
ScaLES: Scalable Latent Exploration Score for Pre-Trained Generative
Networks

Omer Ronen 1 Ahmed Imtiaz Humayun 2 Randall Balestriero 3 Richard Baraniuk 2 Bin Yu 1

Abstract
We develop Scalable Latent Exploration Score
(ScaLES) to mitigate over-exploration in Latent
Space Optimization (LSO), a popular method
for solving black-box discrete optimization
problems. LSO utilizes continuous optimization
within the latent space of a Variational Autoen-
coder (VAE) and is known to be susceptible to
over-exploration, which manifests in unrealistic
solutions that reduce its practicality. ScaLES
is an exact and theoretically motivated method
leveraging the trained decoder’s approximation of
the data distribution. ScaLES can be calculated
with any existing decoder, e.g. from a VAE,
without additional training, architectural changes,
or access to the training data. Our evaluation
across five LSO benchmark tasks and three VAE
architectures demonstrates that ScaLES enhances
the quality of the solutions while maintaining
high objective values, leading to improvements
over existing solutions. We believe that new
avenues to LSO will be opened by ScaLES’
ability to identify out of distribution areas,
differentiability, and computational tractability.
Open source code for ScaLES is available at
https://github.com/OmerRonen/scales.

1. Introduction
Optimization over discrete structured spaces is an important
task with applications in scientific problems such as small
molecule design and protein engineering. To improve the
sample efficiency of discrete optimization algorithms, such
as genetic algorithms, Latent Space Optimization (LSO)
was recently developed (Gómez-Bombarelli et al., 2018).
LSO transfers the optimization problem to the domain of
the latent space of a VAE, which can be efficiently explored
using continuous optimization techniques. However, ensur-

1UC Berkeley 2Rice Univeristy 3Brown University. Correspon-
dence to: Omer Ronen <omer ronen@berkeley.edu>.

ICML 2024 AI for Science workshop

ing that LSO solutions respect the structure of the original
space remains a challenge. To illustrate this issue, we first
provide some examples of such structures.

Example 1.1 (Arithmetic expressions). An expression built
up using numbers, arithmetic operators and parentheses is
called an arithmetic expression. However, not every se-
quence of the above elements correspond to a valid expres-
sion. For instance the expression ”sin(x) + x” is a valid
expression while ”sin(xxx” is not.

Example 1.2 (Simplified molecular-input line-entry sys-
tem (SMILES)). SMILES provides a syntax to describe
molecules using short ASCII strings. Atoms are represented
by letters (e.g. water:”O”, methane:”C”, ...), bonds are rep-
resented by symbols (e.g. triple: ”#”, double: ”=”, ...),
branches are represented in parentheses and cyclic struc-
tures are represented by inserting numbers at the beginning
and the end. Like the arithmetic expressions case, not every
combination of the elements described above corresponds
to a valid molecule. For example while ”C1CCCCC1” is
valid, both ”C1CCCCC2” and ”C1CCCCC)” are not.

Example 1.3 (Quality filters for molecules). Chemists often
seek molecules that not only optimize desired chemical
properties but are also stable and easy to synthesize. This
has led to the development of rules such as Lipinski’s Rule
of Five (RO5, (Lipinski et al., 1997)), which helps determine
if the bioavailability (i.e., the proportion of a drug or other
substance that enters the circulation when introduced into
the body) of a given compound meets a certain threshold.
For example, RO5 suggests that poor absorption is more
likely when the octanol-water partition coefficient (logP)
exceeds 5. Recently, the rd filters (Walters, 2019)
package has curated many such rules and is considered a
”high precision, low recall surrogate measure” (Brown et al.,
2019). Following (Notin et al., 2021) we consider a sample
valid if it passes the rd filters quality filters1

Numerous directions have been explored to overcome the
challenge of providing valid solutions including specialized
VAE architectures (Kusner et al., 2017; Jin et al., 2018) or
training procedures (Tripp et al., 2020) and robust repre-
sentations for discrete data (Krenn et al., 2020). Addition-

1We use the Inpharmatica rule set comprised of 91 alerts, which
is the default option.

1

https://github.com/OmerRonen/scales

ScaLES: Scalable Latent Exploration Score for Pre-Trained Generative Networks

Figure 1: Incorporating ScaLES promotes valid solutions. We consider the task of approximating the expression 1/3 + x
+ sin(x * x), using LSO. Optimization trajectories with (blue) and without (red) ScaLES constraint in the latent space
of a VAE are projected onto a two-dimensional subspace that contains the starting point and the end-points obtained after 10
gradient ascent steps. In the left panel, we show the ScaLES score for latent vectors on the two-dimensional subspace, with
darker shades corresponding to lower ScaLES. In the right panel, we show the validity of the decoder outputs for each latent
vector, with orange denoting invalid generations. High ScaLES values correlate with valid areas and incorporating ScaLES
in LSO produce an expression that adheres to the grammatical rules of Example 1.1.

ally, constrained objectives can be formulated under the
assumption that one has access to a function which quan-
tifies the validity of any point in the latent space (Griffiths
and Hernández-Lobato, 2020). However, in many realistic
scenarios, such as Example 1.3, these solutions may not be
directly applicable, as the structure of the sequence space
may not be sufficiently well understood. To address this,
(Notin et al., 2021) proposed using an uncertainty estimator
for the variational approximation to a posterior distribution
over the VAE parameters, encouraging LSO to respect the
sequence space structure. Although this approach proved
effective, the non-differentiable nature of the uncertainty
score required its integration into LSO through heuristic ap-
proaches. Additionally, the computation of the uncertainty
score is not exact (i.e., it relies on variational approximation
and monte carlo sampling) and requires significant amount
of time to compute. Therefore, there is a need for robust,
general-purpose methods that work across different VAEs
and sequence space structures, and can be easily integrated
into existing LSO pipelines.

Motivated by this goal, we develop ScaLES, a score that
can be used as a constraint in LSO optimization to increase
the number of solutions that respect a given structure. The
distinctive characteristics of ScaLES are differentiability
and scalability that allow its easy integration into existing
LSO pipelines. Specifically our contributions include:

• We derive ScaLES, a score with higher values in areas
closer to the training data. We show that ScaLES can
efficiently identify areas in the latent space that respect
the sequence space structure.

• We develop a numerically stable optimization proce-
dure to incorporate ScaLES as a constraint in LSO.

• We evaluate ScaLES-constrained LSO across three
VAEs and five benchmark tasks, demonstrating its ro-
bustness in promoting valid solutions as well as its
benefits in achieving high objective values.

Open source code for ScaLES is available at
https://github.com/OmerRonen/scales.

