
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Amortized Active Causal Induction with Deep Reinforcement Learning

Anonymous Authors1

Abstract

We present Causal Amortized Active Structure
Learning (CAASL), an active intervention design
policy that can select interventions that are
adaptive, real-time and that does not require
access to the likelihood. This policy, an amortized
network based on the transformer, is trained
with reinforcement learning on a simulator of the
design environment, and a reward function that
measures how close the true causal graph is to a
causal graph posterior inferred from the gathered
data. On synthetic data and a single-cell gene
expression simulator, we demonstrate empirically
that the data acquired through our policy results
in a better estimate of the underlying causal graph
than alternative strategies. Our design policy
successfully achieves amortized intervention
design on the distribution of the training environ-
ment while also generalizing well to distribution
shifts in test-time design environments. Further,
our policy also demonstrates excellent zero-shot
generalization to design environments with dimen-
sionality higher than that during training, and to
intervention types that it has not been trained on.

1. Introduction
Infer, design and experiment is a three step loop in the
empirical scientific discovery paradigm. Causal induction
(a.k.a. causal structure learning), the problem of finding
causal relationships present in data, also falls under this
paradigm when experiments in the form of interventions are
permissible (Spirtes et al., 2001; Heinze-Deml et al., 2018).
Causal structure learning has gained increasing importance
in empirical sciences, for example in single-cell biology,
where perturbation experiments like gene knockouts can
be carried out with high-precision (Tejada-Lapuerta et al.,
2023). Such interventions are not only more informative

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the SPIGM workshop at ICML
2024. Do not distribute.

to infer the underlying causal graph than just observational
data, but in certain cases essential to go beyond the Markov
equivalence class (Peters et al., 2017), making the prob-
lem of design of interventions both relevant and important.
For the problem of structure learning with interventions,
however, inference and design both involve significant chal-
lenges. For instance, inference of the causal graph from
data usually involves search over the space of graphs with
a likelihood (usually weighted by a prior) or score func-
tion (Annadani et al., 2023; Brouillard et al., 2020; Hauser
and Bühlmann, 2012), which is slow and not robust to vi-
olations of data generation assumptions (Montagna et al.,
2024). The design of informative interventions, on the other
hand, utilizes the inferred causal graph from existing data
to select promising designs and rank them according to a
scoring criterion. This scoring criterion is usually based
on an approximation of mutual information between the
unknown causal graph and the interventional data (Tigas
et al., 2023; 2022), which also involves the (interventional)
data likelihood. In problems related to empirical sciences
where causal discovery is essential, like inferring a gene
regulatory network with gene knockouts or knockdowns,
the likelihood of the data is typically intractable. While
progress has been made in terms of likelihood-free infer-
ence of causal graphs (Lorch et al., 2022; Ke et al., 2022),
existing intervention design algorithms have been largely
restricted to likelihood-based strategies.

With a focus on addressing practical intervention design
challenges that arise in empirical sciences like inferring the
gene regulatory network, in this work, we propose an inter-
vention design method called CAASL that significantly dif-
fers from existing approaches. Instead of following the infer,
design and experiment loop, we amortize the intervention
design procedure by training a single design network pol-
icy, based on the transformer (Vaswani et al., 2017), which
encodes key design space symmetries. During test-time,
our trained policy directly predicts the next intervention to
perform by just a forward-pass of the data collected so far,
without the need to undergo slow and expensive inference
of the causal graph corresponding to that data. We train the
transformer policy with Soft Actor-Critic (SAC) (Haarnoja
et al., 2018) to maximize cumulative rewards over a fixed
number of design iterations (budget), thereby making the
policy adaptive. The choice of a good reward function is

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

CAASL Active Amortized Structure Learning (CAASL)

essential for informative designs. We discuss various re-
ward function choices, primarily based on an estimate of the
true causal graph obtained from a likelihood-free amortized
causal discovery approach. Both our policy and the reward
function only require access to a simulator of the design en-
vironment. Further, we present connections of our approach
to amortized sequential Bayesian experimental design (Fos-
ter et al., 2021). We demonstrate that the reward function
is related to an approximation of expected information gain
based on the amortized posterior distribution over causal
graphs. As such, CAASL is an intervention design method
for performing sample efficient causal structure learning,
but is not a new causal structure learning method in itself.

On synthetic data and the single-cell gene expression simu-
lator SERGIO (Dibaeinia and Sinha, 2020), we empirically
study various aspects of our trained policy—the amorti-
zation performance on training distribution of the design
environment as well as on design environments with distri-
bution shifts from the training environment. We find that our
policy obtains better causal structure learning performance
for a given budget than alternate intervention strategies.
Overall, we observe excellent generalization capability of
the transformer for intervention design, similar to what has
been demonstrated in other domains (Brown et al., 2020;
Kaplan et al., 2020; Zhai et al., 2022). The robustness of the
amortized policy opens up the possibility for lab-in-the-loop
intervention design for single-cell data, wherein a single net-
work can propose informative interventions across different
cell lines and experimental conditions.

2. Background and Related Work
Structural Causal Models. Let y = {y1, . . . , yd} be the
random variables of interest associated with the vertices of
a graph G. Let A ∈ {0, 1}d×d be the adjacency matrix cor-
responding to G. A Structural Causal Model (SCM) (Peters
et al., 2017) is a framework for causality which consists of a
set of equations in which each variable yi is a deterministic
function of its direct causes ypaG(i) as well as an exogenous
noise variable ϵi with a distribution Pϵi

yi := fi(ypaG(i), ϵi; θi). (1)

The functions fi, with parameters θi, are mechanisms that
relate how the direct causes affect the variable yi. The struc-
tural assignments are typically assumed to be acyclic, with
G being a directed acyclic graph whose edges indicate direct
causes. In addition, an SCM defines the likelihood of any
data sample y under this model, denoted as p(y | {A, θ}).
Further, we assume that the SCM is causally sufficient,
i.e. all the variables are measurable (but can be missing at
random), and the noise variables are mutually independent.

Interventions. The SCM framework admits reasoning
about effects of interventions on any variable in y. Most

notable types of intervention include a perfect (do) interven-
tion, and a shift intervention (Rothenhäusler et al., 2015).
A perfect intervention on any variable yi corresponds to
changing the structural equation of that variable to the de-
sired value, yi := vi. It is denoted by the do-operator (Pearl,
2009) as do(yi = vi). In a shift intervention, the conditional
mean of the interventional variable E[yi | ypaG(i)] is shifted
by vi. The likelihood of any data under an intervention I is
denoted as p(y | {A, θ}, I). For perfect and shift interven-
tions, I can be parameterized as a d× 2 dimensional matrix,
where the first column corresponds to one-hot encoding of
whether a particular variable is intervened or not, and the
second column corresponds to the value (or the shift) of the
intervention corresponding to each potential intervention
target.

Causal Structure Learning. The problem of causal struc-
ture learning corresponds to estimating A (and other parame-
ters of the SCM θ) given samples from pdata (Heinze-Deml
et al., 2018). In general, there could be multiple models (and
hence graphs) that can be consistent with a given joint distri-
bution over y, which necessitates causal structure learning
with interventional data (Peters et al., 2017). There are var-
ious approaches, either based on independence tests (Dai
et al., 2024; Spirtes et al., 2001), or graph search by maxi-
mizing a score function (likelihood of the data with certain
assumptions on the SCM) (Brouillard et al., 2020; Rolland
et al., 2022; Hauser and Bühlmann, 2012). Reinforcement
learning has also been used for search over graphs with a
score function (Zhu et al., 2019), however it differs entirely
from our approach wherein we use RL for intervention de-
sign. Alternately, based on the tractable likelihood, there
are also causal structure learning methods that estimate the
posterior distribution q(A | D) of graphs (Annadani et al.,
2023; Deleu et al., 2024) for a dataset D that is sampled
from pdata.

Likelihood-Free Amortized Causal Structure Learning
(AVICI) (Lorch et al., 2022). More recently, instead of in-
ferring causal graphs over specific datasets, amortized poste-
rior inference of causal graphs has also been studied (Lorch
et al., 2022; Ke et al., 2022). In particular, the amortized
posterior from Lorch et al. (2022), called AVICI, makes use
of a transformer to directly predict the posterior q(A | D)
by just a forward-pass of any dataset. The amortized poste-
rior, parameterized as a product of independent Bernoulli
random variables over the presence of edges in the causal
graph, is trained from a simulator without having access
to the likelihood of the data. Since the simulator provides
the ground truth value of A, the amortized posterior can
be trained by maximum likelihood with a combination of
observational and interventional data to maximize the prob-
ability of the true edges. The AVICI model can amortize
over datasets with different dimensionalities d, while gener-

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

CAASL Active Amortized Structure Learning (CAASL)

alizing well to new datasets that have not been seen during
training. Since it is computationally cheap to obtain the
posterior distribution with AVICI, we use it for computing
the reward for our intervention design policy.

