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ABSTRACT

Physics-informed neural networks (PINNs) have shown promising potential for
solving partial differential equations (PDEs) using deep learning. However, PINNs
face training difficulties for evolutionary PDEs, particularly for dynamical systems
whose solutions exhibit multi-scale or turbulent behavior over time. The reason
is that PINNs may violate the temporal causality property since all the temporal
features in the PINNs loss are trained simultaneously. This paper proposes to
use implicit time differencing schemes to enforce temporal causality, and use
transfer learning to sequentially update the PINNs in space as surrogates for PDE
solutions in different time frames. The evolving PINNs are better able to capture
the varying complexities of the evolutionary equations, while only requiring minor
updates between adjacent time frames. Our method is theoretically proven to be
convergent if the time step is small and each PINN in different time frames is
well-trained. In addition, we provide state-of-the-art (SOTA) numerical results for
a variety of benchmarks for which existing PINNs formulations may fail or be
inefficient. We demonstrate that the proposed method improves the accuracy of
PINNs approximation for evolutionary PDEs and improves efficiency by a factor
of 4–40x. All code and data can be found in the supplemental materials.

1 INTRODUCTION

Evolutionary partial differential equations (PDEs) are representative of the real world, such as the
Navier–Stokes equation, Cahn–Hilliard equations, wave equation, Korteweg–De Vries equation, etc.,
which arise from physics, mechanics, material science, and other computational science and engi-
neering fields Dafermos & Pokorny (2008). Due to the inherent universal approximation capability
of neural networks and the exponential growth of data and computational resources, neural network
PDE solvers have recently gained popularity Raissi et al. (2017); Han et al. (2018); Khoo et al.
(2021); Yu & E (2018); Sirignano & Spiliopoulos (2018); Long et al. (2018). The most representative
approach among these neural network PDE solvers is Physics-Informed Neural Networks (PINNs)
Raissi et al. (2019). PINNs have been utilized effectively to solve PDE problems such as the Poisson
equation, Burgers equation, and Navier-Stokes equation Raissi et al. (2019); Lu et al. (2021a); Mishra
& Molinaro (2023). Many variants of PINNs include loss reweighting Wang et al. (2021a; 2022b;a);
Krishnapriyan et al. (2021), novel optimization targets Jagtap et al. (2020); Kharazmi et al. (2021),
novel architectures Jagtap et al. (2020); Jagtap & Karniadakis (2021); Wang et al. (2021b) and other
techniques such as transfer learning and meta-learning Goswami et al. (2020); Liu et al. (2022b),
have also been explored to enhance training and test accuracy.

When we apply neural networks to solve evolutionary PDEs, the most ubiquitously used PINN
implementation at present is the meshless, continuous-time PINN in Raissi et al. (2019). However,
training (i.e., optimization) is still the primary challenge when employing this approach, particularly
for dynamical systems whose solutions exhibit strong non-linearity, multi-scale features, and high
sensitivity to initial conditions, such as the Kuramoto-Sivashinsky equation and the Navier-Stokes
equations in the turbulent regime. Recently Wang et al. Wang et al. (2022a) revealed that continuous-
time PINNs can violate the so-called temporal causality property, and are therefore prone to converge
to incorrect solutions. Temporal causality requires that models should be sufficiently trained at time t
before approximating the solution at the later time t+∆t, while continuous-time PINNs are trained

1



Under review as a conference paper at ICLR 2024

for all time t simultaneously. To enhance the temporal causality in the training process, they proposed
a simple re-formulation of PINNs loss functions as shown in equation 1, i.e., a clever weighting
technique that is inversely exponentially proportional to the magnitude of cumulative residual losses
from prior times. This casual PINN method has been demonstrated to be effective for some difficult
problems. However their method is sensitive to the new causality hyper-parameter ϵ, and the training
time is substantially longer than vanilla PINNs.

L(θ) = 1

Nt

Nt∑
i=1

wiL(ti, θ), with wi = exp

(
−ϵ

i−1∑
k=1

L(tk, θ)

)
. (1)

In this paper, we introduce a new PINN implementation technique for efficiently and precisely solving
evolutionary PDEs. Our technique relies on two key elements: (a) using discrete-time PINNs instead
of continuous-time PINNs to satisfy the principle of temporal causality, thereby making the training
process stable and accurate; and (b) utilizing transfer learning to accelerate PINN training in later
time frames. The time-differencing schemes such as forward/backward Euler, Crank-Nicolson, and
Runge-Kutta enable solutions to be learned from earlier times to later times, therefore satisfying
the temporal causality principle. Moreover, the errors from time differencing can be theoretically
controlled Ascher (2008), making the training procedure stable and accurate. We accelerate PINN
training naturally by initializing the PINN parameters at the next time frame with the trained PINN
parameters at the current time frame. In the following sections, we will show that our transfer
learning enhanced discrete physics-informed neural networks (TL-DPINN) method is theoretically
and numerically stable, accurate, and efficient.

