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Abstract

Catheter ablation is one of the most common cardiac ablation procedures for atrial
fibrillation, which is mainly based on catheters with electrodes collecting electrophysiology
signals. Catheter electrode localization facilitates intraoperative catheter positioning, sur-
gical planning, and other applications such as 3D model reconstruction. In this paper, we
propose a novel deep network for automatic electrode localization in an X-ray sequence,
which integrates spatiotemporal features between adjacent frames, aided by optical flow
maps. To improve the utility and robustness of the proposed method, we first design a
saturation-based optical flow dataset construction pipeline, then finetune the optical flow
estimation to obtain more realistic and contrasting optical flow maps for electrode localiza-
tion. The extensive results on clinical-challenging test sequences reveal the effectiveness of
our method, with a mean radial error (MRE) of 0.95 mm for radiofrequency catheters and
an MRE of 0.71 mm for coronary sinus catheters, outperforming several state-of-the-art
landmark detection methods.
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1. Introduction

Atrial fibrillation (AFib), atrial flutter, and premature ventricular contractions are prevalent
manifestations of cardiac arrhythmias. Frequent cardiac arrhythmias may give rise to seri-
ous consequences, for instance, AFib can lead to blood clots in the heart (Staerk et al., 2017).
Compared with pharmaceutical interventions, catheter-based radiofrequency ablation tech-
niques in cardiac electrophysiology (EP) stand as the standard surgical intervention for the
definitive treatment of rapid cardiac arrhythmias, characterized by immediate therapeutic
effects and high success rates (Mark et al., 2019; Parameswaran et al., 2021). The electrode
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is one of the most crucial components of the catheters, which is used for EP signal collec-
tion and catheter localization. Catheter electrode localization can facilitate intraoperative
catheter positioning, surgical planning, 3D model reconstruction and so on. However, due
to the unstable imaging quality and the intersections among multiple catheters throughout
the clinical surgical procedure, it is hard for physicians to locate the electrodes precisely
in real-time X-ray images. Thus, it is necessary to develop accurate catheter placement
detection methods not only to alleviate burdens for clinicians in the surgery but help novice
doctors get familiar with this surgery.

There are research works (Ambrosini et al., 2017; Yang et al., 2019; Nguyen et al., 2020)
that formulate this task as a segmentation task, which locates the catheters by the center of
the mask of electrodes. Other studies adopt single frame landmark detection (LD) methods
to solve the problem. Catheter segmentation information is indeed helpful, but the labeling
is time-consuming. Experimentally, we observe that the optical flow map can to some extent
provide shape and boundary information of catheter electrode without the need for specific
annotations (Demoustier et al., 2023). Besides, optical flow maps can provide temporal
context in X-ray videos, which could make full use of correlation between successive frames
and the label-free shape context.

To solve the electrode localization problem and motivated by the the above empirical
findings, we go beyond a single frame and propose an effective and easy-to-implement
network, Optical Flow-based Electrode LocalIzAtion (OFELIA) for electrode localization
in an X-ray video sequence.

Specifically, we introduce the optical flow map between consecutive frames as the input
to the LD network, which not only presents the position changes over time but also provides
estimated shape information of the electrodes (As shown in Fig. 3). Besides, as the ground
truth of optical flow is difficult to acquire in our task, we construct a simulated dataset,
the Flying-Catheter Dataset, based on several pre-trained RAFT (Teed and Deng, 2020)
models, to train the optical flow estimator.

This paper offers the following contributions:

1. We propose an OFELIA network, which integrates the spatiotemporal information in
an X-ray sequence for precise electrode localization. To the best of our knowledge, it
is the first to introduce optical flow into electrode localization in an X-ray sequence;

2. To bridge the gap between natural images and X-ray images, we construct a Flying-
Catheter dataset and fine-tune RAFT for accurate optical flow estimation.

3. Extensive experiments on test datasets illustrate that the OFELIA method outper-
forms the state-of-the-art electrod detection methods on two commonly used catheters.