Active Intervention Design. Active intervention design
is the problem of designing interventional experiments to
obtain data that enables causal structure learning in a sam-
ple efficient manner (under a fixed budget). While adaptive
strategies have been explored (Choo and Shiragur, 2023;
Greenewald et al., 2019), these approaches still require inter-
mediate inference of the SCM, and are also not amortized.
Intervention design based on Bayesian optimal experimen-
tal design (Lindley, 1956; Chaloner and Verdinelli, 1995)
has also been considered, although only with additive noise
models, which enable likelihood evaluation (Tigas et al.,
2022; 2023; Agrawal et al., 2019; Zhang et al., 2024; Sussex
et al., 2021). Reinforcement learning has also been used
in intervention design (Sauter et al., 2023; Lampinen et al.,
2024), however, they have been limited to non-amortized
and small scale settings. In contrast to earlier work, we
demonstrate the applicability of our method to single-cell
simulated gene expression data, wherein the mechanisms are
defined by differential equations and also include technical
noise.

3. Amortized Intervention Design
We first present our active intervention design strategy with
reinforcement learning, the corresponding amortized net-
work and its training. In Section 4.1, we then present con-
nections of our reward to sequential Bayesian experimental
design.

Setting. Given a budget T , intervention design is the
problem of finding a sequence of informative interventions
with a policy I1, . . . , IT ∼ π that results in an estimate
of the causal graph that is close to A. For any interven-
tion I , a causal model defines a generative model of the
data with likelihood p(y | {A, θ}, I) and prior p(A, θ).
We indicate initial (observational) data, if available, as
y0 = {y(i)

0 }n0
i=1 and the corresponding interventions with

I0, where I0 = {∅}n0 if the initial data is fully observa-
tional. Let ht ∈ R(n0+t)×d×2 denote the interventional
history (y0, I0), . . . , (yt, It), obtained by concatenation of
y and first column of I that correspond to interventional
targets. We do not explicitly encode intervention values
in history, since for a do intervention, the intervention val-
ues are already present in y1. Existing intervention design
strategies like (Tigas et al., 2023) approximate a posterior
on {A, θ} at each step t, approximate expected informa-
tion gain (EIG) (Lindley, 1956; Rainforth et al., 2024) and

1We train our policy only on do interventions.

greedily maximize it to compute It+1. Details of this greedy
approach are given in Appendix A.1.

3.1. Intervention Design with Reinforcement Learning

In this work, we instead treat intervention design as a Re-
inforcement Learning (RL) problem and train a single pol-
icy network πϕ with parameters ϕ to obtain a sequence of
adaptive interventions I1, . . . , IT for any underlying causal
graph with adjacency matrix A. In order to do so, we first
describe the RL environment under which the interventions
are performed.

Intervention Design Environment. Similar to Blau et al.
(2022), we define an interventional design environment
as a Hidden-Parameter Markov Decision Process (HiP-
MDP) (Doshi-Velez and Konidaris, 2016). The HiP-MDP
we use, M({A, θ}), has hidden parameters {A, θ} and can
be fully described by the tuple (S,A, ρ, β, T , R, γ, pβ).
The state-space S consists of the histories st = ht, the
initial state ρ = h0 = (y0, I0) corresponds to initial data,
the action-space A corresponds to interventions at = It and
β describes the space of all causal models (graphs and pa-
rameters) with prior pβ = p(A, θ). The hidden parameters
are sampled for each episode at the beginning from the prior.
γ is the discount factor. In a HiP-MDP, the transition func-
tion T and reward R depend on the hidden parameters. The
transition function T (ht | ht−1, It, {A, θ}) is Markovian,
and it involves two operations: (1) sampling interventional
data yt ∼ p(y | {A, θ}, It), and (2) updating the history
state ht = Concat[ht−1, (yt, It)]. For a reward function
R(ht, It, ht−1, {A, θ}) that we define below, intervention
design corresponds to finding the parameters ϕ of the amor-
tized policy that maximizes the expected cumulative reward
of all interventions:

max
ϕ

E
πϕ,ρ,T , p(A,θ)

[
T∑

t=1

γt−1R (ht, It, ht−1, {A, θ})
]

(2)

with It ∼ πϕ(ht−1)

Reward Function. For the purpose of amortized inter-
vention design, a good reward function should be cheap
to evaluate while leading to informative interventions. In
this work, we propose to utilize the estimate of the causal
graph from an amortized causal graph posterior q(Â | ht).
In particular, we use the pretrained AVICI model (Lorch
et al., 2022). AVICI is a transformer based neural network
trained with (interventional) data from a simulator to di-
rectly predict the probability of presence or absence of any
edge in the causal graph by just a forward pass of the data,
without requiring access to the likelihood. For any history
ht−1, we define the reward for performing intervention It
and reaching state ht as the improvement in the number

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

CAASL Active Amortized Structure Learning (CAASL)

of correct entries in the predicted adjacency matrix of the
AVICI model:

R(ht, It, ht−1, {A, θ}) = E
q(Â|ht)

∑
i,j

I
[
Âi,j = Ai,j

]
(3)

−R(ht−1, It−1, ht−2, {A, θ})

where I[·] is the indicator function and R(h0, I0, {A, θ}) =
Eq(Â|h0)

[∑
i,j I

[
Âi,j = Ai,j

]]
. We note that our choice

of reward function revolves around obtaining a good esti-
mate for the causal graph, A; we do not (directly) reward
learning about θ.

The above RL problem for intervention design is intuitive:
reward the intervention in proportion to the improvement
it brings in terms of number of correct entries of the adja-
cency matrix from the amortized posterior. Also, for any
t, the cumulative reward, eq. (2), for γ = 1 of all inter-
ventions including I0, which includes an additional term
R(h0, I0, {A, θ}), is simply the number of correct entries
of the adjacency matrix predicted by the amortized poste-
rior model for ht. This reward telescoping was inspired by
Blau et al. (2022). We also show in Section 4.1 that this
reward function is also related to an approximation of multi-
step EIG, the quantity of interest in sequential Bayesian
experimental design (Foster et al., 2021).

3.2. Policy

Architecture. In order for the policy to achieve amorti-
zation and generalize to new environments not seen during
training, it should encode key design space symmetries. In
particular, for the problem of intervention design, the inter-
ventions should be permutation equivariant to ordering of
the variables and permutation invariant to the ordering of
the history. This can be ensured by a transformer architec-
ture (Vaswani et al., 2017) wherein self-attention is applied
alternately—once over the variable axis and next over the
samples axis (Kossen et al., 2021). More precisely, we input
ht ∈ R(n0+t)×d×2 and apply self-attention2 over first the
n0 + t axis and next over the d axis. This ensures that the
history representation is permutation equivariant over both
the axes (Lee et al., 2019). After multiple layers of alternat-
ing self-attention, we apply max pooling over the samples
(dim. n0 + t) axis, which gives an encoding of size l of
the history Bt ∈ Rd×l that respects the desired symmetries.
The same symmetries apply for amortized causal structure
learning, hence the reward model AVICI also leverages
the alternate attention architecture. The history embedding
Bt is then passed through a multi-layer perceptron, whose

2Every self-attention is multi-headed, followed by a position-
wise feedforward layer and layer normalization, as in a standard
transformer block.

outputs parameterize the logits of the Gaussian-Tanh distri-
bution (Haarnoja et al., 2018), from which the interventions
are sampled. In our setting, we model both the intervention
targets and intervention values, hence It is d × 2 dimen-
sional. Gaussian-Tanh samples range from -1 to 1. We use
It[:, 0] to encode the interventional targets by discretizing
the values to a binary mask (0 and 1) by thresholding at
0, where 1 indicates intervention on the variable yi. If an
intervention on yi is active, the value to intervene with is
given by It[i, 1].

Training. Training the policy involves addressing two
main challenges: computing the reward in eq. (3) since
{A, θ} would be unknown for real datasets, and optimiz-
ing this reward, which is discrete. In order to address the
first challenge, we simulate interventional data yt ∼ p(y |
{A′, θ′}, It) for a sample {A′, θ′} ∼ p(A, θ) from the prior
using a simulator. Such simulators exist for single cell gene
regulatory networks (e.g. (Dibaeinia and Sinha, 2020; Can-
noodt et al., 2021; Schaffter et al., 2011)) and are becoming
increasingly widespread in other domains (Gamella et al.,
2024; Ahmed et al., 2020). The reward model AVICI is
pretrained on datasets from the prior p({A, θ}) using the
same simulator. During training of the policy, we only use
the pretrained reward model for inference and do not update
its parameters. To address the second challenge, we train
our policy using Soft-Actor Critic (SAC) (Haarnoja et al.,
2018), an off-policy reinforcement learning algorithm that
does not require rewards to be differentiable. We use the
REDQ version of SAC to improve sample efficiency (Chen
et al., 2021). REDQ trains multiple Q-function networks to
optimize the reward. For each Q-function network, we use
a transformer based history state encoder with architecture
similar to that in the policy, but the weights are not shared.
This is beneficial because the same equivariance–invariance
properties that hold for the policy should also hold for the
Q-function.