Following is a summary of the contribution of the paper.

• Implicit time differencing with the transfer-learning tuned PINN provides more accurate and
robust predictions of evolutionary PDEs’ solutions while retaining a low computational cost.

• We prove theoretically the error estimation result of our TL-DPINN method, indicating that
TL-DPINN solutions converge as long as the time step is small and each PINN in different
time frames is well trained.

• Through extensive numerical results, we demonstrate that our method can attain state-of-the-
art (SOTA) performance among various PINN frameworks in a trade-off between accuracy
and efficiency.

2 RELATED WORKS

Discrete PINN. Raissi et al. Raissi et al. (2019) have applied the general form of Runge–Kutta
methods with arbitrary q stages to the evolutionary PDEs. However, only an implicit Runge-Kutta
scheme with q = 100 stages and a single large time step ∆t = 0.8 are computed. Low-order methods
cannot retain their predictive accuracy for large time steps. In our research, we demonstrate the
capability of discrete PINNs both theoretically and experimentally, indicating that robust low-order
implicit Runge-Kutta combined with PINN can obtain high-precision solutions with multiple small-
sized time steps. Jagtap and Karniadakis Jagtap & Karniadakis (2021) propose a generalized domain
decomposition framework that allows for multiple sub-networks over different subdomains to be
stitched together and trained in parallel. However, it is not causal and has the same training issues as
conventional PINNs. The implicit Runge-Kutta scheme combined with PINN has been used to solve
simple ODE systems Stiasny et al. (2021); Moya & Lin (2023), but not dynamic PDE systems with
multi-scale or turbulent behavior over time.

Temporal decomposition. Diverse strategies have been studied for enhancing PINN training by
splitting the domain into numerous small “time-slab”. Wight and Zhao L. Wight & Zhao (2021)
propose an adaptive time-sampling strategy to learn solutions from the previous small time domain to
the whole time domain. However, collocation points are costly to add, and the computational cost rises.
This time marching strategy has been enhanced further in Krishnapriyan et al. (2021); Mattey & Ghosh
(2022); McClenny & Braga-Neto (2023). Nevertheless, causality is only enforced on the scale of the
time slabs and not inside each time slab, thus the convergence can not be theoretically guaranteed.
A unified framework for causal sweeping strategies for PINNs is summarized in Penwarden et al.
(2023). Wang et al. Wang et al. (2022a) introduced a simple causal weight in the form of equation 1

2



Under review as a conference paper at ICLR 2024

to naturally match the principle of temporal causality with high precision. However, this significantly
increased computational costs and did not guarantee convergence Penwarden et al. (2023). Our
methods can attain the same level of precision, are theoretically convergent, and are 4 to 40 times
quicker.

Transfer learning. Transfer-learning has been previously combined with various deep-learning
models for solving PDEs problems, such as PINN for phase-field modeling of fracture Goswami et al.
(2020), DeepONet for PDEs under conditional shift Goswami et al. (2022), DNN-based PDE solvers
Chen et al. (2021), PINN for inverse problems Xu et al. (2023), one-shot transfer learning of PINN
Desai et al. (2022), and training of CNNs on multi-fidelity data Song & Tartakovsky (2022). Xu et al.
Xu et al. (2022) proposed a transfer learning enhanced DeepONet for the long-term prediction of
evolution equations. However, their method necessitates a substantial amount of training data from
traditional numerical methods. In contrast, our methods are physics-informed and do not require
additional training data.

3 NUMERICAL METHOD

Problem set-up Here we consider the initial-boundary value problem for a general evolutionary
parabolic differential equation. The extension to hyperbolic equations are straightforward.

ut = N (u), x ∈ Ω, t ∈ [0, T ],

u(0, x) = u0(x), x ∈ Ω,

u(t, x) = g(t, x), t ∈ [0, T ], x ∈ ∂Ω,

(2)

where u(t, x) denotes the hidden solution, t and x represent temporal and spatial coordinates re-
spectively, N (u) denotes a differential operator (for example, N (u) = uxx for the simplest Heat
equation), and Ω ⊂ RD is an open, bounded domain with smooth boundary ∂Ω. This study assumes
that the equations are dissipative in the sense that

∫
Ω
u · N (u)dx ≤ 0 Xu et al. (2022).

Our goal is to learn u(t, x) by neural network approximation. We briefly mention the basic background
of PINN in Section 3.1 and then describe our TL-DPINN method in Section 3.2.

