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Abstract—Navigating in off-road environments for wheeled
mobile robots is challenging due to dynamic and rugged ter-
rain. Traditional physics-based stability metrics, such as Static
Stability Margin (SSM) or Zero Moment Point (ZMP) require
knowledge of contact forces, terrain geometry, and the robot’s
precise center-of-mass that are difficult to measure accurately in
real-world field conditions. In this work, we propose a learning-
based approach to estimate robot platform stability directly from
proprioceptive data using a lightweight neural network, IMUnet.
Our method enables data-driven inference of robot stability
without requiring an explicit terrain model or force sensing.

We also develop a novel vision-based ArUco tracking method
to compute a scalar score to quantify robot platform stability
called C3 score. The score captures image-space perturbations
over time as a proxy for physical instability and is used as
a training signal for the neural network based model. As a
pilot study, we evaluate our approach on data collected across
multiple terrain types and speeds and demonstrate generalization
to previously unseen conditions. These initial results highlight the
potential of using IMU and robot velocity as inputs to estimate
platform stability. The proposed method finds application in
gating robot tasks such as precision actuation and sensing,
especially for mobile manipulation tasks in agricultural and space
applications. Our learning method also provides a supervision
mechanism for perception based traversability estimation and
planning.

I. INTRODUCTION

Wheeled unmanned ground vehicles (UGVs) operating in
unstructured, off-road environments must navigate uneven,
deformable and discontinuous terrain while maintaining op-
erational safety and performance. Stability is a critical re-
quirement during sustained deployments in agricultural fields,
forests, and space exploration, as terrain-induced disturbances
can increase rollover risk, degrade perception accuracy, and
interfere with task execution. These effects are especially
pronounced in scenarios involving mobile manipulation or
eye-in-hand sensing, where platform instability while not
catastrophic can still compromise data quality and actuation
precision. Physics-based stability metrics such as Static Stabil-
ity Margin (SSM), Zero Moment Point (ZMP), and Stability
Moment (SM) [1, 2, 3] offer rigorous definitions grounded
in robot dynamics. However, their application to real-world
UGVs is limited by the need to accurately determine terrain
contact points, center-of-mass and measure real-time force
experienced by the robot. The requirements are difficult to
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satisfy, especially for robot chassis with wheel suspensions
and require specialized force sensors to accurately measure
instantaneous force on the wheels. Learning-based stability
estimation using terrain models, camera and/or lidar data that
estimate the effect of the forces on robot stability indirectly,
suffer from the lack of a universally accepted easy to measure
metric for ground truth labeling. To train a model to recognize
instability, we must first define stability in a measurable and
repeatable way. Alternatively, IMU-based signal filtering meth-
ods (e.g., angular rate thresholds or standard deviation filters)
are lightweight but difficult to interpret semantically and often
require task-specific tuning to remain effective across varying
terrain or vehicle configurations.

In this paper, we report results from a pilot study to address
these challenge by proposing a vision-supervised learning
framework for stability estimation using IMU and robot ve-
locity data. We introduce a novel stability measure, C3 score,
which quantifies platform disturbance based on pose deviation
captured by a static monocular camera observing ArUco
markers. The C3 score combines rotational and translational
displacement to characterize the magnitude of body-level
motion, and is used as a training label for a neural network that
maps IMU and velocity inputs to a real-time stability estimate
without any reliance on vision at deployment time. This
approach inverts the common near-to-far paradigm [4], where
proprioceptive signals are typically used to supervise long-
range exteroceptive terrain models. Instead, we leverage vision
during training to supervise proprioceptive learning, offering
a scalable, low-cost way to generate labels without force
sensors or simulation (Figure 1 shows the proposed pipeline
for stability estimation). Once trained, the model serves as a
semantic stability estimator that is both deployable in real-
world systems and applicable across multiple downstream use
cases. These include gating sensing or actuation in mobile
manipulation (e.g., only capturing data during stable motion),
retrospective terrain labeling, and self-supervised training of
traversability prediction models. Key contributions of this
paper are as follows. First, we define a novel vision-supervised
stability metric (C3) based on pose deviation using ArUco
markers. Second, we develop a learning-based pipeline that
predicts this metric using only IMU and velocity data, en-
abling real-time proprioceptive stability estimation. Third, we
evaluate the approach in real-world field experiments across
multiple terrain types and discuss its practical implications for



Fig. 1: Proposed architecture for stability estimation

autonomous mobility and control.