2. Background: Latent Space Optimization
LSO is a method for solving black box optimization prob-
lems in discrete and structured spaces, such as the space of
valid arithmetic expressions. Formally, let V ⊂ RL×D be a
discrete and structured space, represented as a sequence of L
one-hot vectors of dimension D. We represent sequences of
length L of categorical variables with D categories. L is set
as the maximum sequence length that we are optimizing for,
and one of the D categories is used as an ”empty” category.
For instance, in the case of valid arithmetic expressions, V
would be the set of all sequences that define such expres-
sions. Let M : V → R be the objective function. LSO aims
to solve,

argmax
x∈V

M(x). (1)

In this setting, we assume that evaluations of the objective
function (M) are expensive to conduct. For example, the
objective may be the binding affinity for a given protein,

2

https://github.com/OmerRonen/scales

ScaLES: Scalable Latent Exploration Score for Pre-Trained Generative Networks

measured through a wet lab experiment. A popular approach
to solve Equation (1) is Bayesian Optimization (BO), which
utilizes first order optimization of a surrogate model for M.
However, since the space is discrete, first order optimization
cannot be directly applied.

In an attempt to make BO applicable for solving Equa-
tion (1), (Gómez-Bombarelli et al., 2018) proposed to trans-
fer the optimization problem into that over a domain of the
latent space of a deep generative model and subsequently
perform BO in this space. The main idea is to (1) learn a
continuous representation of the discrete objects (e.g. us-
ing a VAE) and (2) perform BO in the latent space while
decoding the solution at each step. Formally, given a pre-
trained encoder (Eθ) and decoder (Gθ) the initial labelled
dataset D = {xi, yi}ni=1 is first encoded into the latent
space Dz = {zi = Eθ(xi), yi}ni=1. Using the encoded
dataset, an iterative BO procedure is conducted, which we
describe in Algorithm 1. Most commonly, a Gaussian pro-
cess is used as the surrogate model for M , and the ac-
quisition function is the expected improvement, defined as
(Frazier, 2018)

Emax(f̂(x)− f⋆, 0), (2)

where f⋆ is the best observed objective value and the expec-
tation is with respect to the posterior of f̂ .

Algorithm 1 Latent Space Optimization
for t = 1 to T do

1. Fit a surrogate model f̂ to the encoded dataset

2. Generate a new batch of query points by optimizing a
chosen acquisition function (A)

z(new) = argmax
z

A(f̂(z)) (3)

3. Decode x(new) = Gθ(z
(new)), evaluate the correspond-

ing true objective values (ynew = M(x(new))) and up-
date Dz with (z(new), ynew).

Over-exploration in LSO Multiple studies (Notin et al.,
2021; Kusner et al., 2017) have found that unconstrained
LSO often produces solutions that ignore the above men-
tioned structures. For example, in searching arithmetic
expressions, invalid equations like ”ssin(xxx” are com-
mon. Similarly, many solutions in molecule searches fail
the rd filters filters, making them of limited practical
use.

To mitigate over-exploration, we propose adding a penalty
to Equation (3). The penalty uses a new score, giving higher
values over the latent space valid set, defined as:

Definition 2.1 (Latent space valid set). Let Gθ : Z →
RL×D be a decoder network, and let V ⊂ RL×D be the set
of valid sequences, the latent space valid set is defined as

{z;Gθ(z) ∈ V}. (4)

The derivation of our score leverages the Continuous Piece-
wise Affine (CPA) representation of neural networks, which
we briefly review below.

Deep generative networks as CPA Following (Humayun
et al., 2022; 2021; Balestriero and Baraniuk, 2018), we
consider the representation of Deep Generative Networks
(DGNs) as Continues Piecewise Affine (CPA) Splines oper-
ators. Let fθ be any neural network with affine layers and
piecewise affine activations then it holds that

fθ(z) =
∑
ω∈Ω

(Aωz + bω) 1{z∈ω}, (5)

where Ω is the input space partition induced by fθ, ω is a
particular region and the parameters Aω and bω defines the
affine transformation depending on ω.

In the cases where fθ is not comprised of only piecewise
affine layers and activations, we leverage the result from
(Daubechies et al., 2022) to assert that Equation (5) is either
an exact representation of fθ or is a sufficiently accurate
approximation of fθ for our practical purposes (Humayun
et al., 2022).

3. A Scalable Latent Exploration Score to
Reduce Over-Exploration in LSO

In this section, we introduce
Scalable Latent Exploration Score (ScaLES), our new
score to reduce over-exploration in LSO. First, we motivate
our score in Section 3.1. Next, we formally derive ScaLES
in Section 3.2. In Section 3.3, we provide evidence that
ScaLES gives higher values in the latent space valid set.
The use of ScaLES to regularize or contrain LSO is left for
Section 4.

3.1. Motivation

Our goal is to develop a meaningful constraint for optimiz-
ing the acquisition function. We seek a constraint that is a
continuous function of z, achieving higher values in valid
regions of the latent space (Definition 2.1). Assuming most
of VAE training data is valid, the score should be higher
in regions near training data points. To achieve this, we
treat the latent space of the VAE as a probability space,
i.e. z ∼ pz , for some prior distribution p (most commonly
standard Gaussian). The prior should reflect our best guess
for the distribution of the observed data in the latent space.

3

ScaLES: Scalable Latent Exploration Score for Pre-Trained Generative Networks

Solutions are mapped back to sequences by the decoder
through a deterministic transformation of the latent solution
vectors. Therefore, any distribution on the latent space de-
fines a distribution over the space of sequences. Our score
uses the density function of the push-forward measure of
x = Gθ(z), which we call the sequence density. Our score
considers only the decoder network, not the encoder, and
can potentially be applied to other generative models like
GANs or diffusion models.

Why use the sequence density function? We argue that,
for a well-trained decoder network, the density should be
higher in areas of the sequence space close to the training
data. To see why, consider a decoding model Gθ trained on
a dataset {(zi,xi)}ni=1. The average loss at z is

ℓ(Gθ(z)) = Ex|Eθ(x)=zL(Gθ(z),x). (6)

As the training process is designed to minimize the popula-
tion loss: Eℓ(Gθ(z)), if successful, we hypothesize that the
distribution of Gθ(z) puts higher weight in the areas where
ℓ(Gθ(z)) is low. Since we expect most of the training data
to be valid and to achieve low expected loss, the sequence
density should put higher weight on the latent space valid
set. Section 3.3 provides an empirical validation for this
hypothesis, for Examples 1.1 to 1.3. We highlight that this
relationship between the valid set and the sequence density
depends on how well the decoder fits the data.