Inference. Deploying the policy in a real (i.e. not simu-
lated) environment amounts to a rollout of the policy through
interaction with the real environment. This requires just a
forward pass of policy network for each time step t. Note
that we do not need intermediate Bayesian inference or other
estimation of the causal graph on the collected data.

4. Choice of Reward Function
4.1. Connection to Sequential Bayesian Experimental

Design

As discussed in Appendix A, the problem we tackle has
a connection to likelihood-free sequential Bayesian exper-
imental design (Foster et al., 2021; Ivanova et al., 2021).
With the aim of gathering data to learn about the causal

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

CAASL Active Amortized Structure Learning (CAASL)

y1

y2 y1

y2 y3

y1

y2 y3

y1

y2 y3

y1

y2 y3

y1

y2 y3

y3

y1

y2 y3

y1

y2 y3

y1

y2 y3

y1

y2 y3

y1

y2 y3

θ12 = 0.78 θ13 = − 0.4

ϵ1 ∼ 𝒩(0,0.42)

ϵ2 ∼ 𝒩(0,0.33) ϵ3 ∼ 𝒩(0,0.35)

Ground Truth

t = 1 t = 5

t = 6 t = 10

−1 ≤ v < − 0.9 −0.9 ≤ v < − 0.7 −0.7 ≤ v < − 0.4 −0.3 ≤ v ≤ 0.1Value of
intervention

v do

CAASL Policy Rollout
n0 = 50

Figure 1. Visualization of the rollout of the trained CAASL policy on a randomly sampled environment with n0 = 50 initial observational
samples. Colored circles indicate nodes with a do intervention. The policy selects interventions that mostly correspond to the variables
with a child in the ground truth graph. At t = 2, the policy selects the only child y1, which breaks all direct causal effects. This gives
lesser information about the overall causal model. After this, y1 is never chosen. Initially, the policy is exploratory wrt targets and
exploitative wrt values. This trend is reversed as the episode progresses. The policy is trained on environments with d = 2, therefore it
has not seen any graphs with d = 3 before.

graph A, the multi-step expected information gain (EIG)
can be written

EIG(A;πϕ) = E
πϕ,ρ,T , p({A,θ})

[log p(A | ht)] + const.

(4)

Since the posterior p(A | ht) is intractable, we could replace
it by an approximate posterior q(A | ht). This gives rise
to the Barber-Agakov (BA) bound (Barber and Agakov,
2004; Foster et al., 2020), which was recently explored in a
sequential context by Blau et al. (2023). This tells us that
we have an EIG lower bound by using q in place of p:

EIG(A;πϕ) ≥ E
πϕ,ρ,T , p({A,θ})

[log q(A | ht)]+ const. (5)

We can interpret eq. (5) in simple terms—taking log q(A |
ht) as a reward function is equivalent to optimizing a lower
bound on the EIG. Although eq. (5) implies that we only
receive a reward on the final state ht, it is possible to rewrite
this using telescoping rewards (Blau et al., 2022) exactly
as we do in eq. (3). The BA bound therefore represents the
closest point of comparison between the method we outline
in Section 3 and sequential Bayesian experimental design.
As with the BA bound, we make use of an amortized ap-
proximate posterior distribution q(A | ht) that works back-
wards from data ht to predict the graph that might have
generated it. Unlike the BA bound, however, we use the
adjacency matrix accuracy to compare the true A to sam-
ples Â from the amortized posterior, rather than computing
the log-likelihood of the true graph under that amortized
posterior, log q(A | ht). We found that this worked better
in practice. Nevertheless, we see a close relationship be-
tween the approach we take and the methods of sequential
Bayesian experimental design.

4.2. Other Possible Reward Functions

Any target metric for causal structure learning like struc-
tural hamming distance computed on the amortized posterior
could be used as a reward function. Depending on the appli-
cation, domain specific causal graph objectives could also
be considered. While a large number of possibilities exist,
we use expected number of correct entries of adjacency ma-
trix, eq. (3), as the reward for training CAASL. As opposed
to Structural Hamming Distance (SHD) and Area Under
Precision Recall Curve (AUPRC), eq. (3) is straightforward
to compute and parallelize.

5. Experiments
We train CAASL policy on two challenging environment
domains: 1. Synthetic design environment with a causal
model defined by linear mechanisms and additive noise,
and 2. SERGIO (Dibaeinia and Sinha, 2020), a single-cell
simulator corresponding to any gene regulatory network.
For each domain, we train a single CAASL policy on a
distribution of design environments with d = 10. A dis-
tribution of intervention design environments is defined by
the choice of prior over causal models p(A, θ), which in-
cludes priors over graphs A (e.g. Erdős–Rényi (Erdős et al.,
1960)), mechanism parameters θ and noise. We define an
Out-of-Distribution (OOD) environment as any environment
with the choice of prior (either over graphs, mechanisms
parameters or noise) that is different from training. In ad-
dition to these distribution shifts, we also consider OOD
environments wherein the priors remain the same, but either
the dimensionality of the data d increases (i.e. d > 10), or
the performed intervention type changes. Precise choice

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

CAASL Active Amortized Structure Learning (CAASL)

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

66

68

70

72

74

76
Returns (↑)

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

22

24

26

28

SHD (↓)

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

0.45

0.50

0.55

0.60

AUPRC (↑)

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

0.30

0.35

0.40

0.45

0.50
Edge F1 (↑)

In-Distribution Amortization

CAASL
Random
Observational
DiffCBED
SS Finite

Figure 2. Amortization results of various intervention strategies on 100 random test environments. CAASL significantly outperforms
other intervention strategies. Shaded area represents 95% CI.

of training and OOD testing distributions are given in Ap-
pendix C. All evaluation experiments are conducted in silico,
on environments with causal model parameters that CAASL
has never seen during training, regardless of whether the
environment is in-distribution or OOD. In addition, all eval-
uation is done by just forward passing the history through
the policy.

Baselines. We compare our approach with two amortized
strategies: Random and Observational. Random corre-
sponds to obtaining data from random interventions, while
Observational corresponds to collecting more observational
data. For the synthetic design environment domain, we
also compare with DiffCBED (Tigas et al., 2023) and SS
Finite (Sussex et al., 2021). These intervention strategies
use likelihood of the data to perform designs. So in certain
OOD synthetic design environments and the single-cell sim-
ulator SERGIO where the likelihood is not available, we
omit these baselines. DiffCBED and SS Finite rely on an
approximate causal graph posterior to design interventions.
As suggested in (Tigas et al., 2023), we use bootstrapped
GIES (Hauser and Bühlmann, 2012; Friedman et al., 2013)
as the approximate posterior distribution for these baselines.
For an evaluation task on 100 random design environments
with a budget of 10, DiffCBED and SS Finite methods re-
quire approximate posterior inference of the causal graph
1000 times.

Metrics. All evaluation is done on 100 random test en-
vironments. As CAASL is an intervention design method,
we measure the cumulative rewards with γ = 1 (returns)
obtained from the graph predicted by the amortized pos-
terior. However, for the sake of completeness, we also
measure structure learning related metrics like the Struc-
tural Hamming Distance (SHD), the Area under Precision
Recall Curve (AUPRC) and F1 score (Edge F1) between
the graph predicted by the amortized posterior and the true
graph (Lorch et al., 2022; Annadani et al., 2023). Precise
definition of these metrics is provided in Appendix G.2. We
find that in most cases all the metrics are correlated. There-
fore, unless otherwise mentioned, we only report the returns

and relegate the other metrics to Appendix G.2.

5.1. Synthetic Design Environment

Training Distribution of the Design Environment. We
train CAASL on synthetically generated data, wherein
p(A, θ) consists of linear SCMs with additive homoskedas-
tic Gaussian noise. The dimensionality during training is
d = 10. The prior over causal graphs is Erdős–Rényi (Erdős
et al., 1960), with 3 edges per node in expectation. The prior
over linear coefficients is chosen such that the marginal vari-
ance of each variable is close to 1. This is done to ensure
that structure learning algorithms are not sensitive to the
scale of the data (Reisach et al., 2021). During training, an
intervention exclusively corresponds to a do intervention.
Further, we set n0 = 50 and the budget T is fixed to 10.

