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Abstract

In this work, we address the test-time adaptation
challenge in graph neural networks (GNNs), fo-
cusing on overcoming the limitations in flexibility
and generalization inherent in existing methods.
To this end, we propose a novel research problem,
test-time graph neural dataset search, which
learns a parameterized test-time graph distribu-
tion to enhance the inference performance of un-
seen test graphs on well-trained GNNs. Specifi-
cally, we propose a generative Projection based
test-time Graph Neural Dataset Search method,
named PGNDS, which maps the unseen test
graph distribution back to the known training
distribution through a generation process guided
by well-trained GNNs. The proposed PGNDS
framework consists of three key modules: (1)
dual conditional diffusion for GNN-guided gen-
erative projection through test-back-to-training
distribution mapping; (2) dynamic search from
the generative sampling space to select the most
expressive test graphs; (3) ensemble inference to
aggregate information from original and adapted
test graphs. Extensive experiments on real-world
graphs demonstrate the superior ability of our pro-
posed PGNDS for test-time GNN inference.

1. Introduction

Graph neural networks (GNNs) have demonstrated impres-
sive success in learning from diverse graph-structured data
across a wide range of real-world applications, such as rec-
ommender systems, traffic forecasting, and drug discov-
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ery (Koh et al., 2024; Zhang et al., 2024a; Zheng et al.,
2022a;b; 2023c;a; Jin et al., 2022; Zheng et al., 2022c;
2023d; Luo et al., 2023; Zheng et al., 2024b; 2025; Yu et al.,
2025; Zhang et al., 2024b). Despite the delicate design and
thorough training of GNNs on training graphs (Pan et al.,
2023; Wang et al., 2024), these models often face significant
performance degradation during test-time inference on test
graphs in the deployment stage (Wu et al., 2022; Liu et al.,
2023; Chen et al., 2023b; Yu et al., 2023; Huang et al., 2025;
Zhang et al., 2025). The main cause of this degradation is
the distribution shifts between the training and test graphs,
which often occur due to substantial changes in node con-
texts, edge connections, and graph-level distributions at test
time (Wu et al., 2022; Liu et al., 2023; Chen et al., 2023b;
Yu et al., 2023; Zhang et al., 2025).

To tackle the issue of test-time performance degradation
caused by distribution shifts, test-time adaptation (TTA)
has recently gained attention as a promising strategy for en-
hancing inference performance on test graphs (Chen et al.,
2022; Wang et al., 2022; Jin et al., 2023; Zhang et al.,
2024e;d). Typically, TTA on graphs aims to dynamically
fine-tune well-trained GNN models or modify test graphs
to improve GNN model generalization and inference per-
formance. Based on the adaptation objective—whether
adapting the model or the data—existing methods can be
classified into two categories: (a) test-time model adapta-
tion (Chen et al., 2022; Wang et al., 2022; Zhang et al.,
2024e); and (b) test-time graph adaptation (Jin et al., 2023).
Specifically, given the unseen test graphs, test-time model
adaptation mainly works on updating the well-trained GNN
models using the self-supervised learning paradigm, where
the primary objective is to optimize or fine-tune the pre-
trained GNN model parameters. In contrast, test-time graph
adaptation takes a data-centric approach, modifying the test
graph data while keeping the well-trained GNN model pa-
rameters unchanged.

However, these two types of methods, as shown in Fig. 1 (a)
and (b), face significant challenges in the real world: Chal-
lenge 1: Impracticality of fine-tuning deployed GNNs.
Once deployed, fine-tuning GNNs for adaptation is imprac-
tical due to online application constraints and the high com-
putational cost of updating large models. Challenge 2:
Inefficiency of data-centric graph adaptation. While test-
time graph adaptation avoids modifying model parameters,



Test-Time Graph Neural Dataset Search

Well-trained on G,

-~m
TTA

Adapted on G,

(a) Test-Time Model Adaptation

————————————

Adapted G're 3 : Ad

(b) Test-Time Graph Adaptation

ﬁy @ @?\ Asetof (G},

i Well-trained on G,

ot~ P (3

pted new set of{G[e)M

(¢) Test-Time Graph Neural Dataset Search (Ours)

Figure 1. Comparison among test-time adaptation (TTA) techniques on graphs: (a) test-time model adaptation: requires model fine-tuning
and uses the adapted GNN for inference; (b) test-time graph adaptation: requires individually-parameterized graph transformation and
uses the original well-trained GNN for inference; and (c) our proposed test-time graph neural dataset search: captures parameterized test
graph dataset distribution and uses the original well-trained GNN for inference. The red dashed line indicates the final inference process.

existing methods like GTRANS (Jin et al., 2023) are limited
in flexibility and generalization, requiring node- and edge-
level adjustments and per-graph fine-tuning, making them
inefficient for diverse graph distributions.

In light of these, we propose a fresh perspective for test-time
adaptation on graphs, where the key learning objective for
the data-centric solution can be the answer of following:

Question: Rather than modifying individually-parameterized
test graphs, can we learn a parameterized test-time graph dis-
tribution, to project the entire test graph set distribution back
to the training set?

The underlying intuition is that, in the ideal scenario with-
out distribution shifts, a well-trained model would perform
optimally on unseen test graphs. This implies that if the test
graph can be effectively mapped back to the training graph
in a data-centric transformation process, the generalization
error can be minimized to the greatest extent.