2. Related Works

Optical Flows in MedIA. Optical flow maps are occasionally used in medical image
areas. The FW-Net (Nguyen et al., 2020) introduces an end-to-end framework, which com-
bines a segmentation network, an optical flow network, and a flow-guided warping function
to learn temporal continuity for real-time catheter segmentation in a 2D X-ray fluoroscopy
sequence. Optical flow maps are also utilized in (Xue et al., 2022) to achieve echocardio-
graphy segmentation. FlowReg (Mocanu et al., 2021) introduces a two-part deep learning
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system for unsupervised neuroimaging registration, combining 3D affine adjustments and
2D deformable fine-tuning based on the optical flow network to enhance global and local
alignment of medical imaging volumes.

Single-Image Landmark Detection. In (Yao et al., 2020), a multi-task U-Net is imple-
mented to predict both heatmap and offset maps of landmarks simultaneously. In (McCouat
and Voiculescu, 2022), an efficient contour-hugging landmark detection method with uncer-
tainty estimation is depicted. In (Zhu et al., 2022), a light-weighted universal anatomical
landmark detection model has been developed.

Video Landmark Detection. Compared to single-image landmark detection, video land-
mark detection utilizes the information between frames. In (Ullah et al., 2019), a tracker is
implemented to extract the tip detection results in the last frame as a reference for segment-
ing the tip in successive frames. U-LanD (Jafari et al., 2022) capitalizes on the uncertainty
inherent in landmark prediction to achieve automatic detection of landmarks in key frames
of videos. The most similar work to ours is ConTrack (Demoustier et al., 2023), which uses
both spatial and temporal context for tip detection and tracking. It incorporates multiple
template frames and a search frame for catheter segmentation and initial tip detection. Sub-
sequently, it uses successive segmentation to refine tips with optical flow maps. However, it
relies on catheter segmentation masks, necessitating extensive annotations. In contrast to
this, our OFELIA only requires point annotations, which is much easier to obtain.

3. Method

Problem Definition Let D = {(Xt, Yt)}Nt=1 represents an X-ray video sequence with
N frames, where Xt ∈ Rw×h is the t-th video frame with a shape of (w, h), and Yt ∈
RNe×w×h denotes the position of Ne landmarks in frame t. Specifically, suppose that the
k-th landmark of the t-th frame is at (x, y). Y k

t is defined:

Y k
t (i, j) =

{
1, if i = x & j = y;

0 , otherwise.
(1)

OFELIA aims to train a network f(·), which takes the {Xt}Nt=1 as input and predicts the
locations of electrodes in each frame, i.e., {Ŷt}Nt=1.

OFELIA Network The architecture of OFELIA is shown in Fig. 1, which aims to predict
the landmark positions Yt using bothXt andXt+1. Particularly, we try to solve this problem
by utilizing the information between the two frames, i.e., the optical flow map.

Optical flow, a concept to measure the motion of objects in continuous images, is widely
used for tracking cells in fluoroscopy (Guo et al., 2013). By computing the direction and
magnitude of the velocity, the optical flow map can be used to describe the temporal-spatial
information of the electrodes in an X-ray video.

Specifically, we first predict the optical flow map Ft→t+1 between Xt and Xt+1 using
an optical flow estimator φ∗(·), which takes two frames as input and predicts the pixel
movement between them, i.e., Ft→t+1 = φ∗(Xt, Xt+1). Then, the raw image Xt and optical
flow map Ft→t+1 are concatenated and sent to a modified U-Net (Ronneberger et al., 2015).
The encoder of the U-Net is a pre-trained ResNet-34, while the decoder consists of 5 up-
sampling layers with 512, 256, 128, 64, and 32 channels respectively. As there are Ne
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Figure 1: Overview of OFELIA. During the training procedure, the optical flow estimator is
frozen and only the parameters of the Encoder E and the Decoder D are updated.

electrodes that need to be localized in each frame, we add a convolution layer after the last
layer of the decoder to squash the number of channels to Ne. The n-th channel represents
the predicted localization probability map of the n-th electrode and the position with the
highest probability is regarded as the final prediction. The loss function L is defined as
the average channel-wise cross-entropy loss between the predicted probability map Ŷ Ne

t and
ground truth Y Ne

t , given as L = 1
Ne

∑Ne
k=1 LCE(Ŷ

k
t , Y

k
t ).