3.2. Derivation of ScaLES

Analytical formula for ScaLES DGNs for discrete se-
quences typically output a matrix of logits, transformed into
normalized scores by the softmax function:

Gθ(z) = Softmax(Lθ(z)). (7)

Lθ(z) is a D × L logits matrix (D - vocabulary size, L
- sequence length) and Softmax is the softmax operation
applied to every column of Lθ(z). Our derivation requires
Gθ to be bijective, and we therefore extend the output of
the function to include the normalizing constant for each
column. With this form, we can now derive the sequence
density function.

Theorem 3.1 (DGN sequence density). Let

Gθ(z) =
(
p(1)
z , c(1)z , . . . ,p(L)

z , c(L)
z

)
(8)

= xz (9)

where p
(i)
z = Softmax(Lθ(z)).i and c

(i)
z =

∑D
j=1 e

Lθ(z)ji .
Assume that Lθ is bijective and can be expressed as a CPA
(Equation (5)), and that z ∼ pz , then the density function

of Gθ(z) is given by:

fz(z)

√√√√det

(
L∑

i=1

(A†
i)

T (Bi)TBiA
†
i

)
(10)

for

Bi =

(
diag

(
1

(p
(i)
z)1

, . . . ,
1

(p
(i)
z)D

)
,1

1

c
(i)
z

)T

(11)

A†
i =

(
A(1)

ω , . . . ,A(L)
ω

)†
(i·D):(i+1·D).

, (12)

where
(
A

(1)
ω , . . . ,A

(L)
ω

)†
is the Moore–Penrose inverse of(

A
(1)
ω , . . . ,A

(L)
ω

)
.

We provide the proof in Appendix A. In practice, we define
ScaLES to be the log sequence density with an additional
weight parameter ρ,

Sρ(z) = log(fz(z)) (13)

+ ρ log

√√√√det

(
L∑

i=1

(A†
i)

T (Bi)TBiA
†
i

) .

(14)

The parameter ρ should be lower in the cases where the prior
we put on the latent space is accurate, and can be calibrated
using a small labelled dataset.
Remark 3.2. In our experiments we do not verify that the
conditions of Theorem 3.1 hold, rather we naively calculate
S as defined in Equation (13).

3.3. Validating the relationship between ScaLES and
valid generation

To assess ScaLES’s ability to identify validity as defined
in Examples 1.1 to 1.3, we sample data points in the latent
space for each dataset using the VAEs studied in Section 4.
Specifically, we sample 500 data points, from four distri-
butions: train, test, prior (N (0, I)), and out-of-distribution
(N (0, I · 20)). We decode each data point and determine if
the decoded sequence is valid.

We treat identifying if a point in the latent space decodes
into a valid sequence as a classification problem. We mea-
sure performance using the AUROC metric. For ScaLES,
we tune ρ to achieve high AUROC. Besides ScaLES and the
Bayesian uncertainty score, we add two baseline scores for
comparison. The first is the density of a standard Gaussian
(Prior), a naive OOD score not based on the decoder net-
work. This helps us understand the log determinant term of

4

ScaLES: Scalable Latent Exploration Score for Pre-Trained Generative Networks

ScaLES. The second is the polarity score (Humayun et al.,
2022), showing the gains due to accounting for the softmax
non-linearity Theorem 3.1. The results are shown in Ta-
ble 1. ScaLES improves on the polarity and prior scores
in all cases. While the uncertainty score does better on the
SMILES and expressions datasets, ScaLES is much better
in the SELFIES dataset, showing its robustness. Unlike
the Expressions and SMILES datasets, many points in the
SELFIES training set fail to pass quality filters. However,
an analysis using the first 20k training points from (Maus
et al., 2022) shows lower ELBO and reconstruction losses
for molecules that pass the filters (ELBO: 0.2 vs. 0.3, re-
construction: 0.163 vs. 0.26). This supports our belief that
ScaLES values are higher where the decoder fits the data
well.

Table 1: AUROC for identifying valid data points. ScaLES
outperforms both the polarity score and Prior across all
three datasets and significantly improves upon UC for the
SELFIES dataset.

ScaLES (ρ) UC Prior Polarity
Expressions 0.94 (1) 0.96 0.64 0.92
SMILES 0.88 (.01) 0.96 0.52 0.85
SELFIES 0.78 (.003) 0.39 0.76 0.76

4. ScaLES-constrained LSO
Our investigation in Section 3.3 shows that ScaLES is a
robust score that obtains higher values in the latent space
valid set (Definition 2.1). Furthermore, ScaLES is differen-
tiable which means it can easily be used to constrain any
optimization problem.

Specifically, we propose adding an explicit constraint to
Equation (3), encouraging the solution to achieve a high
ScaLES value. We modify Algorithm 1 by penalizing step
(2) as follows:

znew = argmax
z

A(f̂(z)) + λS(z). (15)

Computing ScaLES S(z) is a function of the prior of z
and the matrices Bi and A†

i .
The prior of z is typically a Gaussian distribution and can
be easily computed. The matrices Bi are function of the
logits and can be calculated using a single forward run of
Gθ. The matrices A†

i are a function of Aω, which is equal
to the derivative of Lθ at z. Therefore Aω can be obtained
using automatic differentiation, which can be efficiently
done using PyTorch (Paszke et al., 2017).
S(z) is computed by performing all of the above calcula-

tions in parallel using a single forward call to the Gθ net-
work. In addition, we need to compute the pseudo-inverse of
Aω , which has a computational complexity of O(L2D+D3).
To accelerate ScaLES computation, we approximate Aω us-
ing discrete derivatives with ϵ = 1 × 10−4. In addition,
for the SMILES and SELFIES datasets, we limit the output
sequence to the first 30 and 60 elements, respectively. Ap-
pendix C provides a detailed description of the wall clock
times.

4.1. Experimental setup

LSO setup Throughout our experiments, following (Notin
et al., 2021), we consider the batched BO setting in which
we generate a batch of 5 query points at each iteration of
Algorithm 1. A Gaussian process is used as our surro-
gate model for the true objective M, where in the case of
SELFIES-VAE (Maus et al., 2022), we deploy a deep-kernel
since the latent space is high-dimensional (256), with the
same specification as in (Maus et al., 2022). We use the
log expected improvement (Ament et al., 2024) as our ac-
quisition function, to avoid vanishing gradients, which we
sequentially maximize.

LSO benchmarks We study the LSO tasks previously
studied in (Notin et al., 2021; Maus et al., 2022).
Appendix B.1 provides the specifications of the LSO prob-
lems studied in this section.

Acquisition function optimization For ease of imple-
mentation, we focus on a simple optimization procedure
in which the acquisition function (Equation (3)) is opti-
mized with 10 steps of normalized gradient ascent, to en-
sure numeric stability. To make sure this procedure is not
overly simplistic, we also compare with the default opti-
mization method implemented in the BoTorch (Balandat
et al., 2020) package (optimize acqf function, which
implements the L-BFGS quasi-newton algorithm (Liu and
Nocedal, 1989)).

