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Abstract

Text-to-image (T2I) diffusion models (DMs) have shown promise in generating high-quality
images from textual descriptions. The real-world applications of these models require
particular attention to their safety and fidelity, which yet has not been sufficiently explored.
One fundamental question is whether the existing T2I DMs are robust against variations
over input texts. To answer it, this work provides the first robustness evaluation of T2I
DMs against real-world perturbations. Unlike malicious attacks that involve apocryphal
alterations to the input texts, we consider a perturbation space spanned by realistic errors
(e.g., typo, glyph, phonetic) that humans can make and develop adversarial attacks to
generate worst-case perturbations for robustness evaluation. Given the inherent randomness
of the generation process, we design four novel distribution-based objectives to mislead T2I
DMs. We optimize the objectives in a black-box manner without any knowledge of the model.
Extensive experiments demonstrate the effectiveness of our method for attacking popular
T2I DMs and simultaneously reveal their non-trivial robustness issues. Moreover, we also
offer an in-depth analysis to show our method is not specialized for solely attacking the text
encoder in T2I DMs.

1 Introduction

Diffusion models (DMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020) have demonstrated remarkable success
in generating images and shown promise in diverse applications, including super-resolution (Saharia et al.,
2022b), image inpainting (Lugmayr et al., 2022), text-to-image synthesis (Rombach et al., 2022; Ramesh
et al., 2022), video generation (Ho et al., 2022a;b), etc. A typical DM employs a forward process that
gradually diffuses the data distribution towards a noise distribution and a reverse process that recovers the
data through step-by-step denoising. Among the applications, text-to-image (T2I) generation has received
significant attention and witnessed the development of large models such as GLIDE (Nichol et al., 2022),
Imagen (Saharia et al., 2022a), DALL-E 2 (Ramesh et al., 2022), Stable Diffusion (Rombach et al., 2022),
VQ-Diffusion (Gu et al., 2022), etc. These models typically proceed by conditioning the reverse process
on the embeddings of textual descriptions obtained from certain text encoders. Their ability to generate
high-quality images from textual descriptions can significantly simplify the creation of game scenarios, book
illustrations, organization logos, and more.

The robustness of T2I DMs against perturbations to the input text plays a vital role in ensuring their
reliability in practical use. Initial studies investigating this have shown that T2I DMs can be vulnerable to
adversarial attacks (Du et al., 2023; Yang et al., 2023; Zhang et al., 2024)—by applying subtle perturbations
to the input text, the generated image deviates significantly from the intended target. However, these works
primarily focus on malicious attacks, e.g., creating meaningless or distorted custom words (Millière, 2022) or
phrases (Maus et al., 2023), adding irrelevant distractions (Zhuang et al., 2023), etc., which often introduce
substantial changes to the text and may rarely occur in real-world scenarios. We shift our attention from
intentional attacks to everyday errors such as typos, grammar mistakes, or vague expressions, as suggested by
related work in natural language processing (Li et al., 2018; Eger & Benz, 2020; Eger et al., 2019a; Le et al.,
2022), to thoroughly evaluate the robustness of models that interact with humans in practical use. It is of
particular importance to evaluate and understand the robustness of T2I DMs since a more robust model
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Original Typo Glyph Phonetic

A giant icae cream sculpture 
towering over a miniature town.

A giant ice cream sculpture 
towering over a miniature town.

A giant icе cream sculpture 
towering over a miniature town.

A giant ice creeam sculpture 
towering over a miniature town.

Figure 1: An illustration of our attack method against Stable Diffusion (Rombach et al., 2022) based on three
attack rules (detailed in Section 3.3.1). Adversarially modified content is highlighted in red. Note that the
red ‘e’ (U+0435) in Glyph is different from ‘e’ (U+0065) in the original sentence.

can enhance user efficiency by avoiding the need to go back and check mistakes in the prompts and make
corrections after generating erroneous images.

This work provides the first evaluation of the robustness of T2I DMs against real-world perturbations. As
discussed, we consider an attack space spanned by realistic errors that humans can make to ensure semantic
consistency, including typos, glyphs, and phonetics. To tackle the inherent uncertainty in the generation
process of DMs, we develop novel distribution-based attack objectives to mislead T2I DMs. We perform
attacks in a black-box manner using greedy search to avoid assumptions about the model. Technically,
our attack algorithm first identifies the keywords based on the words’ marginal influence on the generation
distribution and then applies elaborate character-level replacements. Our algorithm can be used by the model
developers to evaluate the robustness of their T2I DMs before being deployed in the wild.

We perform extensive empirical evaluations on datasets of artificial prompts and image captions. We first
conduct a set of diagnostic experiments to prioritize the different variants originated from the distribution-
oriented attack objectives, which also reflects the vulnerability of existing T2I DMs. We then provide an
interesting discussion on the target of attacking DMs: the text encoder only vs. the whole diffusion process.
Finally, we attack T2I DMs (SD v2.1 and SDXL) in real-world settings and observe high success rates, even
in the case that the perturbation rates and query times are low. Additionally, we also give a qualitative case
study on a closed-source model, DALL-E 2.

2 Related Work

Diffusion models (DMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020) are a powelful family
of generative models that attract great attention recently. In the diffusion process, the data distribution
is diffused to an isotropic Gaussian by continually adding Gaussian noises. The reverse process recovers
the original input from a Gaussian noise by denoising. DMs have been widely applied to T2I generation.
GLIDE (Nichol et al., 2022) first achieves this by integrating the text feature into transformer blocks in the
denoising process. Subsequently, increasing effort is devoted to this field to improve the performance of T2I
generation, with DALL-E (Ramesh et al., 2021), Cogview (Ding et al., 2021), Make-A-Scene (Gafni et al.,
2022), Stable Diffusion (Rombach et al., 2022), and Imagen (Saharia et al., 2022a) as popular examples. A
prevalent strategy nowadays is to perform denoising in the feature space while introducing the text condition
by cross-attention mechanisms (Tang et al., 2022). However, textual conditions cannot provide the synthesis
results with more structural guidance. To remediate this, there are also many other kinds of DMs conditioning
on factors beyond text descriptions, such as PITI (Wang et al., 2022a), ControlNet (Zhang & Agrawala,
2023) and Sketch-Guided models (Voynov et al., 2022).