II. RELATED WORKS

Understanding and quantifying vehicle stability is essential
for ensuring safe and reliable navigation in unstructured or
uncertain terrain. In this work, we focus exclusively on meth-
ods that employ proprioceptive sensing for real-time stability
estimation. These methods fall broadly into two categories:
physics-driven and learning-based approaches. Physics-driven
methods leverage knowledge of vehicle dynamics, forces, and
moments to derive stability estimates based on analytical
models. In contrast, learning-based methods rely on data-
driven techniques to infer stability or traversability directly
from machine learning models by evaluating on-board sensor
measurements. The following sections review the key de-
velopments in both categories, highlighting their capabilities,
limitations, and relevance to our proposed method.

A. Physics-driven Stability Metrics

Physics-driven stability metrics are often divided into 2
categories: static and dynamic stability. Many physics-driven
metrics are proposed from the perspective of analyzing the
stability of legged robots, as these robotic platforms are
naturally more prone to tipping over and thus benefit the most
from stability analysis, but all of the following metrics can
also be effectively applied to wheeled robots, as demonstrated
by Ryu et al. [5, 6].

1) Static Stability Metrics: Static stability attempts to quan-
tify a robot platform’s ability to maintain its balance while
stationary or moving at slow speeds. The static stability margin
(SSM) metric [1] calculates the point where a gravitational
force vector, starting at the robot’s center of mass (CoM) point,
intersects the ground plane and the center point of the vehicle’s
support polygon, projected on the ground plane. The distance
between these 2 points is directly proportional to the likelihood
that the platform will tip over. Another metric, known as the
Zero Moment Point (ZMP) metric [2], uses a point projected
on the ground plane where the sum of all forces and moments
acting on a robot are in equilibrium, meaning the robot’s body
will not rotate around the ZMP. If the ZMP falls outside of
a stable region, the robot will topple. The Energy Stability

Margin (ESM) metric [3] quantifies the minimal amount of
energy required to tip over a mobile robot by computing the
difference in height between the maximal height of the CoM
and the height of the current pivot point of the robot.

2) Dynamic Stability Metrics: Dynamic stability attempts
to quantify the balance of a robot in motion over time
when subjected to perturbations or disturbances in motion.
To achieve this, dynamic stability metrics often consider how
a robot responds to sudden changes in speed, direction, and
external forces. The Force-Angle Stability Margin (FASM)
metric [7] determines a quantifiable stability measurement of
a robotic platform based on the net force vector and moments
applied to CoM. The FASM metric states that the stability
of the platform will be inversely proportional to the angle
between the tip-over axis normal and the net force vector
components parallel to that tip-over axis. The Moment-Height
Stability (MHS) metric [8] measures dynamic stability while
considering the moving CoM of a mobile manipulator. The
MHS metric can be expressed as the ratio of the tipping
moment over the maximal resistive moment, which is inversely
proportional to the vehicle’s stability. The stability moment
(SM) metric [9] aggregates individual wheel contact forces and
moments to quantify the risk of rollover during the operation
of a wheeled vehicle at high-speed.

Physics-driven stability metrics have proven to be useful
and effective when applicable; however, these methods can
be impractical to implement for online UGV deployment.
Many physics-driven stability metrics require localization of
the robot wheels’ points of contact on the terrain relative
to the UGV’s CoM, and/or estimation of real-time forces
applied on the wheels of the UGV. Norouzi et al. [10] fur-
ther document that many off-road terrain scenarios introduce
significant uncertainty in determining contact points. Peters et
al. [9] demonstrate that having a vehicle suspension system
can complicate the localization of these contact points. These
authors [9, 10] also document that accurately determining
contact points for a vehicle with a suspension system requires
the use of suspension displacement sensors and/or a kinematic
model of the suspension system, and accurately measuring the
vehicle’s real-time wheel forces requires expensive wheel force
sensors. Due to these limitations, physics-driven methods can
be impractical to implement and deploy.

