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Abstract

The identifiability analysis of linear Ordinary Differential Equation (ODE) systems
is a necessary prerequisite for making reliable causal inferences about these sys-
tems. While identifiability has been well studied in scenarios where the system is
fully observable, the conditions for identifiability remain unexplored when latent
variables interact with the system. This paper aims to address this gap by presenting
a systematic analysis of identifiability in linear ODE systems incorporating hidden
confounders. Specifically, we investigate two cases of such systems. In the first
case, latent confounders exhibit no causal relationships, yet their evolution adheres
to specific functional forms, such as polynomial functions of time t. Subsequently,
we extend this analysis to encompass scenarios where hidden confounders exhibit
causal dependencies, with the causal structure of latent variables described by
a Directed Acyclic Graph (DAG). The second case represents a more intricate
variation of the first case, prompting a more comprehensive identifiability analysis.
Accordingly, we conduct detailed identifiability analyses of the second system
under various observation conditions, including both continuous and discrete ob-
servations from single or multiple trajectories. To validate our theoretical results,
we perform a series of simulations, which support and substantiate our findings.

1 Introduction

Understanding the dynamics of systems governed by Ordinary Differential Equations (ODEs) is
fundamental in various scientific disciplines, from physics [9, 23, 24, 47], biology [16, 27, 29, 33, 36]
to economics [13, 38, 39, 43]. These ODE systems provide a natural framework for modeling causal
relationships among system variables, enabling us to make reliable interpretations and interventions
[25, 30, 31]. Central to unraveling the causal mechanisms of such systems is the concept of identifia-
bility analysis, which aims to uncover conditions under which system parameters can be uniquely
determined from error-free observations. Identifiability is crucial for ensuring reliable parameter
estimates, thereby guaranteeing reliable causal inferences about the system [41]. The motivation
for our research on the identifiability analysis of ODE systems arises from the necessity of making
reliable causal inferences about these systems.
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Our research focuses on the homogeneous linear ODE system, represented as:
ẋ(t) = Ax(t) , x(0) = x0 , (1)

where t ∈ [0,∞) denotes time, x(t) ∈ Rd represents the system’s state at time t, ẋ(t) denotes the
first derivative of x(t) w.r.t. time, and x0 represents the initial condition of the system. The solution
(trajectory) of the system, denoted as x(t;x0, A) for t ∈ [0,∞), is a single d-dimensional trajectory
initialized with x0.

Existing literature has extensively examined the identifiability of linear ODE systems under the
assumption of complete observability, where all state variables are directly observable [5, 14, 15, 17,
28, 34, 42]. Specifically, researchers have investigated identifiability of the ODE system (1) from a
single whole trajectory [28, 34], and extended analysis to discrete observations sampled from the
trajectory [42]. However, practical scenarios often entail systems with latent variables, rendering
them not entirely observable. In this paper, we explore the identifiability analysis of this ODE system
under latent confounders, particularly examining cases where no causal relationships exist from
observable variables to latent variables, a commonly assumed condition in causality analysis with
hidden variables [10, 11, 20, 22, 44, 45].

In this paper, we focus on two scenarios:

1. Independent latent confounders: Latent variables exhibit no causal relationships among
themselves, leading to the following linear ODE system:[

ẋ(t)
ż(t)

]
=

[
A B
0 0

] [
x(t)
z(t)

]
+

[
0

f(t)

]
,

[
x(0)
z(0)

]
=

[
x0

z0

]
. (2)

2. Causally related latent confounders: Latent variables exhibit causal relationships among
themselves, specifically, they follow a DAG structure, represented as:[

ẋ(t)
ż(t)

]
=

[
A B
0 G

] [
x(t)
z(t)

]
,

[
x(0)
z(0)

]
=

[
x0

z0

]
. (3)

In these two ODE systems, x(t) ∈ Rd denotes the state of observable variables x = (x1, x2, . . . , xd),
while z(t) ∈ Rp denotes the state of latent variables z = (z1, z2, . . . , zp). Example causal structures
of these two ODE systems are illustrated in Figure 1. It is noteworthy that the structure may include
cycles and self-loops within the observable variables. Additionally, two real-world examples are
provided in Appendix B.

Figure 1: Example causal structures of the ODE system (2) and (3).

This paper provides an identifiability analysis for the ODE system (2) under specific latent variable
evolutions, such as polynomial functions of time t. Additionally, we conduct a systematic identifiabil-
ity analysis of the ODE system (3) when the causal structure of the latent variables can be described
by a DAG.

2 Background

2.1 Causal interpretation of the ODE system

When an ODE system describes the underlying causal mechanisms governing a dynamic system, it
provides a natural framework for modeling causal relationships among system variables. The causal
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structure inherent in such systems can be directly read off [25, 31]. For instance, in the ODE system
(1), where the ij-th entry of the parameter matrix A is denoted as Aij , the presence of Aij ̸= 0
signifies that the derivative of xi(t) is influenced by xj(t), thus indicating a causal link from xj to
xi. Here, xi denotes the i-th variable of the ODE system (1), and xi(t) represents its state at time
t. Since the right hand side of the ODE system (1) does not explicitly depend on time t, the causal
structure of this ODE system is time-invariant.

An essential prerequisite for reliably inferring the causal structure and effects of an ODE system,
for purposes of interpretation or intervention, is the identifiability analysis of such systems. To
underscore this necessity, we provide an illustrative example. Consider the ODE system (3). Set

x0 =

[
1
1

]
, z0 =

[
1
1

]
, B =

[
1 1
1 1

]
, G =

[
0 1
0 0

]
,

A =

[
1 0
0 1

]
, A′ =

[
0 1
1 0

]
, M =

[
A B
0 G

]
, M ′ =

[
A′ B
0 G

]
.

Calculations reveal that the solutions (trajectory) of the ODE system (3) with parameter matrices M
or M ′ are identical, i.e., [

x(t)
z(t)

]
= eMt

[
x0

z0

]
= eM

′t

[
x0

z0

]
.

This indicates that using observations sampled from this trajectory to estimate parameter matrix M
may end up yielding M ′, which exhibits a fundamentally distinct causal relationship between x1

and x2, see Figure 2. This discrepancy in parameter estimation, wherein M ′ is obtained instead

Figure 2: Causal structures of the ODE system (3) with parameter matrix M and M ′.

of the true underlying parameter matrix M , may lead to misleading interpretations and causal
inferences, potentially influencing decision-making, particularly regarding interventions. For instance,
intervention with x1(t) = 1, under the true underlying parameter matrix M , yields the trajectory
x2(t) = 4et − t− 3 (post-intervention), whereas under matrix M ′, the trajectory becomes x2(t) =
t2/2 + 3t+ 1 (post-intervention). Detailed calculations are provided in Appendix C.

2.2 Identifiability analysis of the linear ODE system (1)

The identifiability analysis of the ODE system (1) has been well studied. Here, we present a
fundamental definition and theorem essential for understanding identifiability in the ODE system
(1). Denoting its solution as x(t;x0, A), it is noteworthy that the system is fully observable, without
latent variables interacting with it. We present the identifiability definition and theorem as follows.

Definition 2.1. For x0 ∈ Rd, A ∈ Rd×d, the ODE system (1) is said to be (x0, A)-identifiable, if for
all x′

0 ∈ Rd and all A′ ∈ Rd×d, with (x0, A) ̸= (x′
0, A

′), it holds that x(·;x0, A) ̸=x(·;x′
0, A

′).2

Lemma 2.1. For x0 ∈ Rd, A ∈ Rd×d, the ODE system (1) is (x0, A)-identifiable if and only if
condition A0 is satisfied.

A0 the set of vectors {x0, Ax0, . . . , A
d−1x0} is linearly independent.

2x(·;x0, A) = {x(t;x0, A) : 0 ⩽ t < ∞}, this inequation means that there exists at least one t ⩾ 0 such
that x(t;x0, A) ̸= x(t;x′

0, A
′).
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Definition 2.1 and Theorem 2.1 are adapted from [42, Definition 1] and [42, Lemma2]. We use x′
0 and

A′ to distinguish other system parameters from the true system parameters x0 and A; x′
0 and A′ can

represent any d-dimensional initial conditions and any d× d parameter matrices, respectively. Here
instead of describing a collective property of a set of systems, we describe an intrinsic property of a
single system with parameters (x0, A). In practice, the aim is to ascertain whether the true underlying
system parameter (x0, A) is uniquely determined by observations. Hence, (x0, A)-identifiability
offers a more intuitive description of the identifiability of the ODE system from a practical perspective.

From a geometric perspective, condition A0 stated in Lemma 2.1 indicates that the initial condition
x0 is not contained in an A-invariant proper subspace of Rd. Intuitively, this means the trajectory
of this system started from x0 spans the entire d-dimensional state space. That is, our observations
cover information on all dimensions of the state space, thus rendering the identifiability of the system.
Additionally, condition A0 is generic, as noted in [41], meaning that the set of system parameters
violating this condition has Lebesgue measure zero. Thus, condition A0 is satisfied for almost all
combinations of x0 and A.

3 Identifiability analysis of the linear ODE system (2)

In this section, we present the identifiability condition for the linear ODE system (2). We consider
the function f(t) in (2) as a specific function of time t. Here we first define f(t) as a r-degree
polynomial function of time t, expressed as follows:

f(t) =

r∑
k=0

vkt
k , vk ∈ Rp . (4)

Simple calculations show that

z(t) =

r∑
k=0

vk

k + 1
tk+1 + z0 .

Thus,

ẋ(t) = Ax(t) +Bz(t) = Ax(t) +

r∑
k=0

Bvk

k + 1
tk+1 +Bz0 . (5)

We denote the unknown parameters of the ODE system (2) as θ, specifically, θ :=
(x0, z0, A,B, {vk}r0), where {vk}r0 denotes all the vk’s for k = 0, . . . , r. Let [xT (t;θ), zT (t;θ)]T

denote the solution of the ODE system (2). It is important to note that under our hidden variables
setting, only x(t;θ) is observable. Based on Equation (5), we present the following identifiability
definition.
Definition 3.1. For x0 ∈ Rd, z0 ∈ Rp, A ∈ Rd×d, B ∈ Rd×p and {vk}r0 ∈ Rp, for all
x′
0 ∈ Rd, all z′

0 ∈ Rp, all A′ ∈ Rd×d, all B′ ∈ Rd×p, and all {v′
k}r0 ∈ Rp, we denote θ′ :=

(x′
0, z

′
0, A

′, B′, {v′
k}r1), we say the ODE system (2) is θ-identifiable: if (x0, A,Bz0, {Bvk}r0) ̸=

(x′
0, A

′, B′z′
0, {B′v′

k}r0), it holds that x(·;θ) ̸= x(·;θ′).