Adversarial attacks typically deceive DNNs by integrating carefully-crafted tiny perturbations into input
data (Szegedy et al., 2014; Zhang et al., 2020). Based on how an adversary interacts with the victim model,
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Figure 2: An illustration of our attack pipeline for evaluating the robustness of T2I DMs.

adversarial attacks can be categorized into white-box attacks (Zhang et al., 2022a; Meng & Wattenhofer, 2020;
Xu et al., 2022) (with full access to the victim model) and black-box attacks (Zhang et al., 2022b; He et al.,
2021) (with limited access to the victim model). Adversarial attacks on text can also be categorized in terms
of the level of granularity of the perturbations. Character-level attacks (Eger et al., 2019b; Formento et al.,
2023) modify individual characters in words to force the tokenizer to process multiple unrelated embeddings
instead of the original, resulting in decreased performance. Word-level attacks (Li et al., 2021; Lee et al.,
2022) employ a search algorithm to locate useful perturbing embeddings or operations that are clustered close
to the candidate attack word’s embedding given a similarity constraint (e.g., the Universal Sentence Encoder
(Cer et al., 2018)). Sentence-level attacks (Wang et al., 2020; Han et al., 2020) refer to making changes
to sentence structures in order to prevent the model from correctly predicting the outcome. Multi-level
attacks (Gupta et al., 2021; Wallace et al., 2019) combine multiple types of perturbations, making the attack
cumulative. Recent studies (Millière, 2022; Maus et al., 2023; Zhuang et al., 2023; Yang et al., 2023; Zhang
et al., 2024; Wang et al., 2023) have explored the over-sensitivity of T2I DMs to prompt perturbations in
the text domain with malicious word synthesis, phrase synthesis, visual substitution and adding distraction.
(Zhuang et al., 2023) also reveal the vulnerability of T2I models and attributes it to the weak robustness of
the used text encoders.

3 Methodology

This section provides a detailed description of our approach to real-world adversarial attacks of T2I DMs. We
briefly outline the problem formulation before delving into the design of attack objective functions and then
describe how to perform optimization in a black-box manner. Figure 2 displays the overview of our method.

3.1 Problem Formulation

A T2I DM that accepts a text input c and generates an image x essentially characterizes the conditional
distribution pθ(x|c) with θ as model parameters. To evaluate the robustness of modern DMs so as to govern
their behaviors when adopted in the wild, we opt to attack the input text, i.e., finding a text c′ which keeps
close to the original text c but can lead to a significantly biased generated distribution. Such an attack
is meaningful in the sense of encompassing real-world perturbations such as typos, glyphs, and phonetics.
Concretely, the optimization problem is formulated as:

max
c′

D(pθ(x|c′)∥pθ(x|c)), s.t. d(c, c′) ≤ ϵ, (1)

where D denotes a divergence measure between two distributions, d(c, c′) measures the distance between two
texts, and ϵ indicates the perturbation budget.

The main challenge of attack lies in that we cannot write down the exact formulation of pθ(x|c) and pθ(x|c′)
of DMs but get only a few i.i.d. samples {x̄1, . . . , x̄N } and {x1, . . . , xN } from them, where x̄i is an image
generated with the original text c while xi is generated with the modified text c′.
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3.2 Attack Objectives

In this section, we develop four instantiations of the distribution-based attack objective, as defined in Eq. (1).

3.2.1 MMD Distance

As validated by the community (Dziugaite et al., 2015; Tolstikhin et al., 2016), the maximum mean discrepancy
(MMD) is a widely used metric to distinguish two distributions given finite samples. Formally, assuming
access to a kernel function κ, the square of MMD distance is typically defined as:

DMMD2(pθ(x|c′)∥pθ(x|c)) ≈ 1
N2

N∑
i=1

N∑
j=1

κ(xi, xj) − 2
N2

N∑
i=1

N∑
j=1

κ(xi, x̄j) + C, (2)

where C refers to a constant agnostic to c′. The feature maps associated with the kernel should be able to
help construct useful statistics of the sample set such that MMD can compare distributions. In the case that
x is an image, a valid choice is a deep kernel built upon a pre-trained NN-based image encoder h (e.g., a ViT
trained by the objective of MAE (He et al., 2022) or CLIP (Radford et al., 2021)). In practice, we specify the
kernel with a simple cosine form κ(x, x′) := h(x)⊤h(x′)/∥h(x)∥∥h(x′)∥ given that h’s outputs usually locate in
a well-suited Euclidean space.

3.2.2 KL Divergence

Considering that text also provides crucial information in the attack process, we will incorporate text
information to consider the joint distribution of images and texts. Due to the excellent ability of CLIP to
represent both image and text information while preserving their relationships, we have chosen to use CLIP
as the model for encoding images and texts. Assume access to a pre-trained ϕ-parameterized CLIP model
comprised of an image encoder hϕ and a text encoder gϕ and assume the output features to be L2-normalized.
It can provide a third-party characterization of the joint distribution between the image x and the text c
for guiding attack. Note that hϕ(x)⊤gϕ(c) measures the likelihood of the coexistence of image x and text
c, thus from a probabilistic viewpoint, we can think of eϕ(x, c) := αhϕ(x)⊤gϕ(c), where α is some constant
scaling factor, as log pϕ(x, c). Under the mild assumption that pϕ(x|c) approximates pθ(x|c), we instantiate
the measure D in Eq. (1) with KL divergence and derive the following maximization objective (details are
deferred to Appendix A.1):

DKL(pθ(x|c′)∥pθ(x|c)) ≈ Epθ(x|c′)[−eϕ(x, c)] + Epθ(x|c′)[log pθ(x|c′)] + C, (3)

where C denotes a constant agnostic to c′. The first term corresponds to generating images containing
semantics contradictory to text c and can be easily computed by Monte Carlo (MC) estimation. The second
term is negative entropy, so the maximization of it means reducing generation diversity. Whereas, in practice,
the entropy of distribution over high-dimensional images cannot be trivially estimated given a few samples. To
address this issue, we replace Epθ(x|c′)[log pθ(x|c′)] with a lower bound Epθ(x|c′)[log q(x)] for any probability
distribution q, due to that DKL(pθ(x|c′)∥q(x)) = Epθ(x|c′)[log pθ(x|c′) − log q(x)] ≥ 0. In practice, we can only
acquire distributions associated with the CLIP model, so we primarily explore the following two strategies.