To answer this question, in this work, we propose a new
research problem, test-time graph neural dataset search,
which aims to learn the optimal distribution parameters for
unknown test graph datasets, enabling them to generalize
effectively on well-trained GNN models during test-time in-
ference. Specifically, as shown in Fig. 1 (c), test-time graph
neural dataset search transforms unknown and distribution-
shifted test graphs into a new test graph distribution, tailored
to specific GNN model architectures, learning behaviors,
and task objectives of well-trained GNNs. According to the
learned optimal distribution, this approach automatically
generates a new test graph dataset, without modifying the
well-trained GNN model parameters but enabling better
adaptation performance.

To solve this new research problem, we propose a genera-
tive Projection based test-time Graph Neural Dataset Search
method, named PGNDS, to learn the optimal test graph
distribution driven by a score-based diffusion model, by cap-
turing test-back-to-training distribution with a GNN-guided
generative projection process. Specifically, given a set of
test graphs with unknown labels and potential distribution

shifts, the proposed PGNDS framework consists of three
essential phases: (1) dual conditional diffusion, which in-
corporates well-trained GNN model-specific information,
including task-specific graph representations and labels, as
dual conditions to guide the score updates in the reverse
process of the score-based diffusion model. This phase
ensures that the refined test graphs preserve their essential
data characteristics while becoming more aligned with the
training distribution, leading to more effective test-time in-
ference performance. (2) dynamic search, which spans the
entire reverse process and leverages the learned test graph
distribution to identify the most expressive test graphs, lead-
ing to a renewed and adapted test graph set. (3) ensemble
inference, which aggregates the representative information
from both the original and adapted test graphs, enabling
the well-trained GNN to more accurate prediction results
on the unknown and distribution-shifted test graph set. As
a result, the proposed PGNDS could achieve flexible and
well-generalized test-time adaptation with the automatic
generation of renewed test graphs, enhancing the test-time
inference performance in a data-centric manner. In sum-
mary, the contributions of this work are listed as follows:

¢ New Research Problem. We introduce a new research
problem, test-time graph neural dataset search, to learn
the optimal distribution of unknown test graph datasets for
effective adaptation on well-trained GNN models during
test-time inference.

* Graph Data-Centric Solution. We develop a generative
projection based test-time graph neural dataset search
method, named PGNDS, to learn the optimal test graph
distribution driven by a diffusion model. By projecting
test graphs back to the training distribution, PGNDS
enables effective test-time adaptation by automatically
generating refined test graphs.

» Comprehensive Experiments. We evaluate the proposed
PGNDS on real-world graph datasets, and extensive ex-
perimental results demonstrate its superior test-time adap-
tation ability for inference on well-trained GNN models.
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Figure 2. Overall framework of our proposed generative projection based test-time graph neural dataset search method (PGNDS).

Related Work. Our research aligns with prior work on
test-time adaptation (TTA) on graph (Jin et al., 2023; Zheng
et al., 2023b; Chen et al., 2023a; Jang et al., 2022), which
focuses on dynamically adjusting pre-trained models or data
to enhance adaptation to test samples. More detailed related
work of TTA and other distribution shift related problem can
be found in Appendix A.

2. The Proposed Method
2.1. Problem Definition

Notations. Given a training graph set G
{GL,G2,... \GN} ~ Pg, containing N graphs, where
each graph Gf, = (X{, A{,y}), where X{, denotes the
node feature matrix, A’ is the adjacency matrix indi-
cating whether nodes are connected or not, y!. denotes
the graph label, and Pg, is the training graph distribu-
tion. Similarly, the test graph set can be represented as
Ge = {G, GR, -+ , G} ~ Pg, containing M graphs,
where each graph G = (X%, Al,) without labels and Pg,
is the test graph distnbutlon. Typically, during test-time in-
ference, there exist unknown and distribution shifts between
the training and test graph distributions, i.e., Pg, # Pg, .

Preliminary. This work focuses on addressing the test-
time adaptation problem on graphs. During test time, a
GNN model has been pre-trained on a training graph set
using a standard supervised learning approach. As part
of our proposed method, which incorporates a generative
projection technique, we outline the training procedures for
both the GNN model and the graph generative model (i.e.,
diffusion model) as essential preliminary steps.

»« GNN Model Training. A GNN model is trained on the
training graph set G, for graph-level classification or regres-

sion tasks as follows:

0, = min LN (Ym Ytr> , where
R 6 (1)
Zy, Yy = GNNg"(glr).

Here, 6, denotes GNN parameters, Z, € RY*% is the
output graph embeddings, and Yy, = {y1,92,--- 3N} €
RN 1 denotes the output graph labels predicted by the
trained GNNp, . According to different graph learning tasks,
Lgnn can be the cross-entropy loss for graph classification,
or the mean squared error loss for graph regression, where
Y is the ground-truth graph labels. The well-trained GNN
model can be denotes as GNNg- with optimal weight pa-
rameters ;.