In the ODE system (2), where only variables x are observable, we will, with some terminological
leniency, refer to x(·;θ) as the trajectory of the ODE system (2) with parameters θ. According to
Definition 3.1, if the ODE system (2) with a polynomial f(t) is θ-identifiable, then the trajectory
of the system can uniquely determine the values of (x0, A,Bz0, {Bvk}r0). This determination is
sufficient to identify the causal relationships between observable variables x as described by Equation
(5). Consequently, one can safely intervene in the observable variables of the ODE system and make
reliable causal inferences, despite the fact that matrix B cannot be identified under this definition.
Theorem 3.1. For x0 ∈ Rd, z0 ∈ Rp, A ∈ Rd×d, B ∈ Rd×p, {vk}r0 ∈ Rp, the ODE system (2) is
θ-identifiable if and only if assumption A1 is satisfied.

A1 the set of vectors {β, Aβ, . . . , Ad−1β} is linearly independent, where β = Ar+1(Ax0 +
Bz0) +

∑r
j=0 j!A

r−jBvj , and j! denotes the factorial of j.

The proof of Theorem 3.1 can be found in Appendix D.1. Condition A1 is both sufficient and
necessary, indicating, from a geometric perspective, that the vector β is not contained in an A-
invariant proper subspace of Rd [34, Lemma 3.1].
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The key point of the proof is the introduction of an augmented state y(t) = [xT (t), 1, t, t2, . . . , tr+1]T

with a corresponding ODE system:

ẏ(t) =


A Bz0 Bv0 . . . Bvr−1/r Bvr/(r + 1)
0d 0 0 . . . 0 0
0d 1 0 . . . 0 0
...

...
...

. . .
...

...
0d 0 0 . . . r + 1 0


︸ ︷︷ ︸

denoted as F

y(t) ,

y(0) = [xT
0 , 1, 0, . . . , 0]

T := y0 ,

(6)

where 0d is a d-dimensional zero row vector, and matrix F ∈ R(d+r+2)×(d+r+2). The ODE system
(6) is a homogeneous linear ODE system analogous to (1) but with fully observable variables y.
In other words, we transform our system of interest, (2), which includes hidden confounders, into
a fully observable ODE system (6). This allows us to leverage existing identifiability results for
homogeneous linear ODE systems, specifically Lemma 2.1, to derive the identifiability condition for
the ODE system (2).

Based on this approach, if the state of the hidden variables z(t), as determined by the function f(t)
in the ODE system (2), can be described by some linear combinations of observable functions of
time t, then the identifiability condition of the ODE system (2) can be derived. For an illustration, in
the Appendix E, we provide identifiability conditions for the ODE system (2) when f(t) = vet and
f(t) = v1sin(t) + v2cos(t). While we do not enumerate all functions f(t) that meet this condition,
our primary objective is to demonstrate a method for deriving the identifiability condition for the ODE
(2) when the evolution of its hidden variables conforms to certain specific functions. Researchers can
apply this approach to find appropriate functions f(t) according to their specific requirements.

4 Identifiability analysis of the linear ODE system (3)

In this section, we extend the identifiability analysis to linear ODE systems with causally related
latent confounders. Specifically, we assume that the causal structure of latent variables satisfies the
following latent DAG assumption.

Latent DAG: the causal structure of latent variables can be described by a DAG.

The DAG assumption is commonly employed in causality studies [10, 11, 22, 26, 40, 44]. Under the
latent DAG assumption, the matrix G can be permuted to be a strictly upper triangular matrix, i.e., an
upper triangular matrix with zeros along the main diagonal [11, 19]. Without loss of generality, we
set G as a strictly upper triangular matrix.

Since G is a strictly upper triangular matrix, by the Cayley–Hamilton theorem [35], G is a nilpotent
matrix with an index ⩽ p. Consequently, Gk = 0 for all k ⩾ p.

Based on [34, 37], the solution of z(t) can be expressed as:

z(t) = eGtz0 =

∞∑
k=0

Gkz0

k!
tk =

p−1∑
k=0

Gkz0

k!
tk .

Thus,

ẋ(t) = Ax(t) +Bz(t) = Ax(t) +

p−1∑
k=0

BGkz0

k!
tk . (7)

We observe that Equation (7) has the same function form as Equation (5), but with different coeffi-
cients (system parameters) for the polynomial of time t. Therefore, the ODE system (3) under the
latent DAG assumption can be considered a more complex version of the ODE system (2) when
f(t) follows a polynomial function of time t. Since the ODE system (3) incorporates causally
related latent confounders, which is a more interesting and practical case, we will provide a more
comprehensive identifiability analysis of the ODE system (3). The derived identifiability results can
be easily generated to the case of the ODE system (2).
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4.1 Identifiability condition from a single whole trajectory

We denote the unknown parameters of the ODE system (3) as η, that is, η := (x0, z0, A,B,G). We
further denote the solution of the ODE system (3) as [xT (t;η), zT (t;η)]T ; note that under our latent
variables setting, only x(t;η) is observable. Thus, based on Equation (7), we present the following
identifiability definition.
Definition 4.1. For x0 ∈ Rd, z0 ∈ Rp, A ∈ Rd×d, B ∈ Rd×p and G ∈ Rp×p, under the la-
tent DAG assumption, for all x′

0 ∈ Rd, all z′
0 ∈ Rp, all A′ ∈ Rd×d, all B′ ∈ Rd×p, and all

G′ ∈ Rp×p, we denote η′ := (x′
0, z

′
0, A

′, B′, G′), we say the ODE system (3) is η-identifiable:
if (x0, A,Bz0, BGz0, . . . , BGp−1z0) ̸= (x′

0, A
′, B′z′

0, B
′G′z′

0, . . . , B
′G′p−1z′

0), it holds that
x(·;η) ̸= x(·;η′).

Similar to the case of the ODE system (2), we refer to x(·;η) as the trajectory of the ODE system
(3) with parameters η. Definition 4.1 defines the identifiability of the ODE system (3) from a single
whole trajectory x(·;η). Once the ODE system (3) is η-identifiable, the causal relationships among
the observable variables x can be determined through Equation (7). We then establish the condition
for the identifiability of the ODE system (3) based on Definition 4.1.
Theorem 4.1. For x0 ∈ Rd, z0 ∈ Rp, A ∈ Rd×d, B ∈ Rd×p and G ∈ Rp×p, under the latent DAG
assumption, the ODE system (3) is η-identifiable if and only if assumption B1 is satisfied.

B1: the set of vectors {γ, Aγ, . . . , Ad−1γ} is linearly independent, where γ = Apx0 +∑p−1
j=0 A

p−1−jBGjz0.

The proof of Theorem 4.1 can be found in Appendix D.2. Condition B1 is both sufficient and
necessary, and from a geometric perspective, it indicates that the vector γ is not contained in an
A-invariant proper subspace of Rd [34, Lemma 3.1].

4.2 Identifiability condition from discrete observations sampled from a single trajectory

In practice, we often have access only to a sequence of discrete observations sampled from a trajectory
rather than knowing the whole trajectory. Therefore, we also derive the identifiability conditions
under the scenario where only discrete observations from a trajectory are available. Firstly, we extend
the identifiability definition of the ODE system (3) as follows.
Definition 4.2. For x0 ∈ Rd, z0 ∈ Rp, A ∈ Rd×d, B ∈ Rd×p and G ∈ Rp×p. For any n ⩾ 1,
let tj , j = 1, . . . , n be any n time points and xj := x(tj ;η) be the error-free observation of the
trajectory x(·;η) at time tj . Under the latent DAG assumption, we say the ODE system (3) is η-
identifiable from x1, . . . ,xn, if for all x′

0 ∈ Rd, all z′
0 ∈ Rp, all A′ ∈ Rd×d, all B′ ∈ Rd×p, and all

G′ ∈ Rp×p with (x0, A,Bz0, BGz0, . . . , BGp−1z0) ̸= (x′
0, A

′, B′z′
0, B

′G′z′
0, . . . , B

′G′p−1z′
0),

it holds that ∃j ∈ {1, . . . , n} such that x(tj ;η)̸=x(tj ;η
′).

Definition 4.2 defines the identifiability of the ODE system (3) from n observations sampled from
the trajectory x(·;η). Then we establish the condition for the identifiability of the ODE system (3)
from discrete observations based on Definition 4.2.
Theorem 4.2. For x0 ∈ Rd, z0 ∈ Rp, A ∈ Rd×d, B ∈ Rd×p and G ∈ Rp×p. We define new
observation yj := [xT

j , 1, tj , t
2
j , . . . , t

p−1
j ]T ∈ Rd+p, for j = 1, . . . , n. Under the latent DAG

assumption, the ODE system (3) is η-identifiable from discrete observations x1, . . . ,xn, if and only
if assumption C1 is satisfied.

C1: there exists (d+ p) yj’s with indices denoting as {j1, j2, . . . , jd+p} ⊆ {1, 2, . . . , n}, such
that the set of vectors {yj1 ,yj2 , . . . ,yjd+p

} is linearly independent.

The proof of Theorem 4.2 can be found in Appendix D.3. Condition C1 is both sufficient and
necessary. This theorem states that as long as there are d + p observations xj’s such that the
corresponding augmented new observations yj’s are linearly independent, the ODE system (3) is
η-identifiable from these discrete observations. Under the latent DAG assumption, we can transfer
the ODE system (3), which includes hidden confounders, into a (d+ p)-dimensional fully observable
ODE system (1) through the augmented state y(t). Condition C1 indicates that our observations span
the entire (d+ p)-dimensional state space, thus rendering the system identifiable.
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Both Definition 4.1 and Definition 4.2 define the identifiability of the ODE system (3) to some extent
of the unknown parameters. In other words, given the available observations, under Definition 4.1
and Definition 4.2, one can only identify the values of (x0, A,Bz0, BGz0, . . . , BGp−1z0), but not
the values of (z0, B,G). Based on Equation (7), this level of identifiability is sufficient to identify
the causal relationships between observable variables x, enabling safe intervention on the observable
variables with reliable causal inferences. However, in scenarios where practitioners can intervene
in the latent variables and require inferring the causal effects of the intervened system, identifying
the matrices B and G becomes essential for reliable causal references. For instance, in chemical
kinetics, where the evolution of chemical concentrations over time can often be modeled by an ODE
system [8, 12], some chemicals may not be measurable during the reaction, rendering them latent
variables. Nonetheless, practitioners can intervene in these latent variables by setting specific initial
concentrations. Therefore, we provide an identifiability analysis of the linear ODE system (3) when
practitioners can control the initial condition of the latent variables: z0.