• Strategy 1 (KL-1). log q(x) := log pϕ(x, c′) = eϕ(x, c′). Combining with Eq. (3), there is (C is
omitted):

DKL(pθ(x|c′)∥pϕ(x|c)) ≥ Epθ(x|c′)[eϕ(x, c′) − eϕ(x, c)]

≈ α
[ 1

N

N∑
i=1

hϕ(xi)
]⊤(

gϕ(c′) − gϕ(c)
)

.
(4)

The adversarial text c′ would affect both the generated images xi and the text embeddings gϕ(c′).
Therefore, it is likely that by maximizing the resulting term in Eq. (4) w.r.t. c′, the text encoder of
the CLIP model is attacked (i.e., gϕ(c′) − gϕ(c) is pushed to align with the average image embedding),
which deviates from our goal of delivering a biased generation distribution.
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• Strategy 2 (KL-2). log q(x) := log pϕ(x) = Lĉ∈C(eϕ(x, ĉ)) − log |C| where L is the log-sum-exp
operator and C denotes the set of all possible text inputs. Likewise, there is (we omit constants):

DKL(pθ(x|c′)∥pϕ(x|c)) ≥ Epθ(x|c′)[Lĉ∈C(eϕ(x, ĉ)) − eϕ(x, c)]

≈ 1
N

N∑
i=1

[
Lĉ∈C(eϕ(xi, ĉ)) − eϕ(xi, c)

]
.

(5)

As shown, the first term pushes the generated images toward the high-energy regions, and the second
term hinders the generated images from containing semantics about c. To reduce the computational
overhead, we draw a set of commonly used texts and pre-compute their text embeddings via CLIP
before attacking. Then, during attacking, we only need to send the embeddings of generated images
to a linear transformation followed by an L operator to get an estimation of the first term of Eq. (5).

3.2.3 Two-sample Test

In essence, distinguishing pθ(x|c′) and pθ(x|c) by finite observations corresponds to a two-sample test (2ST)
in statistics, and the aforementioned MMD distance is a test statistic that gains particular attention in the
machine learning community. Based on this point, we are then interested in building a general framework
that can embrace existing off-the-shelf two-sample test tools for attacking T2I DMs. This can considerably
enrich the modeling space. Basically, we define a unified test statistic in the following formula:

t̂
(

{φ(xi)}N
i=1, {φ(x̄i)}N

i=1

)
. (6)

Roughly speaking, we will reject the null hypothesis pθ(x|c′) = pθ(x|c) when the statistic is large to a certain
extent. The function t̂ in the above equation is customized by off-the-shelf two-sample test tools such as KS
test, t-test, etc. Considering the behavior of these tools may quickly deteriorate as the dimension increases
(Gretton et al., 2012), we introduce a projector φ to produce one-dimensional representations of images x. As
a result, φ implicitly determines the direction of our attack. For example, if we define φ as a measurement of
image quality in terms of FID (Heusel et al., 2017), then by maximizing Eq. (6), we will discover c′ that leads
to generations of low quality. Recalling that our original goal is a distribution of high-quality images deviated
from pθ(x|c), we hence want to set φ(·) := log pθ(·|c), which, yet, is inaccessible. Reusing the assumption
that the conditional distribution captured by a CLIP model can form a reasonable approximation to pθ(x|c),
we set φ(·) to the aforementioned energy score eϕ(·, c), which leads to the following test statistic:

D2ST(pθ(x|c′)∥pθ(x|c)) := t̂
(

{eϕ(xi, c)}N
i=1, {eϕ(x̄i, c)}N

i=1

)
. (7)

We empirically found that the t-test tool can yield a higher attack success rate compared to other two-sample
test tools, hence we use the t-test tool as the default option in the following.

3.3 Attack Method

Based on the attack objectives specified above, here we establish a real-world-oriented word search space and
implement a greedy search strategy to find adversarial input text for T2I DMs.

3.3.1 Perturbation Rules

Following related works in natural language processing (Eger & Benz, 2020; Eger et al., 2019a; Le et al.,
2022; Chen et al., 2022; 2023), we include the following three kinds of perturbations into the search space of
our attack algorithm: (1) Typo (Li et al., 2018; Eger & Benz, 2020), which comprises seven fundamental
operations for introducing typos into the text, including randomly deleting, inserting, replacing, swapping,
adding space, transforming case, and repeating a single character; (2) Glyph (Li et al., 2018; Eger et al.,
2019a), which involves replacing characters with visually similar ones; (3) Phonetic (Le et al., 2022), which
involves replacing characters in a way that makes the whole word sound similar to the original one. We
present examples of these three perturbation rules in Table 1.
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Table 1: Examples of our perturbation rules.

Rule Ori. Sentence Adv. Sentence
Typo A red ball on green grass under a blue sky. A rde ball on green grass under a blue skky.
Glyph A red ball on green grass under a blue sky. A rêd ball 0n green grass under a blue sky.

Phonetic A red ball on green grass under a blue sky. A read ball on green grass under a blue SKY.

3.3.2 Greedy Search

Given the efficiency and effectiveness of greedy algorithms in previous black-box text attack problems (Feng
et al., 2018; Pruthi et al., 2019), we also employ greedy algorithm here and organize it as the following steps.

Step 1: word importance ranking. Given a sentence of n words c = {w1, w2, ..., wn}, it is usually the case
that only some keywords act as the influential factors for controlling DMs. Therefore, we aim to first identify
such words and then perform attack. The identification of word importance is trivial in a white-box scenario,
e.g., by inspecting model gradients (Behjati et al., 2019), but is challenging in the considered black-box setting.
To address this, we directly measure the marginal influence of the word wi on the generation distribution via
Iwi := D(pθ(x|c\wi)∥pθ(x|c)) where c\wi = {w1, ..., wi−1, wi+1, ...wn} denotes the sentence without the word
wi and D refers to the divergence measure defined earlier. With this, we can compute the influence score Iwi

for each word wi in the sentence c, and then obtain a ranking over the words according to their importance.

Step2: word perturbation. We then attempt to perturb the detected important words to find the
adversarial example c′. Concretely, for the most important word wi ∈ c, we randomly select one character in
it and then randomly apply one of the meta-operations in the perturbation rule of concern, e.g., character
swapping and deleting, to obtain a perturbed word as well as a perturbed sentence. Repeating this five
times results in 5 perturbed sentences {c′

1, c′
2, ...c′

5}. We select the sentence leading to the highest generation
divergence from the original sentence, i.e., D(pθ(x|c′

i)∥pθ(x|c)), ∀i ∈ {1, . . . , 5} as the eventual adversarial
sentence c′. If the attack has not reached the termination condition, the next word in the importance ranking
will be selected for perturbation.

4 Diagnostic Experiments

In this section, we provide diagnostic experiments consisting of two aspects: (1) assessing the four proposed
attack objectives under varying perturbation rates; (2) analyzing which part of the DM is significantly
misled. These analyses not only validate the efficacy of our method, but also deepen our understanding of
the robustness of T2I DMs, and provide insightful perspectives for future works.