The information captured by the optical flow map illustrates the catheter movement
along with time and provides additional spatial shape information of the electrodes, which
usually requires manual annotations. Combining X-ray images and optical flow maps can
drive the neural network to pay more attention to the electrode part of the field of view.
This contributes to the precise localization of the electrodes.

Optical Flow Estimator Estimating the optical flow map is essential for the final pre-
diction of our OFELIA. However, the ground truth optical flow is inaccessible in our task.
Besides, most applicable optical flow estimators are trained on natural image datasets, and
the large domain gap results in poor prediction. Thus, we simultaneously construct a
simulated X-ray optical flow dataset (called Flying-Catheter) and train a task-specific flow
estimator on it. The pipeline is shown in Algorithm. 1.

First, we adopt four publicly available pre-trained optical flow estimators on our catheter
dataset, including raft-chairs, raft-kitti, raft-sintel and raft-things which are variations of
RAFT (Teed and Deng, 2020) trained different natural RGB datasets. For each frame,
Xt, the four estimators predict four flows, F̂ p

t→t+1, p ∈ {c, k, s, t}. Then, we propose a

saturation-channel-based selection algorithm to decide the final pseudo optical flow F̂ ∗
t→t+1

for each frame. Specifically, the predicted optical flow map, which is coded in the RGB
format following RAFT, is first converted to the HSV format. We empirically find that the
saturation channel in HSV is good at partically capturing the eletrode boudaries. Then the
mean saturation factor (SF) of each map is calculated using the below:

SFp =
1

Ne

Ne∑
i=1

F̂ p
t→t+1(xi, yi), (2)
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Algorithm 1 Optical Flow Estimator

Input: Original Dataset: Dori = {Xt}Nt=1, Pre-trained RAFTs: φc, φk, φs, φt, Original
RAFT: φ, Quality Control Threshold: α, Flying-Catheter Dataset: Df−c = ∅
t← 1
repeat
Predict Optical Flow between Xt and Xt+1: F̂

p
t→t+1 ← φp(Xt, Xt+1), p ∈ {c, k, s, t};

Convert F̂ p
t→t+1 into HSV color space;

Compute Saturation Factor SFp for each flow map using Eq. (2);
Find the optical flow map with the highest SF using Eq. (3);
if SF p∗ >= α then
Add sample pair to the Flying-Catheter Dataset: Df−c = Df−c∪{Xt, Xt+1, F̂

p∗

t→t+1};
end if

until t = N − 1
Update φ∗ on Df−c using gradient descent;

Output: Fine-tuned RAFT model: φ∗

where (xi, yi) is the coordinate of the i-th electrode landmark in frame Xt. The pseudo
optical flow map is defined as the predicted optical flow map with the highest SF:

F̂ ∗
t→t+1 = F̂ p∗

t→t+1, p∗ = argmax
p

SF p. (3)

However, due to the large gap between natural images and X-ray images, even the best
of the four predictions may have low quality. Thus, we conduct a quality control procedure
on the constructed dataset by discarding samples with an SF smaller than a threshold of α.
Finally, we finetune the original RAFT on the remaining dataset, denoted as the Flying-
Catheter Dataset, for task-specific optical flow estimation. Compared to the original RAFT
and RAFT trained on other natural image datasets, RAFT trained on the Flying-Catheter
dataset can better capture spatial information of the electrodes, which serves as a strong
prior knowledge for landmark detection using OFELIA (as shown in Fig. 3).

4. Experiments and Results

Experiment Settings
Dataset. This study uses an in-house multi-center dataset of fluoroscopic sequences captured
during cardiac ablation procedures and animal experiments. Most of the frames include
two types of commonly used catheters, Coronary Sinus (CS) and Radio-Frequency (RF)
catheters. All the landmarks are defined as the center point of the electrodes except for the
first landmark of the RF catheter, which is defined as the tip of the RF catheter. This results
in 14 landmarks (4 for RF and 10 for CS) in each frame. The dataset is annotated by two
skilled engineers using LabelMe (Russell et al., 2008) and reviewed by three professional
clinical experts. The training and test sets consist of 560 sequences(14,768 frames) and
346 sequences(7,711 frames), respectively. To evaluate the stabilization and generalization
of our proposed method, we extract two clinical-challenging (CCA) subsets, which consist
of frames of a special scene in the operation (53 sequences, 575 frames, denoted as Test-
DSA Subset) and frames where the catheters are partially obstructed (145 sequences, 2,266
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Figure 2: Qualitative results on the Test set(a), Test-DSA subset(b) and Test-OBS sub-
set(c). The ground truth and predicted electrodes of CS catheter are in Blue and
Yellow, respectively, and those of RF catheter are in Green and Red, respectively.

frames, denoted as Test-OBS Subset). These two test sets are more difficult for catheter
electrode detection as they involve more complex situations.