4.3 Identifiability condition from p controllable whole trajectories

Assuming the initial condition of the latent variables z0 is controllable, which means that the values
of z0 can be treated as given values, we denote it as z∗

0. In the following, we provide the identifiability
condition of the ODE system (3) when we are given p initial conditions z∗

0, denoting as z∗i
0 . We first

present the definition.
Definition 4.3. Given z∗i

0 ∈ Rp for i = 1, . . . , p, for x0 ∈ Rd, A ∈ Rd×d, B ∈ Rd×p and
G ∈ Rp×p, under the latent DAG assumption, for all x′

0 ∈ Rd, all A′ ∈ Rd×d, all B′ ∈ Rd×p,
and all G′ ∈ Rp×p, we denote ηi := (x0, z

∗i
0 , A,B,G) and η′

i := (x′
0, z

∗i
0 , A′, B′, G′), we say the

ODE system (3) is {ηi}
p
1-identifiable: if (x0, A,B,G) ̸= (x′, A′, B′, G′), it holds that ∃i such that

x(·;ηi) ̸= x(·;η′
i).

Definition 4.3 defines the identifiability of the ODE system (3) from p whole trajectories x(·;ηi)
with i = 1, . . . , p, and under this definition, matrix B and G are also identifiable. Based on this
definition, we provide the identifiability condition.
Theorem 4.3. Given z∗i

0 ∈ Rp for i = 1, . . . , p, for x0 ∈ Rd, A ∈ Rd×d, B ∈ Rd×p and G ∈ Rp×p,
under the latent DAG assumption, the ODE system (3) is {ηi}

p
1-identifiable if assumptions B2, B3

and B4 are all satisfied.

B2: each z∗i
0 for i = 1, . . . , p, satisfies assumption B1. That is, if we set γi = Apx0 +∑p−1

j=0 A
p−1−jBGjz∗i

0 , then the set of vectors {γi, Aγi, . . . , A
d−1γi} is linearly indepen-

dent for all i = 1, . . . , p.

B3: the set of vectors {z∗1
0 , z∗2

0 , . . . ,z∗p
0 } is linearly independent.

B4: the matrix composed by vertically stack the matrices {B,BG, . . . , BGp−1} has rank p.

The proof of Theorem 4.3 can be found in Appendix D.4. Assumption B2 ensures that the ODE system
(3) is ηi-identifiable for all i = 1, . . . , p. Consequently, (x0, A,Bz∗i

0 , BGz∗i
0 , . . . , BGp−1z∗i

0 ) for
all i = 1, . . . , p is identifiable. Then, under assumption B3, the identifiability of matrix B is
established. To identify matrix G, assumption B4 is required. While the ability to control the initial
condition of the latent variables may appear strict, it is a reasonable assumption in our context. This is
because identifying matrices B and G is necessary only when practitioners can intervene in the latent
variables, thereby allowing control over their initial conditions. An alternative approach to identifying
B and G involves intervening in the initial condition of each latent variable zi independently, rather
than controlling the initial condition of all latent variables z simultaneously. This method draws
inspiration from the "genetic single-node intervention" proposed by [32], where one can intervene at
each latent node individually. Further details of this method can be found in Appendix F.

4.4 Identifiability condition from discrete observations sampled from p controllable
trajectories

We also extend the identifiability analysis of the ODE system (3) to cases where only discrete
observations from p controllable trajectories are available.
Definition 4.4. Given z∗i

0 ∈ Rp for i = 1, . . . , p, for x0 ∈ Rd, A ∈ Rd×d, B ∈ Rd×p and
G ∈ Rp×p. For any n ⩾ 1, let tj , j = 1, . . . , n be any n time points and xij := x(tj ;ηi) be the
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error-free observation of the trajectory x(·;ηi) at time tj . Under the latent DAG assumption, we
say the ODE system (3) is {ηi}

p
1-identifiable from xi1, . . . ,xin, i = 1, . . . , p, if for all x′

0 ∈ Rd, all
A′ ∈ Rd×d, all B′ ∈ Rd×p, and all G′ ∈ Rp×p with (x0, A,B,G) ̸= (x′

0, A
′, B′, G′), it holds that

∃i ∈ {1, . . . , p} and j ∈ {1, . . . , n} such that x(tj ;ηi)̸=x(tj ;η
′
i).

Based on Definition 4.4 we present the identifiability condition.
Theorem 4.4. Given z∗i

0 ∈ Rp for i = 1, . . . , p, for x0 ∈ Rd, A ∈ Rd×d, B ∈ Rd×p and
G ∈ Rp×p. We define new observation yij := [xT

ij , 1, tj , t
2
j , . . . , t

p−1
j ]T ∈ Rd+p, for i = 1, . . . , p

and j = 1, . . . , n. Under the latent DAG assumption, the ODE system (3) is {ηi}
p
1-identifiable from

discrete observations xi1, . . . ,xin, i = 1, . . . , p, if assumptions C2, B3 and B4 are all satisfied.

C2: for each i ∈ {1, . . . , p} there exists (d + p) yij’s with indexes denot-
ing as {ji1, ji2, . . . , ji,d+p} ⊆ {1, 2, . . . , n}, such that the set of vectors
{yiji1 ,yiji2 , . . . ,yiji,d+p

} is linearly independent.

The proof of Theorem 4.4 can be found in Appendix D.5. Assumption C2 ensures that the ODE
system (3) is ηi-identifiable from discrete observations xi1, . . . ,xin for all i = 1, . . . , p. As in
Subsection 4.3, under assumptions B3 and B4, the matrices B and G are also identifiable.

5 Simulations

To evaluate the validity of the identifiability conditions established in Section 3 and 4, we present the
results of simulations. As previously indicated, the ODE system (3) can be treated as a more intricate
version of the ODE system (2); hence, our simulation experiments are centered on the former.

Simulation design. We conduct four sets of simulations, which include one identifiable case and one
unidentifiable case for both the η-identifiable check and the {ηi}

p
1-identifiable check. The dimensions

of both observable variables, d, and latent variables, p, are set to 3. The true underlying parameters
of the systems are provided below. Observations are simulated from the true ODE systems for each
case, with n equally-spaced observations generated from the time interval [0, 1] for each trajectory,
and we only keep the values of the observable variables x.

A =

[
2 −2 1
1 1 −1
1 0 2

]
, B =

[−2 −2 2
0 −1 −2
−1 −1 −2

]
, G =

[
0 2 1
0 0 −2
0 0 0

]
, A′ =

[
1 0 0
0 1 0
0 0 1

]
,

x0 =

[−1
1
1

]
, z0 =

[
1
−2
−1

]
, z∗1

0 =

[
1
0
0

]
, z∗2

0 =

[
0
1
0

]
, z∗3

0 =

[
0
0
1

]
.

η-identifiable: η = (x0, z0, A,B,G), unidentifiable: η = (x0, z0, A
′, B,G) .

{ηi}
p
1-identifiable: ηi = (x0, z

∗i
0 , A,B,G), unidentifiable: ηi = (x0, z

∗i
0 , A′, B,G), i = 1, 2, 3 .

Parameter estimation. The Nonlinear Least Squares (NLS) method is employed for parameter
estimation, a widely used technique for estimating parameters in nonlinear regression models,
including ODEs [7, 21, 46]. The "least_squares" function from the "scipy.optimize" Python module,
with default hyperparameter settings, is utilized for implementation. Given that the NLS loss function
for our simulation is non-convex, parameter initialization is performed near the true values to
promote convergence to the global minimum. Specifically, for the η-(un)identifiable cases, initial
parameter values are set to the true parameters plus a random value drawn from a uniform distribution
U(−0.1, 0.1) for each replication. For {ηi}

p
1-(un)identifiable cases, initial parameter values are set

to the true values plus a random value from U(−0.3, 0.3).

Evaluation metric. Mean Squared Error (MSE) is adopted as the metric to assess the accuracy of
the parameter estimator. To ensure the reliability of the estimation results, 100 independent random
replications are run for each configuration, and we report the mean and variance of the squared error.

Results analysis. Table 1 and Table 2 present the simulation results for the η-(un)identifiable cases
and the {ηi}

p
1-(un)identifiable cases, respectively. According to Definition 4.1 and Definition 4.3, for

the η-(un)identifiable cases, the identifiability of (x0, A,Bz0, BGz0, BG2z0) needs to be checked,
while for the {ηi}

p
1-(un)identifiable cases, we need to check the identifiability of (x0, A,B,G).
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Since x0 is consistently identifiable (with MSE less than 1.00E-10) across all (un)identifiable cases,
its results are not presented.

In both Tables, for identifiable cases, as the number of samples n increases, the MSEs for all
parameters of interest decrease and approach zero. However, in the unidenfiable cases, where the
identifiability condition B1/B2 stated in Theorem 4.1/4.3 is unmet, the MSEs for certain parameters
remain high irrespective of sample size. These results offer strong empirical support for the validity
of the identifiability conditions outlined in Theorem 4.1 and Theorem 4.3. It is noteworthy that in
the {ηi}

p
1 case, where observations are sampled from p = 3 controllable trajectories, remarkably

accurate parameter estimates can be obtained even with a limited number of samples.

Table 1: MSEs of the η-(un)identifiable cases of the ODE (3)

n
Identifiable Unidentifiable

A Bz0 BGz0 BG2z0 A Bz0 BGz0 BG2z0

10 6.00E-05 0.0004 0.0044 0.0007 0.0994 0.0494 0.9185 0.6482
(±5.40E-08) (±3.45E-06) (±0.0004) (±3.91E-06) (±0.0157) (±0.1243) (±8.3148) (±1.4306)

100 4.15E-05 0.0003 0.0029 0.0005 0.0372 0.0174 0.3517 0.5767
(±1.62E-08) (±8.52E-07) (±9.42E-05) (±2.90E-06) (±0.0032) (±0.0087) (±0.3460) (±1.4055)

500 2.65E-05 0.0002 0.0019 0.0002 0.0461 0.1071 0.5783 0.3648
(±8.71E-09) (±4.38E-07) (±4.84E-05) (±8.38E-07) (±0.0099) (±0.1768) (±2.5747) (±0.4507)

Table 2: MSEs of the {ηi}
p
1-(un)identifiable cases of the ODE (3)

n
Identifiable Unidentifiable

A B G A B G

10 5.83E-22 2.85E-21 2.27E-21 0.6349 0.1913 0.0044
(±7.41E-42) (±2.75E-40) (±5.69E-41) (±0.7464) (±0.0686) (±0.0011)

30 1.50E-22 7.80E-22 5.76E-22 0.6169 0.1850 0.0045
(±3.23E-43) (±1.14E-41) (±5.28E-42) (±0.7194) (±0.0657) (±0.0007)

50 5.16E-23 3.01E-22 2.39E-22 0.5876 0.1761 0.0045
(±6.20E-44) (±3.27E-42) (±8.46E-43) (±0.6895) (±0.0627) (±0.0008)

For the η-(un)identifiable cases, assumption C1 stated in Theorem 4.2 holds true for all values
of n in the identifiable cases, while it is violated across all n in the unidentifiable cases. In the
{ηi}

p
1-(un)identifiable cases, condition C2 stated in Theorem 4.4 is satisfied for all values of n in the

identifiable cases, but is found to be violated for all values of n in the unidentifiable cases. These
findings provide strong empirical evidence supporting the validity of the identifiability conditions
proposed in Theorem 4.2 and Theorem 4.4.