Numeric stability In our experiments we find that the
norm of the derivative of the constraint (i.e., S(z)) if typ-
ically much larger than the norm of the derivative of the
acquisition function. As a result, using the gradient ascent
update rule z(i+1) = ∂A(f̂(z(i))) + λ∂S(z(i)) results in a
numerically unstable optimization procedure. To overcome
this challenge, we propose the update rule:

z(i+1) =
∂A(f̂(z(i)))

∥∂A(f̂(z(i)))∥2
+ λ

∂Sρ(z
(i))

∥∂Sρ(z(i))∥2
. (16)

We find that selecting λ = 0.5 improves over vanilla meth-
ods and is recommended as a default value, and we leave
data-driven, adaptive selection of λ for future work.

5

ScaLES: Scalable Latent Exploration Score for Pre-Trained Generative Networks

(a) Perindopril MPO (b) Ranolazine MPO

(c) Zaleplon MPO
Figure 2: BO optimization results for the Guacamol benchmark tasks. Best and the average of top 10 solution found among
those pass the rd filters quality filters. For each method, the best performing parameter on the top 10 average task is
displayed. Shaded regions correspond to one standard deviations calculated over 10 independent runs.

Methods We consider the following optimization meth-
ods, all use the optimization technique above except L-
BFGS:

• ScaLES - ScaLES-constrained LSO, we use λ =
0.2, 0.5, 0.8 to ensure the constraint doesn’t dominate
the objective.

• LSO (GA) - gradient ascent with no regularization.

• Prior - the prior distribution over the latent space is
a standard Gaussian. We use the prior density as a
constraint similar to Equation (15). We consider λ =
0.2, 0.5, 0.8.

• UC2 - the Uncertainty Constrained gradient ascent
method by (Notin et al., 2021). The Bayesian uncer-
tainty score serves as an early stopping criterion: if the
updated point’s score exceeds a set threshold, we reject
the update. The threshold is based on the 75th, 95th,
and 100th percentiles of the training data, as in (Notin
et al., 2021). To avoid long run times, we sample 10
times from the model parameters and the importance
distribution. Indeed, with this choice our results are
qualitatively similar to (Notin et al., 2021).

2We note that while this method was not used for BO in (Notin
et al., 2021), we select it as a benchmark, as the scope of this work
is to study the optimization procedure.

• LSO (L-BFGS) - L-BFGS in a hyper-cubic search re-
gion, the L-BFGS algorithm returns solutions within a
hypercube centered at zero. We normalize latent space
vectors to between zero and one, considering facet
lengths of 1, 5, and 10. The first explores within the
data manifold, while the last two also explore outside
it.

Hyperparameters We calibrate the step size such that
our gradient ascent procedure successfully and consistently
improve the values of the acquisition function, across dif-
ferent initializations. Indeed, our final optimization results
match those of earlier studies (Kusner et al., 2017; Notin
et al., 2021). We adopt the values of ρ used in Section 3.

4.2. Results

4.2.1. EXPRESSIONS AND LOGP

We start by evaluating ScaLES on two of the most exten-
sively studied LSO tasks: approximating arithmetic ex-
pressions and optimizing the penalized water-octanol parti-
tion coefficient (logP) over the SMILES representation of
molecules.

Arithmetic expression approximation The arithmetic
expressions we consider are functions of a single variable
(e.g., sin(x), 1 + x ∗ x). Our goal is to find an expression

6

ScaLES: Scalable Latent Exploration Score for Pre-Trained Generative Networks

(a) Expressions

(b) SMILES

Figure 3: BO performance on the expressions and logP tasks.
For each method, the best performing parameter on the top
10 average task is displayed. Shaded regions correspond to
one standard deviation calculated over 10 independent runs.
ScaLES achieves strong performance in both tasks.

approximating 1/3 + x + sin(x * x) (Kusner et al.,
2017). We train a Character VAE (CVAE) using the same
procedure as (Notin et al., 2021). We start BO with 500
randomly selected data points from the training set, encoded
into the latent space with their objective values. We perform
100 BO steps with a learning rate of 0.5, using the validity
notion from Example 1.1.

logP over molecules The Octanol-water partition coef-
ficient is a measure of how hydrophilic or hydrophobic a
chemical substance is. It is calculated using the prediction
model developed by (Wildman and Crippen, 1999). We
train a Character VAE (CVAE) following the same training
procedure as (Notin et al., 2021). We initialize the BO with
500 data points from the training set, selected at random
and encoded into the latent space, along with their objective
values. We perform 100 steps of BO and use a learning rate
of 0.01. Adopting the notion of validity of Example 1.2.

Optimization results Figure 3 shows the cumulative best
objective (i.e., M) and the average of the top 10 unique
objectives across BO steps for expressions and molecules.
Table 2 displays the relationship between regularization

strength and the percentage of valid objects generated dur-
ing BO, the value λ = 2 is added to the analysis as it
increases the percentage of valid objects. Increasing regular-
ization strength results in more valid solutions for both tasks.
Although UC yields more valid results than ScaLES, this
improvement largely stems from the early stopping algo-
rithm. Indeed, using ScaLES as an early stopping criterion
(rejecting updates with low ScaLES) significantly increases
the proportion of valid solutions compared to the penal-
ized version (Equation (15)), as evidenced in Table 2. For
the expressions task, the best-performing ScaLES method
has an average top 10 value of -0.49 (0.02) compared to
-0.53 (0.01) for UC. For the logP task, ScaLES achieves
an average top 10 value of 2.6 (0.09) compared to 2.53
(0.05) for UC. We provide the full optimization results in
Appendices B.3 and B.4.

Table 2: Percentage of valid objects generated through the
BO procedure for logP and expressions tasks. Throughout
the entire optimization, 500 objects are produced for each
task. Regularizing using ScaLES significantly increases the
proportion of valid solutions. Although UC yields a higher
number of valid solutions than ScaLES, employing ScaLES
as an early stopping (ES) method indicates that most of the
improvement arises from the ES algorithm itself, rather than
the inherent quality of the score.

Method Reg. Expressions logP
LSO (GA) 70% (1) 18% (0.5)

ScaLES
λ = 0.2 87% (1) 23% (1)
λ = 0.5 92% (0.5) 28% (1)
λ = 0.8 93% (0.5) 35% (1)
λ = 2 95% (0.2) 47% (1)

UC
75th q. 99.5% (0.1) 70% (1)
95th q. 98% (0.2) 70% (1)
100th q. 76% (0.1) 70% (1)

ScaLES (ES)
25th q. 92% (0.3) 37% (1)
50th q. 94% (0.2) 53% (1)
75th q. 95% (0.2) 62% (1)

4.2.2. GUACAMOL BENCHMARKS WITH SELFIES VAE

The Guacamol benchmark suite (Brown et al., 2019) pro-
vides a set of de-novo molecular design tasks. For each task
an oracle function is provided with scores that are normal-
ized to be between 0 and 1.

