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Introduction

In network science, mesoscale structures have gained significant attention in re-
cent years. Algorithmic detection of these mesoscale structures enables discovery
of network characteristics that are not easily observable at the local level of nodes
and edges or through global summary statistics [1]. Among the various types of
mesoscale structures that emerge in networks, core-periphery structures have
received particular focus due to their distinct organization and relevance across
diverse domains. In a core-periphery structure, the core nodes are adjacent to
each other and adjacent to some periphery nodes, while the periphery nodes are
not adjacent to each other [1].

Optimization problems are of great importance in both industrial and scien-
tific domains. Ant Colony Optimization(ACO), introduced in the early 1990s,
is a metaheuristic designed to solve complex combinatorial optimization prob-
lems [3]. This paper introduces an approach to detecting the core-periphery
structure using artificial ants. The proposed approach, inspired by the foraging
behavior of ants, employs artificial pheromone trails to construct and refine so-
lutions iteratively, thus eliminating the need for arbitrary partitions that often
constrain traditional methods. Our method is applied to various real-world net-
works, highlighting its adaptability and robustness. We systematically compare
the performance of our approach with established core-periphery detection tech-
niques, highlighting differences in node classification between the core and the
periphery. Benchmarking against existing methods by Rossa [5], Rombach [4],
and Boyd et al. [2] highlights the superior performance of our proposed tech-
nique, showcasing its enhanced flexibility and precision. This study advances
the field of network analysis and sets a precedent for the integration of bioin-
spired algorithms in the study of complex systems.

Proposed Method

Let G = (V,E) be a weighted, simple, and undirected graph, where V denotes
the set of vertices, and E represents the set of edges. Each edge (i, j) ∈ E is
assigned a weight wij , which represents the strength of the connection between
vertices i and j. We employ the original Ant System (AS) for our analysis, which
iteratively updates pheromone values on edges, allowing us to identify high-
weight core edges in the network. The pheromone update mechanism, a critical
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part of AS, reinforces the edges that form a part of high-quality solutions (i.e.,
stronger core-periphery structures). The update formula for edge pheromone
levels (i, j) is as follows:

τij ← (1− ρ) · τij +
m∑

k=1

∆τkij (1)

where ρ ∈ (0, 1] is the rate of evaporation of the pheromone, which prevents
the system from overcommitting to early solutions, and m is the number of ants.

∆τkij is the pheromone deposited on the edge (i, j) by the ant k, defined as:

∆τkij =

{
1
Lk

, if ant k uses edge (i, j),

0, otherwise
(2)

where Lk represents the total accumulated weight of the path constructed
by ant k.

The transition probability pkij of ant k, currently located at the vertex i,
moving from the vertex i to j is given by the following:

pkij =


(τij)

α·(ηij)
β∑

l∈Nk
i

(τil)α·(ηil)β
if j ∈ Nk

i ,

0 otherwise
(3)

where Nk
i denotes the set of feasible neighbors of the ant k when at the ver-

tex i. The parameters α and β control the relative importance of the pheromone
and heuristic information ηij , where ηij = wij , representing the weight between
the vertices i and j.

We define the cohesiveness measure ΨS for a subgraph S ⊆ G as

ΨS =

∑
i∈S,j∈S(τij)

α(ηij)
β∑

l∈S,i∈V (G)(τil)
α(ηil)β

(4)

This measure ΨS reflects the likelihood that an ant, currently positioned at
any vertex in S, remains within S in the next step, thus serving as an indicator
of the cohesiveness of the subset within the network.

The determination of the coreness for each vertex in the network is carried
out by an iterative procedure. The process begins by selecting the vertex with
the smallest weighted degree and defining the set containing this vertex as S1.
Without loss of generality, let S1 = {1}, and set the cohesiveness measure Ψ1 :=

ΨS1
= 0. In the subsequent step, we consider the subsets S

(j)
2 := S1 ∪ {j} for

all 2 ≤ j ≤ N and compute the cohesiveness measure Ψ
S

(j)
2

for each subset.
Let Ψ

S
(k)
2

represent the minimum cohesiveness measure among all the subsets.

