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Abstract

Factorized models, such as two tower neural network models, are widely used for
scoring (query, document) pairs in information retrieval tasks. These models are
typically trained by optimizing the model parameters to score relevant “positive"
pairs higher than the irrelevant “negative" ones. While a large set of negatives
typically improves the model performance, limited computation and memory
budgets place constraints on the number of negatives used during training. In this
paper, we develop a novel negative sampling technique for accelerating training
with softmax cross-entropy loss. By using cached (possibly stale) item embeddings,
our technique enables training with a large pool of negatives with reduced memory
and computation. We also develop a streaming variant of our algorithm geared
towards very large datasets. Furthermore, we establish a theoretical basis for our
approach by showing that updating a very small fraction of the cache at each
iteration can still ensure fast convergence. Finally, we experimentally validate our
approach and show that it is efficient and compares favorably with more complex,
state-of-the-art approaches.

1 Introduction

Learning to represent objects as dense vectors, often called embeddings, has proved to be crucial in
large scale information retrieval tasks from multiple domains including recommendation systems [39],
vision [18] and natural language processing [13, 22]. A popular paradigm for such learning tasks
involves training two separate neural networks (often called two-towers or dual-encoders), each
representing a query and a document. Given positive and negative (query, document) pairs, the
learning task trains the two networks by minimizing a loss function, usually softmax cross-entropy,
to encourage positive pairs to have higher similarity scores and negative pairs to have lower scores.
While it is easy to sample positive pairs of examples through user feedback such as impressions or
clicks, it is more challenging to sample good negative pairs from a pool of potentially millions or
even billions of documents. A large number of negative pairs is often required to ensure high quality
of the final model, which makes the training process expensive.

A number of strategies have been proposed in the literature to address the problem of sampling
good negative pairs from a large corpus. The most common approach is to use in-batch negatives,
which treats random, non-positive pairs in a minibatch as negatives [15, 22]. This approach is
computationally efficient and works in a streaming setting, but the pool of negative examples is
limited to the minibatch. Towards the later stages of the training, the in-batch negatives become
less informative (i.e., have low gradients) since they are sampled randomly without paying attention
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to which negatives are hard for a given query [22]. Another popular approach is to maintain an
asynchronous retrieval index of the full dataset for negative sampling [13, 38]. Negatives from the full
dataset can be extracted based on approximate retrieval techniques such as ScaNN [11], Faiss [20] or
SPTAG [7]. However, it requires coordinating with a separate process for re-indexing and re-building
the retrieval index, which is not only computationally expensive and hard to maintain but also suffers
from the problem of stale index.

In this work, we theoretically and experimentally analyze training dual encoders using a large cache
of negative elements. The cached elements are stale, as they may be generated from a prior iteration’s
parameters. Our contributions are the following.

Main Contributions:

• We propose an approach to train retrieval models with cross-entropy loss using a large
negative cache. We utilize Gumbel-Max sampling on the cached embeddings to efficiently
sample the negatives.

• We analyze the convergence of our algorithm in terms of the refresh rate of the cache.
We show that even for a small refresh rate we can obtain a first-order convergence rate
comparable to that of getting exact gradients using the entire dataset.

• We develop a streaming version of our approach. Our streaming algorithm allows us to
scale to very large datasets and avoids needing to maintain an up-to-date index for nearest
neighbor search (or maximum inner product search). We analyze the bias induced by our
method and how it affects the convergence.

• We experimentally validate our method using the MS MARCO and TREC 2019 passage
retrieval tasks. We show that our approach can be efficiently implemented and achieves
statistical performance comparable to state-of-the-art benchmarks with a computationally
simpler approach that requires only a fraction of the memory.

2 Background

2.1 Dual Encoders

Given a query q, our goal is to match the query with the most relevant documents. The set of docu-
ments is represented by D = {z1, z2, . . . , zm} ∈ RdD , where m is the total number of documents.
While we refer to them as documents in this paper, they can be any set of items that we wish to
retrieve e.g. movies or products.