Optimization tasks Following (Maus et al., 2022), we
consider the objectives: Perindopril MPO, Ranolazine MPO,
and Zaleplon MPO. These relate to drugs for high blood
pressure, chest pain, and insomnia. We use the pre-trained
SELFIES VAE (Maus et al., 2022). The goal is to fine-tune
a particular set of properties or find a similar molecule with
a different formula. For each task, we initialize the BO with

7

ScaLES: Scalable Latent Exploration Score for Pre-Trained Generative Networks

Table 3: The percentage of valid objects generated through the BO procedure for Guacamol tasks, as studied in 17, is
reported. For all tasks, 1,250 objects are generated during the entire optimization process. Regularization using ScaLES
significantly increases the number of valid solutions.

Method Reg. Ranolazine MPO Perindopril MPO Zaleplon MPO
LSO (GA) 26% (1.1) 47% (1) 54% (0.7)

ScaLES
λ = 0.2 28% (1) 56% (0.5) 62% (0.7)
λ = 0.5 47% (1) 70% (0.3) 69% (1)
λ = 0.8 58% (1) 78% (0.6) 76% (0.8)

UC
75th q. 22% (1.1) 46% (1) 55% (1)
95th q. 22% (1) 46% (1) 56% (1)
100th q. 21% (1) 47% (2) 54% (1)

1,000 randomly selected training set data points, encoded
into the latent space with their objective values. We perform
250 steps of BO with a learning rate of 1, adopting the
validity notion of Example 1.3.

Optimization results Figure 2 shows the cumulative best
objective (M) and the average of the top 10 unique objec-
tives, among solutions passing quality filters, across BO
steps for the three Guacamol benchmarks. Table 3 displays
the relationship between the regularization strength and the
percentage of valid objects generated during BO. Increasing
the regularization strength results in significantly more valid
solutions generated for all three tasks.

5. Discussion
We proposed ScaLES, an exact and theoretically motivated
method to mitigate over-exploration in LSO. ScaLES is dif-
ferentiable, fully parallelizable, and scales to large VAEs.
Our extensive evaluation shows that penalizing with ScaLES
in LSO consistently improves solution quality and objective
values. Additionally, ScaLES compares favorably to alter-
native regularization methods, proving to be the most robust
across datasets and various validity notions.

Derived from the density function of a random variable un-
der the decoder transformation, ScaLES serves as a natural
out-of-distribution score. A promising future direction is
to leverage ScaLES for identifying out-of-distribution data
points in deep generative models.

While ScaLES is fully parallelizable, it requires calculating
the pseudo-inverse of the Jacobian matrix. This step can
become a computational bottleneck when generating long
sequences with a large vocabulary. It is left for future work
to develop a fast approximation for this operation in order
to enable the use of ScaLES in applications involving large
language models.

6. Acknowledgements
Ronen and Yu gratefully acknowledge partial support from
NSF grants DMS-2209975, 2015341, 20241842, NSF grant
2023505 on Collaborative Research: Foundations of Data
Science Institute (FODSI), the NSF and the Simons Founda-
tion for the Collaboration on the Theoretical Foundations of
Deep Learning through awards DMS-2031883 and 814639,
and NSF grant MC2378 to the Institute for Artificial Cy-
berThreat Intelligence and OperatioN (ACTION). Humayun
and Baraniuk gratefully acknowledge the support from NSF
grants CCF1911094, IIS-1838177, and IIS-1730574; ONR
grants N00014-18-12571, N00014-20-1-2534, and MURI
N00014-20-1-2787; AFOSR grant FA9550-22-1-0060; and
a Vannevar Bush Faculty Fellowship, ONR grant N00014-
18-1-2047.

References
Sebastian Ament, Samuel Daulton, David Eriksson, Max-

imilian Balandat, and Eytan Bakshy. Unexpected im-
provements to expected improvement for bayesian opti-
mization. Advances in Neural Information Processing
Systems, 36, 2024.

Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel
Daulton, Benjamin Letham, Andrew Gordon Wilson, and
Eytan Bakshy. BoTorch: A Framework for Efficient
Monte-Carlo Bayesian Optimization. In Advances in
Neural Information Processing Systems 33, 2020. URL
http://arxiv.org/abs/1910.06403.

Randall Balestriero and Richard Baraniuk. Mad max:
Affine spline insights into deep learning. arXiv preprint
arXiv:1805.06576, 2018.

Nathan Brown, Marco Fiscato, Marwin HS Segler, and
Alain C Vaucher. Guacamol: benchmarking models for de
novo molecular design. Journal of chemical information
and modeling, 59(3):1096–1108, 2019.

Ingrid Daubechies, Ronald DeVore, Nadav Dym, Shira
Faigenbaum-Golovin, Shahar Z Kovalsky, Kung-Chin

8

http://arxiv.org/abs/1910.06403

ScaLES: Scalable Latent Exploration Score for Pre-Trained Generative Networks

Lin, Josiah Park, Guergana Petrova, and Barak Sober.
Neural network approximation of refinable functions.
IEEE Transactions on Information Theory, 69(1):482–
495, 2022.

Peter I Frazier. Bayesian optimization. In Recent advances
in optimization and modeling of contemporary problems,
pages 255–278. Informs, 2018.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duve-
naud, José Miguel Hernández-Lobato, Benjamı́n Sánchez-
Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre,
Timothy D Hirzel, Ryan P Adams, and Alán Aspuru-
Guzik. Automatic chemical design using a data-driven
continuous representation of molecules. ACS central
science, 4(2):268–276, 2018.

Ryan-Rhys Griffiths and José Miguel Hernández-Lobato.
Constrained bayesian optimization for automatic chem-
ical design using variational autoencoders. Chemical
science, 11(2):577–586, 2020.

Ahmed Imtiaz Humayun, Randall Balestriero, and Richard
Baraniuk. Magnet: Uniform sampling from deep gener-
ative network manifolds without retraining. In Interna-
tional Conference on Learning Representations, 2021.

Ahmed Imtiaz Humayun, Randall Balestriero, and Richard
Baraniuk. Polarity sampling: Quality and diversity con-
trol of pre-trained generative networks via singular val-
ues. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 10641–
10650, 2022.

John J Irwin, Teague Sterling, Michael M Mysinger, Erin S
Bolstad, and Ryan G Coleman. Zinc: a free tool to
discover chemistry for biology. Journal of chemical in-
formation and modeling, 52(7):1757–1768, 2012.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junc-
tion tree variational autoencoder for molecular graph gen-
eration. In International conference on machine learning,
pages 2323–2332. PMLR, 2018.