Datasets. We consider two types of textual data for prompting the generation of T2I DMs: (1) 50 ChatGPT
generated (ChatGPT-GP) prompts by querying: “generate 50 basic prompts used for image synthesis.”
and (2) 50 image captions from SBU Corpus (Ordonez et al., 2011). Such a dataset facilitates a thorough
investigation of the efficacy and applicability of our method in practical image-text generation tasks.

Victim Models. We choose Stable Diffusion (SD) v2.1 (Rombach et al., 2022) as the victim model due to
its widespread usage, availability as an open-source model, and strong generation capability. Stable Diffusion
utilizes a denoising mechanism that operates in the latent space of images and incorporates cross-attention
to leverage guidance information. Text inputs are first processed by CLIP’s text encoder to generate text
embeddings, which are subsequently fed into the cross-attention layers to aid in image generation.

Evaluation Metrics. We use the CLIP Score (Hessel et al., 2021), esentially the aforementioned hϕ(x)⊤gϕ(c),
to measure the semantic similarity between the original text c and the generated images {x1, . . . , xN } based
on the adversarial text c′. Specifically, we define the metric SI2T = 1

N

∑N
i=1 max(0, 100 · gϕ(c)⊤hϕ(x′)) over

the generated images, and we hypothesize that a higher SI2T indicates a less adversarial text c′. Typically,
N is set to 15 to balance efficiency and fidelity. We can also calculate the similarity between the original text
c and the adversarial text c′ with ST 2T = max(0, 100 · gϕ(c)⊤gϕ(c′)). Though these two metrics use the same
notations as our attack objectives, we actually use various pre-trained CLIPs to instantiate them to avoid
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(b) Glyph(ChatGPT-GP)

0 10 20 30 40 50 60 70 80 90 100
Perturbation Rate(%)

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

Av
e.

 S
I2

T

Random
MMD
KL-1
KL-2
2ST

(c) Phonetic(ChatGPT-GP)
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(d) Typo(SBU Corpus)
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(f) Phonetic(SBU Corpus)

Figure 3: CLIP Score at different perturbation rates on ChatGPT-GP and SBU Corpus. The perturbation
rate is the ratio between the number of perturbed words and the total words in a sentence

over-fitting—employing the CLIP with VIT-L-patch14 backbone for attacking while using VIT-L-patch14-336
backbone for evaluation.

4.1 Attack with Different Objectives

We first conduct a diagnostic experiment on the effects of the four proposed attack objectives under various
perturbation rules. We define the perturbation rate as the ratio between the number of perturbed words and
the total words in a sentence, and vary it from 0% to 100% with an interval of 10%. We calculate the average
values of SI2T and ST 2T on ChatGPT-GP and SBU Corpus, which are reported in Figure 3. Note that we
also include a random baseline in comparison.

On ChatGPT-GP, all methods exhibit a declining trend in SI2T as the perturbation rate increases. Considering
high perturbation rates rarely exist in practice, we primarily focus on situations where the perturbation
rate is less than 50%. Within this range, the curves corresponding to MMD, KL-2, and 2ST display a rapid
decrease across all three perturbation rules, more than 2× faster than random and KL-1 when using typo and
glyph rules. It is also noteworthy that MMD and 2ST perform similarly and yield the best overall results.

On SBU Corpus, it is evident that 2ST is more effective than MMD. Additionally, even with a perturbation
rate of 100%, the random method fails to achieve a similar SI2T score compared to other methods. This
observation suggests the effectiveness of our attack algorithm. Additionally, glyph-based perturbations lead to
the most rapid decrease in performance, followed by typo perturbations, and phonetic perturbations lead to
the slowest drop. This disparity may be attributed to glyph perturbations completely disrupting the original
word embedding.

4.2 Which Part of the DM is Significantly Misled?

Previous studies suggest that attacking only the CLIP encoder is sufficient for misleading diffusion models
(Zhuang et al., 2023). However, our method is designed to attack the entire generation process instead of the
CLIP encoder. For empirical evaluation, we conduct a set of experiments in this section.

We include two additional attack methods: attacking only the CLIP encoder and attacking only the
diffusion process. Regarding this first one, we focus solely on maximizing the dissimilarity between the
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Figure 4: Corelation between SI2T and ST 2T on ChatGPT-GP and SBU Corpus. The numbers in the
upper-left corner represent the slopes of the plotted lines.

original text and the adversarial one. To achieve this, we employ ST 2T as the optimization objective, i.e.,
DCLIP = ST 2T = max(0, 100 · gϕ(c)⊤gϕ(c′)). As for the second one, we modify Eq. (4) and devise a new attack
objective as follows (α and β denote two trade-off coefficients):

DDP ≈
[
αgϕ(c′) − β

1
N

N∑
i=1

hϕ(xi)
]⊤

gϕ(c). (8)

While maximizing the distance between the original text and the adversarial images, we also aim to ensure
that the representations of the adversarial text and the original text are as similar as possible. This confines
that even though the entire DM is under attack, the CLIP encoder remains safe. More details of this equation
can be found in Appendix A.2.

Given the poor performance of the random and KL-1 methods, we exclude them from this study. Considering
that high perturbation rates are almost impossible in the real world, we experiment with perturbation rates
only from 0% to 80%. We compute the average SI2T and ST 2T across all texts at every perturbation rate,
and plot their correlations in Figure 4.

As shown, exclusively targeting the CLIP encoder during the attack process yields the minimum slope of the
regression line, while solely attacking the diffusion process leads to the maxmum slope. For instance, in the
typo attack on ChatGPT-GP, the attack method solely attacking the CLIP encoder exhibits the lowest slope
of 0.21, whereas the attack method exclusively targeting the diffusion process shows the highest slope of 0.46.
Attack methods that simultaneously target both processes display slopes between these extremes. These
clearly support that our attack objectives simultaneously attack the CLIP encoder and the diffusion process.
Furthermore, through the slope information, we can conclude that directly attacking the diffusion process
yields a more significant decrease in image-text similarity at a given textual semantic divergence. Across all
datasets and perturbation spaces, the slope disparity between direct attacks on the diffusion process and
direct attacks on the CLIP encoder is mostly above 0.1, and the maximum slope disparity reaches even 0.15.
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Figure 5: CLIP Score at different perturbation rates on ChatGPT-GP and SBU Corpus with typo rule.

4.3 Compare with Non-distribution Attack Objective

We conduct a comparison experiment between our distribution-based optimization objective 2ST and a
non-distribution method that minimizes the SI2T of the prompt and a single definite image (DI). We randomly
sampled 20 texts from ChatGPT-GP and SBU Corpus separately, then applied the typo rule to perturb
sampled texts with different perturbation rates. The results, depicted in Figure 5, clearly demonstrate the
superior effectiveness of our distribution-based approach.