Training Details. We train CAASL with 4 layers of al-
ternating attention for the transformer, followed by a max
pooling operation over the history, to give an embedding
with size l = 32. SAC related hyperparameters are tuned
based on performance on held-out design environments.
Details of the architecture, hyperparameter tuning and op-
timizer is given in Appendix D. For the reward model, we
use AVICI that is pretrained on random linear additive noise
datasets.

Amortization Performance. We test on novel environ-
ments with hidden parameters sampled from the training
prior p(A, θ). Results are provided in fig. 2. We find that
our policy significantly outperforms the random baseline in
terms of returns as well as more common structure learning
metrics like the SHD, AUPRC and Edge F1. For instance,
our method achieves returns close to 76 with just 10 inter-
ventional samples, while the random baseline achieves close
to 72. Other intervention strategies like DiffCBED (Tigas
et al., 2023) and SS Finite (Sussex et al., 2021) perform
worse, while still making use of the likelihood and perform-
ing intermediate inference of causal structure.

Zero-Shot OOD Generalization. We also test the trained
CAASL policy on environments when the prior changes.

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

CAASL Active Amortized Structure Learning (CAASL)

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

68

70

72

74

76

R
et

ur
ns

(↑
)

(a) Graph

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

68

70

72

74

76
(b) Graph + Mechanisms

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

69

70

71

72

73

74
(c) Graph + Mech. + Noise

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

66

68

70

72

(d) Heteroskedastic Noise

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

66

68

70

72

74

(e) Intervention Type
Zero-Shot OOD Generalization

CAASL
Random
Observational
DiffCBED
SS Finite

Figure 3. Zero-shot OOD returns of CAASL on 100 random environments with distribution shift coming from (a) graphs, (b) graphs and
mechanisms, (c) graphs, mechanisms and noise, (d) noise changing from homoskedastic to heteroskedastic, and finally (e) intervention
changing from do to a shift intervention. CAASL outperforms other intervention strategies. Shaded area represents 95% CI.

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

302.5

305.0

307.5

310.0

312.5

315.0

R
et

ur
ns

(↑
)

d = 20
CAASL
Random
Observational
DiffCBED
SS Finite

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

0.000

0.005

0.010

0.015

0.020

R
el

.R
et

ur
ns

(↑
)

Relative Perf. wrt Random
d = 15
d = 20
d = 25
d = 27
d = 30

Zero-Shot OOD: Dimensionality d

Figure 4. Zero-Shot OOD generalization results when dimension-
ality d changes for synthetic environment. For training, d = 10.
Left: Zero-Shot test returns with d = 20. Right: Relative mean
zero-shot returns of CAASL wrt random for different d. Results
on 100 random environments. Shaded area represents 95% CI.

All results correspond to zero-shot performance, obtained
by just a forward forward pass of the trained policy. Figure 3
presents the returns of CAASL alongside other applicable
baselines. We consider shifts which become increasingly
different from training: (1) the graph prior changes from
Erdős–Rényi (Erdős et al., 1960) to Scale-Free (Barabási
and Albert, 1999) (fig. 3 (a)), (2) apart from the graph,
prior over mechanisms also change (fig. 3 (b)), (3) apart
from graph and mechanisms, the noise distribution changes
from Gaussian to Gumbel (fig. 3 (c)). We find that our pol-
icy achieves better performance than random strategy by a
significant margin. Further, our method also outperforms
DiffCBED and SS Finite which explicitly optimize for de-
signs corresponding to these environments. In addition to
these OOD settings, we also consider OOD environments
in which the prior remains the same, but the noise is het-
eroskedastic instead of homoskedastic (fig. 3 (d)). Although
the random strategy is very competitive, CAASL performs
better. Finally, we consider OOD environments wherein the
intervention design suggested by the policy during testing
is used for performing a shift intervention instead of a do
(fig. 3 (d)). CAASL performs better than baselines even in
this setting.

Slightly different to the above OOD environments, we also
consider OOD environments in which the dimensionality
of the data changes during testing, but the prior remains

the same. fig. 4 presents the results, with further details
in fig. 6. CAASL obtains better returns on average than
random at all points of acquisition. The relative performance
of CAASL decreases as d increases (up to d = 30) from
training, although it still performs better than random.

5.2. Single-Cell Gene Regulatory Network Environment

In this setting, we train a CAASL policy based on the single-
cell gene expression simulator SERGIO (Dibaeinia and
Sinha, 2020). Given a causal graph that corresponds to inter-
action between different genes in terms of their transcription
regulation, SERGIO simulates expressions of genes that cor-
respond to steady state of differential equations that govern
the interaction between the genes. Each variable entry indi-
cates the count of mRNA that is produced corresponding to
that gene, similar to the output of modern single-cell RNA
sequencing (scRNA-seq) technological platforms (Macosko
et al., 2015). In addition, SERGIO can be extended to sup-
port interventions. Interventions in this setting correspond
to either gene knockouts, wherein the transcription rate of
the intervened gene is actively set to 0, or gene knockdown,
wherein the intervened gene’s transcription rate is actively
halved. Since there is no value selection in this setting, the
dimensionality of the policy is d instead of d× 2. SERGIO
also simulates technical noise such that the statistics of the
data match that obtained from real scRNA-seq platforms.
Some of the technical noise includes dropouts (missingness
of the data), library size effects and random outlier effects.
Most notably, atleast 70% of the data is missing in most
single cell platforms. Therefore, in this domain, not only is
the likelihood intractable, but also there is high amount of
missing data. We do not impute the missing data, but just
encode it with 0.

Training Distribution of the Design Environment. For
training, we set d = 10, with n0 = 50 observational (wild-
type) data with budget T = 10. The statistics of the data
corresponds to 10X Chromium platform (Dibaeinia and
Sinha, 2020) wherein around 74% of the data is dropped out.
The prior over causal graphs is set to Erdős–Rényi (Erdős
et al., 1960) with 3 edges per node on average. An inter-

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

CAASL Active Amortized Structure Learning (CAASL)

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

73.5

74.0

74.5

75.0

R
et

ur
ns

(↑
)

(a) In Dist.

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

76.5

77.0

77.5

78.0

78.5

(b) OOD: Graph

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

73.5

74.0

74.5

75.0
(c) OOD: Noise

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

74.0

74.5

75.0

(d) OOD: Intervention Type

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

74.0

74.5

75.0

(e) OOD: Noisy Interventions
SERGIO Simulator Environment Results

CAASL
Wild-Type
Random

Figure 5. Results on SERGIO environment with 100 random environments. (a) corresponds to in-distribution performance, (b)-(e)
correspond to zero-shot OOD performance with distribution shift coming from either (b) graphs, (c) technical noise, (d) intervention
changing to a gene-knockdown (e) Noisy interventions, which include off-target effects. Shaded area represents 95% CI.

vention exclusively corresponds to a gene knockout. We
provide details of the simulator in appendix B.2 and the
training prior parameters in appendix C.2.

Training Details. We train CAASL with 3 layers of alter-
nate attention, followed by a max pooling operation, giving
an embedding of size l = 32. Just like in the synthetic linear
domain, SAC related hyperparameters are tuned based on
performance on held-out design environments. Details are
given in appendix D. Once trained, we perform a forward
pass of the history through the policy to obtain intervention
designs for all test environments. For the reward model,
we use AVICI that is pretrained on this simulator with post-
noise data statistics matching that of 10X chromium plat-
form.

Amortization Performance. The in-distribution amorti-
zation performance is presented in fig. 5(a). After 5 acquisi-
tions, CAASL obtains better returns than random.

Zero-Shot OOD Generalization. We test the CAASL
policy when the environment is subject to various test-time
distribution shifts. Robustness to distribution shifts is impor-
tant in real world-settings, where experimental conditions
can change. We consider 4 different OOD environments: (1)
the prior over graphs changes from Erdős–Rényi to Scale-
free (fig. 5(b)), (2) The perturbation platform changes to
Drop-Seq (Macosko et al., 2015), wherein among other
noise parameters, the amount of missing data increases from
74 to 85% (fig. 5(c)), (3) The intervention type changes from
knockout to knockdown (fig. 5(d)) and, (4) Noisy knockout
interventions, where there is a 10% chance that either the
intended gene does not get knocked out, or an off-target
gene is knocked out (fig. 5(e)). We find that CAASL shows
excellent robustness to these distribution shifts, and obtains
better returns than baselines. When the intervention type
changes, the random baseline is still competitive. An inter-
esting observation is that the for the OOD graph and the
OOD noise setting, the model shows exploratory behavior in
the beginning where the returns decrease, but later becomes
better than random. Robustness to various distribution-shifts
demonstrates the generality of the policy.

Limitation. For the zero-shot OOD generalization when
the dimensionality of the data increases, we noticed that
the performance of CAASL is on par with random, but is
not necessarily better (fig. 7). We hypothesize that since
almost 74% of data is missing, the incorporated design space
symmetries might not be as relevant, which might limit the
extent of zero-shot generalization.