»« Graph Diffusion Model Training. We focus on the
score-based generative graph diffusion model (Jo et al.,
2022) to capture the distribution of the training graph
set. Given the training graph set G, the diffusion process
can be represented as the trajectory of random variables
{Gfr = (Xt Afr)}tG[O,T‘r]’ where GS— € Gy ~ ]Pglr and thx}r
follows a prior Gaussian distribution. Then, the diffusion
process solves the following stochastic differential equation
(SDE) from the graph to the noise:
dGl =f (Gt )dt + g (t) dw,

trs

Gy~Pg,, (2

where f(-,t) : G — G denotes the linear drift coefficient,
g(t) : R — R denotes the diffusion coefficient, and w is
the standard Wiener process. After such a forward process,
which adds noise to the original graph distribution to trans-
form it into a Gaussian distribution, the reverse-time SDE
for diffusion can be presented as:

dGl = [f (G}, t) — g7V logpy (G)] AT+ g dw, (3)

where p; represents the marginal distribution at the time
t under the forward diffusion process, w is a reverse-
time standard Wiener process, and dt is an infinitesi-
mal negative time step. To solving the reverse diffusion
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process Vg log pi(GL), the time-dependent score-based
method (Jo et al., 2022) trains s, _(-,t) for node features
and sg (-, t) for structures until optimal as following:

sy; (Gint) = Vx, logp (G)

ser (Git) = Va, logp; (G) . @
Hence, ¥* and ¢ are well-trained diffusion model param-
eters with GNN backbones. It is important to note that all
pre-trained parameters from both GNN and diffusion mod-
els will remain frozen throughout the entire procedure of
our proposed method. Specifically, the goal of the proposed
test-time graph neural dataset search can be described as:

Definition 2.1 (Test-time Graph Neural Dataset Search).
Given the test graph set G = {G, GZ,- -+ , G} and the
well-trained GNNg- model, test-time graph neural dataset
search aims to learn the new adapted test graph set G,
searched from a projected distribution P/glc with a parame-

terized mapping function Fg(-) as:
G ~ J(Pg,_|€), where Pg_ = Fa(Gie,GNNg:).  (5)

In Eq. (5), J(-|€) denotes the search function with € as the
certain conditional criterion, and €2 represents the parame-
ters of the mapping function that requires be optimized.

2.2. Overview of the Proposed PGNDS

The overall framework of our proposed PGNDS for test-
time graph neural dataset search is presented in Fig. 2. Gen-
erally, the framework consists of two stages: S1: test-time
graph neural dataset search, which mainly covers two sub-
steps: (S1-1): dual conditional diffusion and (S1-2): dy-
namic search; S2: test-time ensemble inference. Specifi-
cally, for (S1-1) dual conditional diffusion, given a set of
test graphs G = {GL,G2,--- | GM}, we take an arbitrary
G omitted superscript as an illustration example. It first
experiences T-step forward process by adding Gaussian
perturbation to both node features and edge connections.
Then, the perturbed graph G is simultaneously fed into the
well-trained GNN model GNNg- for pseudo label y and the
well-trained diffusion model DIFF ;- 4« for reverse diffu-
sion process, where the reverse diffusion process is guided
by dual conditional information from GNNpg-. For (S1-2)
dynamic search, given the learned test graph distribution
]P)/G[e’ we can obtain a set of potential new test graphs, guided
by task-relevant information from GNNg- . Then, a dynamic
search module is employed to identify the most expressive
test graph by spanning the entire diffusion process, leading
to a renewed and adapted test graph set. For (S2) ensemble
inference, with the adapted test graph set, we introduce an
ensemble scheme to aggregate the representative informa-
tion from both the original and adapted test graphs. More
details of the proposed framework are presented as follows.

2.3. Modular Design

Dual Conditional Diffusion. For an arbitrary G%, € G,
its state at time step ¢ is denoted as G, with the subscript
¢ omitted for simplicity. The dual conditional diffusion
phase first conducts the forward perturbation, which slightly
perturbs the original test graph set to diversify the graph
characteristics of both nodes and structures for better back-
to-training projection. Hence, the test-time forward process

can be denoted as:
dGl, = f (G, t) dt + g (t)dw, G ~Pg,, (6)

where {G}, = (X{,, A},)}+c[0,1)> following the same pro-
cess as Eq. (2) but with T" < T;;.. This constraint helps
prevent over-projection of noise, ensuring that the perturbed
test graphs remain within the learning space of the well-
trained diffusion model.

After this, we obtain a set of perturbed test graphs {éfe =
(X1.s AL) }eerr,o)» along with the original clear test graph

GY, for which are fed into the well-trained GNNg: as:

te>

Vie = GNNo; (X{,, AL). 5 = GNNg (X, AQ). (7)
This step provides the predicted label %, in the reverse-time
diffusion and the pseudo ground-truth label 32 to capture
the GNN model-specific and graph learning task-driven

information from the well-trained GNN.

Then, taking this (a) task-specific information and (b) graph
data-centric constraint between the (G, G2) as dual condi-
tional guidance, the reverse-time diffusion process with the
well-trained DIFF,,« -1 can be written as

dife = |:f1 ()N(tte: t) - g%,t (Sw; (éfea t) - ngat)} dt + g1,tdW1,

dAL = [B(AL 1) — g3, (s4; (Gl t) — st ) | AT + g2 0d W2,

®)

where s{¢4 and s™¢ denote the test-time score rectification

functions in terms of node features and graph structure,

respectively, and they can be calculated as follows:
~ A

feat t

Ste (Ytea Yte, Gfe? G?e) = (' Igtask 6’?37 yle) + - rgdist(Gte7 G?e)?

s (Ao AL) = B Taruc(Al, A).-

©)
where «, 3, and ~y are the hyper-parameters to control the
relative importance of three distinct conditional constraints:
Totask (+) Ttruc(+), and Tggise(+), which guide the generation
process from the view of: graph learning tasks, graph data-
centric diversity, and graph structures, respectively, for rec-
tifying the reverse scores on test graphs. More specifically,
these three rectification functions can be defined as follows:

Totask (}A’te ‘ S’itte) = —logp (yte | S;tte) ) (10)
Tstruc (Attev A?e) = DMSE (Afea A?e) )

T gdist (éfe, Gg) = Drgw (éfw G?e) ;
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where Dysg(, ) denotes the mean squared error, and
Drcw (-, -) denotes the fused Gromov-Wasserstein distance
for defining a distance metric on the input graph space dur-
ing test-time on the well-trained GNN model, which excels
at determining the optimal coupling between nodes in a
fused metric space.