B. Learning-based Approaches

Learning-based metrics provide a way to simplify stability
estimation by eliminating the need to localize contact points
on the terrain, install expensive hardware, or use a vehicle
dynamics model. In the context of this paper, traversability
metrics and stability metrics will be considered interchange-
able, as a traversability metric can be considered a quantitative
or qualitative estimate of how statically or dynamically stable
a UGV will be while traveling over different terrain types [11].
There are many extensive surveys covering traversabilty esti-
mation methods [12, 13, 14, 15]; we discuss some commonly
used learning-based metrics in this paper.



1) Traversability Estimation: Learning-based traversability
estimation commonly leverages data, particularly from IMUs
and wheel encoders, to analyze the vibration patterns expe-
rienced by UGVs as they traverse over various terrain types.
These vibration signals have been examined in both the time
and frequency domains. Early approaches employed traditional
machine learning models for classification, such as Support
Vector Machines (SVMs) [16], Extreme Learning Machines
(ELMs) [17], and basic multilayer perceptrons (MLPs) [18].
More recent research has enhanced classification performance
through the application of deep learning architectures, includ-
ing recurrent neural networks (RNNs) [19] and convolutional
neural networks (CNNs) [20]. Additional methods incorpo-
rate force or tactile sensor data for terrain estimation using
learning-based techniques [21], while others utilize acoustic
signals generated by the UGV’s interaction with the terrain
[22]. A growing trend involves fusing data from multiple
sources to construct multi-modal input representations, which
are then processed using deep neural networks to improve
terrain classification accuracy [23, 24].

2) Self-Supervised Near-to-far learning: Proprioceptive
traversability estimation is frequently employed as a source
of pseudo-ground truth labels for training exteroceptive-based
traversability models in self-supervised learning frameworks
for autonomous navigation [25, 26, 27, 4, 28, 29]. For in-
stance, Bajracharya et al. [25] used a Naive Bayes classifier
trained on data, including wheel encoders, bumper switches,
IMU, GPS, and motor current sensors, to generate binary
terrain labels (traversable vs. non-traversable). These labels
were subsequently used to train a series of one-class SVMs
to learn terrain classifications from stereo vision data. Zurn
et al. [26] leveraged ground truth labels generated by a
Siamese Encoder with Reconstruction Loss (SE-R), which
used acoustic frequency-domain features to infer terrain types,
for training a self-supervised semantic segmentation model
based on camera image inputs. Kahn et al. [28] incorpo-
rated IMU-derived information about terrain bumpiness and
collision likelihood into an LSTM-based model that predicts
terrain traversability using exteroceptive inputs from cameras
and LiDAR. This model was integrated into a reinforcement
learning framework for smooth trajectory planning. Chen et
al. [29] use a one-dimensional CNN to process raw signals
from IMU, wheel encoder, and motor current sensors to assess
terrain traversability classes and uses these labels to improve
results of a vision-based traversability estimation network that
uses RGB and NIR image data.

In contrast to approaches which adopt the near-to-far learn-
ing paradigm by using on-board feedback to supervise passive
perception, our work proposes an inverse paradigm. Specifi-
cally, we employ vision-based sensors to estimate platform
stability, using ArUco marker-based body displacement as a
physically grounded and interpretable ground truth measure of
stability. This vision-derived stability score serves as a reliable
supervisory signal for training a neural network to predict plat-
form stability directly from IMU data and measured velocity.
The resulting stability estimation offers three key benefits: (1)

it enables the quantitative assessment of terrain traversabil-
ity along paths taken by an UGV, useful for evaluating
traversability planning algorithms; (2) it provides high-quality
ground truth labels for training self-supervised, exteroceptive-
based traversability estimation models in a near-to-far learning
framework; and (3) it supplies real-time stability feedback
that can be integrated into stability-aware navigation systems,
offering a robust fallback when exteroceptive estimators fail
to accurately predict terrain characteristics.

III. SOLUTION APPROACH

In this section, we formulate the problem, introduce a
stability metric (C3), and describe our overall learning pipeline
for stability estimation.

A. Problem Statement

The objective of this work is to estimate a scalar stability
score for a wheeled mobile robot using onboard sensor data,
specifically IMU and velocity measurements, captured over
windowed time sequences. The stability score quantifies the
robot’s motion stability based on the pose deviation of the
robot as the ground truth. This score captures how terrain-
induced disturbances affect the robot’s ability to operate safely,
including the risk of rollover, which can compromise percep-
tion, actuation, and task performance.