Metrics We use mean radial error (MRE) to measure the Euclidean distance between pre-
diction and ground truth. Additionally, the successful detection rate (SDR) is assessed
across three different radii: 1mm, 2mm, and 4mm.

Implementation details. Our model is implemented in PyTorch and trained on an NVIDIA
A100 GPU. The image pairs are augmented by random rotation, intensity scaling, and
elastically deformation, and resized to 640 × 640 before being sent to the network. The
network training is conducted utilizing the Adam optimizer, commencing with a learning
rate of 0.001 and employing a batch size of 4 for 20 epochs. Learning rate adjustments are
implemented by decreasing it by a factor of 0.1 at epochs 4, 8, 12, and 16. The threshold
for quality control of the Flying-Catheter Dataset is set to α = 0.5.

Main Results
We compare OFELIA with several commonly used algorithms for medical landmark detec-
tion (Ronneberger et al., 2015; Yao et al., 2020; McCouat and Voiculescu, 2022; Zhu et al.,
2022), and the quantitative results are shown in Table 1. We observe that OFELIA outper-
forms the baseline methods on most of the metrics on the test sets. This might result from
the temporal information introduced from the flow map, as other methods focus on spatial
features only. Besides, our OFELIA presents good generalization on the CCA sequences as
the SDR drop is much lower compared to other methods, which is justifiable as bringing in
extra knowledge improves the robustness of the network and provides an aid to deal with
difficult situations. We also present qualitative results of different detection methods in
Fig. 2, where the MRE of each image is on the top of the image. Our method outperforms
other methods significantly. More results are in the Appendix.
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Table 1: Results on the Test sets and CCA subsets. Best and Second Best are highlighted.

Test Dataset

Model
RF Catheter CS Catheter

MRE±STD ↓ SDR (%)↑ MRE±STD ↓ SDR (%)↑

(mm) 1mm 2mm 4mm (mm) 1mm 2mm 4mm

U-Net∗ 1.59±4.91 84.97 91.62 94.51 1.08±4.84 92.20 95.66 97.11
Yao et al.∗ 3.42±8.99 78.32 83.53 86.42 2.28±12.65 81.79 87.57 94.22
McCouat et al.∗ 1.46±3.35 82.66 91.62 93.64 1.06±3.07 88.73 96.53 97.98
Zhu et al.∗ 1.29±3.19 86.13 92.20 94.51 0.93±2.85 93.06 97.69 98.27
OFELIA (Ours) 0.95±2.02 90.17 95.38 96.82 0.71±1.75 95.66 98.27 99.42

Test-DSA Subset

Model
RF Catheter CS Catheter

MRE±STD ↓ SDR (%)↑ MRE±STD ↓ SDR (%)↑

(mm) 1mm 2mm 4mm (mm) 1mm 2mm 4mm

U-Net∗ 3.86±9.09 77.36 79.25 83.02 0.86±1.20 83.02 94.34 96.23
Yao et al.∗ 6.27±12.51 64.15 69.81 75.47 5.10±10.53 66.04 71.70 75.47
McCouat et al.∗ 2.65±6.88 81.13 84.91 88.68 0.66±0.28 88.68 94.34 100.00
Zhu et al.∗ 2.10±5.29 83.02 86.79 88.68 0.52±0.27 94.34 100.00 100.00
OFELIA (Ours) 1.52±3.30 86.79 88.68 94.34 0.64±0.19 96.23 100.00 100.00