5 Real-world Attack Experiment

Based on the preceding analysis, we identify that 2ST and MMD are two good attack objectives for T2I
DMs. In this section, we will carry out attacks in real-world scenarios, where termination conditions are
incorporated to balance the perturbation level and effectiveness.

Datasets. To provide a more comprehensive evaluation of our attack method in realistic scenarios, we
incorporate two additional datasets. The first one, DiffusionDB (Wang et al., 2022b), is a large-scale dataset
of 14 million T2I prompts. The second one, LAION-COCO (Schuhmann et al., 2021), includes captions
for 600 million images from the English subset of LAION-5B (Schuhmann et al., 2022). The captions are
generated using an ensemble of BLIP L/14 (Li et al., 2022) and two CLIP (Radford et al., 2021) variants. To
conjoin diversity and efficiency, we randomly select 100 examples from each of the aforementioned datasets.
Additionally, we also increased the size of ChatGPT-GP and SBU to 100 for this experiment.

Attack method. As said, we consider attacking based on MMD and 2ST. A threshold on the value of D is
set for termination. If it is not reached, the attack terminates at a pre-fixed number of steps.

Evaluation metric. We use four metrics to evaluate our method in real-world attack scenes. (1) Levenshtein
distance (L-distance), which measures the minimum number of single-character edits, a powerful indicator
of the number of modifications made to a text. (2) Ori.SI2T and Adv.SI2T which indicate the similarity
between the original text and original images as well as that between the original text and the adversarial
images respectively. The mean and variance are both reported. (3) Average query times, which represents the
number of times that DM generates images with one text, and serves as a metric for evaluating the attack
efficiency. (4) Human evaluation, where humans are employed to assess the consistency between the image
and text. Let N1 represent the number of images generated by the original text that are consistent with the
original text, and N2 represent the number of images generated by the adversarial text that are consistent
with original text. If (N2 − N1) > 1, the attack on that particular prompt text is deemed meaningless.
Let’s assume the frequency of samples where (N2 − N1) > 1 as Nu, and the frequency of successful attack,
(N1 − N2 > 1), as Nc. The score (Hum.Eval) for all three evaluators is given by:

SHum.Eval = 1
3

3∑
i=1

(
N

(i)
c

Ntotal − N
(i)
u

)
= 1

3

3∑
i=1

 ∑Ntotal
i=1 1

(
N

(i)
1 − N

(i)
2 > 1

)
Ntotal −

∑Ntotal
i=1 1

(
N

(i)
2 − N

(i)
1 > 1

)

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Table 2: Real-world attack with the 2ST attack objective.

Dataset Attacker Ori. SI2T Ave. Len. L-distance Adv. SI2T Ave. Query Hum. Eval.
Typo 2.92 23.21±3.08 19.43 84.34%

ChatGPT-GP Glyph 27.61±2.07 10.41 2.27 23.09±2.75 18.63 84.65%
Phonetic 5.38 22.67±3.58 17.78 86.16%

Typo 2.29 22.70±3.31 17.25 76.64%
DiffusionDB Glyph 29.17±3.36 10.62 1.81 22.71±3.22 16.30 76.64%

Phonetic 5.04 22.91±3.34 16.27 75.51%
Typo 2.08 21.73±3.62 14.77 80.21%

LAION-COCO Glyph 27.54±2.86 9.17 1.85 21.32±3.69 15.11 81.89%
Phonetic 5.04 21.76±3.87 16.15 79.32%

Typo 2.97 19.65±3.53 21.19 84.34%
SBU Corpus Glyph 24.99±3.43 11.69 2.42 19.01±3.76 20.54 85.41%

Phonetic 5.85 18.86±3.91 19.92 85.41%

Table 3: Real-world attack with MMD distance attack objective.

Dataset Attacker Ori. SI2T Ave. Len. L-distance Adv. SI2T Ave. Query Hum. Eval.
Typo 1.77 24.54±2.69 14.17 84.21%

ChatGPT-GP Glyph 27.61±2.07 10.41 1.15 24.88±2.67 13.08 84.36%
Phonetic 3.81 26.08±2.21 14.58 80.02%

Typo 1.75 24.94±3.82 13.72 72.77%
DiffusionDB Glyph 29.17±3.36 10.62 1.29 24.81±3.90 13.41 73.53%

Phonetic 4.27 26.71±3.24 15.13 70.09%
Typo 1.75 23.04±4.10 13.33 80.21%

LAION-COCO Glyph 27.54±2.86 9.17 1.35 23.72±3.91 12.35 82.04%
Phonetic 3.62 25.06±3.09 13.21 77.37%

Typo 1.91 21.37±3.92 16.36 82.05%
SBU Corpus Glyph 24.99±3.43 11.69 1.37 21.44±3.66 15.01 82.33%

Phonetic 3.72 23.15±3.25 16.20 79.67%

We first conduct the real-world attack experiment on SD v2.1. Table 2 and Table 3 present the results of
real-attack experiments using various perturbation rules on different datasets, with 2ST and MMD distance
as the attack objectives, respectively. Since the termination criteria for the two optimization algorithms
differ, we cannot compare them directly. Considering that our method involves querying each word of the
sentence (described in Section 3.3.2), the query times minus the sentence length, which we named true query
times, can better demonstrate the true efficiency of our approach. From this perspective, our method requires
less than 10 true query times to achieve more than 4 SI2T score drop across most datasets with more than
75% human evaluation score. Simultaneously, we observe that our modifications are relatively minor. In
the typo and glyph attacker, we require an L-distance of less than 3, while in the phonetic attacker, the
threshold remains below 6. Furthermore, ChatGPT-GP and LAION-COCO are more susceptible to our
attack, possibly attributed to their clearer and more flow sentence descriptions. In conclusion, with minimal
modifications and a limited number of queries to the model, we achieve a significant decrease in text-image
similarity, substantiated by human evaluations.

To further explore how model robustness relates to model size, we also conduct real-world attack experiment
with 2ST objective on SDXL (Podell et al., 2023), a 2.6B SD model. Table 7 in Appendix B.2 demonstrates
that SDXL exhibits superior robustness compared to SD v2.1. Additionally, Figure 9 in Appendix B.2 shows
several adversarial cases where SDXL remains unaffected while SD v2.1 is attacked successfully.

DALL-E 2 (Ramesh et al., 2022) is also a powerful image generation model that can create realistic and
diverse images from textual descriptions. We then conduct a case study with the same attack method used in
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Original Typo Glyph Phonetic

A Cait dressed as french emp-
eror napoleon holding a piece 
of cheese.