In Appendix G, we present additional simulation results for higher-dimensional cases, along with
simulations that incorporate a variety of ground-truth parameter configurations. These results
consistently affirm the validity of our proposed identifiability conditions. For further details, please
refer to Appendix G.

6 Related work

Identifiability analysis of linear ODE systems. Within control theory, extensive research has been
conducted on the identifiability analysis of linear dynamical systems governed by ODEs [5, 14, 15, 17].
In the applied mathematics area, Stanhope et al. [34] and Qiu et al. [28] have systematically
investigated the identifiability of linear ODE systems based on a single trajectory. Furthermore,
Wang et al. [42] have extended these findings to scenarios where only discrete observations sampled
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from a single trajectory are available. However, existing studies primarily concentrate on linear
ODE systems with fully observable variables. To the best of our knowledge, our work represents the
inaugural endeavor to systematically analyze the identifiability of linear ODE systems in the presence
of hidden confounders.

Connection between causality and differential equations. Differential equations provide a nat-
ural framework for understanding causality within dynamic systems, particularly in the context of
continuous-time processes [1, 31]. Consequently, significant efforts have been directed towards
establishing a theoretical link between causality and differential equations. In the deterministic case,
Mooij et al. [25] and Rubenstein et al. [30] have established a mathematical connection between
ODEs and Structural Causal Models (SCMs). Wang et al. [42] have proposed a method for inferring
the causal structure of linear ODEs. In the domain of neural ODEs, Aliee et al. [2, 3] have applied
various regularization techniques to enhance the recovery of the causal relationships. Turning to the
stochastic case, Hansen et al. [18] and Wang et al. [41] have proposed causal interpretations and
identifiability analysis of Stochastic Differential Equations (SDEs). Additionally, Bellot et al. [6] have
introduced a method for consistently discovering the causal structure of SDE systems using penalized
neural ODEs. These works aim to establish a theoretical connection between causality and differential
equations in various ways. Our contribution to this scholarly landscape lies in the systematic analysis
of the identifiability of linear ODEs, particularly in the presence of hidden confounders.

7 Conclusion

This paper presents a systematic identifiability analysis of linear ODE systems incorporating hidden
confounders. Specifically, we establish a sufficient and necessary identifiability condition for the
linear ODE system with independent latent confounders. Additionally, we provide four identifiability
conditions for the linear ODE system with causally related latent confounders, wherein the causal
structure of the latent confounders adheres to a DAG.

A notable limitation of our work lies in the practical verification of these identifiability conditions,
given that the true underlying system parameters are often unavailable in real-world scenarios.
However, our study significantly contributes to the understanding of the intrinsic structure of linear
ODE systems with hidden confounders. By providing insights into the identifiability aspects, our
findings empower practitioners to utilize models that adhere to the proposed conditions (e.g., through
constrained parameter estimation) for learning from real-world data while ensuring identifiability.
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Appendix for "Identifiability Analysis of
Linear ODE Systems with Hidden
Confounders"
A Summary of notations and proposed identifiability conditions

Table 3: Summary of notations

Notation Description
x/z observable/latent variables
xi/zi the i-th observable/latent variable
t time
tj the j-th time point
x(t)/z(t) state of observable/latent variable at time t
xj x(tj), observable state at time tj
x0/z0 initial condition of observable/latent variable
ẋ(t) first derivative of x(t) w.r.t. time t
d dimension of observable variables
p dimension of latent variables
A,B,G constant parameter matrices defined in Eq.(2) and (3)
f(t) Function of time t defined in Eq.(2)
vk constant parameter vector defined in Eq.(4)
{vk}r0 all the vk’s for k = 0, . . . , r
θ := (x0, z0, A,B, {vk}r0), the system parameter of ODE system (2)
β a vector defined in Thm.3.1 A1
y(t) augmented state
y0 initial condition of augmented variable
η := (x0, z0, A,B,G), the system parameter of ODE system (3)
γ a vector defined in Thm.4.1 B1
z∗
0 given initial condition of latent variable

z∗i
0 the i-th given initial condition of latent variable

ηi := (x0, z
∗i
0 , A,B,G), the system parameter of ODE system (3)

γi a vector defined in Thm 4.3 B2
xij := x(tj ;ηi), observable state of ODE system (3) with parameter ηi at time tj
yij augmented state of xij at time tj
A′,x′

0, . . . the alternative counterpart corresponding to A,x0, . . .

Table 4: Summary of proposed identifiability conditions

ODEs Conds. # Traj. Obs. Def./Thm. Necessity
Eq.(2)+(4) A1 1 continuous 3.1 Yes

Eq.(3) latent DAG, B1 1 continuous 4.1 Yes
Eq.(3) latent DAG, C1 1 discrete 4.2 Yes
Eq.(3) latent DAG, B2, B3, B4 p continuous 4.3 No
Eq.(3) latent DAG, C2, B3, B4 p discrete 4.4 No
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B Real world examples

In this section, we present two real-world examples that correspond to the ODE systems (2) and (3).
These examples initially assume fully observable systems, with latent variables introduced by us
based on prior experience or established physical laws.

B.1 Damped harmonic oscillators model

Consider a one-dimensional system comprising D point masses mi for i = 1, . . . , D with positions
Qi(t) ∈ R and momenta Pi(t) ∈ R. These masses are interconnected by springs characterized by
spring constants ki and equilibrium lengths li, and each mass is subject to friction with coefficient bi.
The system’s boundary conditions are fixed at Q0(t) = 0 and QD+1(t) = L.

The dynamics of this system are described by the following linear ODE system [25]:

Ṗi(t) = ki(Qi+1(t)−Qi(t)− li)− ki−1(Qi(t)−Qi−1(t)− li−1)− biPi(t)/mi

Q̇i(t) = Pi(t)/mi

(8)

where Q0(t) = 0 and QD+1(t) = L represent the fixed boundary conditions. External forces Fj(t)
(e.g., wind force or a varying magnetic field) may influence the entire system of coupled oscillators.
These external forces can be modeled here as latent variables with constant derivatives. Consequently,
the system can be reformulated as follows:

Ṗi(t) = ki(Qi+1(t)−Qi(t)− li)− ki−1(Qi(t)−Qi−1(t)− li−1)− biPi(t)/mi +
∑
j

αijFj(t)

Q̇i(t) = Pi(t)/mi

Ḟj(t) = cj
(9)

where αij is a constant determining the effect of the external force Fj(t) on the i-th mass, and cj is
the constant rate of change of the external force Fj(t). This model aligns with our ODE system (2),
and an illustrative causal structure for this model is provided in Figure 3.

Figure 3: Example causal structure of the damped harmonic oscillators model with 3 oscillators and
2 latent variables.

In regions with predictable wind patterns, such as during monsoon seasons or in controlled experi-
mental settings, wind force can be approximated with a constant rate, making this an ideal context for
modeling external forces with constant derivatives. Furthermore, constant forces or those represented
as polynomial functions of time align well with our ODE system structure. For instance, a uniform
magnetic field acting on the system would produce a constant force. These examples demonstrate
that various latent factors can effectively fit within our ODE structure.

15



B.2 Population model

The growth of a population P (t) can be described by a linear ODE [4]:

Ṗ (t) = aP (t),

where a is a constant representing the population growth rate. This system may also be influenced
by latent variables Li, such as environmental factors or food supply. By incorporating these latent
influences, the system can be expressed as:

Ṗ (t) = aP (t) + bL1(t) + cL2(t)

L̇1(t) = lL2(t)

L̇2(t) = m

where a, b, c, l and m are constants. Here, L1(t) represents the food supply, which is influenced by
the environmental factor L2(t). L2(t) corresponds to an environmental factor, such as temperature or
pollution level, that changes steadily over time. This model aligns well with our ODE system (3), and
an illustrative causal structure for this model is provided in Figure 4.

Figure 4: Causal structure of the population model.

An example of an environmental factor changing at a constant rate is pollution from an industrial
plant that continuously releases a fixed amount of pollutants, or from a wastewater treatment plant
that discharges a specified amount of treated wastewater into a river on an hourly basis.
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C An example of an unidentifiable case of the linear ODE system (3)

Recall that the parameters of the ODE system (3) are:

x0 =

[
1
1

]
, z0 =

[
1
1

]
, B =

[
1 1
1 1

]
, G =

[
0 1
0 0

]
,

A =

[
1 0
0 1

]
, A′ =

[
0 1
1 0

]
, M =

[
A B
0 G

]
, M ′ =

[
A′ B
0 G

]
.

We first calculate the solution of z(t),

z(t) = eGtz0

=

∞∑
k=0

Gkz0

k!
tk =

1∑
k=0

Gkz0

k!
tk =

[
1 + t
1

]
We intervene x1(t) = 1, then under matrix M :

ẋ2(t) = x2(t) + z1(t) + z2(t)

= x2(t) + t+ 2 .

To solve this differential equation, we rewrite it in the standard linear form and multiply both sides by
the integrating factor e−t,

e−tẋ2(t)− e−tx2(t) = (t+ 2)e−t .

The left-hand side of this equation is the derivative of e−tx2(t):

d

dt
(e−tx2(t)) = (t+ 2)e−t .

Next, integrate both sides w.r.t. t:∫
d

dt
(e−tx2(t))dt =

∫
(t+ 2)e−tdt .

The left-hand side integrates to:
e−tx2(t) .