6. Conclusion
We have presented an amortized and adaptive intervention
design strategy CAASL, that does not require intermediate
inference of the causal graph. CAASL is based on a pol-
icy parameterized by the transformer which is permutation
equivariant to ordering of the variables and permutation in-
variant to ordering of the collected data. Through various
experiments, including on a simulator which respects the
data statistics of real gene-expression readouts, we find that
our method shows excellent amortized intervention design
and zero-shot generalization to significant distribution shifts.
The achieved performance motivates intervention design in
more complex settings - high-throughput experiments with
large batch sizes and utilization of existing real offline data
for designing interventions.

References
Raj Agrawal, Chandler Squires, Karren Yang, Karthikeyan

Shanmugam, and Caroline Uhler. Abcd-strategy: Bud-
geted experimental design for targeted causal structure
discovery. In The 22nd International Conference on Artifi-
cial Intelligence and Statistics, pages 3400–3409. PMLR,
2019.

Ossama Ahmed, Frederik Träuble, Anirudh Goyal, Alexan-
der Neitz, Yoshua Bengio, Bernhard Schölkopf, Manuel
Wüthrich, and Stefan Bauer. Causalworld: A robotic
manipulation benchmark for causal structure and transfer
learning. arXiv preprint arXiv:2010.04296, 2020.

Yashas Annadani, Nick Pawlowski, Joel Jennings, Ste-
fan Bauer, Cheng Zhang, and Wenbo Gong. Bayesdag:

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

CAASL Active Amortized Structure Learning (CAASL)

Gradient-based posterior sampling for causal discovery.
arXiv preprint arXiv:2307.13917, 2023.

Albert-László Barabási and Réka Albert. Emergence of
scaling in random networks. science, 286(5439):509–
512, 1999.

David Barber and Felix Agakov. The im algorithm: a varia-
tional approach to information maximization. Advances
in neural information processing systems, 16(320):201,
2004.

Tom Blau, Edwin V Bonilla, Iadine Chades, and Amir Dez-
fouli. Optimizing sequential experimental design with
deep reinforcement learning. In International conference
on machine learning, pages 2107–2128. PMLR, 2022.

Tom Blau, Edwin Bonilla, Iadine Chades, and Amir Dez-
fouli. Cross-entropy estimators for sequential experi-
ment design with reinforcement learning. arXiv preprint
arXiv:2305.18435, 2023.

Philippe Brouillard, Sébastien Lachapelle, Alexandre La-
coste, Simon Lacoste-Julien, and Alexandre Drouin. Dif-
ferentiable causal discovery from interventional data. Ad-
vances in Neural Information Processing Systems, 33:
21865–21877, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020.

Robrecht Cannoodt, Wouter Saelens, Louise Deconinck,
and Yvan Saeys. Spearheading future omics analyses
using dyngen, a multi-modal simulator of single cells.
Nature Communications, 12(1):3942, 2021.

Kathryn Chaloner and Isabella Verdinelli. Bayesian ex-
perimental design: A review. Statistical science, pages
273–304, 1995.

Xinyue Chen, Che Wang, Zijian Zhou, and Keith Ross.
Randomized ensembled double q-learning: Learning fast
without a model. arXiv preprint arXiv:2101.05982, 2021.

Davin Choo and Kirankumar Shiragur. Adaptivity complex-
ity for causal graph discovery. In Uncertainty in Artificial
Intelligence, pages 391–402. PMLR, 2023.

Haoyue Dai, Ignavier Ng, Gongxu Luo, Peter Spirtes, Petar
Stojanov, and Kun Zhang. Gene regulatory network in-
ference in the presence of dropouts: a causal view. arXiv
preprint arXiv:2403.15500, 2024.

Tristan Deleu, Mizu Nishikawa-Toomey, Jithendaraa Sub-
ramanian, Nikolay Malkin, Laurent Charlin, and Yoshua

Bengio. Joint bayesian inference of graphical structure
and parameters with a single generative flow network.
Advances in Neural Information Processing Systems, 36,
2024.

Payam Dibaeinia and Saurabh Sinha. Sergio: a single-cell
expression simulator guided by gene regulatory networks.
Cell systems, 11(3):252–271, 2020.

Finale Doshi-Velez and George Konidaris. Hidden parame-
ter markov decision processes: A semiparametric regres-
sion approach for discovering latent task parametrizations.
In IJCAI: proceedings of the conference, volume 2016,
page 1432. NIH Public Access, 2016.

Paul Erdős, Alfréd Rényi, et al. On the evolution of random
graphs. Publ. math. inst. hung. acad. sci, 5(1):17–60,
1960.

Adam Foster, Martin Jankowiak, Matthew O’Meara,
Yee Whye Teh, and Tom Rainforth. A unified stochastic
gradient approach to designing bayesian-optimal experi-
ments. In International Conference on Artificial Intelli-
gence and Statistics, pages 2959–2969. PMLR, 2020.

Adam Foster, Desi R Ivanova, Ilyas Malik, and Tom Rain-
forth. Deep adaptive design: Amortizing sequential
bayesian experimental design. In International confer-
ence on machine learning, pages 3384–3395. PMLR,
2021.

Nir Friedman, Moises Goldszmidt, and Abraham Wyner.
Data analysis with bayesian networks: A bootstrap ap-
proach. arXiv preprint arXiv:1301.6695, 2013.

Juan L Gamella, Jonas Peters, and Peter Bühlmann. The
causal chambers: Real physical systems as a testbed for
ai methodology. arXiv preprint arXiv:2404.11341, 2024.

Kristjan Greenewald, Dmitriy Katz, Karthikeyan Shan-
mugam, Sara Magliacane, Murat Kocaoglu, Enric
Boix Adsera, and Guy Bresler. Sample efficient active
learning of causal trees. Advances in Neural Information
Processing Systems, 32, 2019.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey
Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In In-
ternational conference on machine learning, pages 1861–
1870. PMLR, 2018.

Alain Hauser and Peter Bühlmann. Characterization and
greedy learning of interventional markov equivalence
classes of directed acyclic graphs. The Journal of Ma-
chine Learning Research, 13(1):2409–2464, 2012.

Christina Heinze-Deml, Marloes H Maathuis, and Nicolai
Meinshausen. Causal structure learning. Annual Review
of Statistics and Its Application, 5:371–391, 2018.

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

CAASL Active Amortized Structure Learning (CAASL)

Xun Huan and Youssef M Marzouk. Sequential bayesian
optimal experimental design via approximate dynamic
programming. arXiv preprint arXiv:1604.08320, 2016.

Desi R Ivanova, Adam Foster, Steven Kleinegesse,
Michael U Gutmann, and Thomas Rainforth. Implicit
deep adaptive design: Policy-based experimental design
without likelihoods. Advances in Neural Information
Processing Systems, 34:25785–25798, 2021.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. Scal-
ing laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

Nan Rosemary Ke, Silvia Chiappa, Jane Wang, Anirudh
Goyal, Jorg Bornschein, Melanie Rey, Theophane Weber,
Matthew Botvinic, Michael Mozer, and Danilo Jimenez
Rezende. Learning to induce causal structure. arXiv
preprint arXiv:2204.04875, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Jannik Kossen, Neil Band, Clare Lyle, Aidan N Gomez,
Thomas Rainforth, and Yarin Gal. Self-attention between
datapoints: Going beyond individual input-output pairs
in deep learning. Advances in Neural Information Pro-
cessing Systems, 34:28742–28756, 2021.

Andrew Lampinen, Stephanie Chan, Ishita Dasgupta, An-
drew Nam, and Jane Wang. Passive learning of active
causal strategies in agents and language models. Ad-
vances in Neural Information Processing Systems, 36,
2024.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek,
Seungjin Choi, and Yee Whye Teh. Set transformer:
A framework for attention-based permutation-invariant
neural networks. In International conference on machine
learning, pages 3744–3753. PMLR, 2019.

Dennis V Lindley. On a measure of the information provided
by an experiment. The Annals of Mathematical Statistics,
27(4):986–1005, 1956.

Lars Lorch, Scott Sussex, Jonas Rothfuss, Andreas Krause,
and Bernhard Schölkopf. Amortized inference for causal
structure learning. Advances in Neural Information Pro-
cessing Systems, 35:13104–13118, 2022.

Evan Z Macosko, Anindita Basu, Rahul Satija, James
Nemesh, Karthik Shekhar, Melissa Goldman, Itay Tirosh,
Allison R Bialas, Nolan Kamitaki, Emily M Martersteck,
et al. Highly parallel genome-wide expression profiling
of individual cells using nanoliter droplets. Cell, 161(5):
1202–1214, 2015.