The training data consists of n positive (query, doc) pairs T = {(q1, y1), (q2, y2), . . . (qn, yn)},
where qi is a feature vector in RdQ and the label yi is an integer in [m], which indicates a relevant
document for query qi. Our goal is to learn a dual encoder model [6] for embedding the queries and
documents. Formally, a dual encoder consists of two components:

1. Query encoder φQ : RdQ 7→ Rd, which maps a query to a d-dimensional embedding space.

2. Document encoder φD : RdD 7→ Rd, which maps a document to the embedding space.

The score for a particular query, document pair is simply computed as inner product of the corre-
sponding query and document embeddings i.e., s(q, z) = φQ(q) · φD(z). Intuitively, this represents
the “similarity” between the query and documents in the embedding space. The model is trained such
that the relevant query, document pairs have high scores. Dual encoders are popular in large scale
settings since they are highly efficient during training and inference as the high scoring items for a
given query can be found using efficient nearest neighbors algorithms, often achieving more than
100x speed up over brute force search [10].

2.2 Training Dual Encoders with Cross-Entropy Loss

In this paper, we focus on the popular cross-entropy loss for training dual encoders. Even though
these loss functions have been found to be highly effective, the main challenge in large scale settings

2



is computational. To observe the computational bottleneck, we look at the cross-entropy loss:

LCEi
(θ) = − log

(
exp(βsiyi)∑m
j=1 exp(βsjyj )

)
, (1)

where β is the inverse temperature that scales the scores. Here, sij = sij(θ) = φQ(qi; θ) · φD(zyi ; θ)
and θ ∈ Rp. This computation involves computing the scores for all documents, which can be
prohibitively expensive when the number of documents m is large. For simplicity, throughout this
paper, we will assume that the embeddings have unit bounded norms, i.e., ‖φQ(·; θ)‖2 ≤ 1 and
‖φD(·; θ)‖2 ≤ 1 for all θ ∈ Rp. Note that this can be assumed without a loss in generality since one
can adjust the inverse temperature β accordingly to compensate for the scale.

On large-scale datasets, it may not be possible to have the entire dataset in memory, especially with
large embedding models where we need the activations of the intermediate layers to persist for
back-propagation. An alternative approach is to first select a sample of documents S and use them to
approximate the partition function. We thus have the following loss function:

LSAMPLE−CEi
(θ) = − log

(
exp(βsiyi)∑
j∈S exp(βsjyj )

)
. (2)

It has been observed that using a larger set of negative samples leads to better performance [16]. A
simple approach is to uniformly sample this set from D (popularly referred to as negative sampling).
However, when m is large, negative sampling is typically inefficient since it is difficult to obtain
high-scoring irrelevant documents, thereby, providing a poor approximation of the cross-entropy loss.
In the following sections, we explore highly scalable solutions for optimizing cross-entropy loss.

Random sampling is often implemented using in-batch negative sampling [15, 22, 16]. However, this
approach is not scalable because huge amount of accelerator memory is required to achieve a bigger
pool of in-batch negatives. For example, BERT [9] based transformers are typically used in NLP
tasks but a single pair of (query, document) BERT-base consumes 600MB of accelerator memory
during training. This further limits the effectiveness of random negative sampling.

2.3 Related Work

There have been many recent papers on using cached embeddings and nearest neighbors for improving
negative mining during training. Several works consider caching embeddings for the entire dataset [13,
38]. They utilize a separate task to recompute embeddings based on the current parameters and
recreate an index of nearest neighbor search. This can be computationally challenging for very large
datasets, the cost of inference and index refresh scales linearly with the number of documents.

REALM [13] uses their embedding cache to optimize a softmax-cross entropy loss. They approximate
the partition function by retrieving the k largest scoring elements. This can be a poor approximation
if the distribution is not highly concentrated around the top elements. Additionally, it requires O(k)
additional memory to perform backpropagation. ANCE [38] uses their cache to optimize a negative
contrastive loss. MoCo [14] uses a streaming negative cache to increase the number of negative
examples for feature embedding tasks. But it cannot be extended to dual encoder training, as the
document encoder does not contribute to gradient updates.

Negative sampling is also widely used in classification problem with very large number of labels,
where each document is considered a separate class. This setting is simpler than the dual encoder
setting, since the model consists of one encoder and one large classification layer. The weights in the
classification layer are only updated when their corresponding labels are included in a gradient step.
In contrast, in the dual encoder setting, all document embeddings are changed during a gradient step.