B. Ground Truth Stability Measure

We develop a camera-based stability metric, C3 score, for
robot pose deviation to serve as a ground truth for a stability
estimation method independent of exteroceptive sensing. To
achieve this we use a camera rigidly attached to the UGV to
track the position change of a static reference point (ArUco
marker) in the environment. The ground truth measure cap-
tures movements of the center of the ArUco marker in the
camera view across consecutive image frames as the UGV
traverses the environment. The C3 score is adept at capturing
the magnitude and direction of robot pose deviation on a
single scale, efficiently combining into a single scalar value
representing platform (in)stability. This metric provides an
easy-to-compute supervisory signal for learning based stability
prediction methods.

Our proposed metric, count-circles-crossed (C3), is de-
signed to capture robot-terrain interactions over a sequence of
frames. To compute the C3 score for a sequence of frames, we
first compute the CC (circles-crossed) score for a single image.
The CC score is computed in reference to the preceding frame.
To compute the score we draw twenty concentric circles with
linearly-increasing radii (2 to 40 pixel units radius) around
the ArUco marker center in the previous image frame and
calculate the number of circles jumped by the ArUco center
in the current frame. The sum of CC values for all frames in
a windowed sequence is called the C3 score for the sequence.
Algorithm 1 gives the psuedocode for C3 score calculation,
where F is an array of size N of consecutive image frames.
A visualization for this method is shown in Fig 2.



Fig. 2: Count-Circle-Crossed (C3) Score Calculation based on
ArUco Marker’s Center Movement across Concentric Circles,
using the Center from Previous ArUco Marker

Algorithm 1 C3 Score Calculation

1: procedure C3SCORE(F )
2: C3S ← 0
3: for i = 2, ..., N do
4: prevCenter ← findArUcoCenter(Fi−1)
5: circles← generateCircles(prevCenter)

▷ Generate 20 concentric circles (linearly-increasing
radii) around ArUco center in previous frame

6: curCenter ← findArUcoCenter(Fi)
▷ Count number of circles between ArUco centers

in previous and current frames
7: CC ← NumCirclesCrossed(curCenter, circles)

▷ dArUco: robot’s current distance from ArUco
▷ dMax: robot’s longest travel distance in field

8: CC ← CC × (dArUco/dMax)
9: C3S ← C3S + CC

10: end for
11: return C3S
12: end procedure

As the distance between the robot and the ArUco marker
increses, the sensitivity of CC score to robot pose deviation
increases. This is because the CC score is computed in pixel
units. To correct this bias, we multiply the CC score by
a normalization factor (Algorithm 1 step 8): CC = CC ×
(dArUco/dMax), where dArUco is the robot’s current distance
from the ArUco marker and dMax is the maximum distance
observed during the trial. For ease of neural network training,
we normalize the C3 score to lie in the range [0,1]. This is
done by scaling the score with the maximum C3 score across
all terrains (C3max), as follows: GT = C3

C3max
ϵ [0, 1].

C. Learning Pipeline Overview

We use the pretrained IMUNet model [30] and fine-tune it
to customize for stability prediction (Figure 3). The pretrained
network is trained on inertial motion data optimized for
edge-device deployment and processes raw IMU sequences
to estimate velocity or position. To adapt the model for our
task, we remove the noise cancellation block. The architecture
is then modified to accept an 8 × 200 input, corresponding
to 6-axis IMU and velocity along robot’s x and y axes. Our
training set comprises of 1000 dataframes collected in 86
runs of a wheeled mobile robot across four different terrains

(pavement, grass, dirt, and dirt with rocks) and three distinct
velocity profiles (0.5 ms−1, 1 ms−1, and 1.5 ms−1).

Training Strategy: We train the network for 100 epochs
using a batch size of 32 and the Adam optimizer with a
learning rate of 1e−4. To prevent overfitting, we apply a
dropout rate of 50%. Since the task involves predicting a
continuous stability score, we use Mean Squared Error (MSE)
as the loss function. We conduct all our experiments on a
system with an NVIDIA RTX 3500 Ada GPU (12 GB VRAM)
using CUDA 12.4. We collect sensor data from multiple
terrains at varying speeds for training and reserve a separate,
unseen terrain for evaluation. We use 15% of the training
dataset for validation. To evaluate our model, we use MSE
as the primary evaluation metric.