Francesco Montagna, Atalanti Mastakouri, Elias Eulig,
Nicoletta Noceti, Lorenzo Rosasco, Dominik Janzing,
Bryon Aragam, and Francesco Locatello. Assumption
violations in causal discovery and the robustness of score
matching. Advances in Neural Information Processing
Systems, 36, 2024.

Judea Pearl. Causality. Cambridge university press, 2009.

Jonas Peters, Dominik Janzing, and Bernhard Schölkopf.
Elements of causal inference: foundations and learning
algorithms. The MIT Press, 2017.

Ali Rahimi and Benjamin Recht. Random features for large-
scale kernel machines. Advances in neural information
processing systems, 20, 2007.

Tom Rainforth, Adam Foster, Desi R Ivanova, and Freddie
Bickford Smith. Modern bayesian experimental design.
Statistical Science, 39(1):100–114, 2024.

Alexander Reisach, Christof Seiler, and Sebastian Weich-
wald. Beware of the simulated dag! causal discovery
benchmarks may be easy to game. Advances in Neural
Information Processing Systems, 34:27772–27784, 2021.

Paul Rolland, Volkan Cevher, Matthäus Kleindessner, Chris
Russell, Dominik Janzing, Bernhard Schölkopf, and
Francesco Locatello. Score matching enables causal dis-
covery of nonlinear additive noise models. In Interna-
tional Conference on Machine Learning, pages 18741–
18753. PMLR, 2022.

Dominik Rothenhäusler, Christina Heinze, Jonas Peters, and
Nicolai Meinshausen. Backshift: Learning causal cyclic
graphs from unknown shift interventions. advances in
neural information processing systems, 28, 2015.

Andreas WM Sauter, Erman Acar, and Vincent François-
Lavet. A meta-reinforcement learning algorithm for
causal discovery. In Conference on Causal Learning
and Reasoning, pages 602–619. PMLR, 2023.

Thomas Schaffter, Daniel Marbach, and Dario Floreano.
Genenetweaver: in silico benchmark generation and per-
formance profiling of network inference methods. Bioin-
formatics, 27(16):2263–2270, 2011.

Peter Spirtes, Clark Glymour, and Richard Scheines. Cau-
sation, prediction, and search. MIT press, 2001.

Scott Sussex, Caroline Uhler, and Andreas Krause. Near-
optimal multi-perturbation experimental design for causal
structure learning. Advances in Neural Information Pro-
cessing Systems, 34:777–788, 2021.

Alejandro Tejada-Lapuerta, Paul Bertin, Stefan Bauer,
Hananeh Aliee, Yoshua Bengio, and Fabian J Theis.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

CAASL Active Amortized Structure Learning (CAASL)

Causal machine learning for single-cell genomics. arXiv
preprint arXiv:2310.14935, 2023.

Panagiotis Tigas, Yashas Annadani, Andrew Jesson, Bern-
hard Schölkopf, Yarin Gal, and Stefan Bauer. Interven-
tions, where and how? experimental design for causal
models at scale. Advances in neural information process-
ing systems, 35:24130–24143, 2022.

Panagiotis Tigas, Yashas Annadani, Desi R Ivanova, An-
drew Jesson, Yarin Gal, Adam Foster, and Stefan Bauer.
Differentiable multi-target causal bayesian experimental
design. In International Conference on Machine Learn-
ing, pages 34263–34279. PMLR, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and
Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and
Lucas Beyer. Scaling vision transformers. In Proceedings
of the IEEE/CVF conference on computer vision and
pattern recognition, pages 12104–12113, 2022.

Zeyu Zhang, Chaozhuo Li, Xu Chen, and Xing Xie.
Bayesian active causal discovery with multi-fidelity ex-
periments. Advances in Neural Information Processing
Systems, 36, 2024.

Shengyu Zhu, Ignavier Ng, and Zhitang Chen. Causal
discovery with reinforcement learning. arXiv preprint
arXiv:1906.04477, 2019.

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

CAASL Active Amortized Structure Learning (CAASL)

A. Connections to Bayesian Experimental Design using Expected Information Gain
A.1. Greedy Approaches

We consider the model with unknown parameters {A, θ}, prior p({A, θ}) and likelihood of the data p(y | {A, θ}, I) under
an intervention I . The Expected Information Gain (EIG) is given by:

EIG(I) = E
p({A,θ})p(y|{A,θ},I)

[log p(y | {A, θ}, I)− log p(y | I)] . (6)

In the standard greedy approach to Bayesian experimental design (Rainforth et al., 2024), given a history ht−1, we replace
the prior p({A, θ}) with the posterior conditional on existing data p({A, θ} | ht−1) and then estimate the one-step EIG

EIG(I) = E
p({A,θ}|ht−1)p(y|{A,θ},I)

[log p(y | {A, θ}, I)− log p(y | ht−1, I)] . (7)

where p(y | ht−1, I) =
∫
A,θ

p({A, θ} | ht−1)p(y | {A, θ}, I). The EIG is estimated for each candidate design I , and the
one with the largest EIG is selected. This gives rise to the policy πgreedy, which was applied to causal graph discovery by
e.g. Tigas et al. (2023).

A.2. Non-greedy Approaches

Non-greedy approaches to experimental design using EIG were also explored (Huan and Marzouk, 2016; Foster et al., 2021).
Using the parameters {A, θ} of our model and the notation of Foster et al. (2021), the EIG of a sequence of t experiments
generated using policy πϕ about {A, θ} is given by

EIG({A, θ};πϕ) = E
p({A,θ})p(ht|{A,θ},πϕ)

[log p(ht | {A, θ}, πϕ)− log p(ht | πϕ)] (8)

where p(ht | {A, θ}, πϕ) =

t∏
τ=1

p(Iτ | πϕ(hτ−1))p(yτ | {A, θ}, Iτ) (9)

and p(ht | πϕ) is the marginal of this quantity over p({A, θ}). Equation (8) cannot be computed exactly, so likelihood-based
(Foster et al., 2021) and likelihood-free (Ivanova et al., 2021) approximations have both been explored. The likelihood-based
sPCE lower bound on EIG (Foster et al., 2021) was also used as a reward function to train an RL policy (Blau et al., 2022).

The problem we consider in this paper is decidedly likelihood-free for two reasons: (1) some simulators do not have explicit
likelihoods, (2) even where a likelihood is available, it is generally conditional on both A and θ. We made the choice to
focus on experimental design to learn A (ignoring information gain about θ). In this case, the relevant EIG is

EIG(A;πϕ) = E
p({A,θ})p(ht|{A,θ},πϕ)

[log p(ht | A, πϕ)− log p(ht | πϕ)] . (10)

We would have to perform a costly marginalization over θ to obtain the relevant likelihood, p(ht | A, πϕ).

Equation (10) can be rearranged using Bayes Theorem to read

EIG(A;πϕ) = E
p({A,θ})p(ht|{A,θ},πϕ)

[log p(A | ht)− log p(A)] (11)

= E
p({A,θ})p(ht|{A,θ},πϕ)

[log p(A | ht)] + const, (12)

where we make the observation that E[− log p(A)] is a constant with respect to the design policy πϕ. The form of EIG
eq. (12) is the jumping off point for the BA bound, in which we replace p(A | ht) with an approximate posterior.

B. Details of Design Environments
B.1. Synthetic Design Environment

We consider linear additive noise models. For homoskedastic noise, they can be written as

yi := θTi ypaG(i) + ϵi (13)

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

CAASL Active Amortized Structure Learning (CAASL)

where θi ∼ p(θ) and ϵi ∼ pnoise which can be either a Gaussian or a gumbel distribution.

For heteroskedastic noise, the above equation can be written as:

yi := θTi ypaG(i) + σi(ypaG(i)) · ϵi (14)

where σi(·) is scaling factor that is obtained by a squash operation σi(x) = log(1 + exp(gi(x))) on any nonlinear function
gi. Similar to (Lorch et al., 2022), we implement gi with 100 random Fourier feature features (Rahimi and Recht, 2007).
Random Fourier feature functions require a kernel, for which we use a Squared-Exponential Kernel with length ls = 10 and
output scale os = 2.

B.2. Single-Cell Gene Regulatory Network Environment

SERGIO (Dibaeinia and Sinha, 2020) is a single-cell simulator of gene expression for any user provided gene-regulatory
network that resembles the data obtained with modern single-cell RNA sequencing (scRNA-seq) technologies technologies
like Drop-Seq (Macosko et al., 2015) and 10X Chromium (Dibaeinia and Sinha, 2020).

We provide a brief overview of simulation procedure of SERGIO. Our simulation is based on the original simulator provided
by Dibaeinia and Sinha (2020) and hence further details can be found in the paper. This simulator was extended by Lorch
et al. (2022) to support knockouts and knockdowns. We further vectorize the simulator to produce datasets for multiple
regulatory networks parallely. The simulator of Dibaeinia and Sinha (2020) is publicly available under GPL-3.0 license.