For training with a softmax cross-entropy loss in the classification setting, Bengio and Senécal
[4] develop an importance sampling approach for estimating the gradient of the cross-entropy loss
function in large output spaces. Many following works utilize sampling techniques for estimating the
gradient [17, 36, 30, 27, 25, 2]. Rawat et al. [30] analyzes the bias of different sampling techniques
in gradient estimation. Mussmann et al. [28] use Gumbel-Max sampling to sample from the softmax
distribution and accelerate gradient descent for certain problems. Zhang et al. [42] analyze the bias
between gradients of the softmax loss and gradients generated from using hard negative mining.
Other loss functions besides softmax cross-entropy include noise contrastive estimation, which was
developed by [12] and utilized in [26, 25], ordered weighted losses [31], and triplet losses [33].
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Hard and semi-hard negative mining is a collection of techniques for selecting negatives that the
model is scoring above or near positive elements. Works in this area include [34, 37]. In particular,
Dense Passage Retrieval [22] utilizes hard negatives generated by a BM25 ranker [32]. We note that
hard negatives such as BM25 are often domain-specific and require finding a hard negative document
for each query, which can be expensive with a large number of queries and documents.

We note that there are several approaches that take a dense retrieval model and use its retrieval results
to improve performance further. The LTRe method [41] and the STAR and ADORE method [40]
uses the retrieval results of ANCE to further improve performance with a ranking loss function.
The RocketQA method [29] starts by training a model with sample negatives (in the cross-batch
setting when training with multiple accelerators). This model is used to generate negatives for a
cross-attention model, which is used to denoise the dataset to train an improved dense retriveal model.
We compare to their Step1 model in the experimental section.

Our setting consists of learning from observed click data, thus we only see positive pairs. In the
related learning-to-rank setting, the goal is to learn a ranking model using a set of positive and
negative relevance labels. Works in this setting include [19, 1, 5, 21].

3 Full Document Cache

The primary objective is to find the parameters θ∗ that minimize the softmax cross-entropy loss
LCE(θ) (Equation 1). The standard algorithm to optimize the loss is stochastic gradient descent (or
its variants). However, calculating stochastic gradients for this loss function is expensive in terms of
both time and memory. Computation of the gradient involves: (1) a forward pass on every document
in our dataset, (2) storing all intermediate activations (which are needed for the backward pass),
and (3) calculating the gradients in the backward pass. Unfortunately, for large embedding encoder
models such as those based on Transformers ([35]), this is prohibitively expensive. For instance, for
a large BERT model on 1 million documents, the required memory would be hundreds of terabytes.

We propose an approach that can approximate the gradient of cross-entropy loss without needing to
embed every document, thereby reducing the per-iteration computation and memory requirements
for gradient computation. Our approach is based on cached embeddings [13, 38]. To understand our
approach, we first start with gradient estimation with Gumbel-Max sampling. The following known
fact shows that if we can sample from the softmax distribution then we can get an unbiased estimate
of the stochastic gradient.

Fact 1. The gradient of the cross-entropy has the following form:

∇LCEi = −β∇siyi +

m∑
j=1

pijβ∇sij ,

where LCEi = − log
(

exp(βsiyi )∑m
j=1 exp(βsij)

)
and pij =

exp(βsij)∑m
j′=1

exp(βsij′ )
.

If J is a sample from pi = (pi1, pi2, . . . , pim), we have ∇LCEi = −β∇siyi + βE[∇siJ ].

Further, if N1, N2, . . . , Nm are i.i.d. standard Gumbel random variables, then the index
arg maxj∈[m] βsij +Nj is a sample from the distribution pi = (pi1, pi2, . . . , pim).