A cat dressed as french emp- 
eror napoleon holding a piece 
of cheese.

A cɑt dressed as french emp-
eror napoleon holding a piece 
of cheese.

A ca t dressed as french emp-
eror napoleon holding a piece 
of cheese.

Figure 6: An illustration of adversarial attack against DALL-E 2 with MMD attack objective.

Original Typo Glyph Phonetic

Painda mad scientist mixing 
sparkling chemicals, artstation.

Panda mad scientist mixing 
sparkling chemicals, artstation.

Ṕanda mad scientist mixing 
sparkling chemicals,artstation.

Pan da mad scientist mixing 
sparkling chemicals, artstation.

Figure 7: An illustration of adversarial attack against DALL-E 2 with 2ST attack objective.

Stable Diffusion. The results respectively obtained with the attack objective MMD and 2ST are presented in
Figure 6 and Figure 7. More cases can be found in Appendix B.1.

Table 4: Real-world attack with the DI attack objective.

Dataset Attacker Ori. SI2T Ave. Len. L-distance Adv. SI2T Ave. Query Hum. Eval.
Typo 2.65 24.61±3.32 16.97 79.36%

ChatGPT-GP Glyph 27.61±2.07 10.41 2.09 24.94±3.01 16.86 77.45%
Phonetic 5.13 26.67±3.74 15.71 78.68%

To further quantify the superiority of distribution-based attack methods over single-image-based attack
methods, we also conduct a real-world attack with the DI attack objective on the ChatGPT-GP
dataset, employing the same settings as the other objectives detailed in Section 5. Table 4 illustrates that the
Adv.SI2T and human evaluation scores associated with this objective are relatively low. This observation
suggests that the attack with the DI objective may be susceptible to overfitting on a single image.

To prove that human evaluation won’t be affected by the adversarial noise of text. We experiment to evaluate
the difference between the image content and the actual meaning of the adversarial text. We let N1 represent
the number of images generated by the original text that are consistent with the original text as original,
while N2 represents the number of images generated by the adversarial text that are consistent with the
adversarial text. The new overall human evaluation score is calculated in the same way as before. Table 5
shows the new overall human evaluation on the same adversarial dataset generated under real-world attack
with the 2ST attack objective in section 5. We found that although the new overall human evaluation score
will decrease to some extent compared to the old score, the change is not significant, indicating that human
evaluations are not affected by the adversarial text.
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Table 5: Real-world attack with the 2ST attack objective.

Dataset Attacker Ori. SI2T Ave. Len. L-distance Old Hum. Eval. New Hum. Eval.
Typo 2.92 84.34% 82.19%

ChatGPT-GP Glyph 27.61±2.07 10.41 2.27 84.65% 83.42%
Phonetic 5.38 86.16% 82.06%

Typo 2.29 76.64% 74.34%
DiffusionDB Glyph 29.17±3.36 10.62 1.81 76.64% 75.26%

Phonetic 5.04 75.51% 73.61%
Typo 2.08 80.21% 78.28%

LAION-COCO Glyph 27.54±2.86 9.17 1.85 81.89% 80.94%
Phonetic 5.04 79.32% 77.02%

Typo 2.97 84.34% 82.13%
SBU Corpus Glyph 24.99±3.43 11.69 2.42 85.41% 85.57%

Phonetic 5.85 85.41% 81.95%

Table 6: SRR of auto-correctors to 3 perturbation rules.

Typo Corrector Perturbation Rule SRR
Typo 68%

LanguageTool Glyph 39%
Phonetic 21%

Typo 81%
Online Correction Glyph 42%

Phonetic 25%

Furthermore, we carry out experiments on the defense sides. We used two widely used correctors,
LanguageTool1 and Online Correction2 as the defense method. Then we selected 100 successfully attacked
text samples for each perturbation rule based on the 2ST attack objective from the ChatGPT-GP dataset.
Finally, we evaluated the samples modified by these typo-correctors to determine whether they were successfully
repaired. Note that if the corrector provided more than one recommended correct word, we utilized the first
recommended word. Table 6 presents the comparison of the Successful Repair Rate (SRR). It is shown that
auto-typo correctors can partially correct human mistakes from typo perturbations in our work. However,
correcting a little fiercely perturbed sentence caused by glyphs and phonetics proves challenging. Hence,
our method can remain effective against auto-typo correctors. It is also worth noting that these correctors
often struggle to automatically rectify words in a manner that aligns with the user’s intent when human
intervention is not involved in the word selection process from the correction word list.

Finally, we engage in a discussion concerning human attack without algorithmic interventions and word-
level attacks in Appendix C, to separately provide evidence for the effectiveness of our attack algorithm
and highlight the impracticality of directly transferring text adversarial attack methods to DMs.

6 Conclusion

In this work, we present a comprehensive evaluation of the robustness of DMs against real-world attacks.
Unlike previous studies that focused on malicious alterations to input texts, we explore an attack method
based on realistic errors that humans can make to ensure semantic consistency. Our novel distribution-based
attack method can effectively mislead DMs in a black-box setting without any knowledge of the original
generative model. Importantly, we show that our method does not solely target the text encoder in DMs,
it can also attack the diffusion process. Even with extremely low perturbation rates and query times, our
method can still achieve a high attack success rate.

1https://languagetool.org/.
2https://www.onlinecorrection.com/.
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A Proof of Equations

A.1 Proof of Eq. (3)

DKL(pθ(x|c′)∥pθ(x|c)) ≈ DKL(pθ(x|c′)∥pϕ(x|c))

=Epθ(x|c′)

[
log pθ(x|c′)

pϕ(x|c)p(c) + log p(c)
]

=Epθ(x|c′)[−eϕ(x, c)] + Epθ(x|c′)[log pθ(x|c′)] + C

(9)

A.2 Proof of Eq. (8)

We demonstrate in this section why Eq. (8) represents only the attack diffusion process. For Eq. (8), we can
expand it as:

DDP ≈
[
αgϕ(c′) − β

1
N

N∑
i=1

hϕ(xi)
]⊤

gϕ(c)

= αgϕ(c′)⊤gϕ(c) − β
[ 1

N

N∑
i=1

hϕ(xi)
]⊤

gϕ(c)

(10)

where c is the original text, c′ is the modified text with xi generated from it. The first term,
αgϕ(c′)⊤gϕ(c), measures the similarity between the original text and the adversarial text. The second

term, β
[

1
N

∑N
i=1 hϕ(xi)

]⊤
gϕ(c), represents the similarity between the original text and the adversarially

generated images. Maximizing this objective constrains the original text and the adversarial text to be as
similar as possible after being encoded by the text encoder, while minimizing the similarity between the
original text and the adversarial generated images. In this way, it avoids attacking the text encoder and
solely attacks the diffusion process.