B.2.1. SIMULATION OF GENE EXPRESSIONS

We first describe the data that is generated without interventions, also called as wild-type measurements. Later, we then
describe interventional simulations.

For an observational dataset of size n × d, the data produced from the simulator corresponds to the count of mRNA
corresponding to each gene of n different single cells. In particular, given a regulatory network A, steady-state of the
regulatory differential equation is simulated for n single cells that is regulated according to A. SERGIO allows for biological
variations within this pool of n single cells, such as varying basal rates of master regulator genes. A master regulator
gene is a gene with no upstream genes in A. The transcription rate of a master regulator gene is usually a constant, called
the basal rate. Usually, cell of the same type have the same basal rates. For simulation, we consider c cell types and nc

single cells of each type such that n = c · nc. In this work, we fix c = 5. If n is less than 5, we sample n single-cells
at random after simulating 5 single-cells corresponding to each cell type. The expression of all the downstream genes is
effected nonlinearly by the mRNA production and decay of their respective regulatory genes. This expression is simulated
according to a Langevin equation. Finally, the clean data is the continuous-valued mRNA concentration that is measured at
random-time points of the steady-state Langevin simulation.

The clean data is then subject to technical measurement noise. The series of simulated noise is as follows:

1. With probability poutlier ∈ [0, 1], a gene is converted to an outlier gene that has unusually high expression across
different cells. This is done by multiplying the current expression with values from a log-normal with mean µoutlier

and scale σoutlier.

2. Based on the single-cell pool considered, different cells have different count distribution data. This is called as
library-size effect, which is modeled as a log-normal distribution with mean µlib and scale σlib.

3. The dropouts are simulated with parameters dropout percentile δ ∈ [0, 100] and the temperature of the logistic function
η ∈ R+

The actual values of the noise parameters differs across different scRNA-seq technologies. The final scRNA-seq resem-
bling simulated data is obtained by sampling from a poisson distribution that is parameterized by the post-noise mRNA
concentration levels.

During a gene knockout, the upstream genes do not effect the knocked out gene. The activity of the gene is set to 0 and is
propagated downstream as before. In gene knockdowns, the upstream genes still work the same way as before, however, the
expression of the knocked down gene is multiplied by 0.5 for every time step of the steady state simulation. The reduced
gene expression of the knocked down gene is propagated to downstream genes as before.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

CAASL Active Amortized Structure Learning (CAASL)

10X Chromium Drop-Seq
poutlier 0.01 0.01
µoutlier, σoutlier 3.0, 1.0 3.0, 1.0
µlib, σlib 6.0, 0.3 4.4, 0.8
δ, η 74, 8 85, 8

Table 1. Technical noise parameters for 10X Chromium and Drop-Seq Single-Cell RNA sequencing platforms that is used for experiments
in this work.

B.2.2. SIMULATION PARAMETERS

For generating the clean data, we use the following parameters across all settings, which is similar to what is used for
training the reward model (Lorch et al., 2022):

• Number of cell types c = 5.

• Basal rates b ∼ Uniform(1, 3).

• Rate of decay of each gene λ = 0.8.

• Langevin equation related parameters: Hill function coefficient γ = 1, system noise scale ϵs = 1.0, interaction
strength k ∼ Uniform(1, 5) and the sign of the interaction which indicates a promotive or repressive regulation
sgn(k) ∼ Bernoulli(pk) with pk ∼ Beta(0.5, 0.5).

For technical noise, we consider two different platforms: 10X Chromium and Drop-Seq. The noise parameters used are
suggested in (Dibaeinia and Sinha, 2020). These parameters are presented in table 1.

C. Training and OOD Distributions of Design Environments
C.1. Synthetic Design Environment

For training distribution, we make the following choices:

• Prior over graphs p(A) = pER(kin = 3) is an Erdős–Rényi (Erdős et al., 1960) with 3 edges per node in expectation.

• Prior over parameters p(θ) = N (0, σ2
θ) where σ2

θ is chosen such that marginal variance of each variable is 1 (Reisach
et al., 2021).

• Noise ϵ ∼ N (0, σ2
ϵ) where σϵ ∼ InvGamma(10, 1).

For an OOD distribution, all the priors except for the parameter that undergoes distribution shift remain the same as during
training. We define the following OOD environments and their corresponding distribution shifts:

a Graphs: p(A) = pSF(kin = 3) is a Scale-Free (Barabási and Albert, 1999) with 3 edges per node in expectation.

b Graphs+Mechanisms: Prior over graphs is p(A) = pSF(kin = 3) and prior over parameters p(θ) = N (0.1, σ2
θ) with

σ2 chosen as during training.

c Graphs+Mech.+Noise: Prior over graphs is p(A) = pSF(kin = 3) and prior over parameters p(θ) = N (0.1, σ2
θ) with

σ2 chosen as during training. Noise ϵ ∼ Gumbel(0, σϵ) where σϵ ∼ InvGamma(10, 1).

d Heteroskedastic Noise: The causal model changes from equation 13 to equation 14.

e Intervention Type: The performed intervention in the environment changes from a do to a shift intervention.

f Dimensionality d: The dimensionality of the environment increases from training distribution (d < 10).

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

CAASL Active Amortized Structure Learning (CAASL)

C.2. Single-Cell Gene Regulatory Network Environment

For training distribution, we make the following choices:

• Prior over graphs p(A) = pER(kin = 3) is an Erdős–Rényi (Erdős et al., 1960) with 3 edges per node in expectation.

• Prior over mechanisms are as given in appendix B.2.2.

• For technical noise, we consider the 10X Chromium platform whose parameters are given in table 1.

For an OOD distribution, all the priors except for the parameter that undergoes distribution shift remain the same as during
training. We define the following OOD environments and their corresponding distribution shifts:

a Graphs: p(A) = pSF(kin = 3) is a Scale-Free (Barabási and Albert, 1999) with 3 edges per node in expectation.

b (Technical) Noise: The single-cell RNA sequencing platform changes from 10X Chromium to Drop-Seq, thereby
changing the noise levels table 1.

c Intervention Type: The performed intervention in the environment changes from a gene knockout to a gene knockdown.

d Noisy Interventions: With a 10% probability, the gene suggested by the policy for knockout is either does not happen,
or there is an off-target that is knocked-out. We achieve this by flipping the one hot encoding of the intervention target
labels with 10% probability. But the history is only appended with the intervention sampled from the policy. Therefore,
the policy has no knowledge of the noisy intervention.

D. Training Details
D.1. Architecture Details

We use the alternating attention based transformer for both the policy and the Q-function approximation. We maintain the
same architecture for the transformer for both the policy and the Q-function, which we describe below.

For the transformer, we use a standard transformer block (Vaswani et al., 2017) with 8 heads of self-attention. As our
transformer has alternating attention, each layer has two such self-attention operations. Each self-attention is followed by a
feedforward layer, whose dimension is set to 4 ∗ l where l is the size of the state representation. We choose l = 32. After L
layers of alternate attention, we perform max pooling over ordering of the data to obtain the state representation. The state
representation is passed through a two hidden layer MLP with 128 hidden dimensions each and ReLU nonlinearity.

D.2. Hyperparameter Tuning

REDQ (Chen et al., 2021) algorithm based on SAC (Haarnoja et al., 2018) trains M different Q-function networks and
updates the gradients of each of them G times before updating the policy. We treat both these quantities as hyperaprameters.
All the parameters are updated with the Adam optimizer (Kingma and Ba, 2014) and the learning rate is tuned. We list all
the hyperparameters and the corresponding grid search in table 2.

E. Computational Resources
We train all models on 3 40GB NVIDIA A100 GPU accelerators. We provide a wall time of 3 days, which results in a
total computational budget of 216 GPU hours for each model. We also tune hyperparameters as outlined in table 2 for both
environments, resulting in a total usage of 70,000 hours. For testing, we just rollout the policy on a CPU, which can be
completed in seconds.

F. Licenses
For the single-cell gene simulator, we make use of the publicly available repository which is released under GPL-3.0 License.
For the reward model AVICI, we make use of the publicly released code and trained models. These are released under MIT
License. For baselines, we use the DiffCBED open source repository, which is released under MIT License.