Next, we use integration by parts to find the integral on the right-hand side:∫
(t+ 2)e−tdt = −(t+ 2)e−t −

∫
−e−tdt

= −(t+ 2)e−t − e−t

= −(t+ 3)e−t .

Thus:
e−tx2(t) = −(t+ 3)e−t + C ,

where C is the constant of the integration.

Multiplying both sides by et to solve for x2(t):

x2(t) = −t− 3 + Cet .

Now, use the initial condition x2(0) = 1, we get

C = 4 .

Therefore,
x2(t) = 4et − t− 3 .

Whereas under matrix M ′:
ẋ2(t) = x1(t) + z1(t) + z2(t)

= t+ 3 .

Simple calculations show that
x2(t) = t2/2 + 3t+ 1 .
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D Detailed proofs

D.1 Proof of Theorem 3.1

Proof. Recall that the first derivative of x(t) can be expressed as:

ẋ(t) = Ax(t) +Bz(t)

= Ax(t) +

r∑
k=0

Bvk

k + 1
tk+1 +Bz0 .

Set

y(t) =



x(t)
1
t
t2

...
tr+1

 ,

we see that y(t) ∈ Rd+r+2, and the first derivative of y(t) w.r.t. time t can be expressed as

ẏ(t) =



ẋ(t)

0
1
2t
...

(r + 1)tr



=



A Bz0 Bv0
Bv1

2 . . . Bvr−1

r
Bvr

r+1

0d 0 0 0 . . . 0 0
0d 1 0 0 . . . 0 0
0d 0 2 0 . . . 0 0
...

...
...

...
. . .

...
...

0d 0 0 0 . . . r + 1 0


︸ ︷︷ ︸

denoted as F



x(t)

1
t
t2

...
tr+1


︸ ︷︷ ︸

y(t)

,

where 0d denotes a d dimensional zero row vector. Obviously,

y(0) = [xT
0 , 1, 0, 0, . . . , 0]

⊤ ,

we denote it as y0. Therefore, y(t) follows a homogeneous linear ODE system that can be expressed
as:

ẏ(t) = Fy(t) ,

y(0) = y0 ,
(10)

where F ∈ R(d+r+2)×(d+r+2). Worth noting that all state variables in the ODE system (10)
are observable. Then according to Lemma 2.1, the identifiability of the dynamical system de-
scribed by the ODE system (10) is contingent upon the linear independence of the vectors
{y0, Fy0, F

2y0, . . . , F
d+r+1y0}. Specifically, the system is (y0, F )-identifiable if and only if

this set of vectors is linearly independent, indicating that the matrix formed by these vectors, denoted
by H , has a rank of d+ r + 2. In the following, we will elucidate that if and only assumption A1 is
satisfied, the rank of this matrix H equals d+ r + 2.
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Some calculations show that,

F ky0 =



Ak−1(Ax0 +Bz0) +
∑k−2

j=0 j!A
k−2−jBvj

0
...
0
k!
0
...
0


for k = 1, 2, . . . , r + 1 , (11)

where k! is the (d+ k + 1)-th element.

And

F ky0 =


Ak−(r+2)(Ar+2x0 +Ar+1Bz0 +

∑r
j=0 j!A

r−jBvj)
0
...
0

 for k = r+2, . . . , r+ d+1 .

(12)
According to assumption A1 in Theorem 3.1,

β = Ar+2x0 +Ar+1Bz0 +

r∑
j=0

j!Ar−jBvj ,

therefore, F ky0 can also be expressed as

F ky0 =


Ak−(r+2)β

0
...
0

 for k = r + 2, . . . , r + d+ 1 . (13)

We denote the matrix

H : =
[
y0 Fy0 F 2y0 . . . F r+1y0 F r+2y0 . . . F d+r+1y0

]
: =

[
H11 H12

H21 H22

]
as a block matrix. Then, based on Equations (11) and (13), one obtains that

H11 =
[
x0 Ax0 +Bz0 A2x0 +ABz0 +Bv0 . . . Ar+1x0 +ArBz0 +

∑r−1
j=0 j!A

r−1−jBvj

]
∈ Rd×(r+2) ,

H12 =
[
β Aβ . . . Ad−1β

]
∈ Rd×d ,

H21 =


1 0 0 . . . 0
0 1 0 . . . 0
0 0 2! . . . 0
...

...
...

. . .
...

0 0 0 . . . (r + 1)!

 ∈ R(r+2)×(r+2) ,

H22 = 0(r+2)×d ∈ R(r+2)×d .

Some calculations show that

rank(H) = rank(H12) + rank(H21) .

It is apparent that
rank(H21) = r + 2 .
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To achieve rank(H) = d+ r+ 2, the rank of H12 must be d. The rank of H12 equals d if and only if
the set of vectors {β, Aβ, . . . , Ad−1β} is linearly independent, that is, assumption A1 is satisfied.

Now that we have proved that the ODE system (10) is (y0, F )-identifiable if and only if assumption
A1 is satisfied. That is, under assumption A1, the trajectory y(·;y0, F ) uniquely determines both
y0 and matrix F . Consequently, it also uniquely determines (x0, A,Bz0, Bv0, . . . , Bvr), thus
establishing that the ODE system (2) is θ-identifiable if and only if assumption A1 is satisfied.

D.2 Proof of Theorem 4.1

Proof. Recall that the first derivative of x(t) can be expressed as:

ẋ(t) = Ax(t) +Bz(t)

= Ax(t) +

p−1∑
k=0

BGkz0

k!
tk .

Set

y(t) =



x(t)
1
t
t2

...
tp−1

 ,

we see that y(t) ∈ Rd+p, and the first derivative of y(t) w.r.t. time t can be expressed as

ẏ(t) =



ẋ(t)

0
1
2t
...

(p− 1)tp−2



=



A Bz0 BGz0
BG2z0

2! . . . BGp−2z0

(p−2)!
BGp−1z0

(p−1)!

0d 0 0 0 . . . 0 0
0d 1 0 0 . . . 0 0
0d 0 2 0 . . . 0 0
...

...
...

...
. . .

...
...

0d 0 0 0 . . . p− 1 0


︸ ︷︷ ︸

denoted as F



x(t)

1
t
t2

...
tp−1


︸ ︷︷ ︸

y(t)

,

where 0d denotes a d dimensional zero row vector. Obviously,

y(0) = [xT
0 , 1, 0, 0, . . . , 0]

⊤ ,

we denote it as y0. Therefore, y(t) follows a homogeneous linear ODE system that can be expressed
as:

ẏ(t) = Fy(t) ,

y(0) = y0 ,
(14)

where F ∈ R(d+p)×(d+p). Worth noting that all state variables in the ODE system (14) are observable.
Then according to Lemma 2.1, the identifiability of the dynamical system described by the ODE sys-
tem (14) is contingent upon the linear independence of the vectors {y0, Fy0, F

2y0, . . . , F
d+p−1y0}.

Specifically, the system is (y0, F )-identifiable if and only if this set of vectors is linearly independent,
indicating that the matrix formed by these vectors, denoted by H , has a rank of d+p. In the following,
we will elucidate that if and only assumption B1 is satisfied, the rank of this matrix H equals d+ p.
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Some calculations show that,

F ky0 =



Akx0 +
∑k−1

j=0 A
k−1−jBGjz0

0
...
0
k!
0
...
0


for k = 1, 2, . . . , p− 1 , (15)

where k! is the (d+ k + 1)-th element.

And

F ky0 =


Ak−p(Apx0 +

∑p−1
j=0 A

p−1−jBGjz0)
0
...
0

 for k = p, p+ 1, . . . , p+ d− 1 . (16)

According to assumption B1 in Theorem 3.1,

γ = Apx0 +

p−1∑
j=0

Ap−1−jBGjz0 ,

therefore, F ky0 can also be expressed as

F ky0 =


Ak−pγ

0
...
0

 for k = p, p+ 1, . . . , p+ d− 1 . (17)

We denote the matrix

H : =
[
y0 Fy0 F 2y0 . . . F p−1y0 F py0 . . . F p+d−1y0

]
: =

[
H11 H12

H21 H22

]
as a block matrix. Then, based on Equations (15) and (17), one obtains that

H11 =
[
x0 Ax0 +Bz0 A2x0 +ABz0 +BGz0 . . . Ap−1x0 +

∑p−2
j=0 A

p−2−jBGjz0

]
∈ Rd×p ,

H12 =
[
γ Aγ . . . Ad−1γ

]
∈ Rd×d ,

H21 =


1 0 0 . . . 0
0 1 0 . . . 0
0 0 2! . . . 0
...

...
...

. . .
...

0 0 0 . . . (p− 1)!

 ∈ Rp×p ,

H22 = 0p×d ∈ Rp×d .

Some calculations show that

rank(H) = rank(H12) + rank(H21) .

It is apparent that
rank(H21) = p .
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To achieve rank(H) = d+ p, the rank of H12 must be d. The rank of H12 equals d if and only if the
set of vectors {γ, Aγ, . . . , Ad−1γ} is linearly independent, that is, assumption B1 is satisfied.

Now that we have proved that the ODE system (14) is (y0, F )-identifiable if and only if assumption B1
is satisfied. That is, under assumption B1, the trajectory y(·;y0, F ) uniquely determines both y0 and
the matrix F . Consequently, it also uniquely determines (x0, A,Bz0, BGz0, . . . , BGp−1z0), thus
establishing that the ODE system (3) is η-identifiable if and only if assumption B1 is satisfied.

D.3 Proof of Theorem 4.2

Before providing the main proof, we first present two lemmas we will use for our proof.

Lemma D.1. [34, Theorem 3.4] The ODE system (1) is (x0, A)-identifiable if and only if the
trajectory x(·;x0, A) is not confined to a proper subspace of Rd.

Lemma D.2. [34, Lemma 6.1] Trajectory x(·;x0, A) is not confined to a proper subspace of Rd if
and only if there exists t1, t2, . . . , td such that x1,x2, . . . ,xd are linearly independent.

Proof. In the proof of Theorem 4.1, we demonstrated that the ODE system (3), under latent DAG
assumption, can be transformed into a fully observable homogeneous linear ODE system (14).
According to Lemma D.1, the ODE system (14) is (y0, F )-identifiable if and only if trajectory
y(·;y0, F ) is not confined to a proper subspace of Rd+p. Furthermore, based on Lemma D.2,
this condition holds if and only if there exists time points t1, t2, . . . , td+p such that the vectors
y1,y2, . . . ,yd+p are linearly independent (i.e., assumption C1). Therefore, if and only if assumption
C1 is satisfied, the trajectory y(·;y0, F ) is not confined to a proper subspace of Rd+p, ensuring that
the ODE system (14) is (y0, F )-identifiable. Consequently, the ODE system (3) is η-identifiable.