Specifically, for task specific rectification function rggg, it
uses pseudo ground-truth label ¥ as the condition to guide
the diffusion model in generating a test graph that corre-
sponds to ¥, capturing the task-driven test graph distribu-
tion, ensuring the generated new test graph can sufficiently
preserve the label of the original graph during the reverse-
time diffusion. For graph structure rectification function
T'sruct, it calculates the graph structural distance to enforce
that the generated graph structure does not deviate signif-
icantly from the original one, so that critical connections
between nodes are preserved. For graph diversity recti-
fication function rgg;, it leverages global information by
capturing the interaction between the graph structure and
node features, through maximizing the distance between the
generated test graph and the original graph, encouraging
diversity to prevent the generated graph from collapsing into
the original test graph.

Dynamic Search. After completing the 7'-step reverse time
of the proposed dual conditional diffusion, the proposed
PGNDS captures a new condition-guided test-time graph
distribution IP”gle for adapting the well-trained GNN models.
Unlike the standard reverse diffusion, which retains only the
final denoised graph, in this work, we build a graph dataset
search space that spans all reverse steps within the new test
graph distribution, so we have:

GL={G =1, M;te[T,0}~P,. (1)

Now the key is to search with a function J(-|€) according to
Eq. (5) for the best-adapted test graphs from the learned dis-
tribution P, . This process is guided by a specific criterion e
for graph data selection, which is designed by incorporating
three rectification constraints as outlined below:
€’ = min [a ' rga;)( + BTl =7 rgj‘g te[T,0]
(12
That means, for each test graph é:e(i’t), we select the opti-
mal adapted graph with the smallest test-time rectification
effort on three-fold constraints at a certain ¢-step as G;;
Additionally, to enhance the efficiency of the search process,
we introduce a dynamic stopping condition for the reverse
diffusion. Specifically, suppose the overall distance does
not decrease after a certain number of patience steps. In
that case, the reverse diffusion process is halted, and the
best-adapted graph with the current minimum e>*.

Ensemble Inference. After the dynamic search from
the learned test-time graph distribution with J(Pg |e),

we could obtain a new adapted test graph set as G/, =
{GL,G2,--- G}, This adapted set is aligned with the
training distribution while retaining the maximum character-
istics of the test distribution. However, given the inherently
complex nature of the test-time graph distribution, it is cru-
cial to ensure that the generation process can maximally
approximate its ground truth. Hence, even with the inte-
gration of multiple conditional guidance mechanisms, the
search space for identifying the optimal set of adapted test
graphs remains extensive. In light of this, we propose an
ensemble scheme to aggregate the information from the
original test graph G, and the adapted test graph G|,. We
adopt the representation ensemble scheme for the graph
regression task and the prediction ensemble scheme for the
graph classification task.

Specifically, given ze,Jie = GNNg:(G) and z(, ¥, =
GNNp: (GY,), 2 and z;, are graph embeddings. For the
graph classification task, the final prediction ys of the well-
trained GNN during the test time is the average confidence
of both graphs. For the graph regression task, the final
output yr, is generated using the fused graph embeddings
before being input into the predictor of the well-trained
GNN. Hence, we have:

~lc

1 oC
Yeis = arg m?X 5 (Yte + Yte) )

2 (13)
Yreg = fe; (77 < Zee + (1 — 77) Z{e) R
where ¢ € {1,---,C} and C denotes the number of la-

bel classes, and fg: (-) is the predictor of the well-trained
GNNg:-. The proposed ensemble scheme in our PGNDS
enable the automatic selection of how much to weigh the
original and adapted test graphs, leading to better robustness
of the test-time inference on the well-trained GNN model.

2.4. Theoretical Justification

We provide a theoretical analysis demonstrating the feasibil-
ity of our proposed dual conditional diffusion in guiding the
effective generation of new test graph sets. This approach
ensures that the generated test graphs fall into a mixed dis-
tribution IP;;  that combines the training Pg, and test graph
set distributions Pg,_, Pg; from GNNg:, and IP’{lp; b} from
DIFF y; ;3

Proposition 2.2. Given the training graph distribution Pg,
and the test graph distribution Pg,, the complete forward-
reverse diffusion process begins with G0 for T < T,
steps and ends with a potential pseudo back-to-training test
graph distribution G190 ~ ]%m. This process corresponds
to a multiple integral of multi-step transition probabilities,
lacking a closed-form solution and without guaranteeing

distribution alignment.

Proof. We primarily use the node feature X2 ~ Pg,_ for
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Table 1. ROC-AUC performance (1) comparison between baseline methods and our proposed PGNDS on molecular and protein graphs
for the graph classification task. Best results are in bold, and the second-bests are underlined.