Since Eq. (8) is modified from Eq. (4), we also provide an expanded explanation for Eq. (4) as follows:

DKL(pθ(x|c′)∥pϕ(x|c)) ≈ α
[ 1

N

N∑
i=1

hϕ(xi)
]⊤(

gϕ(c′) − gϕ(c)
)

= α
[ 1

N

N∑
i=1

hϕ(xi)
]⊤

gϕ(c′) − α
[ 1

N

N∑
i=1

hϕ(xi)
]⊤

gϕ(c)

(11)

The first term, α
[

1
N

∑N
i=1 hϕ(xi)

]⊤
gϕ(c′) , measures the similarity between the adversarial text and adver-

sarially generated images. The second term, α
[

1
N

∑N
i=1 hϕ(xi)

]⊤
gϕ(c) , represents the similarity between

the original text and the adversarial generated images. Maximizing this objective constrains the encoded
adversarial text and the adversarial images to be as similar as possible, which essentially ensures the quality
of the text embedding guided image diffusion process, while minimizing the similarity between the original
text and the adversarial generated images. In this way, it avoids attacking the diffusion process and solely
attacks the text encoder, different from Eq. (8).

B Experiment Result

B.1 Case Study on DALL-E 2

As a supplement to the case study experiments on DALL-E 2 in Section 5, we present two additional cases
for each of the optimization objectives, MMD and 2ST, shown in Figure 8.
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Original Typo Glyph Phonetic

A cute hoase stands on top of a 
giant, delicious hamburger.

A cute hořse stands on top of a 
giant, delicious ham6urger

A cute hotse stands on top of a 
giant, delicious hambrger.

A cute horse stands on top of a 
giant, delicious hamburger.

(a) MMD: Case 1
Original Typo Glyph Phonetic

A small panta playing a bright 
red ball on the table.

A small paոda playing a bright 
red ball on the table.

A small padna playing a bright 
red ball on the table.

A small panda playing a bright 
red ball on the table.

(b) MMD: Case 2
Original Typo Glyph Phonetic

A cartoon illustration of a lyon 
wears a detective's hat inspect-

ing a treasure chest atop the sea.

A cartoon illustration of a 1ion 
wears a detective's hat inspect-

ing a treasure chest atop the sea.

A cartoon illustration of a li on 
wears a detective's hat inspect-

ing a treasure chest atop the sea.

A cartoon illustration of a lion 
wears a detective's hat inspect-

ing a treasure chest atop the sea.

(c) 2ST: Case 1
Original Typo Glyph Phonetic

Ber in glasses, deeply 
engrossed in a hefty tome.

Beɑr in glasses, deeply 
engrossed in a hefty tome.

Baer in glasses, deeply 
engrossed in a hefty tome.

Bear in glasses, deeply 
engrossed in a hefty tome.

(d) 2ST: Case 2

Figure 8: Illustrations of adversarial attack against DALL-E 2 with MMD or 2ST attack objective. Each of
these objectives has two cases.
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Table 7: Real-world attack with the 2ST attack objective on SDXL.

Dataset Attacker Ori. SI2T Ave. Len. L-distance Adv. SI2T Ave. Query Hum. Eval.
Typo 3.04 24.16±3.32 20.59 79.36%

ChatGPT-GP Glyph 29.23±1.95 10.41 2.47 24.19±3.01 19.84 80.25%
Phonetic 5.45 23.15±3.84 18.18 82.89%

Typo 2.33 23.67±3.59 17.82 73.44%
DiffusionDB Glyph 30.47±2.48 10.62 1.95 23.21±3.43 17.01 72.19%

Phonetic 5.18 22.99±3.54 17.17 73.18%
Typo 2.21 22.24±3.76 15.33 78.32%

LAION-COCO Glyph 29.65±2.14 9.17 1.94 22.22±3.71 16.12 79.05%
Phonetic 5.17 22.39±3.92 16.75 78.11%

Typo 3.11 21.23±3.72 22.41 81.64%
SBU Corpus Glyph 26.52±3.13 11.69 2.58 20.16±3.93 20.92 82.29%

Phonetic 5.97 19.98±4.05 20.32 83.16%

Two pand as in the forest.Two pandas in the forest.

S
D

X
L

S
D

 v
2

.1

a lovely cɑt on the ground

S
D

X
L

S
D

 v
2

.1

a lovely cat on the ground

Figure 9: Adversarial cases where SDXL remains unaffected while SD v2.1 is attacked successfully.

B.2 Real-world attack on SDXL

To further expore the relationship between model robustness and model size, we conduct real-world attack
experiment on SDXL (Podell et al., 2023) here, with the same setting of attack experiment on SD v2.1 and
2ST attack objective. As presented in Table 7, SDXL demonstrates superior robustness compared to SD v2.1.
Additionally, Figure 9 illustrates several adversarial cases where SDXL remains unaffected wheras SD v2.1 is
attacked successfully.

B.3 More cases on SD v2.1 and SDXL

As a supplement to the experiments on SD and SDXL in Section 5, we present two additional cases for each
of the models, shown in Figure 10.
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Original Typo Glyph Phonetic

a fier truck is on the road.a f1re truck is on the road.a fir e truck is on the road.a fire truck is on the road.

(a) SD v2.1: Case 1
Original Typo Glyph Phonetic

a ship driving in the univelse.a ship driving in the univеrse.a ship driving in the universe.a ship driving in the universe.

(b) SD v2.1: Case 2
Original Typo Glyph Phonetic

a doug is swimming in the ocean.a d0g is swimming in the ocean.a d og is swimming in the ocean.a dog is swimming in the ocean.

(c) SDXL: Case 1
Original Typo Glyph Phonetic

A reeed diamond on a grey table.A ⲅed diamond on a grey table.A rred diamond on a grey table.A red diamond on a grey table.

(d) SDXL: Case 2

Figure 10: More illustration cases of adversarial attack against SD v2.1 and SDXL with 2ST attack objective.
Each of these models has two cases.
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Original Typo Glyph Phonetic

A read ball on green grass 
under a blue sky.

A red ball on green grass 
under a blue sky.

A rеd ball on green grass 
under a blue sky.

A redd ball on green grass 
under a blue sky.

(a) Case with modified adjectives.

Original Typo Glyph Phonetic

A strong man is swinning fast 
and very well.

A strong man is swimming fast 
and very well.

A strong man is sw1mming fast 
and very well.

A strong man is siwmming fast 
and very well.