D.4 Proof of Theorem 4.3

Proof. Under assumption B2, since each z∗i
0 satisfies assumption B1, Theorem 4.1 implies that the

ODE system (3) is ηi-identifiable for all i = 1, . . . , p. That is, one can identify

(x0, A,Bz∗i
0 , BGz∗i

0 , . . . , BGp−1z∗i
0 )

for all i = 1, . . . , p.

Next, we will prove that matrix B is identifiable under assumption B3.

Define the matrix
S :=

[
Bz∗1

0 Bz∗2
0 . . . Bz∗p

0

]
,

we know that S ∈ Rd×p, and S is identifiable. The matrix S can also be expressed as:

S = B
[
z∗1
0 z∗2

0 . . . z∗p
0

]
: = BZ ,

where under assumption B3, the matrix Z is invertible. Therefore,

B = SZ−1 .

Since Z is a known matrix, B is identifiable.

Similarly, we can prove that BGj for j = 1, . . . , p− 1 is also identifiable.

We now show that, under assumption B4, the matrix G is identifiable.

Define the matrix

W :=


B
BG

...
BGp−1

 ,

we know that W ∈ Rdp×p, and W is identifiable.
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Since G is a p× p nilpotent matrix, Gp = 0, thus BGp = 0 . If we define the matrix

V :=


BG
BG2

...
BGp

 ,

then V ∈ Rdp×p, and V is identifiable. The matrix V can also be expressed as:

V =


B
BG

...
BGp−1

G = WG. (18)

Under assumption B4, one can find p linearly independent rows in matrix W . Denote the matrix
composed of these p linearly independent rows as Wp, which is invertible. Denote the matrix
composed of the corresponding p rows of V as Vp, we have

Vp = WpG .

Since Wp is invertible, then
G = W−1

p Vp .

Because both Vp and Wp are identifiable, G is also identifiable.

D.5 Proof of Theorem 4.4

Proof. Under assumption C2, for each i ∈ {1, . . . , p}, the corresponding observations satisfy
assumption C1. Based on Theorem 4.2, the ODE system (3) is ηi-identifiable for all i = 1, . . . , p.
This implies that one can identify

(x0, A,Bz∗i
0 , BGz∗i

0 , . . . , BGp−1z∗i
0 )

for all i = 1, . . . , p.

According to the proof of Theorem 4.3, under assumptions B3 and B4, matrices B and G are also
identifiable.
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E Identifiability conditions of the linear ODE system (2) with other f(t)

In this section, we provide identifiability conditions for the linear ODE system (2) with f(t) = vet

and f(t) = v1sin(t) + v2cos(t). For notational simplicity, we slightly abuse notation by using the
same symbols as in Section 3.

E.1 When f(t) follows an exponenial function of time t

We define f(t) in the ODE system (2) as:

f(t) = vet , v ∈ Rp .

Simple calculations show that
z(t) = vet + z0 − v .

Thus,

ẋ(t) = Ax(t) +Bz(t)

= Ax(t) +Bvet +Bz0 −Bv .
(19)

We denote the unknown parameters of the ODE system (2) with this f(t) as θ, specifically, θ :=
(x0, z0, A,B,v). Let [xT (t;θ), zT (t;θ)]T denote the solution of the ODE system (2). It is important
to note that under our hidden variables setting, only x(t;θ) is observable. Based on Equation (19),
we present the following identifiability definition.
Definition E.1. For x0 ∈ Rd, z0 ∈ Rp, A ∈ Rd×d, B ∈ Rd×p and v ∈ Rp, for all x′

0 ∈ Rd, all
z′
0 ∈ Rp, all A′ ∈ Rd×d, all B′ ∈ Rd×p, and all v′ ∈ Rp, we denote θ′ := (x′

0, z
′
0, A

′, B′,v′), we
say the ODE system (2) is θ-identifiable: if (x0, A,Bz0, Bv) ̸= (x′

0, A
′, B′z′

0, B
′v′), it holds that

x(·;θ) ̸= x(·;θ′).

According to Definition E.1, if the ODE system (2) with an exponential f(t) is θ-identifiable, then the
trajectory of the system can uniquely determine the values of (x0, A,Bz0, Bv). This determination
is sufficient to identify the causal relationships between observable variables x as described by
Equation (19). Consequently, one can safely intervene in the observable variables of the ODE system
and make reliable causal inferences, despite the fact that matrix B cannot be identified under this
definition.
Theorem E.1. For x0 ∈ Rd, z0 ∈ Rp, A ∈ Rd×d, B ∈ Rd×p, and v ∈ Rp, the ODE system (2) is
θ-identifiable if and only if assumption D1 is satisfied.

D1 the set of vectors {y0, Fy0, . . . , F
d+1y0} is linearly independent, where y0 = [xT

0 , 1, 1]
T ,

and

F =

[
A Bv Bz0 −Bv
0d 1 0
0d 0 0

]
,

0d denotes a d dimensional zero row vector.

The proof of Theorem E.1 is presented below. Condition D1 is both sufficient and necessary,
indicating, from a geometric perspective, that the vector y0 is not contained in an F -invariant proper
subspace of Rd+2.

Proof. Set

y(t) =

[
x(t)
et

1

]
,

we see that y(t) ∈ Rd+2, and the first derivative of y(t) w.r.t. time t can be expressed as

ẏ(t) =

[
ẋ(t)
et

0

]
=

[
A Bv Bz0 −Bv
0d 1 0
0d 0 0

]
︸ ︷︷ ︸

F

[
x(t)
et

1

]
︸ ︷︷ ︸

y(t)

,
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where 0d denotes a d dimensional zero row vector. Obviously,

y(0) = [xT
0 , 1, 1]

T = y0 .

Therefore, y(t) follows a homogeneous linear ODE system that can be expressed as:

ẏ(t) = Fy(t) ,

y(0) = y0 ,
(20)

where F ∈ R(d+2)×(d+2). Worth noting that all state variables in the ODE system (20) are observable.
Then according to Lemma 2.1, the system (20) is (y0, F )-identifiable if and only if condition D1
stated in Theorem E.1 is satisfied. That is, under assumption D1, the trajectory y(·;y0, F ) uniquely
determines both y0 and matrix F . Consequently, it also uniquely determines (x0, A,Bz0, Bv), thus
establishing that the ODE system (2) is θ-identifiable if and only if assumption D1 is satisfied.

E.2 When f(t) follows an trigonometric function of time t

We define f(t) in the ODE system (2) as:

f(t) = v1sin(t) + v2cos(t) , v1,v2 ∈ Rp .

Simple calculations show that

z(t) = v2sin(t)− v1cos(t) + z0 + v1 .

Thus,

ẋ(t) = Ax(t) +Bz(t)

= Ax(t) +Bv2sin(t)−Bv1cos(t) +Bz0 +Bv1 .
(21)

We denote the unknown parameters of the ODE system (2) with this f(t) as θ, specifically, θ :=
(x0, z0, A,B,v1,v2). Let [xT (t;θ), zT (t;θ)]T denote the solution of the ODE system (2). It is
important to note that under our hidden variables setting, only x(t;θ) is observable. Based on
Equation (21), we present the following identifiability definition.

Definition E.2. For x0 ∈ Rd, z0 ∈ Rp, A ∈ Rd×d, B ∈ Rd×p and v1,v2 ∈ Rp, for all
x′
0 ∈ Rd, all z′

0 ∈ Rp, all A′ ∈ Rd×d, all B′ ∈ Rd×p, and all v′
1,v

′
2 ∈ Rp, we denote θ′ :=

(x′
0, z

′
0, A

′, B′,v′
1,v

′
2), we say the ODE system (2) is θ-identifiable: if (x0, A,Bz0, Bv1, Bv2) ̸=

(x′
0, A

′, B′z′
0, B

′v′
1, B

′v′
2), it holds that x(·;θ) ̸= x(·;θ′).

According to Definition E.2, if the ODE system (2) with a trigonometric f(t) is θ-identifiable, then
the trajectory of the system can uniquely determine the values of (x0, A,Bz0, Bv1, Bv2). This
determination is sufficient to identify the causal relationships between observable variables x as
described by Equation (21). Consequently, one can safely intervene in the observable variables of the
ODE system and make reliable causal inferences, despite the fact that matrix B cannot be identified
under this definition.

Theorem E.2. For x0 ∈ Rd, z0 ∈ Rp, A ∈ Rd×d, B ∈ Rd×p, and v1,v2 ∈ Rp, the ODE system
(2) is θ-identifiable if and only if assumption E1 is satisfied.

E1 the set of vectors {y0, Fy0, . . . , F
d+2y0} is linearly independent, where y0 =

[xT
0 , 0, 1, 1]

T , and

F =

A Bv2 −Bv1 Bz0 +Bv1

0d 0 1 0
0d −1 0 0
0d 0 0 0

 ,

0d denotes a d dimensional zero row vector.

The proof of Theorem E.2 is presented below. Condition E1 is both sufficient and necessary,
indicating, from a geometric perspective, that the vector y0 is not contained in an F -invariant proper
subspace of Rd+3.
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Proof. Set

y(t) =

 x(t)
sin(t)
cos(t)

1

 ,

we see that y(t) ∈ Rd+3, and the first derivative of y(t) w.r.t. time t can be expressed as

ẏ(t) =

 ẋ(t)
cos(t)
−sin(t)

0

 =

A Bv2 −Bv1 Bz0 +Bv1

0d 0 1 0
0d −1 0 0
0d 0 0 0


︸ ︷︷ ︸

F

 x(t)
sin(t)
cos(t)

1


︸ ︷︷ ︸

y(t)

,

where 0d denotes a d dimensional zero row vector. Obviously,

y(0) = [xT
0 , 0, 1, 1]

T = y0 .

Therefore, y(t) follows a homogeneous linear ODE system that can be expressed as:

ẏ(t) = Fy(t) ,

y(0) = y0 ,
(22)

where F ∈ R(d+3)×(d+3). Worth noting that all state variables in the ODE system (22) are ob-
servable. Then according to Lemma 2.1, the system (22) is (y0, F )-identifiable if and only if
condition E1 stated in Theorem E.2 is satisfied. That is, under assumption E1, the trajectory
y(·;y0, F ) uniquely determines both y0 and matrix F . Consequently, it also uniquely determines
(x0, A,Bz0, Bv1, Bv2), thus establishing that the ODE system (2) is θ-identifiable if and only if
assumption E1 is satisfied.