Methods ‘ Molecular ‘ Protein
‘ Ogbg-BBBP Ogbg-BACE Ogbg-ClinTox ‘ Enzymes
ERM (Wu et al., 2022) 0.6935 0.8265 0.6271 0.7161
EERM (Wu et al., 2022) 0.6857 0.7738 0.6314 0.5274
TENT (Wang et al., 2020) 0.6988 0.8338 0.6254 0.7187
DropEdge (Rong et al., 2019) 0.6950 0.8139 0.6256 0.7137
FeatMask (You et al., 2020) 0.6973 0.8240 0.6298 0.7115
GTRANS (Jin et al., 2023) 0.6921 0.8256 0.6312 0.5037
PGNDS (Ours) ‘ 0.7014 0.8873 0.6371 0.7245

Table 2. RMSE performance (|) comparison between baseline methods and our proposed PGNDS on molecular graphs for the graph
regression task. Best results are in bold, and the second-bests are underlined. GTRANS method with ‘-’ on QM9-a1pha indicates the resulted RMSE

exceeding 1000+, signifying unstable optimization.

Methods ‘ QM9 ‘ Ogbg-FreeSolv
‘ A B C alpha ‘

ERM (Wu et al., 2022) 2.2022 0.4415 0.3924 4.3220 1.9308

DropEdge (Rong et al., 2019) 2.5879 0.5439 0.3978 9.8058 2.4434

FeatMask (You et al., 2020) 2.3560 0.5183 0.3991 8.3528 2.6432

GTRANS (Jin et al., 2023) 2.8192 5.3664 0.5183 - 1.9289

PGNDS (Ours) \ 2.1985 0.4283 0.3926 4.2881 \ 1.9252

proof illustration (simplified as xg ~ ¢(xg) in the follow-
ing), with the structure adhering to the same principles.
Then, the forward process can be described as:

Xg ~ Q(Xo)a X1~ Q(X1|X0)7 ceey X Y Q(XT\XT—1)~
(14)
Thus, at step T, the distribution of xr is:

T

qr(XT) :/Q(XO)H(](Xt|Xt71)dXO~-~dXT71' (15)

t=1

Next, instead of using the reverse process matching q, we
employ a reverse transformation derived from the well-
trained diffusion model DIFF,,« with score-based approx-
imation, denoting as pa (x;—1|x:)|1_r. This reverse sam-
pling takes xr step-by-step back to xq. Thus, the complete
forward-reverse combination can be viewed as a unified
Markov chain within combined 27" steps:

q q q p p p
X0—>X1—)...—)XT—w>XT_1—¢>...—w>X/O. (16)

Here, the final output x{, may not necessarily equal the
original x¢. Then, its distribution can be expressed as:

B, 0x0) = [+ [ atxo) {ﬁlq(xt mn}

t=T

)

1
X |:H Py (Xi_q | x't)] 3(xg — Xo) dxg dx; - - - dxXg dX/p_y - - - dX].

~

For simplicity, we treat x; x; for effectively moving
the notation x/. back to x7 and projecting to a single xo.
Theoretically, this is a nested Markov chain with multiple
integrals of multi-step transition probabilities. The obtained
pseudo test distribution P/glc differs from the original ¢ (i.e.,
Pg.) or py, (i.e., Pg,), itis a hybrid product, where Pg,_ is
used in the forward direction and Pg, in the reverse direction.
If Pg, # Pg, and DIFF,: is not perfectly optimized, we
can conclude that the final distribution Pg, # {Pg,, Pg, }.

O

Proposition 2.3. Given the absence of a closed-form solu-
tion and the high degree of freedom of the hybrid pseudo test
distribution I%w without any guidance, the proposed dual
conditional guidance in PGNDS could effectively mitigate
distribution misalignment through P, _» by constraining the
deviation within a controllable bound &, encapsulated by
the well-trained GNN parameter distribution Pe-.

Proof. After introducing guidance terms, the reverse diffu-
sion py (2} _1|z}) in Eq. (17) can be modified as:

p{w,@;}(XQ—ﬂxl) = pd’(xi—l‘Xg)
X exp (04 ' rgtask(X;) + - rstruc(xé) +5- rgdist~(X:§)> ,
(18)
Then, during each step of the reverse process, guidance
terms apply gradient constraints to the generated distribu-
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tion:
Vlog pray,6:3(xi—11%;) = V1og py (x;_]x})
- Zie{am} iVr; - (x)).
Hence, given w(-) represents the distribution discrepancy
measurement function (e.g., Wasserstein distance). By incor-

porating the guidance terms, the bias of the integral formula
can be expressed as a reduction in distribution bias as:

(19)

w(Pg, piy.6:1) < w(PG . py) —n-|€], where
’2 (20)

)

T
‘§| = Z HV (04 : rggsk + ’Yrgttr)uc + Brgi)ist>
t=1

where 17 > 0 is the learning rate and || is the controllable
bound under our proposed guidance terms. O

3. Experiments

We verify the effectiveness of the proposed PGNDS in
terms of the test-time inference performance. Concretely,
we aim to answer the following questions: Q1: How does
the proposed PGNDS perform on the well-trained GNN for
both graph classification and regression tasks when faced
with unknown graph distribution shifts at test time? Q2:
How does the proposed PGNDS perform in ablation stud-
ies focusing on each components? Q3: How sensitive is
the proposed PGNDS to variations in hyper-parameters?
Q4: How does the proposed PGNDS perform in terms of
running time efficiency?