Test-OBS Subset

Model
RF Catheter CS Catheter

MRE±STD ↓ SDR (%)↑ MRE±STD ↓ SDR (%)↑

(mm) 1mm 2mm 4mm (mm) 1mm 2mm 4mm

U-Net∗ 2.85±6.42 73.10 81.38 84.83 1.28±2.87 78.62 88.28 92.41
Yao et al.∗ 4.43±10.09 71.72 78.62 81.38 3.35±18.33 74.48 82.07 91.72
McCouat et al.∗ 1.82±4.35 82.07 87.59 90.34 0.85±1.15 86.21 91.03 95.17
Zhu et al.∗ 1.80±4.29 83.45 89.66 91.03 1.27±3.75 88.97 93.79 96.55
OFELIA (Ours) 1.58±2.82 86.21 91.03 93.10 0.73±1.53 91.72 95.86 97.24
∗
Implemented with the official code.

Abalation Study
To evaluate the efficiency of our proposed method, we conduct several ablation studies and
present the results below and in the Appendix.

RAFT trained on Flying-Catheter. We use four pre-trained RAFT and FlyingCath RAFT,
to predict the optical flow map, and the result is shown in Fig. 3. From Fig. 3 we can find
that the prediction of FlyingCath RAFT contains more spatial information of the electrodes,
and the boundary is clearer, which brings a strong prior knowledge for landmark detection.

The introduction of optical flow. The proposed OFELIA takes frame Xt and the corre-
sponding optical flow Ft→t+1 as input. Here we replace Ft→t+1 with (1) The segmentation
component of Xt with highest probability from Segment Anything Model (SAM (Kirillov
et al., 2023)) without prompt; (2) The subsequent frame Xt+1; (3) Estimated optical flow
map using RAFT trained on natural dataset F s

t→t+1; (4) OFELIA without extra informa-
tion. The result in Table 2 illustrates that, although aggregating extra information can
improve the utility of landmark detection, the usage of optical flow tends to be more ef-
ficient. Besides, using optical flow maps generated by Flying-Cath RAFT exhibits better
performance than the original RAFT model, which also proves the necessity of fine-tuning
RAFT on the constructed Dataset.
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Figure 3: Estimated optical flow map of the same frame of four RAFTs. RAFT trained on
Flying-Catheter presents clearer delineation of the catheters and electrodes.

Table 2: Abalation on the additional information. Best and Second Best are highlighted.
Test Dataset

Information
RF Catheter CS Catheter

MRE±STD↓ SDR (%)↑ MRE±STD ↓ SDR (%)↑

(mm) 1mm 2mm 4mm (mm) 1mm 2mm 4mm

SAM 1.12±2.57 89.88 94.51 95.09 0.82±1.81 93.93 97.69 98.55
Subsequent Frame 1.32±3.13 85.26 93.35 95.38 1.02±4.64 91.33 97.11 97.98
Original RAFT 1.93±6.25 87.57 90.17 91.62 1.22±2.19 89.60 94.22 97.69
OFELIA (w/o) extra info. 2.03±5.00 81.79 86.42 89.60 1.38±4.75 80.92 89.60 95.38
OFELIA (Ours) 0.95±2.02 90.17 95.38 96.82 0.71±1.75 95.66 98.27 99.42

5. Conclusion and Future Work

Accurate and efficient electrode detection in real-time fluoroscopy holds a paramount sig-
nificance. In this work, we propose OFELIA, which introduces optical flow features to the
pipeline for precise electrode localization in X-ray series. To improve the model’s utility and
generalizability, we propose a saturation-based optical flow dataset construction algorithm
and fine-tune the optical flow estimator on the synthetic dataset. The results on the test
set and two CCA subsets illustrate the efficiency of our proposed OFELIA compared with
several SOTA methods. It’s worth noting that this approach may not be limited solely to
catheter ablation but can be generalized to other tasks such as motion object detection. In
terms of electrode landmark detection tasks, further research could be conducted on the
usage of different combinations of loss functions, and the exploration of one-shot or few-shot
methods to alleviate the burden of electrode annotation.
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Appendix A. Visualization of Samples

A.1. Visualization of Electrode Landmark Order

Figure 4: Visualization of Electrode Landmark Order.