15

https://github.com/PayamDiba/SERGIO?tab=GPL-3.0-1-ov-file#readme
https://github.com/larslorch/avici/tree/main?tab=MIT-1-ov-file#readme
https://github.com/larslorch/avici/tree/main?tab=MIT-1-ov-file#readme
https://github.com/yannadani/DiffCBED?tab=MIT-1-ov-file#readme

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

CAASL Active Amortized Structure Learning (CAASL)

Table 2. Hyperparameters used for training in CAASL.
Synthetic

Environment
SERGIO

Environment
Hyperameter Search

Transformer
parameters
(History state
encoder)

No. attention layers
(for policy, Q-Function) 4 3

No. attention heads
(for policy, Q-Function) 8 8

l 32 32

Dropout (Policy) 0.1 0.1

Pooling (Policy) Max pool over samples Max pool over samples

Pooling (Q Function)
Max pool over samples,
sum pool over variables

Max pool over samples,
sum pool over variables

Decoder
parameters

Hidden sizes
(for policy and Q) (128, 128) (128, 128)

Non-linearity ReLU ReLU

REDQ/ SAC
training
parameters

M {2, 3, 5} 5 2

G {1, 3, 5} 1 1

γ {0.9, 0.95} 0.9 0.95

Buffer Size {10e6, 10e7} 10e7 10e6

Policy LR {0.01, 0.001} 0.001 0.01

Q-Function LR {3e− 5, 3e− 6} 3e− 5 3e− 6

τ 0.01 0.01

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

CAASL Active Amortized Structure Learning (CAASL)

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

172.5

175.0

177.5

180.0

182.5

R
et

ur
ns

(↑
)

d = 15

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

500

505

510

d = 25

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

590

595

600

605
d = 27

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

717.5

720.0

722.5

725.0

727.5

730.0

d = 30
Zero-Shot OOD d Generalization (Synthetic Environment)

CAASL
Random
Observational

Figure 6. Results of zero-shot OOD generalization when dimensionality of the data increases in the synthetic environment. Results are
performed on 100 random test environments. Shaded area represents 95% CI.

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

90.2

90.4

90.6

90.8

91.0

91.2

R
et

ur
ns

(↑
)

d = 11

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

107.25

107.50

107.75

108.00

108.25

d = 12
SERGIO Simulator OOD d Results

CAASL
Wild-Type
Random

Figure 7. Results of zero-shot OOD generalization when dimensionality of the data increases in the SERGIO environment. We notice that
the random baseline is very competitive. We hypothesize that the symmetries encoded in the policy, which are crucial for generalization,
might not be so relevant in this setting due to high amount of missing data. Results are performed on 100 random test environments.
Shaded area represents 95% CI.

G. Full Results
G.1. Results on Zero-Shot OOD Generalization to Higher Dimensions

The results for Zero-shot OOD generalization to problems of higher dimensions is available in figs. 6 and 7.

G.2. Results on all Metrics

Herein we include all the results that correspond to other metrics omitted in the main text. In particular, apart from returns,
we measure Structural Hamming Distance (SHD), Area under Precision Recall Curve (AUPRC), and Edge F1 (Edge F1)
score. These additional metrics are defined as follows:

• SHD: Structural Hamming Distance (SHD) measures the hamming distance between graphs. In particular, it is a
measure of number of edges that are to be added, removed or reversed to get the ground truth from the estimated graph.
Since we have a posterior distribution q(Â | ht) over graphs, we measure the expected SHD:

SHD := E
Â∼q(Â|ht)

[SHD(Â, AGT)] ≈ 1

100

100∑
i=1

[SHD(Â(i), AGT)] ,with Â(i) ∼ q(Â | ht)

where AGT is the ground-truth causal graph.

• Edge F1: It is F1 score of each edge being present or absent in comparison to the true edge set, averaged over all edges.

• AUPRC: It is the area under the precision recall curve obtained by thresholding the edge probabilities of the amortized
graph posterior q(Â | ht).

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

CAASL Active Amortized Structure Learning (CAASL)

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

68

70

72

74

76

Returns (↑)

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

22

24

26

SHD (↓)

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

0.45

0.50

0.55

0.60

AUPRC (↑)

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

0.30

0.35

0.40

0.45

Edge F1 (↑)
Synthetic OOD: Graph

CAASL
Random
Observational
DiffCBED
SS Finite

Figure 8. Results of zero-shot OOD graph setting with various intervention strategies on 100 random test environments. Shaded area
represents 95% CI.

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

68

70

72

74

76
Returns (↑)

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

22

24

26

SHD (↓)

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

0.50

0.55

0.60

AUPRC (↑)

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

0.35

0.40

0.45

Edge F1 (↑)
Synthetic OOD: Graph + Mechanisms

CAASL
Random
Observational
SS Finite
DiffCBED

Figure 9. Results of zero-shot OOD graph and mechanisms setting with various intervention strategies on 100 random synthetic test
environments. Shaded area represents 95% CI.

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

69

70

71

72

73

74
Returns (↑)

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

24

25

26

SHD (↓)

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

0.48

0.50

0.52

0.54

0.56

AUPRC (↑)

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

0.32

0.34

0.36

0.38

0.40

Edge F1 (↑)
Synthetic OOD: Graph + Mech. + Noise

CAASL
Random
Observational

Figure 10. Results of zero-shot OOD graph, mechanisms and noise setting with various intervention strategies on 100 random synthetic
test environments. Shaded area represents 95% CI.

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

CAASL Active Amortized Structure Learning (CAASL)

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

66

68

70

72

74

Returns (↑)

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

24

26

28

SHD (↓)

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

0.45

0.50

0.55

0.60
AUPRC (↑)

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

0.30

0.35

0.40

0.45

Edge F1 (↑)
Synthetic OOD: Intervention Type Shift Interventions

CAASL
Random
Observational

Figure 11. Results of zero-shot OOD intervention type setting with various intervention strategies on 100 random synthetic test environ-
ments. Shaded area represents 95% CI.

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

66

68

70

72

Returns (↑)

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

24

25

26

27

28

SHD (↓)

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

0.425

0.450

0.475

0.500

0.525

0.550

AUPRC (↑)

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

0.300

0.325

0.350

0.375

0.400

Edge F1 (↑)
Synthetic OOD: Heteroskedastic Noise

CAASL
Random
Observational

Figure 12. Results of zero-shot OOD heteroskedastic noise setting with various intervention strategies on 100 random synthetic test
environments. Shaded area represents 95% CI.

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

73.5

74.0

74.5

75.0

Returns (↑)

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

23.0

23.5

24.0

24.5

SHD (↓)

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

0.58

0.59

0.60

0.61

0.62

0.63
AUPRC (↑)

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

0.46

0.48

0.50

0.52

0.54

Edge F1 (↑)
SERGIO Amortization Performance

CAASL
Wild-Type
Random

Figure 13. Results of amortization with various intervention strategies on 100 random SERGIO test environments. Shaded area represents
95% CI.

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

CAASL Active Amortized Structure Learning (CAASL)

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

76.5

77.0

77.5

78.0

78.5

Returns (↑)

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

20.0

20.5

21.0

21.5

22.0

SHD (↓)

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

0.64

0.65

0.66

0.67

0.68

AUPRC (↑)

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

0.54

0.56

0.58

0.60

Edge F1 (↑)
SERGIO OOD: Graph

CAASL
Wild-Type
Random

Figure 14. Results of zero-shot OOD graph setting with various intervention strategies on 100 random SERGIO test environments. Shaded
area represents 95% CI.

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

73.5

74.0

74.5

75.0
Returns (↑)

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

23.5

24.0

24.5

SHD (↓)

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

0.57

0.58

0.59

0.60

0.61

0.62
AUPRC (↑)

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

0.46

0.48

0.50

0.52

0.54
Edge F1 (↑)

SERGIO OOD: Noise with Drop-Seq
CAASL
Wild-Type
Random

Figure 15. Results of zero-shot OOD scRNA-seq platform and their noise setting with various intervention strategies on 100 random
SERGIO test environments. Shaded area represents 95% CI.

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

74.0

74.5

75.0

Returns (↑)

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

23.0

23.5

24.0

24.5

SHD (↓)

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

0.58

0.59

0.60

0.61

0.62

0.63
AUPRC (↑)

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

0.46

0.48

0.50

0.52

0.54

Edge F1 (↑)
SERGIO OOD: Intervention Type Gene Knockdown

CAASL
Wild-Type
Random

Figure 16. Results of zero-shot OOD intervention type changing to gene knockdown with various intervention strategies on 100 random
SERGIO test environments. Shaded area represents 95% CI.

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

CAASL Active Amortized Structure Learning (CAASL)

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

74.0

74.5

75.0

Returns (↑)

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

23.0

23.5

24.0

24.5
SHD (↓)

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

0.58

0.59

0.60

0.61

0.62

AUPRC (↑)

0 1 2 3 4 5 6 7 8 9 10
Intervention Iteration

0.46

0.48

0.50

0.52

0.54

Edge F1 (↑)
SERGIO OOD: Noisy Interventions

CAASL
Wild-Type
Random

Figure 17. Results of zero-shot OOD noisy gene knockouts with various intervention strategies on 100 random SERGIO test environments.
Shaded area represents 95% CI.

21