Mario Krenn, Florian Häse, AkshatKumar Nigam, Pascal
Friederich, and Alan Aspuru-Guzik. Self-referencing
embedded strings (selfies): A 100% robust molecular
string representation. Machine Learning: Science and
Technology, 1(4):045024, 2020.

Matt J Kusner, Brooks Paige, and José Miguel Hernández-
Lobato. Grammar variational autoencoder. In Interna-
tional conference on machine learning, pages 1945–1954.
PMLR, 2017.

Christopher A Lipinski, Franco Lombardo, Beryl W
Dominy, and Paul J Feeney. Experimental and computa-
tional approaches to estimate solubility and permeability

in drug discovery and development settings. Advanced
drug delivery reviews, 23(1-3):3–25, 1997.

Dong C Liu and Jorge Nocedal. On the limited memory
bfgs method for large scale optimization. Mathematical
programming, 45(1):503–528, 1989.

Natalie Maus, Haydn Jones, Juston Moore, Matt J Kusner,
John Bradshaw, and Jacob Gardner. Local latent space
bayesian optimization over structured inputs. Advances in
neural information processing systems, 35:34505–34518,
2022.

Pascal Notin, José Miguel Hernández-Lobato, and Yarin Gal.
Improving black-box optimization in vae latent space
using decoder uncertainty. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan,
editors, Advances in Neural Information Processing
Systems, volume 34, pages 802–814. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.
neurips.cc/paper/2021/file/
06fe1c234519f6812fc4c1baae25d6af-Paper.
pdf.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer. Auto-
matic differentiation in pytorch. 2017.

Austin Tripp, Erik Daxberger, and José Miguel Hernández-
Lobato. Sample-efficient optimization in the latent space
of deep generative models via weighted retraining. Ad-
vances in Neural Information Processing Systems, 33:
11259–11272, 2020.

P. Walters. rd filters, 2019. URL https://github.
com/PatWalters/rd_filters. Accessed: Jan-
uary 14, 2019.

Scott A Wildman and Gordon M Crippen. Prediction
of physicochemical parameters by atomic contributions.
Journal of chemical information and computer sciences,
39(5):868–873, 1999.

9

https://proceedings.neurips.cc/paper/2021/file/06fe1c234519f6812fc4c1baae25d6af-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/06fe1c234519f6812fc4c1baae25d6af-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/06fe1c234519f6812fc4c1baae25d6af-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/06fe1c234519f6812fc4c1baae25d6af-Paper.pdf
https://github.com/PatWalters/rd_filters
https://github.com/PatWalters/rd_filters

ScaLES: Scalable Latent Exploration Score for Pre-Trained Generative Networks

Supplement
A. Proofs
Lemma A.1. Let fθ be a DGN as defined in Equation (8) and assume that fθ can be expressed as a CPA (Equation (5)) and
is inevitable, then

Jf−1
θ (x) =

B1 · · · 0

...
. . .

...
0 · · · BL

A†
ω

T

, (17)

where A†
ω is the Moore–Penrose inverse of the slope matrix, at the knot whose image constrains x, and

Bi =

(
diag

(
1

(p
(i)
z)1

, . . . ,
1

(p
(i)
z)D

)
,1

1

c
(i)
z

)T

. (18)

Proof. First we write

fθ(z) = Softmax+(ℓθ(z)), (19)

Where Softmax+ is the extension of the column wise Softmax function to include the normalizing constants. Specifically,
for L by D ℓθ(z) matrix, we have

Softmax+(ℓθ(z)) =
(
p(1)
z , c(1)z , . . . ,p(L)

z , c(L)
z

)
= x, (20)

with p
(i)
z = (e

ℓθ(z)1i

c
(i)
z

), and c
(i)
z =

∑D
j=1 e

ℓθ(z)ji .
Next,

f
(−1)
θ (x) = ℓ−1

θ (Softmax−1
+ (x)) (21)

A direct calculation yields,

Softmax−1
+ (x) =

(
log(p(1)

z) + log(c(1)z), . . . , log(p(L)
z) + log(c(L)

z)
)
. (22)

As we assume ℓθ is bijective and can be written as

ℓθ(z) =
∑
ω∈Ω

(Aωz + bω) 1z∈ω, (23)

we have that

ℓ−1
θ (Softmax−1

+ (x)) = (Softmax−1
+ (x)− bω)A

†
ω. (24)

Lastly, as

∂Softmax−1
+ (x)

∂x
=

B1 · · · 0
...

. . .
...

0 · · · BL

 , (25)

for

Bi =

(
diag

(
1

(p
(i)
z)1

, . . . ,
1

(p
(i)
z)D

)
,1

1

c
(i)
z

)T

. (26)

we obtain the final result.

10

ScaLES: Scalable Latent Exploration Score for Pre-Trained Generative Networks

Proof of Theorem 3.1. First, we note that by our invertability assumption we have that P(x ∈ W) = P(z ∈ f
(−1)
θ (W)).

We then proceed with a direct calculation

P(x ∈ W) = P(z ∈ f
(−1)
θ (W)) (27)

=
∑
ω∈Ω

P(z ∈ (f
(−1)
θ (W) ∩ ω)) (28)

=
∑
ω∈Ω

∫
f
(−1)
θ (W)∩ω

fz(z)dz (29)

=
∑
ω∈Ω

∫
W∩fθ(ω)

fz(f
(−1)
θ (x))

√
det
(
Jf

(−1)
θ (x)Jf

(−1)
θ (x)T

)
dx (30)

=

∫
W

∑
ω∈Ω

fz(f
(−1)
θ (x))

√
det
(
Jf

(−1)
θ (x)Jf

(−1)
θ (x)T

)
1{x∈fθ(ω)}dx. (31)

Using Lemma A.1, we get that the volume element is

Jf
(−1)
θ (x)Jf

(−1)
θ (x)T =

B1 · · · 0

...
. . .

...
0 · · · BL

A†
ω

T

B1 · · · 0
...

. . .
...

0 · · · BL

A†
ω

 (32)

(A†
ω)

T

B
T
1 · · · 0
...

. . .
...

0 · · · BT
L ,

B1 · · · 0

...
. . .

...
0 · · · BL

A†
ω

 (33)

=

L∑
i=1

(A†
i)

T (Bi)
TBiA

†
i , (34)

where A†
i =

(
A

(1)
ω , . . . ,A

(L)
ω

)†
(i·D):(i+1·D).

.