IV. DATA COLLECTION AND PROCESSING

This section outlines our system and experimental design,
ground truth stability score generation, and data preprocessing
methods for model training.

Fig. 4: System Design Setup: AgileX Scout 2.0 UGV Platform

A. System Design

We use an AgileX Scout 2.0 UGV for experimental data.
The robot is equipped with a software stack designed in ROS2
providing localization and GPS based waypoint navigation
capabilities. The onboard software is executed on an NVIDIA
Jetson AGX Orin module. The robot is equipped with a
SwiftNav Duro Inertial unit that provides RTK-GPS position
data at 10Hz and IMU data at 200Hz. An Intel Realsense D455
camera provides images at 60Hz for ArUco marker detection
and is rigidly mounted on the robot (see Fig 4).

B. Experiment Design

Experiments were conducted in four different terrain types:
“pavement”, “grass”, “dirt” and “dirt with rocks” (See Fig
5). We conducted controlled trials for all of these terrains
at different speeds (0.5, 1, and 1.5) ms−1, to capture data
at varying levels of stability, as we expected higher speeds
to lead to instability as the robot navigates through uneven
terrain. Each trial began with the robot aligned to face an
ArUco marker of size 1 m2 for easy detection and visibility.
During each trial, the robot moved forward towards the marker
with a constant, positive linear velocity along the x-axis as
input. ROSbags were used to collect IMU, GPS, and camera
data for each trial.



Fig. 3: Proposed Network Architecture for Learning the Stability Score

(a) (b) (c) (d)

Fig. 5: Experiment setup with the Scout 2 facing an ArUco marker on (a) Pavement, (b) Grass, (c) Dirt, & (d) Dirt with Rocks

Terrain Velocity # dataframes Mean Std dev Min 25%ile median 75%ile Max
Training Data

pavement 0.5 123 0.000253 0.001719 0.000000 0.000000 0.000000 0.000000 0.016162
pavement 1.0 82 0.000548 0.004274 0.000000 0.000000 0.000000 0.000000 0.038427
pavement 1.5 115 0.006886 0.025879 0.000000 0.000000 0.000000 0.000000 0.184089
dirt 0.5 241 0.015030 0.051415 0.000000 0.000000 0.000000 0.000000 0.564229
dirt 1.0 116 0.109996 0.148408 0.000000 0.000000 0.074855 0.147032 0.673900
dirt 1.5 106 0.238046 0.245232 0.000000 0.067926 0.157616 0.336529 1.000000
dirt+rocks 0.5 357 0.032166 0.093634 0.000000 0.000000 0.000000 0.000000 0.700692
dirt+rocks 1.0 166 0.215782 0.238787 0.000000 0.005403 0.136750 0.353867 0.999209
dirt+rocks 1.5 47 0.338978 0.288741 0.000000 0.099221 0.265559 0.545717 0.972803

Test Data (unseen terrain)
grass 0.5 181 0.000904 0.004865 0.000000 0.000000 0.000000 0.000000 0.055362
grass 1.0 91 0.053647 0.056334 0.000000 0.002324 0.043401 0.076191 0.305136
grass 1.5 175 0.130626 0.145167 0.000000 0.027450 0.081663 0.192160 0.804693

TABLE I: Stability Score (Ground Truth) Statistics - Terrain Type with Velocity (ms−1)

C. Preprocessing

Sensor frame rates vary, so we preprocess the raw sensor
data to create fixed-length inputs for the network. Specifically,
we use 200 sequential IMU measurements as the reference
and define a time window spanning from the first to the last
IMU measurement. We use GPS co-ordinates to compute the
velocity. Camera and GPS measurements within the window
are tracked, with GPS data interpolated to match the IMU
timestamps. This process yields a 8 × 200 dataframe, where
each dataframe contains six IMU features (angular velocities
and accelerations in X, Y, Z) and two velocity features (in X
and Y). We remove outliers from the collected data caused

by unintended robot movements, such as during boot-up,
stationary periods, or when the robot is aligning with the
ArUco marker vector.