(b) Case with modified verbs.

Figure 11: Cases without noun modification.

Dataset Typo Glyph Phonetic
ChatGPT-GP 58.41 55.95 53.5
DiffusionDB 52.12 48.83 48.98

LAION-COCO 44.06 45.25 48.56
SBU Corpus 63.51 61.74 59.68

Table 8: Average attack time (second) per sentence for the experiments in Table 2.

B.4 Lexical Properties of the Modified Word
The modified words of adversarial text can be nouns, adjectives and verbs. In descriptive text about objects,
there is a greater occurrence of modified words in nouns. It is important to note that our approach aims to
identify words that are most important for the model, rather than those deemed most important by humans.
Therefore, in theory, it is not limited to a specific part of speech. Figure 11 shows some cases without noun
modification.

B.5 Time Efficiency Analysis

To better illustrate the time efficiency of our method, we calculated the average attack time per sentence for
the experiments in Table 2. Table 8 shows the time cost on NVIDIA Tesla A100 GPU.

C Discussion on Human Attack and Word-level Attack

C.1 Human Attack

Firstly, we would like to emphasize the effectiveness of our adversarial optimization algorithm. In order
to demonstrate this, we compare our method with human attack without algorithmic interventions. We
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A photo of a dinosuar wakling 
through a moden ctiy

A photo of a dinosaur walking 
through a modern city

A photo of a dinsaur waklnig 
through aa mdern cityy

A photo of a dinosar waklling 
through a modern citty

Original Adv-1 Adv-2 Adv-3

(a) Case 1

A snomwan with a carrott 
nose wearing a hat and scarrf 
in a snowy field

A snowman with a carrot nose 
wearing a hat and scarf in a 
snowy field

A snoowman with a crrot 
nose wearing a hat and scraf 
in a snowy field

A snow man with a carroot 
nose wearing a hta and scarf 
in a snowy field

Original Adv-1 Adv-2 Adv-3

(b) Case 2

Figure 12: Illustrations of human attack method against Stable Diffusion. Adversarially modified content is
highlighted in red.

randomly selected a set of sentences and made random modifications to the most important words based on
human intuition. Remarkably, we observed that a lot of sentences with these modifications did not result in
DMs generating incorrect images. This further substantiates the effectiveness of our attack algorithm. We
present two illustrative cases in Figure 12. The results emphasize the difficulty of this attack task and show
the effectiveness of our method.

C.2 Word-level Attack

Then we talk about the other level attacks such as word-level attacks. Due to the high sensitivity of the DM
to individual words in the prompt, word-level attacks such as synonym replacement or context filling were not
employed in this study. If we were to use synonym replacements and substitute words with less commonly
used ones, those words themselves might have multiple meanings. In such cases, the model is likely to generate
images based on alternative meanings, making the substituted words different in the context of the sentence,
even though they may be synonyms in terms of individual words. Therefore, a more stringent restriction is
required for word-level replacements. It is precisely because of this reason that traditional text-based attack
methods are not applicable to image-text generation. For instance, in sentiment classification tasks, they
only consider the overall sentiment of the entire sentence, and the ambiguity of a particular word does not
significantly impact the overall result. However, this sensitivity becomes crucial in the context of T2I. Hence,
further research is needed to explore word-level and sentence-level attacks on T2I generation models.

To better illustrate our point, we conducted a comparison on the semantic consistency between word-level
attack and our method. We chose two classical textual word-level adversarial attack algorithms in natural
language processing(NLP), BERTAttack (Li et al., 2020) and PWWS (Ren et al., 2019) to compare with
our method with 3 perturbation rules (typo, glyph and phonetic) with same optimization objective. We
sampled 100 texts from successfully attacked texts for each attack method and evaluated the description
consistency between these adversarial texts and their corresponding original texts by humans. To avoid
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Table 9: Comparison on DCR between word-level attacks and our method.

Attack Method Perturbation Level DCR
BERTAttack Word-level 19%

PWWS Word-level 24%
Our Method(Typo) Char-level 82%
Our Method(Glyph) Char-level 96%

Our Method(Phonetic) Char-level 73%

Table 10: Word-level attack examples by BERTAttack and PWWS with 2ST attack objective.

Attack Method Ori. Text Adv. Text
A red ball on green grass under a blue sky. A red field on green grass under a blue sky.

BERTAttack A white cat sleeping on a windowsill with a flower pot nearby. A green cat sleeping on a windowsill with a flower pot nearby.
A wooden chair sitting in the sand at a beach. A wooden camera sitting in the sand at a beach.
A red ball on green grass under a blue sky. A red orchis on green grass under a blue sky

PWWS A white cat sleeping on a windowsill with a flower pot nearby. A white guy sleeping on a windowsill with a flower pot nearby
A wooden chair sitting in the sand at a beach. A wooden chairwoman sitting in the baroness at a beach.

bias, we evaluated each text with three people and took the plural of the three people’s opinions as the final
decision. Table 9 below presents the comparison on Description Consistency Rate (DCR) and shows
that our method based on character level perturbation can keep the description consistency far more than
word-level attack methods such as BERTAttack and PWWS.

We also list some examples generated by word-level adversarial attack methods in table 10. It is evident that
significant semantic changes have occurred in the examples presented. Therefore, word-level attacks in still
have a long way to go in T2I adversarial attack.

D Limitation

In our experiments, we employ DMs as the testbed and evaluate both random attack methods and our
proposed method with four optimization objectives on our custom benchmark datasets. Due to limited
resources, we focus on Stable Diffusion for the complete experiment and DALL-E 2 for the case study, given
that our method involves 12 combinations of optimization objectives and perturbation rules. Therefore,
conducting more comprehensive experiments covering different model architectures and training paradigms is
a direction for future research.

E Ethics Statement

A potential negative societal impact of our approach is that malicious attackers could exploit it to construct
targeted attacks by modifying the loss function, leading to the generation of unhealthy or harmful images,
thus causing security concerns. As more people focus on T2I DMs due to their excellent performance on
image generation. In such scenarios, it becomes inevitable to address the vulnerability of DMs which can be
easily attacked through black-box perturbation. Our work emphasizes the importance for developers of DMs
to consider potential attacks that may exist in real-world settings during the training process.

F Compute Device

All experiments were conducted on NVIDIA Tesla A100 GPUs. For diagnostic experiments, each attack
rule with each optimization objective on one dataset took approximately 4 GPU days. For real-world attack
experiments, each attack rule with each optimization objective on one dataset took approximately 3 GPU
days. So in total, running all of the experiments (including ablation studies and case studies) requires about
250 GPU days.
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