B. Additional experimental details
B.1. Datasets characteristics

Table 4 provides the details of the LSO tasks studies in this paper. For the expression taks we optimize for the negative
RMSE for any given expression to 1/3 + x + sin(x * x) measured using 1000 equality spaced points between -10
and 10 (Kusner et al., 2017). The logP values are calculated using the model developed by (Wildman and Crippen, 1999)
and last three tasks use oracle function provided by the GuacaMol (Brown et al., 2019) package.

Table 4: Characteristics of the LSO problems provided in this study. We train VAEs following the exact specification in
(Notin et al., 2021) for the first two tasks. For the remaining tasks, we use the pre-trained VAE provided by (Maus et al.,
2022). L and D refer the maximal sequence length and the dimension of the one-hot vectors respectively.

Pre-training Dataset Black-Box Objective DGN (latent dimension) L/ D Architecture
Expressions 14 1/3 + x + sin(x * x) CVAE (25) 14 19/15 GRU (RNN)
ZINC 11 penalized logP CVAE (56) 14 120/35 GRU (RNN)
Guacamol 4 Perindopril MPO SELFIES-VAE (256) 17 70/97 Transformer
Guacamol 4 Ranolazine MPO SELFIES-VAE (256) 17 70/97 Transformer
Guacamol 4 Zaleplon MPO SELFIES-VAE (256) 17 70/97 Transformer

11

ScaLES: Scalable Latent Exploration Score for Pre-Trained Generative Networks

B.2. Full experimental results

We provide the full experimental results for the experiments carried out in Section 4. For each task we report the best and
the average of the top 10 unique solutions found throughout the entire optimization procedure. In addition we report the
proportion of valid solutions and the average ScaLES value across the entire optimization procedure.

B.3. Expressions

Reg Method Reg Param Validity ScaLES Top 1 (Valid) Top 10 (Valid)

LSO (GA) N/A 0.70 (0.01) 384.48 (0.74) -0.36 (0.04) -0.53 (0.02)
LSO (L-BFGS) facet length = 1.0 0.88 (0.02) 385.54 (1.32) -0.38 (0.05) -0.64 (0.09)
LSO (L-BFGS) facet length = 5.0 0.86 (0.02) 381.70 (1.54) -0.32 (0.03) -0.56 (0.06)
LSO (L-BFGS) facet length = 25.0 0.90 (0.00) 381.97 (2.01) -0.39 (0.00) -0.54 (0.03)

Prior λ = 0.2 0.66 (0.01) 382.16 (0.97) -0.38 (0.02) -0.63 (0.03)
Prior λ = 0.5 0.56 (0.02) 376.05 (1.18) -0.45 (0.04) -0.95 (0.08)
Prior λ = 0.8 0.47 (0.02) 372.04 (0.64) -0.67 (0.11) -1.32 (0.17)
UC 75th quantile 1.00 (0.00) 391.59 (3.89) -0.34 (0.03) -0.56 (0.02)
UC 95th quantile 0.98 (0.00) 383.36 (3.89) -0.36 (0.02) -0.53 (0.01)
UC 100th quantile 0.76 (0.01) 364.63 (3.95) -0.36 (0.03) -0.54 (0.02)

ScaLES λ = 0.2 0.87 (0.01) 384.11 (4.65) -0.27 (0.06) -0.49 (0.02)
ScaLES λ = 0.5 0.92 (0.01) 401.00 (5.17) -0.32 (0.05) -0.52 (0.02)
ScaLES λ = 0.8 0.93 (0.00) 406.68 (5.33) -0.32 (0.05) -0.56 (0.02)
ScaLES λ = 2 0.95 (0.00) 444.72 (0.27) -0.44 (0.01) -0.83 (0.02)

ScaLES (ES) 25th quantile 0.92 (0.00) 409.79 (0.27) -0.34 (0.02) -0.51 (0.01)
ScaLES (ES) 50th quantile 0.94 (0.00) 412.93 (0.44) -0.31 (0.03) -0.53 (0.01)
ScaLES (ES) 75th quantile 0.95 (0.00) 416.98 (0.32) -0.38 (0.01) -0.57 (0.01)

B.4. logP

Reg Method Reg Param Validity ScaLES Top 1 (Valid) Top 10 (Valid)

LSO (GA) N/A 0.19 (0.01) 1.69 (0.003) 3.01 (0.14) 2.15 (0.09)
LSO (L-BFGS) facet length = 1.0 0.1 (0.01) 0.8 (0.16) 2.63 (0.19) 1.06 (0.19)
LSO (L-BFGS) facet length = 5.0 0.11 (0.01) -4.476 (1.717) 2.54 (0.18) 1.26 (0.12)
LSO (L-BFGS) facet length = 25.0 0.13 (0.007) -7.583 (2.01) 2.94 (0.24) 1.64 (0.16)

Prior λ = 0.2 0.19 (0.01) 1.70 (0.003) 2.95 (0.19) 2.09 (0.10)
Prior λ = 0.5 0.18 (0.01) 1.69 (0.003) 2.82 (0.18) 2.04 (0.11)
Prior λ = 0.8 0.15 (0.01) 1.69 (0.003) 2.79 (0.11) 1.99 (0.10)
UC 75th quantile 0.70 (0.01) 1.76 (0.004) 3.20 (0.15) 2.53 (0.05)
UC 95th quantile 0.70 (0.01) 1.76 (0.004) 3.20 (0.15) 2.53 (0.05)
UC 100th quantile 0.70 (0.01) 1.76 (0.004) 3.20 (0.15) 2.53 (0.05)

ScaLES λ = 0.2 0.23 (0.01) 1.72 (0.004) 3.03 (0.23) 2.12 (0.10)
ScaLES λ = 0.5 0.28 (0.01) 1.76 (0.004) 3.16 (0.13) 2.38 (0.09)
ScaLES λ = 0.8 0.35 (0.01) 1.79 (0.004) 3.38 (0.15) 2.60 (0.09)
ScaLES λ = 2 0.47 (0.01) 1.84 (0.004) 3.08 (0.1) 2.53 (0.05)

ScaLES (ES) 25th quantile 0.37 (0.01) 1.71 (0.003) 3.24 (0.11) 2.56 (0.07)
ScaLES (ES) 50th quantile 0.53 (0.01) 1.74 (0.002) 3.17 (0.11) 2.53 (0.04)
ScaLES (ES) 75th quantile 0.62 (0.01) 1.75 (0.002) 3.21 (0.11) 2.62 (0.04)

12

ScaLES: Scalable Latent Exploration Score for Pre-Trained Generative Networks

B.5. Ranolazine MPO

Reg Method Reg Param Validity ScaLES Top 1 (Valid) Top 10 (Valid)