We refer to this approach as Gumbel-Max sampling and GumbelMaxSample(βs) is used to represent
this sampling procedure. A natural estimator of the gradient is∇L̂CEi = −β∇siyi + β∇siJ where
J is the index in [m] obtained through Gumbel-Max sampling. Due to the feasibility of fast maximum
inner product search (MIPS), Gumbel-Max sampling is an efficient way to sample from the softmax
distribution; this, thereby, provides an efficient way to obtain an unbiased estimate of the gradient.
In particular, the per-iteration memory requirement is reduced from O(mτ) to O(md) where τ
and d are the model and embedding sizes respectively. This is due to the fact that the intermediate
activations need to be stored only for documents yi and J , the negative obtained through Gumbel-Max
sampling. When d� τ (which is typically the case while using large transformer models), this leads
to a significant reduction in memory requirements. While the memory requirements are reduced
drastically, we still need to do a forward pass on all documents to compute the scores sij . Using Fact
1 , we would need to embed every document every iteration, which is still computationally intensive.
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Algorithm 1 Cached Gumbel-Max Gradient Descent
Input: Learning rate η, Document refresh fraction ρ ∈ (0, 1]
Initialize parameters θ0.
Initialize embeddings table E : Ej ← φD(zj ; θ0) for all j ∈ [m]
for t ∈ 0, 1, . . . , T − 1 do

Sample qi, yi from the training set
eqi ← φQ(qi; θt)
ezyi ← φD(zyi ; θt) and update Eyi = ezyi
Calculate scores s̃ij ← eqi · Ej for all j ∈ [m]
J ← GumbelMaxSample(βs̃i)
ezJ ← φD(zJ ; θt)
siJ ← eqi · ezJ
gt ← −β∇siyi + β∇siJ
θt+1 ← θt − ηgt
Select oldest ρm embeddings of E and update them to Ej ← φD(zj ; θt+1)

end for

This motivates an algorithm where we cache previously calculated embeddings to efficiently approxi-
mate the softmax distribution pi. We first note the structure of the sij = φQ(qi; θ) · φD(zj ; θ). The
key computational challenge in Gumbel-Max sampling is computation of the embeddings φD(zj ; θ)
for all j ∈ [m]. This is required to find the index J in Fact 1, which essentially renders it com-
putationally intractable for large m. Our approach is to compute embeddings φD(zj ; θ) for only
a few documents j ∈ [m] at each iteration and reuse the previously computed embeddings for the
rest of the documents. In particular, let zj = φD(zj ; θ) be the current embedding of a document
and z̃j = φD(zj ; θ̃) be its previous embedding. If θ and θ̃ are reasonably close, then zj and z̃j
would be similar. In such a scenario, the scores sij and s̃ij , and, thereby the corresponding distri-
butions pi = (pi1, pi2, . . . , pim) and p̃i = (p̃i1, p̃i2, . . . , p̃im) are also similar. As a consequence,
the true gradient ∇LCEi = −β∇siyi +

∑m
j=1 pijβ∇sij and the approximation to the gradient

−β∇siyi +
∑m
j=1 p̃ijβ∇sij should be similar. Note that for the approximation we take the gradient

of sij and not s̃ij ; we only replace the weight terms pij with p̃ij .

We described this algorithm in Algorithm 1. We present the algorithm with a batch size of 1—it
can be easily extended to larger batches. We maintain an embedding table of all documents. At
each iteration, we update only a small fraction ρ of the stale embeddings to ensure that pi and p̃i are
similar. Using this approach, we can approximately sample from this distribution using Gumbel-Max
sampling in an efficient manner.

3.1 Theoretical Results

In this section, we establish error guarantees on the error of our Cached Gumbel-Max gradient
approximation. Before delving into the technical details, we state the following key assumptions on
the query and document encoder.
Assumption 1. The following conditions hold for the query φQ and document encoder φD:

A1 The query and document encoder functions are both L-Lipschitz in the parameters θ. In
particular, we have ‖φ(qi; θ) − φ(qi; θ

′)‖2 ≤ L‖θ − θ′‖2 for all i ∈ [n] and ‖φ(zi; θ) −
φ(zi; θ

′)‖2 ≤ L‖θ − θ′‖2 for all i ∈ [m].

A2 The query and document embeddings are bounded i.e., we have eq, ez = φQ(q; θ), φD(z; θ)
satisfy ‖eq‖2, ‖ez‖2 ≤ 1.

A3 The score functions have bounded gradients i.e., we have ‖∇sij‖2 ≤M for all i ∈ [n] and
j ∈ [m].

