (T — th) k1
(tr — trr1) bk + 2, L) + (trs1 — 7)1
(tr = tes1) bk + 2, L) + (g1 — ) (trr1 — L) it

where b(1, k) = BB Eb Gt P o g 49, ) — Gesamtos Piweotoct (=t s e,
k (tr—try1)

note d = tx11 —tg,and x = 7 — w Since 7 € (tx41,tr), we have x € (f%, g) Denote
— _HPEt1 — k41 .
B = oL and By = TR So, f1(7) can be written as

$2(7dzBlB2 + Bl + Bg) + 2d£II(Bl — Bg) + ¥1

fla) = —x2d?B1 By + xd(B1 — B2) + ¢2

where 1 = %dz(Bl +Bg)+%BlBg+2, Py = ‘1—431324—%@{2(31 +B3)+1. f(x)is monotonically
decreasing for x < x(, and monotonically increasing for x > x, where

(VBI&ZT14+vVBd®11)°
o = 2d(B2—B1) By # By
B, = B,

Recall the definition of d and z, the function f;(7) is monotonically decreasing for 7 < 7, and
monotonically increasing for 7 > 7, where

(\/Bl (tesr — )" + 1+ \/32 (trer — t)” + 1)
2 (tk+1 — tx) (B2 — B1)

1
+ 3 (thyr +tr)
for By # By, and %(tk+1 + t)) otherwise. Thus, for the interval [ty,tx+1], K = 1,...,L — 2,
f1(7) increases for T € [ty, 7] and decreases for T € [7,tp41] if T € (g, tg41); f1(7) increases for
T € [th, thy1] if 7 > try1s f1(7) decreases for 7 € [ty, 1] if T < 1.

F=
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Consider two distinct intervals (Tk ] ") lngk)) and ( lgf" f ), ,Sj_f )) constructed from the mth
iteration of Step 1) in Alg. 1, where 7., Téle) kD Téﬁf) € to,t1,....,t)c. Suppose

that there exists at least one index ¢t; € {t1,%2,...,tx—1} in (T]gmlk) T,g:rflk)), and no such ¢; in
(T i 0) Then, AR > AR,

A.4 PROOF OF LEMMA 1

Since there exists at least one index t; € {t1,t2,...,tx—_1}in (T]g i ¥) T]gillk)), it thus follows from

Proposition 3 that Af(m k) fim,k) . fk(Tk(;"le)’ (m, k)) N fk(T T(7Z k)) B fk( Igmlk), Srg k))

Since there exists no such ¢; in (Téfn f ), T]Sz_f )) it thus follows from Proposition 2 that A f;

) f (i O0) = S () = (s ).

m,k):

As a result, A fI™F > Aﬁgm’k ),

A.5 PROOF OF THEOREM 4

For m = 1, we split the interval (o, ¢k ) into two subintervals. Proposition | indicates that one of
{t1,t2, ..., tx—1} will be the first optimal split index.

For m = 2, suppose the first optimal split index is ¢;, and 7(2) = {t;}. We then insert the second
split index into the intervals (to,t1) and (¢1,%x ). Lemma 1 indicates that the larger A f,EQ’k) arises
from splitting the interval (¢, 5 ), which contains at least one of {t3, 3, ...,tx—1}.

For m = 3, suppose the second optimal split index is t5, and 7(3) = {t;,#5}. We then insert the
third split index into the intervals (¢o,t1), (t1,t2), and (t2,tx). The larger Af( ) arises from

splitting the interval that contains at least one of {¢s,t4,...,tx—1}.

We repeat this process until completing iteration m = K — 1. Then, we have 7(5) =
{t1,t2, ..., tx—_1}

When we continue inserting splitting indexes for m = K, Proposition 2 indicates that A\ f, (Kk)
constant for any k because there are no {t1,ta,...,tx—1} in any interval (t_1,%;), k € 1,2, ..., K.
Thus, the function g(m) remains constant for any m > K. Since g(m) is monotonically increasing
for m < K, m = K is the only inflection point for the function g(m). Consequently, our Alg. 1
will output the true cluster number K.

18
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Algorithm 1 The split-and-refine algorithm for searching diagonal blocks.

Input: an ordered affinity matrix W
Output: the clustering assignment {Cj. }X_,

1: Initialize 7V = {}
2. form=1:L—1do

3:  fork=0: (m — 1) Parallelly do

4: a) Split the kth interval into two subsets to form the new segmentation indexes 7(m.k).
5 b) Compute flmk) max{ fx(7; TYZ’M) : T,?_”ik) <7< T,g;”ik)}, and denote the maxi-

mizer as 7;; denote 7(™*) = (Tl(m’k), . T,ETik)7 7, TISTik), . r,(,zn’k));

6: c¢) Compute the cost reduction A R a5 in (2);

7:  end for . i

8  Pick k* 2 arg maxy, Af™"), and assign the segmentation as 7(m+1) = #(m.k"),

9:  repeat
10: fork=1:mdo

11: Ty = argmax,, fx(7k)
12: if 7"V £ 7 then

13: Refine 7" ") = .

14: end if

15: end for

16:  until {T,gmﬂ) }i | cannot be changed

17:  Save objective function value as g(m) with the segmentation 7(™+1).
18: end for

19: form =2,3,...,L do

20:  Calculate g,, = (g(m) — g(m — 1)) — (g(m + 1) — g(m)).

21: end for

22: K = argmaXpeos3 11 g;;l

23: Calculate {Cj, }_, according to the segmentation 7(™) and the order O.

19



	Introduction
	Related Works
	Exploring Block-Diagonal Structure of Affinity Matrix in Clustering
	Block-diagonal Generation and Identification

	Methodology
	Permuting Affinity Matrix into Block-Diagonal Form Using Density-Based Traversal
	Affinity Matrix-Based Density Analysis:
	Density-Based Traversal Algorithm:

	Identifying Diagonal Blocks in the Affinity Matrix

	Experimental Result
	Experimental Setup
	Dataset
	Comparisons

	Evaluations on Different Datasets
	Quantitative Result
	Ablation Study

	Conclusion
	Appendix
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Lemma 1
	Proof of Theorem 4