26



F An alternative approach to identifying matrices B and G in the ODE
system (3)

F.1 Identifiability condition from 2p controllable whole trajectories

Recall that z0 denotes the initial condition of the latent variables in the ODE system (3). We further
specify the initial condition of the latent variable zj as z0j for j = 1, . . . , p. Assume that it is possible
to control the initial condition of each latent variable, z0j , independently. Specifically, for each
experiment, researchers can intervene in the initial condition of a latent variable, denoted as z∗0j . The
value of z∗0j is treated as a given value. Under this intervention, the initial conditions of the latent
variables are adjusted to [z01, . . . , z

∗
0j , . . . , z0p]

T , which we denote as z̃0j .

To identify matrices B and G, it is necessary to have at least two intervened initial conditions for each
latent variable, denoted as z∗10j and z∗20j for the latent variable zj . Consequently, the corresponding
intervened initial conditions for all latent variables can be represented as z̃1

0j and z̃2
0j . Under these

conditions, we present the definition of the identifiability of the ODE system (3).

Definition F.1. Given z∗10j , z
∗2
0j ∈ R for j = 1, . . . , p, for x0 ∈ Rd, z0 ∈ Rp, A ∈ Rd×d, B ∈ Rd×p

and G ∈ Rp×p, under the latent DAG assumption, for all x′
0 ∈ Rd, all z′

0 ∈ Rp, all
A′ ∈ Rd×d, all B′ ∈ Rd×p, and all G′ ∈ Rp×p, we denote z̃i

0j = [z01, . . . , z
∗i
0j , . . . , z0p]

T

and (z̃′
0j)

i = [z′01, . . . , z
∗i
0j , . . . , z

′
0p]

T , we further denote ηi
j := (x0, z̃

i
0j , A,B,G) and (η′

j)
i :=

(x′
0, (z̃

′
0j)

i, A′, B′, G′) for i = 1, 2, we say the ODE system (3) is {η1,2
j }p1-identifiable: if

(x0, A,B,G) ̸= (x′, A′, B′, G′), it holds that ∃i ∈ {1, 2} and j ∈ {1, . . . , p} such that x(·;ηi
j) ̸=

x(·; (η′
j)

i).

Definition F.1 establishes the identifiability of the ODE system (3) from 2p whole trajectories x(·;ηi
j)

with i = 1, 2 and j = 1, . . . , p. According to this definition, both matrices B and G are identifiable.
Based on this definition, we present the identifiability condition.

Theorem F.1. Given z∗10j , z
∗2
0j ∈ R with z∗10j ̸= z∗20j for j = 1, . . . , p, for x0 ∈ Rd, z0 ∈ Rp, A ∈

Rd×d, B ∈ Rd×p and G ∈ Rp×p, under the latent DAG assumption, the ODE system (3) is {η1,2
j }p1-

identifiable if assumptions B5 and B4 are both satisfied.

B5: each z̃i
0j for i = 1, 2 and j = 1, . . . , p, satisfies assumption B1. That is, if we set

γi
j = Apx0 +

∑p−1
k=0 A

p−1−kBGkz̃i
0j , then the set of vectors {γi

j , Aγ
i
j , . . . , A

d−1γi
j} is

linearly independent for all i = 1, 2 and j = 1, . . . , p.

The proof of Theorem F.1 is presented below. Assumption B5 ensures that the ODE system (3) is ηi
j-

identifiable for all i = 1, 2 and j = 1, . . . , p. Consequently, (x0, A,Bz̃i
0j , BGz̃i

0j , . . . , BGp−1z̃i
0j)

for all i = 1, 2 and j = 1, . . . , p is identifiable. Through straightforward calculations, the identifiabil-
ity of matrix B is established. To identify matrix G, assumption B4 is required.

The assumption that the initial condition of each latent variable zi can be controlled independently is
inspired by the "genetic single-node intervention" proposed in [32], where interventions can be made
at each latent node individually. This assumption is relatively more relaxed compared to controlling
the initial condition of all latent variables z simultaneously, as discussed in Subsection 4.3. However,
this method requires p more trajectories, totalling 2p trajectories, to identify matrices B and G.

Proof. Under assumption B5, since each z̃i
0j satisfies assumption B1. By Theorem 4.1, the ODE

system (3) is ηi
j-identifiable for all i = 1, 2 and j = 1, . . . , p. Consequently,

(x0, A,Bz̃i
0j , BGz̃i

0j , . . . , BGp−1z̃i
0j)

for all i = 1, 2 and j = 1, . . . , p is identifiable.
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We express Bz̃i
0j as

Bz̃i
0j =

B11 . . . B1j . . . B1p

...
. . .

...
. . .

...
Bd1 . . . Bdj . . . Bdp



z01

...
z∗i0j

...
z0p

 .

We know that Bz̃i
0j ∈ Rd is identifiable for i = 1, 2. Thus, the first entry of Bz̃i

0j , denoted as
(Bz̃i

0j)1, is identifiable and can be expressed as

(Bz̃1
0j)1 = B11z01 + . . .+B1jz

∗1
0j + . . .+B1pz0p

(Bz̃2
0j)1 = B11z01 + . . .+B1jz

∗2
0j + . . .+B1pz0p

.

Since z∗10j and z∗20j are given values, we can easily calculate the value of B1j . Similarly, one
can calculate the values of Bmj for all m = 1, . . . , d and j = 1, . . . , p, thereby establishing the
identifiability of matrix B.

In a similar manner, matrices BG,BG2, . . . , BGp−1 are also identifiable. Then, according to the
proof D.4 of Theorem 4.3, the matrix G is identifiable under assumption B4.

F.2 Identifiability condition from discrete observations sampled from 2p controllable
trajectories

We further extend the identifiability analysis of the ODE system (3) to cases where only discrete
observations from 2p controllable trajectories are available.
Definition F.2. Given z∗10j , z

∗2
0j ∈ R for j = 1, . . . , p, for x0 ∈ Rd, z0 ∈ Rp, A ∈ Rd×d, B ∈ Rd×p

and G ∈ Rp×p. For any n ⩾ 1, let tk, k = 1, . . . , n be any n time points and xi
jk := x(tk;η

i
j) be

the error-free observation of the trajectory x(·;ηi
j) at time tk. Under the latent DAG assumption,

we say the ODE system (3) is {η1,2
j }p1-identifiable from xi

j1, . . . ,x
i
jn, i = 1, 2 and j = 1, . . . , p,

if for all x′
0 ∈ Rd, all z′

0 ∈ Rp, all A′ ∈ Rd×d, all B′ ∈ Rd×p, and all G′ ∈ Rp×p with
(x0, A,B,G) ̸= (x′

0, A
′, B′, G′), it holds that ∃i ∈ {1, 2}, j ∈ {1, . . . , p} and k ∈ {1, . . . , n} such

that x(tk;ηi
j )̸=x(tk; (η

′
j)

i).

Based on Definition F.2 we present the identifiability condition.
Theorem F.2. Given z∗10j , z

∗2
0j ∈ R with z∗10j ̸= z∗20j for j = 1, . . . , p, for x0 ∈ Rd, z0 ∈

Rp, A ∈ Rd×d, B ∈ Rd×p and G ∈ Rp×p. We define new observation yi
jk :=

[(xi
jk)

T , 1, tk, t
2
k, . . . , t

p−1
k ]T ∈ Rd+p, for i = 1, 2, j = 1, . . . , p and k = 1, . . . , n. Under the

latent DAG assumption, the ODE system (3) is {η1,2
j }p1-identifiable from discrete observations

xi
j1, . . . ,x

i
jn, i = 1, 2 and j = 1, . . . , p, if assumptions C3 and B4 are both satisfied.

C3: for each i ∈ {1, 2}, j ∈ {1, . . . , p} there exists (d + p) yi
jk’s with indexes

denoting as {kij1, kij2, . . . , kij,d+p} ⊆ {1, 2, . . . , n}, such that the set of vectors
{yi

jki
j1
,yi

jki
j2
, . . . ,yi

jki
j,d+p

} is linearly independent.

The proof of Theorem F.2 is presented below. Assumption C3 ensures that the ODE system (3)
is ηi

j-identifiable from discrete observations xi
j1, . . . ,x

i
jn for all i = 1, 2 and j = 1, . . . , p. As in

Subsection F.1, matrix B is identifiable. Then, under assumption B4, matrix G is also identifiable.

Proof. Under assumption C3, for each i ∈ {1, 2} and j ∈ {1, . . . , p}, the corresponding observations
satisfy assumption C1. Based on Theorem 4.2, the ODE system (3) is ηi

j-identifiable for all i = 1, 2
and j = 1, . . . , p. Consequently,

(x0, A,Bz̃i
0j , BGz̃i

0j , . . . , BGp−1z̃i
0j)

for all i = 1, 2 and j = 1, . . . , p is identifiable.

Following the proof of Theorem F.1, matrix B is identifiable. Under assumption B4, matrix G is also
identifiable.
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G More simulation results

In this section, we present additional simulation results for higher-dimensional cases, along with
simulations that incorporate a variety of ground-truth parameter configurations.

G.1 Higher dimensional cases

In this subsection, for the η-(un)identifiable cases of the ODE system (3), we provide a case with
d = 5 and p = 5. The true underlying parameters of the systems are provided below. Initial
parameter values are set to the true parameters plus a random value drawn from a uniform distribution
U(−0.14, 0.14) for each replication. To ensure reliability in the estimation results, we perform 50
independent random replications for each configuration, reporting the mean and variance of the
squared error in Table 5.

A =


2 −2 1 1 1
−1 1 0 2 −2
−2 2 0 −1 −2
−1 −1 −2 −1 2
1 −2 1 −2 0

 , B =


1 −2 −1 1 1
1 −2 −1 −1 −1
−2 0 2 1 1
0 2 0 −2 −2
2 −2 2 −1 2

 ,

G =


0 0 0 −2 −1
0 0 −1 1 1
0 0 0 1 2
0 0 0 0 2
0 0 0 0 0

 , A′ = I5 , x0 =


2
−2
2
1
0

 , z0 =


−2
−1
−1
1
−2

 ,

η-identifiable: η = (x0, z0, A,B,G), unidentifiable: η = (x0, z0, A
′, B,G) .

Ij denotes a j × j identity matrix.