3.1. Experimental Settings

Datasets & Metrics. We perform experiments on six real-
world graph datasets covering protein and molecular graphs,
with four graph classification tasks and five graph regres-
sion tasks. We use the area under the ROC curve (ROC-
AUQC) to evaluate the graph classification task and root mean
square error (RMSE) for the graph regression task. Higher
ROC-AUC (1) and lower RMSE () indicate better graph
learning performance. More details of datasets are listed
in Appendix B. Note that the original QM9 dataset con-
tains nineteen tasks, but we selected four of them (i.e., 2,
B, C, and alpha) for our experiments. For all training and
test graphs, we follow the process procedures and splits in
previous works (Liu et al., 2024; Jo et al., 2022).

Baseline Methods & Implementation. We compare the
proposed PGNDS with the following baselines that fall in
two groups: graph model-centric methods: empirical risk
minimization (ERM) for standard training (Wu et al., 2022),
data augmentation technique DropEdge (Rong et al., 2019)
and FeatMask (You et al., 2020), Explore-to-Extrapolate
Risk Minimization (EERM) (Wu et al., 2022) customized

Table 3. Modular indexes for ablation study in our PGNDS.

Dual Conditional Diffusion ‘ Dynamic ‘ Ensemble

Modules ‘

‘ Guidance Tgak Tame Tain ‘ Search ‘ Inference
1dx01 X X X X X X
1dx02 v v X X X X
1dx03 v v v X X X
1dx04 v v v v X X
1dx05 v v v v v X
1dx06 (Ours) | v v v/ v v/ ‘ v

for node-level graph OOD generalization, and test-time
training method TENT (Wang et al., 2020); And the recent
SOTA graph data-centric method: test-time graph trans-
formation method GTRANS (Jin et al., 2023). We use the
classic GIN model (Xu et al., 2018) as the well-trained GNN
due to its widespread use in molecular graph learning.

3.2. Experimental Results

Test-time GNN Inference Performance. In Table 1, we
compare the ROC-AUC performance of several baseline
methods with our proposed PGNDS model on both molec-
ular and protein graph datasets for the graph classification
task. In general, we can observe that our proposed PGNDS
achieves the highest ROC-AUC across all datasets, indi-
cating the best test-time inference performance for both
molecular and protein graphs. Notably, the improvement of
PGNDS is significant on the Ogbg-BACE dataset, with a
ROC-AUC increase from 0.8338 to 0.8873 over the second-
best method. Moreover, TENT provides the second-best re-
sults on three datasets except for Ogbg-ClinTox. As TENT
is a fine-tuning-based method for adjusting well-trained
model parameters, such results demonstrate that the entropy-
based fine-tuning can be beneficial for test-time graph clas-
sification tasks. Additionally, EERM and GTRANS out-
perform the other baseline methods on the Ogbg-ClinTox
dataset, with EERM securing the second-best result. This
can be attributed to its need to adjust the pre-training process
to improve GNN generalization ability.

In Table 2, we compare the RMSE performance of vari-
ous baseline methods with our proposed PGNDS model
on molecular graph datasets for the graph regression task.
Our PGNDS demonstrates superior performance across all
datasets, consistently achieving the lowest RMSE values,
which indicates its effectiveness in minimizing regression
errors. Specifically, PGNDS shows significant improve-
ments on the QM9-A and QM9-alpha tasks, achieving
RMSE reductions from 2.2022 to 2.1985 and from 4.3220
to 4.2881, respectively. This highlights the robustness of
PGNDS in handling diverse molecular graph regression
tasks. Among the baseline methods, DropEdge shows com-
petitive performance, securing the second-best results on
QM9-B, QMI-C, and QM9-alpha tasks, while FeatMask
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Figure 3. Ablation study results for graph
classification (ROC-AUC) on Ogbg-BBBP.
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Figure 4. Ablation study results for graph
regression (RMSE) on Ogbg-FreeSolv.
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Table 4. Running time (in seconds) comparison on graph classifi-
cation task in 5 epochs with a single NVIDIA A100 GPU.

Methods Ogbg-BBBP  Ogbg-BACE Ogbg-ClinTox
EERM 2.784 2.287 2.224
GTRANS 0.240 0.224 0.237
PGNDS (Ours) 2.244 2.635 2.269

performs well on the Ogbg-FreeSolv dataset. We would
like to highlight that, compared to the graph classification
task, test-time graph regression is often more challenging
due to the need for precise fitting of specific target graph
properties for regression. This difficulty explains why many
test-time methods struggle to deliver satisfactory inference
performance, particularly in data-centric approaches that
revise the test graphs. Optimizing within such a large latent
space to generate specific attributes remains a complex and
demanding task.

Ablation Study of PGNDS. In Table 3, we list the ablation
study settings for evaluating the contributions of different
submodules of our PGNDS model. The ablation study
systematically removes components from the full model
(our PGNDS for 1dx06), such as using standard diffusion
without guidance (Idx01), the three constraints (rggask, Fstruc,
and rgg;s) in the dual conditional diffusion stage (Idx02 to
Idx04), dynamic search (Idx05), and ensemble inference
(Idx06). Moreover, it is important to note that these mod-
ules interact with one another, and thus, the experimental
results do not exhibit linear improvement as the compo-
nents are added back, highlighting the synergistic effects
between the modules. The results are based on ROC-AUC
performance for the Ogbg-BBBP classification shown in
Fig. 3, and RMSE performance for the Ogbg-FreeSolv re-
gression shown in Fig. 4, respectively. Performance on
Ogbg-BBBP demonstrates that as more submodules are
activated, the performance steadily improves. The best per-
formance is achieved by 1dx06, the full PGNDS model,

with a = 1.

with a ROC-AUC of approximately 0.70. In contrast, mod-
els with fewer submodules show a lower ROC-AUC. For
the Ogbg-FreeSolv dataset, the RMSE values show a simi-
lar trend. The model without any guidance has the highest
RMSE, indicating poor test-time regression performance.
As more components are integrated, the RMSE decreases,
with the full model achieving the lowest RMSE.