We then update the set to S2 := S
(k)
2 and assign the coreness value Ψ2 :=

Ψ
S

(k)
2

= ΨS2 , which corresponds to the coreness of vertex k. In particular, S2

now consists of two vertices with the lowest transition probability, ensuring the
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condition Ψ1 ≤ Ψ2. This procedure is iterated to construct S3 from S2, compute
Ψ3, the coreness of the third vertex, and maintain the inequality Ψ1 ≤ Ψ2 ≤ Ψ3.
The process continues in this manner until all vertices are included in the set.
Ultimately, we obtain the sequence Ψ1 ≤ Ψ2 ≤ · · · ≤ ΨN .

Results & Discussion

Data Description: The data sets used in this study cover a wide array of net-
work types. These include Zachary’s Karate Club, Florentine Families, Davis
Southern Women, Krackhardt Kite, Les Misérables, Word Adjacencies, Ameri-
can College Football, Dolphins, and Books About US Politics (compiled by V.
Krebs, available at http://www.orgnet.com).

Sensitivity Analysis: For sensitivity analysis, we computed the difference
in the Frobenius norm between the normalized permuted matrix Φ0 and the
idealized core-periphery matrix Φideal. From the figure 1, it is clear that as the
parameters α and β increase from their initial values, the difference in the Frobe-
nius norm between the permuted adjacency matrix and the ideal core-periphery
matrix remains relatively stable. However, once α surpasses a threshold of 1;
this difference increases for any value of β. This result is consistent with various
values of the evaporation rate, including ρ = 0.1, 0.3, 0.5, and 0.7. Therefore, for
the rest of the paper, we use the optimum values of α = 0.5, β = 1 and β = 0.5.

ρ = 0.1 ρ = 0.3 ρ = 0.5 ρ = 0.7

ρ = 0.1 ρ = 0.3 ρ = 0.5 ρ = 0.7

Fig. 1: Frobenius norm difference ∥Φideal − Φ0∥F as a function of parameters α
and β for varying values of ρ, on (a) Zachary’s Karate Club and (b) Florentine
Families networks.

Comparative Study: Figure 2 shows the ground-truth adjacency matrices
for Word Adjacencies and American College Football. The matrices are ordered
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by decreasing core scores obtained from our proposed method and the Rossa,
Rombach, and Boyd methods. The results indicate that our method produces
clearer core-core, core-periphery, and periphery-periphery blocks compared to
the Rombach and Boyd methods, while performing competitively with the Rossa
method. Similar results were obtained for other networks.

Fig. 2: Ground-truth adjacency matrices for Word Adjacencies and American
College Football. The matrices are ordered in decreasing order of core scores
obtained using (a) the proposed method, (b) the Rossa method, (c) the Rombach
method, and (d) the Boyd method.

References

1. Borgatti, S.P., Everett, M.G.: Models of corerperiphery structures (1999),
www.elsevier.comrlocatersocnet

2. Boyd, J.P., Fitzgerald, W.J., Mahutga, M.C., Smith, D.A.: Computing continuous
core/periphery structures for social relations data with minres/svd. Social Networks
32(2), 125–137 (2010)

3. Dorigo, M., Stützle, T.: The ant colony optimization metaheuristic: Algorithms,
applications, and advances. Handbook of metaheuristics pp. 250–285 (2003)

4. Rombach, P., Porter, M.A., Fowler, J.H., Mucha, P.J.: Core-periphery structure in
networks (revisited). SIAM review 59(3), 619–646 (2017)

5. Rossa, F.D., Dercole, F., Piccardi, C.: Profiling core-periphery network structure by
random walkers. Scientific reports 3(1), 1467 (2013)