Table 5: MSEs of the η-(un)identifiable cases of the ODE (3) with d = 5, p = 5

n A Bz0 BGz0 BG2z0 BG3z0 BG4z0

Id
en

tifi
ab

le

10 0.0148 0.3911 0.9624 0.7316 0.1037 0.0096
(±0.0006) (±0.5989) (±3.9249) (±1.8971) (±0.0374) (±0.0003)

100 0.0059 0.1529 0.1726 0.2447 0.0212 0.0012
(±4.01E-05) (±0.0277) (±0.0541) (±0.0748) (±0.0007) (±1.10E-05)

1000 0.0053 0.1394 0.1241 0.2119 0.0164 0.0004
(±2.92E-05) (±0.0200) (±0.0251) (±0.0479) (±0.0004) (±6.00E-07)

U
ni

de
nt

ifi
ab

le 10 0.0853 1.0067 3.7422 2.7696 0.9229 0.0508
(±0.0075) (±1.3518) (±55.8402) (±24.5043) (±2.7959) (±0.0111)

100 0.0357 0.4091 1.0428 0.9782 0.3871 0.0256
(±0.0019) (±0.3812) (±2.1792) (±5.3654) (±0.6747) (±0.0032)

1000 0.0332 0.3286 0.7123 0.9782 0.5487 0.0393
(±0.0017) (±0.1824) (±1.8836) (±2.3163) (±0.9240) (±0.0047)

For {ηi}
p
1-(un)identifiable cases of the ODE system (3), we consider a case with d = 10 and p = 5.

To accelerate estimation, sparsity is introduced in the parameter matrices by randomly setting 70, 35,
and 20 entries in matrices A, B and G, respectively, as zero. The true underlying parameters of the
systems are provided below. Initial parameter values are set to the true parameters plus a random
value drawn from a uniform distribution U(−0.1, 0.1) for each replication. To ensure reliability
in the estimation results, we perform 50 independent random replications for each configuration,
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reporting the mean and variance of the squared error in Table 6.

A =



0 0 −2 −1 1 2 0 −2 −1 0
0 0 0 0 0 2 0 −2 2 0
0 0 0 0 0 2 0 1 1 0
0 0 0 −1 0 0 1 0 −2 0
2 0 0 −1 0 −2 0 0 −1 1
2 0 0 0 0 0 0 2 0 −2
0 2 0 0 0 0 0 0 0 0
−2 −1 0 0 0 0 0 0 0 0
0 0 0 −2 0 0 0 0 0 −2
0 0 0 0 −1 0 0 0 0 −1


, B =



−1 0 0 0 2
0 −1 0 2 0
0 −1 0 0 0
0 0 0 1 1
0 0 0 0 0
0 1 0 0 1
0 0 −1 0 0
1 0 0 0 0
1 0 0 0 −1
−1 0 0 0 −1


,

G =


0 1 −1 0 2
0 0 2 0 0
0 0 0 −1 0
0 0 0 0 0
0 0 0 0 0

 , A′ = I10 ,

x0 = [−2 0 0 −2 2 −1 1 0 1 1]
⊤

, z∗i
0 = ei , for i = 1, . . . , 5 .

{ηi}
p
1-identifiable: ηi = (x0, z

∗i
0 , A,B,G), unidentifiable: ηi = (x0, z

∗i
0 , A′, B,G) .

ei stands for a p-dimensional vector, with the i-th entry being 1 and the other entries being 0.

Table 6: MSEs of the {ηi}
p
1-(un)identifiable cases of the ODE (3) with d = 10, p = 5

n
Identifiable Unidentifiable

A B G A B G

10 1.53E-11 2.49E-10 3.01E-10 0.8345 0.2118 0.0037
(±2.36E-21) (±6.30E-19) (±9.20E-19) (±0.6268) (±0.0260) (±0.0002)

30 9.15E-13 1.49E-11 1.80E-11 0.7216 0.1952 1.25E-21
(±4.45E-24) (±1.18E-21) (±1.73E-21) (±0.4099) (±0.0156) (±5.18E-41)

50 9.64E-14 1.57E-12 1.90E-12 0.6510 0.2211 0.0042
(±1.29E-25) (±3.43E-23) (±5.02E-23) (±0.2251) (±0.0278) (±0.0003)

Tables 5 and 6 present results similar to those in Tables 1 and 2, providing strong empirical support
for the validity of our proposed identifiability conditions.

G.2 Various true parameters

To further support our proposed identifiability conditions, we conduct additional simulations incorpo-
rating a variety of ground-truth parameter configurations, rather than a fixed underlying parameter set.
Specifically, for each simulation run, a unique ground-truth parameter configuration was generated
using different random seeds, and we subsequently reported the mean and variance of the squared
error across all results. For the low-dimensional η and {ηi}

p
1 (un)identifiable cases, we perform

100 replications, while for the higher-dimensional cases, we perform 50 replications. Additionally,
in the {ηi}

p
1-(un)identifiable cases, we initialize the parameter values as the true parameters plus a

random value drawn from U(−0.1, 0.1) for the d = 3, p = 3 case and from U(−0.05, 0.05) for the
d = 10, p = 5 cases. For the η-(un)identifiable cases, the initialization settings are the same as those
used in the fixed-parameter configurations.

The simulation results are presented in Tables 7, 8, 9, and 10. Across all these tables, parameter
estimates in the identifiable cases are notably more accurate than in the unidentifiable cases, providing
strong empirical support for the validity of our proposed identifiability conditions.

It is noteworthy, however, that even in theoretically identifiable cases, certain scenarios emerge where
parameter identification is challenging in practice; we refer to these as hard estimate cases. In these
instances, estimates may deviate significantly from satisfactory values, similar to challenges encoun-
tered in fully observable ODE systems (1) as discussed in [28]. Consequently, for identifiable cases
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with varying true parameter configurations, the results are less precise than those for corresponding
fixed-parameter cases, due to the inclusion of some hard estimate instances. Investigating the practical
identifiability of the ODE system (3) remains an intriguing direction for future research.

Table 7: MSEs of the η-(un)identifiable cases of the ODE (3) - with various true parameters

n
Identifiable Unidentifiable

A Bz0 BGz0 BG2z0 A Bz0 BGz0 BG2z0

10 0.0060 0.0157 0.1698 0.2297 0.0691 0.2720 1.3133 0.6622
(±0.0008) (±0.0036) (±0.5665) (±1.1053) (±0.0203) (±0.5914) (±7.4471) (±8.5348)

100 0.0026 0.0108 0.0820 0.1287 0.0283 0.1003 0.4880 0.2649
(±9.27E-05) (±0.0022) (±0.1159) (±0.7042) (±0.0031) (±0.0441) (±2.6547) (±1.6631)

500 0.0020 0.0092 0.0870 0.0705 0.0227 0.1061 0.5015 0.2574
(±6.48E-05) (±0.0023) (±0.1941) (±0.1179) (±0.0018) (±0.0672) (±3.0811) (±2.0779)

Table 8: MSEs of the {ηi}
p
1-(un)identifiable cases of the ODE (3) - with various true parameters

n
Identifiable Unidentifiable

A B G A B G

10 0.0006 1.89E-5 0.0009 0.0861 0.0088 0.0101
(±2.21E-5) (±3.55E-8) (±6.71E-5) (±0.1773) (±0.0020) (±0.0045)

30 0.0006 1.87E-5 0.0010 0.0789 0.0092 0.0104
(±2.20E-5) (±3.47E-8) (±6.64E-5) (±0.1280) (±0.0028) (±0.0046)

50 0.0006 1.88E-5 0.0009 0.0503 0.0063 0.0114
(±2.21E-5) (±3.51E-8) (±6.67E-5) (±0.0430) (±0.0006) (±0.0047)

Table 9: MSEs of the η-(un)identifiable cases of the ODE (3) with d = 5, p = 5 - with various true
parameters

n A Bz0 BGz0 BG2z0 BG3z0 BG4z0

Id
en

tifi
ab

le

10 0.0144 0.1215 1.4643 2.1890 1.8254 0.4826
(±0.0004) (±0.0757) (±8.3976) (±54.9706) (±48.7033) (±5.7127)

100 0.0041 0.0395 0.2850 0.3891 0.2078 0.0239
(±4.55E-05) (±0.0092) (±0.1739) (±0.4936) (±0.2950) (±0.0024)

1000 0.0032 0.0337 0.1934 0.2242 0.1197 0.0181
(±3.26E-05) (±0.0049) (±0.0686) (±0.2180) (±0.0712) (±0.0014)

U
ni

de
nt

ifi
ab

le 10 0.0740 0.4599 2.8628 1.8743 0.4834 0.0334
(±0.0047) (±0.4841) (±9.5476) (±8.6653) (±1.2606) (±0.0147)

100 0.0263 0.2142 1.1678 1.2354 0.2878 0.0193
(±0.0031) (±0.1869) (±8.2277) (±9.4970) (±0.8655) (±0.0052)

1000 0.0142 0.1389 0.6979 0.6701 0.0732 0.0062
(±0.0003) (±0.0463) (±1.2080) (±1.5228) (±0.0336) (±0.0003)
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Table 10: MSEs of the {ηi}
p
1-(un)identifiable cases of the ODE (3) with d = 10, p = 5 - with various

true parameters

n
Identifiable Unidentifiable

A B G A B G

10 0.0044 0.0350 0.0287 0.6266 0.1310 0.0054
(±0.0001) (±0.0098) (±0.0053) (±0.1524) (±0.0269) (±0.0004)

30 0.0067 0.1258 0.0315 0.5833 0.1058 0.0021
(±0.0005) (±0.5097) (±0.0104) (±0.2085) (±0.0114) (±8.79E-05)

50 0.0033 0.0323 0.0354 0.5193 0.1108 0.0021
(±5.66E-05) (±0.0103) (±0.0084) (±0.0982) (±0.0146) (±9.02E-05)
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
contributions and scope of our paper?
Answer: [Yes]
Justification: The main claims presented in our abstract and introduction accurately reflect
our paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of our work are discussed in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide the full set of assumptions and a complete proof for each theoretical
result presented in our paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all experimental details in Section 5 and include the code in the
supplemental material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide our code in the supplemental material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all experimental details in Section 5, and it is noteworthy that our
experiments do not require any training phase.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We conduct 100 independent random replications for each configuration and
report the mean and variance of the squared error.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: Since our experiments solely consist of simulations designed to validate our
theoretical findings, the computational resources employed are not a consideration for our
research objectives.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA] .

Justification: We claim that this work does not present any foreseeable positive or negative
social impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

36

https://neurips.cc/public/EthicsGuidelines


• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: This paper does not require safeguards.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA] .

Justification: This paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .

Justification: We did not use crowdsourcing or conduct research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .

Justification: We did not use crowdsourcing or conduct research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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