Hyper-parameter Sensitivity Analysis. In Fig. 5, we an-
alyze the hyper-parameter sensitivity for exploring the ef-
fects of S and v model performance with & = 1 for ROC-
AUC of Ogbg-BBBP in the dual conditional diffusion pro-
cedure for three constraints on rgpgk, Csgue, and Tegis. The
performance is indicated by values across a grid, ranging
{0.01,0.1,0.2,0.5,1,5}. More results for = 1l andy = 1
are presented in Appendix C. The result shows that mod-
erate values of 3, and - generally lead to better test-time
inference performance. Extreme values, particularly large 3
or very small vy, tend to degrade performance slightly.

Running Time Comparison. Table 4 compares the running
time of different methods on the graph classification task
for first-batch test graphs. Our proposed PGNDS demon-
strates competitive efficiency, achieving lower runtime than
EERM on Ogbg-BBBP and similar performance on Ogbg-
ClinTox. While GTRANS remains the fastest due to its
constrained learning space with full-parameter transforma-
tion of node features and structure, our method balances
efficiency and model complexity by integrating test graph
distribution remapping, making it an effective graph-level
test-time adaptation method. More visualization results of
PGNDS generated test-time graph are listed in Appendix D.

4. Conclusion

In this work, we address the challenge of test-time adap-
tation in GNNs by introducing the novel problem of test-
time graph neural dataset search. Our proposed method,
PGNDS, learns a parameterized test-time graph distribution
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to improve inference performance. Leveraging dual condi-
tional diffusion, dynamic search, and ensemble inference,
PGNDS captures unseen test graph distributions through
a generative projection approach. Extensive experiments
validate PGNDS superior adaptation capability for graph-
level test-time GNN inference. Future research could extend
PGNDS to handle dynamic graph neural networks, further
broadening its applicability.
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Appendix

This is the appendix of our work: Test-Time Graph Neural Dataset Search With Generative Projection. Here, we
provide additional details on the proposed PGNDS, including more related work discussions, further experimental settings
such as dataset statistics, and additional experimental results.

A. Related Work

Test-Time Adaptation. Test-time adaptation (TTA) focuses on dynamically adjusting pre-trained models to improve
generalization on test samples (Jin et al., 2023; Wang et al., 2020; Chen et al., 2023a; Liang et al., 2020; Jang et al., 2022),
aiming at improving the performance and robustness of deep learning models in the deployment stage (Huang et al., 2021;
Huang & Chen, 2022). One of the earliest approaches, test-time training (TTT) (Sun et al., 2020), introduces self-supervised
learning with an auxiliary task, enabling model updates using a single test sample. However, TTT requires access to training
data to optimize the auxiliary task. To address this limitation, TENT (Wang et al., 2020) proposes a fully test-time adaptation
framework, which updates model parameters using only test data, making it more practical for real-world deployment.

Table Al. Comparison of different settings for different distribution shift related methods.

Setting Source Data  Target Data Train Loss Test Loss Test-time
Model Update
Fine-tuning - {X(i) , y(t)} Lx®, y(t)) ) v
Domain Generalization {x(s), y("')} any ,C(x("‘), y(S)) _ ~
Domain Adaptation {(x®,y&1  {x® yO)  £xE), y©) 4 £x® xE)) + £(x®,yD) x
Unsupervised Domain Adaptation {x) y()} x(®) L(x®), y©) 4 £(x) x0) x
Test-time Training {x() y()} x® L(xE), yE) 4 £(x*) L(x®) v
Test-time Adaptation (model-centric) - x(®) - L(x®) v
Test-time Adaptation (data-centric) - x® - L(x®) x

Test-Time Adaptation on Graph. Despite the promising performance of TTA, existing methods are predominantly
model-centric and primarily designed for computer vision (Liang et al., 2024), making them less applicable to GNN models
and graph data (Zhang et al., 2024d; Ju et al., 2024; Zhang et al., 2024c; Wu et al., 2024; Chen et al., 2022; Zheng et al.,
2024a). Typically, TTA on graphs aims to dynamically fine-tune well-trained GNN models or modify test graphs to improve
GNN model generalization and inference performance. Based on the adaptation objective—whether adapting the model or
the data—existing methods can be classified into two categories: (a) test-time model adaptation (Chen et al., 2022; Wang
et al., 2022; Zhang et al., 2024e;d); and (b) test-time graph adaptation (Jin et al., 2023).

Specifically, given the unseen test graphs, (a) test-time model adaptation mainly works on updating the well-trained GNN
models using the self-supervised learning paradigm, where the primary objective is to optimize or fine-tune the pre-trained
GNN model parameters. For example, GT3 (Wang et al., 2022) and GraphTTA (Chen et al., 2022) employ self-supervised
learning techniques to adapt GNN models at test time, targeting graph-level and node-level learning tasks, respectively.
Moreover, HomoTTT (Zhang et al., 2024d) proposes a homophily-based and parameter-free graph contrastive learning task
for fully test-time GNNSs training.