All of these assumptions are fairly mild and are common in optimization literature. As noted earlier,
the second assumption does not lead to much loss of generality as a larger bound on the norm can be
absorbed into the inverse temperature parameter β. In the following result, we first show that the error
can be bounded by the `∞ error between the true scores and the scores with the cached embeddings.
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We then show that if the cached embeddings are generated from Algorithm 1 with learning rate η and
refresh rate ρ, we can bound the gradient error at each iteration.
Theorem 2. Let θt and index i be the parameters and training point selected at tth iteration of
Algorithm 1, respectively. Let J represent the Gumbel-Max index selected at that iteration. Then,
under Assumption 1, we have the following gradient approximation with the cached embeddings

∇L̃CEi
(θt) = EJ [gt] = −β∇siyi +

m∑
j=1

p̃ijβ∇sij ,

where p̃ij =
exp(βs̃ij)∑m

j′=1
exp(βs̃ij′ )

and s̃ij = eqi · Ej . Furthermore, we have the following bound on the

gradient approximation of ∇LCEi(θt):

‖∇LCEi(θt)−∇L̃CEi
(θt)‖2 ≤ 2β2M‖s̃i − si‖∞.

When parameter updates are generated by Algorithm 1 with step size η and update rate ρ, we have

‖∇LCEi(θt)−∇L̃CEi
(θt)‖2 ≤ 4ηβ3LM2

(
1

ρ
− 1

)
.

We see that the error can be controlled by either increasing the refresh rate or decreasing the gradient
norm. This provides a bound on the bias in the gradient approximation. Using the above result,
we show the following first-order convergence guarantees. For proving convergence, we need the
following additional assumption.
Assumption 2. We assume loss function ∇LCEi

is S-smooth i.e., we have ‖∇LCEi
(θ) −

∇LCEi
(θ′)‖2 ≤ S‖θ − θ′‖2 holds for all θ, θ′ ∈ Rp and i ∈ [n].

Under the above assumption, we have the following convergence result in general non-convex settings.

Theorem 3. Suppose we run Algorithm 1 for T iterations with stepsize η =

√
LCE(θ0)−LCE(θ∗)√

2TSM
.

Then under Assumption 1 and 2, we have the following:

1

T

T∑
t=0

E[‖∇LCE(θt)‖22] ≤ 4M

√
S(LCE(θ0)− LCE(θ∗))

T
+

4β6L2M2(LCE(θ0)− LCE(θ∗))

ST

(
1

ρ
− 1

)2

.

We have that −2β + logm ≤ LCE(θ) ≤ 2β + logm. Thus the term LCE(θ0)− LCE(θ∗) ≤ 4β.

We observe that the bias introduced due to stale embeddings is a lower order term in the bound of
Theorem 3. In particular, one can use ρ = 1

1+T 1/4 without affecting the convergence rate of the
standard SGD algorithm. For a large T (which is typical in machine learning settings), this can have
a significant impact on the computational complexity since a very small fraction of the documents
need to be updated at each iteration.

3.2 Computational Discussion

We store our cache using accelerator memory. This prevents the need to have a separate task that
constantly reindexes the embeddings as they change throughout training. This is feasible for moderate
size datasets. For instance, 1 million training points with an embedding dimension of 512 and feature
vector dimension of 1024 will use about 6 GB memory, which can fit on a single accelerator. To
calculate the perturbed nearest neighbor for Gumbel-Max sampling, we simply brute force calculate
the largest dot product. Accelerators such as GPUs and TPUs can do this very efficiently—in our
experiments we see that the steps/second increases only a small amount as we increase the cache
size. This is because the cost of computing the embeddings is much larger than the cost of doing the
search due to the complexity of large transformer models.

If faster sampling is needed, it can be accelerated by using fast nearest neighbor search. Mussman et
al. [28] consider an approach that applies Gumbel perturbations to the k highest scoring elements
plus a small number of random elements to perform Gumbel-Max sampling in sublinear time.

However, having the cache on an accelerator has limitations due to the accelerator memory limits. In
the next section, we modify Algorithm 1 to be a streaming algorithm.