A.2. Samples from Test-DSA Subset

Figure 5: Qualitative results on the Test-DSA Subset. The ground truth and predicted
landmark of CS Catheter are in Blue and Yellow. The ground truth and predicted
landmark of RF Catheter are in Green and Red.
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A.3. Samples from Test-OBS Subset

Figure 6: Qualitative results on the Test-OBS Subset. The ground truth and predicted
landmark of CS Catheter are in Blue and Yellow. The ground truth and predicted
landmark of RF Catheter are in Green and Red.

A.4. Samples with Part of Landmarks

Figure 7: Qualitative results of single catheter cases. The ground truth and predicted
landmark of CS Catheter are in Blue and Yellow. The ground truth and predicted
landmark of RF Catheter are in Green and Red.
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In our study, the highest value in the heatmap can be used to determine whether the pre-
dicted landmark is reliable. As shown in Fig 7(a), if the maximum values of the heatmaps
corresponding to all electrodes of the CS catheter are less than the conventional thresh-
old, we will conclude that there is no CS catheter in the current frame. This threshold,
determined through our statistical analysis, is 30(before normalization).

Appendix B. Visualization of Failure Detection Cases

Figure 8: Qualitative results of failure detection cases. The ground truth and predicted
landmark of CS Catheter are in Blue and Yellow. The ground truth and predicted
landmark of RF Catheter are in Green and Red.
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Appendix C. Statistical Significance Testing of the Results

C.1. Results on Test Set

Figure 9: Statical analysis results of test set.

C.2. Results on Test-DSA Subset

Figure 10: Statical analysis results of Test-DSA Subset.
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C.3. Results on Test-OBS Subset

Figure 11: Statical analysis results of Test-OBS Subset.

Appendix D. Extra Ablation Study

D.1. Ablation Study on α

Table 3: Ablation results on α. Best and Second Best are highlighted.
Test Dataset

Model
RF Catheter CS Catheter

MRE±STD ↓ SDR (%)↑ MRE±STD ↓ SDR (%)↑

(mm) 1mm 2mm 4mm (mm) 1mm 2mm 4mm

α = 0 1.93±6.25 69.65 84.68 91.62 1.42±7.19 88.15 93.35 97.69
α = 0.25 1.75± 5.99 87.57 90.17 94.80 1.22±4.56 89.88 94.22 98.27
α = 0.5(Ours) 0.95±2.02 90.17 95.38 96.82 0.71±1.75 95.66 98.27 99.42
α = 0.75 3.60±7.57 58.38 71.39 84.39 3.04±6.10 66.18 71.10 81.21

D.2. Ablation Study on The Number of Frames Used

Table 4: Ablation results on The Number of Frames Used for RAFT fine-tune Regarding
α.

α 0 0.25 0.5 0.75

Number 14,768 10,345 6,212 315
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D.3. Ablation Study on the Four Optical Flow Estimators

Table 5: Ablation results on the Four Optical Flow Estimators. Best and Second Best are
highlighted.

Test Dataset

Model
RF Catheter CS Catheter

MRE±STD ↓ SDR (%)↑ MRE±STD ↓ SDR (%)↑

(mm) 1mm 2mm 4mm (mm) 1mm 2mm 4mm

RAFT Chairs 2.22±5.41 81.79 85.55 87.57 0.90±2.20 86.99 93.35 96.24
RAFT kitti 2.40±7.08 75.72 88.73 91.62 2.68±6.34 77.46 90.17 93.93
RAFT things 2.66±9.37 78.61 87.57 89.60 2.21±8.24 77.75 85.84 93.35
RAFT sintel 1.93±6.25 87.57 90.17 91.62 1.42±7.19 88.15 93.35 97.69
OFELIA (Ours) 0.95±2.02 90.17 95.38 96.82 0.71±1.75 95.66 98.27 99.42

D.4. Ablation Study on Using Longer Frame Stacks

Table 6: Ablation results on Using Longer Frame Stacks. Frame123→2 means that we
take frame Xt−1, Xt and Xt+1 as input to predict landmark positions on frame
Xt. The meanings of Frame12→1, Frame1234→2 and Frame12345→3 follow the
similar manner. Best and Second Best are highlighted.