D. Ground Truth Distribution and Dataset Balancing

In Table I, we present the ground truth statistics of our col-
lected dataset, which includes data from “pavement”, “grass”,
“dirt” and “dirt with rocks” terrain types. The mean stability
score exhibits a consistent increase as the terrain gets rougher
(rocks >> dirt >> grass >> pavement) and input veloci-
ties increase. These ground truth scores support our hypothesis
that terrain classes possess inherent instability and that the



UGV’s velocity influences this instability, as evidenced by the
magnitude of dynamic fluctuations observed. The score distri-
butions further indicate that our ground truth scoring method
effectively captures the instability characteristics across each
terrain-velocity class. However, the collected dataset shows an
imbalance in terrain-velocity classes within the training data
(see Figure 6). To address this, we sample an equal number of
dataframes from each velocity level within each terrain type.
Additionally, we apply stratified sampling by binning ground
truth score values to ensure that both training and validation
sets maintain a consistent distribution of ground truth scores.
This balanced distribution helps the model reduce bias, avoid
overfitting to skewed subsets, and learn effectively across the
full range of stability present in the training data.

V. RESULTS AND DISCUSSION

We evaluated the performance of our system on test data
comprising terrain class “grass”, previously unseen by the
model, across all velocity profiles. The model achieves an
MSE of 0.0074, indicating relatively low prediction errors
within the C3 score range of zero to one. Fig. 7 shows
the distribution of prediction errors. Most errors are close to
zero, showing the overall performance of our model. However,
the distribution shows a small bias, indicating a tendency to
overestimate instability. This is explained by higher percentage
of high C3 score dataframes in the training data representing
“dirt” and “dirt with rocks” terrain classes, as seen in Figure
8. Figure 8 shows both the predicted and ground truth stability
scores. The comparison reveals that the model struggles with
accuracy particularly when the ground truth indicates higher
instability.

Although the model is trained on non-grass terrain classes,
it achieves reasonably low prediction errors and demonstrates
the ability to predict stability across terrain types and velocity
profiles. This suggests that IMU and velocity features capture
terrain-agnostic information that shows limited generalization
with current dataset and model architecture.

VI. CONCLUSION AND FUTURE WORK

In this work, we proposed a new camera-based stability
measure that quantifies robot pose deviation using ArUco

Fig. 6: Normalized Ground Truth values for each terrain class.
Data is sorted by input velocity (m/s) provided to the UGV.

Fig. 7: Distribution of Stability Score Prediction Errors

marker displacement. Initial experiments suggest that the C3
score provides a reliable and interpretable measure of wheeled
robot stability. We observe that the C3 score increases as the
robot traverses rougher terrains and operates at higher speeds,
indicating that the metric captures terrain-robot interactions.
The IMU-velocity based prediction method offers a promising
direction for real-time stability estimation using onboard pro-
prioceptive sensing and robot state information. It has wide-
ranging downstream applications, including gating actuation
and data collection, retrospective terrain labeling, and as a
training signal for self-supervised traversability estimation and
stability prediction.

As part of future work, we plan to expand the dataset
across existing terrain-velocity classes to improve representa-
tion amongst classes and increase the percentage of dataframes
with higher C3 scores. While early results offer evidence of
the feasibility of IMU and velocity-based prediction, more
rigorous evaluations and benchmarking are needed to fully
understand the capabilities of the proposed stability estimation
method. We plan to run ablation studies to better understand
the specific contributions of different IMU channels and ve-
locity components to model performance.

We will also evaluate and explore other neural architectures
(time-series models) and training strategies. We will broaden
the variance of our dataset by targeting new terrain-velocity
combinations that lead to greater variability in the C3 score,
especially those associated with unstable and dynamic robot
motion. We will also introduce slope conditions (no slope,
moderate, and steep) to increase exposure to tip-over scenar-
ios. To validate the effectiveness and generalizability of our
approach, we will compare it against classical terrain clas-
sification baselines that use statistical and frequency-domain
features of IMU signals, such as [17]. In addition, we will
benchmark our method against well-established physics-based
stability metrics, including Static Stability Margin (SSM)
[1], Force-Angle Stability Margin (FASM) [7], and Stability
Moment (SM) [9].
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