6



3.3 Conditional Sampling Negatives

Note that Gumbel-Max sampling has a chance to sample the positive element. If this happens, then
our gradient approximation is zero. Since we are training our model to make the score of the positive
element large, this can happen often. We develop an approach to force the sampled element to be a
negative element while maintaining a similar expected gradient.

Assume that the positive element is z1 and the negative elements are z2, z3, . . . , zm. We have that

∇LCEi = −β∇si1 +

m∑
j=1

pijβ∇sij = −β(1− pi1)∇si1 + (1− pi1)

m∑
j=2

pij
1− pi1

β∇sij .

Note that ( pi2
1−pi1 ,

pi3
1−pi1 , · · · ,

pim
1−pi1 ) is the conditional distribution where we condition on not sam-

pling the first element. Thus we can sample from the conditional distribution as long as we properly
scale the gradient by 1 − pi1. We note that the value of pi1 depends on the negative embeddings.
Since we have all the negatives on our accelerator, we can also calculate the partition function without
much additional compute, as it has the same complexity as of our nearest neighbor search.

4 Streaming Cache

For very large datasets, the Gumbel-Max sampling step can become difficult. If the embedding
vectors are stored in accelerator memory, then only a finite number of vectors can be stored on a fixed
computational budget. If the vectors are stored in CPU memory with a CPU-based retrieval system,
then the nearest neighbor index needs to be constantly recreated, which is computationally expensive
for large datasets. Additionally, we see in Theorem 2 that as the fraction of elements refreshed each
iteration ρ decreases, then the learning rate needs to decrease as well to maintain a given bias in
gradient estimation. Alternatively, more embeddings will need to be refreshed each iteration as the
size of the dataset grows.

To address this issue, we develop a streaming variant of our algorithm. The key difference with
respect to the full dataset setting is that instead of storing all the document embeddings in memory,
we only store a sample multiset S of size αm. After every iteration we remove the oldest ραm
elements in S and replace them with ραm new elements sampled uniform i.i.d. from the dataset. The
fraction α can be tuned to fit a given computational budget.

Our gradient estimator approximates gradients from a cache cross-entropy loss. We define the cache
cross-entropy loss to be the following:

LCacheCEi = − log
exp(βsyi)

exp(βsiyi) + 1
α

∑
j∈S,j 6=yi exp(βsij)

Following [4], we scale the weight of the negative elements by 1
α , otherwise the partition function

would underestimate the true partition function. Thus is equivalent to shifting the scores of the
negative elements by 1

β log 1
α .

The use of the cache cross-entropy loss LCacheCE instead of the true cross entropy loss induces a
bias in gradient estimation. We are able to show that the bias scales inversely with the cache size.
The proof of Lemma 4 is a modification of the proof of Theorem 1 in [30].
Lemma 4. Assume Assumptions A2 and A3 hold, i.e., that the norm of the encoder embeddings is
bounded by 1 and the norm of the gradients of the scores is bounded by M .

We have that

‖∇LCEi − E [∇LCacheCEi] ‖2 ≤
exp(O(β))M

αm
,

where the expectation is taken over the randomness of the elements in the cache.

In Algorithm 2 we present our Algorithm for training with the streaming cache. We use
GumbelMaxSample(βs,S) to denote the Gumbel-Max sampling described in Fact 1 with scores
restricted to documents in set S.

There are two sources of bias in our gradient estimate: first due to the staleness of the cache and the
second due to using a sampled set of negatives rather than the entire dataset. We handle the latter in
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Algorithm 2 Streaming Cached Gumbel-Max Gradient Descent
Input: Learning rate η, Cache fraction α ∈ (0, 1], Document refresh fraction ρ ∈ (0, 1]
Initializes parameters θ0.
Random sample S ⊆ [m]αm.
Initialize embeddings table E : Ej ← φD(zj ; θ0) for all j ∈ S
for t ∈ 0, 1, . . . , T − 1 do