Test Dataset

Model
RF Catheter CS Catheter

MRE±STD ↓ SDR (%)↑ MRE±STD ↓ SDR (%)↑

(mm) 1mm 2mm 4mm (mm) 1mm 2mm 4mm

Frame12→ 1 2.67±4.39 81.21 86.13 89.31 1.88±2.96 86.42 92.49 96.82
Frame123→ 2 4.24±8.84 75.72 84.68 88.73 2.21±3.06 69.08 78.90 87.28
Frame1234→ 2 4.33±5.80 68.79 74.86 79.48 3.06±5.54 77.46 85.55 91.62
Frame12345→ 3 3.15±4.60 70.52 82.08 87.86 2.50±5.13 71.39 76.59 87.28
OFELIA (Ours) 0.95±2.02 90.17 95.38 96.82 0.71±1.75 95.66 98.27 99.42

D.5. Ablation Study on Using a Held-Out Center

Table 7: Ablation results on Using a Held-Out Center. To enhance the evaluation, we select
one center from our multi-center dataset as a held-out center. The data from this
center is not used for training but exclusively used for testing purposes. Thus, we
have established a new test set, which we have named as the Test-Plus Dataset,
containing 360 sequences.Best and Second Best are highlighted.

Test-Plus Dataset

Model
RF Catheter CS Catheter

MRE±STD ↓ SDR (%)↑ MRE±STD ↓ SDR (%)↑

(mm) 1mm 2mm 4mm (mm) 1mm 2mm 4mm

U-Net∗ 2.86±6.63 71.67 80.00 86.67 1.60±4.94 78.61 87.22 93.33
Yao et al.∗ 5.95±11.37 61.67 67.22 74.17 1.16±1.53 70.83 83.89 96.67
McCouat et al.∗ 2.35±11.25 86.67 91.67 93.33 0.91±5.68 91.67 95.83 97.50
Zhu et al.∗ 1.45±3.55 83.61 88.61 91.94 0.83±1.46 87.22 93.33 95.28
OFELIA (Ours) 1.18±2.82 91.67 93.33 95.00 0.73±1.53 92.50 96.67 98.33
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Appendix E. Visualization of Optical Flows with Different α and
Corresponding Catheter Segmentation Maps

Figure 12: Visualization of Optical Flows with Different α. The segmentation mask is
generated by SAM (Kirillov et al., 2023) with landmark prompt input.

In our study, we don’t have the segmentation masks of catheters, but to better illustrate
the α issure, we conduct the ablation study of visualization of optical flows with different
α and corresponding catheter segmentation generated by SAM (Kirillov et al., 2023). As
it shown in Fig 12, the optical flow maps selected by α ≥ 0.5 show similarities with the
segmentation maps (Dice ≥ 0.5).

Appendix F. Details about Dataset Constructions

Two clinical-challenging (CCA) subsets are manually selected from entire test set by clinical
experts, like ConTrack (Demoustier et al., 2023), they split their private test dataset into
several types according to different scenarios. In our study, the Test-DSA Subset encom-
passes specific clinical scenarios: X-rays under angiography, where the injection of contrast
agents leads to non-uniformed dark shadows moving with the bloodstream in the X-rays,
potentially affecting the field of vision. The Test-OBS Subset includes situations in X-rays
where catheters obscure each other or are obscured by external wires, patches, etc.. Both
of the two subsets present augmented complexity for the detection of catheter electrodes.

Appendix G. Details about RAFT Fine-tuning

When tackling the issue of video landmark detection, to better observe video quality, we
store the optical flow maps in RGB video format, following the conversion process provided
by RAFT (Teed and Deng, 2020). During our analysis, we observe that the optical flow
map, especially its saturation channel, provides shape information of catheter electrode to
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some extent. This saturation map was derived by converting the optical flow images in RGB
into the HSV format. Our analysis further reveals that sufficient shape information from
optical flow images was accessible when α is greater than 0.5. However, an excessively high
α value led to a drastic reduction in the amount of data available for finetuning(α=0.5 6212
frames, α=0.75 315 frames), while too low an α would introduce noisy data. Therefore, we
establish the flying catheter dataset with 0.5 as the threshold value and perform finetuning
based on RAFT sintel model because the RAFT sintel model reveals a higher mean SF
compared with other three raft models.
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