In contrast, (b) test-time graph adaptation takes a data-centric approach, modifying the test graph data while keeping the
pre-trained GNN model parameters unchanged. Typically, GTRANS (Jin et al., 2023) modifies test graph data without
accessing the training procedure or GNN architectures. However, GTRANS relies on a fully parameterized matrix to adjust
test-time node features, which restricts its ability to effectively model updated test graphs. Additionally, its binary-space
projected gradient descent limits flexibility in handling diverse graph structures. GraphPatcher (Ju et al., 2024) addresses the
test-time graph degree shift problem by repatching graphs for node-level tasks. However, its approach is limited to node
degree-based modifications, which restricts its flexibility in adapting to diverse test-time distribution shifts at the graph level.
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Table A2. Dataset statistics for graph classification and regression on protein and molecular graphs.
# Nodes # Edges

Graph Types Datasets Task Types # Graphs # Tasks # Train / Test
Avg./Max Avg./Max

Protein Enzymes Classification 587 6 33.0/125 63.2 /149 470/ 117
Ogbg-BACE Classification 1,513 1 34.1/97 73.7/202 1210/ 152
Ogbg-BBBP Classification 2,039 1 24.1/132 51.9/290 1631 /204

Molecular Ogbg-ClinTox Classification 1,477 2 26.2/136 55.8/286 1181/ 148
Ogbg-FreeSolv Regression 642 1 8.7/24 16.8 /50 513/65
QM9 Regression 133,885 4 8.8/9 9.4/13 120803 / 13082

In summary, our work addresses the broader challenges of flexibility and generalization in test-time adaptation for GNNs
by learning a parameterized test-time graph distribution. This enables improved inference performance on unseen test
graphs using well-trained GNNs. Unlike existing graph data-centric TTA methods, our approach captures a wider range
of distribution shifts and is particularly effective in handling unknown distribution shifts at the graph level. Furthermore,
it is important to highlight why certain baselines were not included in our experiments. Some methods, such as GT3,
GraphTTA, and HomoTTT, lack publicly available code, making replication infeasible. Others, like GraphPatcher, operate
in fundamentally different learning scenarios that are not directly comparable to our setting. Given these constraints, we
carefully selected GTRANS, the most recent state-of-the-art method, as the primary baseline for a fair and meaningful
comparison. This ensures that our evaluation remains rigorous and aligned with the intended scope of test-time graph
adaptation.

Distribution Shift Related Methods. We provide a comparison of different methods addressing distribution shift problems
across various learning settings. It outlines the key characteristics for each setting based on the following aspects as shown
in Table Al:

» Source Data: The availability of labeled source data during training.

 Target Data: The type of target data used during testing.

* Train Loss: The objective functions used during training, indicating whether source data, target data, or both are used.
» Test Loss: The loss function evaluated during test time, if applicable.

e Test-time Model Update: Whether the model undergoes parameter updates during test time (v for yes, x for no).
The table highlights distinctions between:

* Common learning paradigms like fine-tuning, domain generalization, domain adaptation, and unsupervised domain
adaptation.

* Test-time training approaches, which incorporate test-time loss evaluation.

* Test-time adaptation, divided into model-centric (updating model parameters) and data-centric (focusing on adapting
data rather than modifying model parameters).

The comparison underscores the focus of test-time adaptation methods on improving generalization without relying on
access to source data during testing. In this work, we focus primarily on test-time graph adaptation using data-centric
methods. Given that different distribution shift related approaches suit varying settings, we excluded comparison methods
that pertain to distinct application scenarios.

B. Dataset Detail

We provide an overview of dataset statistics used for graph classification and regression tasks on protein and molecular
graphs in Table A2. The table highlights the diversity of datasets regarding scale, task type, and structural complexity,
showcasing their suitability for evaluating test-time graph adaptation methods for graph-level tasks.
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C. Hyper-parameter Analysis

We present more hyper-parameter sensitivity analysis for the Ogbg-BBBP dataset on graph classification, measured using
ROC-AUC in Fig. Al. The analysis explores the impact of hyper-parameters «, (§, and +y in the dual conditional diffusion
framework when 6 =1 and v = 1.

In general, we can observe that the performance (ROC-AUC) is visualized for varying «, 8 v values. And moderate values
of a, 3, and +y are critical for optimal performance, when extreme values tend to degrade the model’s effectiveness.

D. Visualization Comparison

Fig. A2 illustrates a visualization comparison between the original test graph and the proposed PGNDS-generated test
graph for molecules in the QM9 dataset for property A. The comparison demonstrates that while key features such as atom
connectivity and bond types are preserved, the PGNDS-generated versions exhibit notable differences in graph structure,
highlighting the effectiveness of our PGNDS for adapting molecular graphs while maintaining their fundamental chemical
properties.
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Figure Al. Hyper-parameter sensitivity analysis on Ogbg-BBBP for graph classification (ROC-AUC) with «, 3, and y in Eq. (12) for
different constrains in dual conditional diffusion.
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(2) QMY-2 original (G.9). (b) QM9-2 PGNDS (G.9). (c) QM9-A original (GE21). (d) QM9-a PGNDS (G:2h)

Figure A2. Visualization comparison between original test graph and our proposed PGNDS generated test graph for molecules in QM9.
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