Sample qi, yi from the training set
eqi ← φQ(qi; θt)
ezyi ← φD(zyi ; θt) and update Eyi = ezyi
Calculate scores s̃ij ← eqi · Ej + log(1/α)/β for all j ∈ S and s̃iyi = eqi · ezyi
Ŝ ← S with all instances of yi removed
J ← GumbelMaxSample(βs̃i, Ŝ)
ezJ ← φD(zJ ; θt)
siJ ← eqi · ezJ
pyi ← probability of yi under softmax(s̃i)
gt ← β(1− pyi)(−∇siyi +∇siJ)
θt+1 ← θt − ηgt
Select oldest ραm embeddings set O of E and remove them from E
Sample S ′ ⊆ [m], |S ′| = ραm
Update Ej ← φD(zj ; θt+1) for j ∈ S ′
Update set S ← S −O ∪ S ′

end for

Lemma 4. For the former, note that our error guarantees in Theorem 2 still apply to the streaming
cache, as we can bound the error between true gradient using this set of negatives with our gradient
approximation. This allows us to bound the bias due to the staleness of the cache.

Since we were able to control the bias of our gradient estimator even with the streaming cache, we
can establish a first order convergence theorem for training with Algorithm 2.

Theorem 5. Assume that Assumptions 1 and 2 hold and we use a learning rate η =√
LCE(θ0)−LCE(θ∗)√

2TSM
. Running Algorithm 2 with a cache of size αm with a refresh rate ρ creates

updates θ1, θ2, . . . , θT such that

1

T

T∑
t=0

E[‖∇LCE(θt)‖22] ≤ O

(
1√
T

+
1

α2m2
+

1

T

(
1

ρ
− 1

)2
)
,

where we omit terms that depend on S, L, M , and β.

If the cache size satisfies αm ≥ T 1/4, then we do not asymptotically affect the rate of convergence.

We see that using a streaming cache smaller than the entire dataset adds only a small amount of bias
in convergence and reduces the computational burden of storing embeddings and calculating nearest
neighbors significantly.

5 Experiments

We analyse the performance of our approach on the MS MARCO passage retrieval task [3] and the
TREC 2019 passage retrieval task [8]. Both tasks utilize the same dataset consisting of 500,000
(query, passage) pairs and 8.8 million passages in the database. MS MARCO measures the mean
reciprocal rank at 10(MRR@10) with a holdout set of query, passage pairs. TREC 2019 measures
the normalized discounted cumulative gains at 10 (NDCG@10) compared to a set of human labeled
relevance scores.
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Method Batch Size Negatives Updates/Step Memory/Step Steps/Sec
Sample Cross-Entropy 8 16 - 10G 9.95
Sample Cross-Entropy 8 64 - 25G 4.64
Sample Cross-Entropy 8 256 - 87G (OOM) 1.43 (est.)

Cached Negative 8 8k 256 15G 3.38
Cached Negative 8 32k 256 15G 3.38
Cached Negative 8 128k 256 16G 3.37
Cached Negative 8 512k 256 19G 3.32
Cached Negative 8 2M 512 38G 2.04

Full Dataset Cache 8 8.8M 512 90G (OOM) -
Table 1: Runtime and resource consumption for various configurations of cache sizes and number of
random negatives. Since sample cross-entropy doesn’t fit in memory we estimate the steps/second
with linear interpolation.

5.1 MSMARCO / TREC Experimental Set Up

Following related work [22, 38], we start with a pretrained BERT-base model [9] 1. Both our query
and document encoder are initialized with this model and share parameters during training. We add a
fully connected layer to the end of the encoder that projects to 512 dimensions. We do no additional
pre-training. We use a global batch size of 8, the Adam optimizer [23], and we train for 250, 000
steps. We normalize the output embeddings and have a trainable parameter β scale the scores. We
use a learning rate of 1× 10−5 for all experiments except when we train with a cache of 2 million
elements, where we use a learning rate of 5× 10−5. This is due to the increased staleness of the large
cache. Our experiments use 8 V2 Cloud TPUs. Each replica on the TPU has 8GB memory, for a total
of 64GB memory.

5.2 MSMARCO / TREC Computational Performance

We first examine the computational performance of our method. Since we use brute force to calculate
the negative with the highest perturbed score, we are interested in seeing how this affects the
runtime performance of our algorithm. Randomly sampled passages are used as negatives for sample
cross-entropy and the updates for the negative cache.