LSO (GA) N/A 0.26 (0.01) -15.52 (0.36) 0.39 (0.00) 0.36 (0.00)
LSO (L-BFGS) facet length = 1.0 0.16 (0.01) -927.47 (25.3) 0.34 (0.01) 0.29 (0.01)
LSO (L-BFGS) facet length = 5.0 0.26 (0.01) -11847.16 (940.92) 0.34 (0.01) 0.29 (0.01)
LSO (L-BFGS) facet length = 10.0 0.31 (0.01) -27674.82 (2916.84) 0.35 (0.01) 0.30 (0.01)

Prior λ = 0.2 0.27 (0.01) 0.43 (0.28) 0.39 (0.01) 0.36 (0.00)
Prior λ = 0.5 0.39 (0.02) 10.38 (2.19) 0.39 (0.01) 0.37 (0.00)
Prior λ = 0.8 0.55 (0.01) 21.18 (0.21) 0.38 (0.01) 0.37 (0.00)
UC 75th quantile 0.22 (0.01) -14.51 (1.19) 0.38 (0.01) 0.36 (0.01)
UC 95th quantile 0.22 (0.01) -14.66 (0.28) 0.38 (0.01) 0.36 (0.00)
UC 100th quantile 0.21 (0.01) -13.67 (2.27) 0.39 (0.01) 0.35 (0.01)

ScaLES λ = 0.2 0.28 (0.01) 0.25 (0.68) 0.38 (0.01) 0.34 (0.00)
ScaLES λ = 0.5 0.47 (0.01) 16.38 (0.25) 0.39 (0.00) 0.37 (0.00)
ScaLES λ = 0.8 0.58 (0.01) 23.85 (0.08) 0.37 (0.01) 0.35 (0.00)

B.6. Zaleplon MPO

Reg Method Reg Param Validity ScaLES Top 1 (Valid) Top 10 (Valid)

LSO (GA) N/A 0.54 (0.01) -14.20 (0.58) 0.46 (0.02) 0.38 (0.01)
LSO (L-BFGS) facet length = 1.0 0.40 (0.01) -467.28 (25.62) 0.46 (0.02) 0.35 (0.01)
LSO (L-BFGS) facet length = 5.0 0.40 (0.01) -5160.41 (962.80) 0.45 (0.02) 0.32 (0.01)
LSO (L-BFGS) facet length = 10.0 0.40 (0.01) -9808.73 (1536.68) 0.43 (0.02) 0.32 (0.01)

Prior λ = 0.2 0.58 (0.01) 1.23 (0.66) 0.48 (0.02) 0.42 (0.01)
Prior λ = 0.5 0.64 (0.01) 15.67 (0.27) 0.46 (0.01) 0.41 (0.00)
Prior λ = 0.8 0.73 (0.01) 22.56 (0.11) 0.46 (0.01) 0.40 (0.01)
UC 75th quantile 0.55 (0.01) -12.85 (0.72) 0.44 (0.01) 0.38 (0.01)
UC 95th quantile 0.56 (0.01) -11.95 (0.73) 0.48 (0.03) 0.39 (0.02)
UC 100th quantile 0.54 (0.01) -10.03 (0.56) 0.48 (0.04) 0.39 (0.01)

ScaLES λ = 0.2 0.62 (0.01) 2.40 (0.62) 0.48 (0.01) 0.41 (0.00)
ScaLES λ = 0.5 0.69 (0.01) 13.78 (1.66) 0.45 (0.02) 0.40 (0.01)
ScaLES λ = 0.8 0.76 (0.02) 24.73 (0.16) 0.41 (0.01) 0.35 (0.01)

B.7. Perindopril MPO

Reg Method Reg Param Validity ScaLES Top 1 (Valid) Top 10 (Valid)

LSO (GA) N/A 0.47 (0.01) -13.6 (0.12) 0.51 (0.01) 0.48 (0.01)
LSO (L-BFGS) facet length = 1.0 0.23 (0.01) -1491 (96) 0.48 (0.01) 0.42 (0.01)
LSO (L-BFGS) facet length = 5.0 0.33 (0.02) -12304 (1553) 0.51 (0.01) 0.42 (0.00)
LSO (L-BFGS) facet length = 10.0 0.34 (0.01) -26359 (3484) 0.50 (0.01) 0.42 (0.00)

Prior λ = 0.2 0.54 (0.01) 2.1 (0.15) 0.56 (0.02) 0.52 (0.01)
Prior λ = 0.5 0.67 (0.01) 16.56 (0.13) 0.56 (0.01) 0.54 (0.00)
Prior λ = 0.8 0.76 (0.01) 22.86 (0.06) 0.57 (0.01) 0.54 (0.00)
UC 75th quantile 0.46 (0.01) -11.96 (0.26) 0.55 (0.02) 0.49 (0.01)
UC 95th quantile 0.46 (0.01) -12.01 (0.32) 0.53 (0.02) 0.48 (0.01)
UC 100th quantile 0.47 (0.01) -11.8 (0.45) 0.52 (0.02) 0.48 (0.01)

ScaLES λ = 0.2 0.56 (0.01) 1.4 (0.56) 0.59 (0.02) 0.52 (0.01)
ScaLES λ = 0.5 0.70 (0.00) 16.88 (0.19) 0.59 (0.01) 0.55 (0.00)
ScaLES λ = 0.8 0.78 (0.01) 24.03 (0.12) 0.60 (0.01) 0.56 (0.01)

13

ScaLES: Scalable Latent Exploration Score for Pre-Trained Generative Networks

C. Computational times and resources
Resources and wall clock times All the experiments in this works were carried out using a single GPU (NVIDIA A100).
Table 5 shows the wall clock running time of calculating ScaLES and its derivative for each one of the datasets studied in
this paper.

Table 5: Wall clock times in seconds for different z batch sizes and datasets (latent dim in parentheses). The methods
evaluated include ScaLES, ScaLES Derivative, and UC. For UC, the number of weights and importance samples are in
parentheses.

Expressions (25) Smiles (56) Selfies (256)
Batch 10 Batch 5 Batch 10 Batch 5 Batch 10 Batch 5

ScaLES 0.133 0.04 0.277 0.219 8.687 4.491
ScaLES Derivative 0.18 0.085 0.417 0.369 8.026 5.4
UC (10, 10) 0.162 0.106 1.041 0.841 13.177 12.649
UC (2, 2) 0.021 0.021 0.169 0.159 2.549 2.469

Software packages used In this work we used the following software packages:

• https://github.com/pascalnotin/uncertainty guided optimization (Notin et al., 2021)

• https://github.com/nataliemaus/lolbo (Maus et al., 2022)

• BoTorch (Balandat et al., 2020)

• PyTorch (Paszke et al., 2017)

D. Broader impact
This work seeks to improve the practicality of latent space optimization, a method first used in drug discovery. It brings no
new societal implications beyond those already associated with LSO.

14