Due to the increased staleness of large caches, we do 512 updates when using a cache with 2 million
elements. For all other cache sizes we use 256 elements.

We see in Table 1 that the cache size can scale to hundreds of thousands of elements with minimal
effect on the speed of training. The cost of calculating embeddings and gradients with large trans-
former models is significantly more expensive than the cost of the nearest neighbor search, even if
we use a brute force approach.

Further, we see that using a cache with 2 million elements requires less memory than using just 256
sample negatives, even when 512 elements are updated every iteration. This is because the memory
required for the backward step is about 10x larger than the memory needed for the forward step.

Additionally, we see that there is a limit to the cache size. If we were to use all 8.8M negatives, we
would not be able to fit them on 8 V2 Cloud TPUs and would have to move to a separate nearest
neighbor system. Our streaming approach allows us to adapt the cache size to the available memory.

5.3 MSMARCO / TREC Experimental Results

We now analyze the statistical improvement of using a large negative cache. In Table 2 we present
the output MRR@10 on the development set of MS MARCO passage retrieval task and NDCG@10
on the TREC 2019 passage retrieval task for training with stochastic negative mining, our negative
cache approach, as well as two external benchmarks, ANCE [38] and DPR [22].

We see that our streaming cache method achieves similar statistical performance to ANCE without
needing to store and search all elements in the dataset. Additionally we see that it outperforms all

1Model obtained from https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/4.
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Method MS MARCO (MRR@10) TREC (NDCG@10)
Sample Cross-Entropy (16 negatives) 0.235 0.493
Sample Cross-Entropy (64 negatives) 0.257 0.513

Sample Cross-Entropy (256 negatives) 0.273 0.538
Negative Cache (8k negatives) 0.310 0.600

Negative Cache (32k negatives) 0.315 0.630
Negative Cache (128k negatives) 0.323 0.633
Negative Cache (512k negatives) 0.322 0.649
Negative Cache (2M negatives) 0.331 0.630

ANCE (NCE with 8M negatives) [38] 0.330 0.648
DPR (Random + BM25 Negative) [22] 0.311 0.600

RocketQA Step1 BERT-base [29] 0.327 -
Table 2: Statistical performance of stochastic negative mining, negative cache training, and related
dual encoder training benchmarks for the MSMARCO and TREC task. Values for DPR were obtained
from [38].

Method Recall@20 Recall@100
Cache (2M negatives) 0.784 0.856

ANCE (NCE with 20M negatives) [38] 0.819 0.875
DPR (Random + BM25 Negative) [22] 0.784 0.854

RocketQA Step1 BERT-base [29] - 0.860
Table 3: Statistical performance of negative cache training and related dual encoder training bench-
marks for the Natural Question task.

sample cross-entropy approaches with a smaller memory footprint. Further, we see that our approach
outperform the BM25 negatives utilized by DPR.

5.4 Natural Question Experimental Results

We now experimentally compare our method on the Natural Question dataset [24]. We follow the
methodology used by [22]. The goal of the experiment is to learn a model that matches questions
with passages that contain the answer to the question. The dataset consists of about 60,000 query,
positive passage pairs and there are about 20 million passages. In evaluation, we consider a retrieved
passage a positive if it contains an exact match to one of the labeled answers to the given question.

In Table 3 we compare training with a negative cache with 2 million negatives to several state-of-the-
art dual encoder training methods. We see that training with a negative cache compares favorably
with DPR without the use of a domain-specific hard negative mining techniques such as BM25. The
use of such a techniques requires an inference step to find the hard negative among all passages,
which can be expensive for large datasets. Additionally we note that ANCE is initialized with the
DPR model and we use only 10% of the negatives in our cache.

6 Conclusion

In this paper we developed an algorithm for efficiently estimating gradients for dual encoder models
with a softmax cross-entropy loss function. We see that we can efficiently obtain gradient estimations
with low bias with an appropriately chosen learning rate and a sufficiently large negative cache.
We analyze first order convergence of training with a streaming negative cache and establish near-
optimal convergence bounds compared to SGD for reasonable parameter choices. In dense retrieval
experiments we see that our approach is efficient and can compare favorably to state-of-the-art dual
encoder training methods.
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