3.1 PHYSICS-INFORMED NEURAL NETWORKS

In the original study of PINNs Raissi et al. (2019), it approximates u(t, x) to equation 2 using a
deep neural network uθ(t, x), where θ represents the neural network’s parameters (e.g., weights
and biases). Consequently, the objective of a vanilla PINN is to discover the θ that minimizes the
physics-based loss function:

L(θ) = λbLb(θ) + λuLu(θ) + λrLr(θ), (3)

where Lb(θ) =
1
Nb

∑Nb

i=1 ∥uθ(t
i
b, x

i
b)− g(tib, x

i
b)∥2, Lu(θ) =

1
Nu

∑Nu

i=1 ∥uθ(0, x
i
t)− u0(x

i
t)∥2 and

Lr(θ) =
1
Nr

∑Nr

i=1 ∥R(uθ(t
i
r, x

i
r)∥2. The tib, x

i
b, x

i
t represent the boundary and initial sampling data

for uθ(t, x), whereas tir, x
i
r represent the data points utilized to calculate the residual term R(u) =

ut − N (u). The coefficients λb, λu, and λr in the loss function are utilized to assign a different
learning rate, which can be specified by humans or automatically adjusted during trainingWang et al.
(2021a; 2022b). We note that the Lb term can be further omitted if we apply hard constraint in the
PINN’s design Lu et al. (2021b); Liu et al. (2022a); Sukumar & Srivastava (2022).

As demonstrated in Wang et al. (2022a), the vanilla PINN may violate the principle of temporal
causality, as the residual loss at the later time may be minimized even if the predictions at previous
times are incorrect. Figure 1 demonstrates the training result for solving the Allen-Chan equation,
confirming this phenomenon. For conventional PINN, the residual loss Lr is quite large near the
initial state and decays quickly to a small value when the learned solution is incorrect. Comparatively,
our method’s residual remains small for all t ∈ [0, 1] and captures the solution with high precision.

3.2 TRANSFER LEARNING ENHANCED DISCRETE PINN

Discrete PINN Since the continuous-time PINN violates temporal causality, we shift to numerical
temporal differencing schemes that naturally respect temporal causality. Given a time step ∆t, assume
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Figure 1: Allen-Cahn equation: (a)reference solution. (b)PINN solution. (c)TL-DPINN solution.
(d)PINN’s temporal residual loss Lr(tn, θ). (e)TL-DPINN’s temporal residual loss Lr(tn, θ).

we have computed un(x) to approximate the solution u(n∆t, x) to equation 2, then we consider
finding un+1(x) by the Crank-Nicolson time differencing scheme:

un+1(x)− un(x)

∆t
= N

[
un+1(x) + un(x)

2

]
. (4)

Instead of solving equation 2 in the whole space-temporal domain directly, our goal is to solve
equation 4 from one step to the next in the space domain: u0(x) 7→ u1(x) 7→ · · · 7→ un(x) 7→
un+1(x) 7→ · · · , so that the evolutionary dynamics can be captured over a long time horizon.

Next, we apply PINN to solve equation 4. It is also called discrete PINN in Raissi et al. (2019) when
the Crank-Nicolson scheme is replaced by implicit high-order Runge-Kutta schemes. Assuming
we have obtained a neural network uθn(x) to approximate u(n∆t, x) in equation 2, we compute
uθn+1(x) by finding another new θn+1 that minimize the loss functions

Ln+1(θn+1) =
λb

Nb

Nb∑
i=1

∣∣uθn+1(xi
b)− g(xi

b)
∣∣2

+
λr

Nr

Nr∑
i=1

∣∣∣∣uθn+1(xi
r)− uθn(xi

r)

∆t
−N

[
uθn+1(xi

r) + uθn(xi
r)

2

]∣∣∣∣2 . (5)

These multiple PINNs uθn(x) take x as input and output the solution values at different timestamps.
Remark 3.1. We remark that there exist alternative options for time differencing beyond the second-
order Crank-Nicolson scheme. Several implicit Runge-Kutta schemes, including the first-order
backward Euler scheme and the fourth-order Gauss-Legendre scheme, have been found to be ef-
fective. The second-order Crank-Nicolson scheme is favored due to its optimal trade-off between
computational efficiency and numerical accuracy. A comprehensive exposition of these techniques is
available in Appendix A.2.

Transfer learning The transfer learning methodology is utilized to expedite the training procedure
between two adjacent PINNs. All the PINNs uθn(x) share the same neural network architectures
with different parameters θn. For a small time step ∆t, there are little difference between the two
adjacent PINNs uθn(x) and uθn+1(x). So the parameters θn+1 to be trained are very close to the
trained parameters θn. The approach involves freezing a significant portion of the well-trained uθn(x)
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and solely updating the weights in the last hidden layer through the application of a comparable
physics-informed loss function equation 5.

To be more precise, we first approximate the initial condition u0(x) by the neural network uθ0(x), then
learn uθ1(x), uθ2(x), . . . sequentially by transfer learning. The general structure of our TL-DPINN
method is illustrated in Algorithm 1.

Algorithm 1: The training procedure of our TL-DPINN method
Input :Target evolutionary PDE equation 2; initial network uθ; end time T
Output :The predicted model uθn(x) at each timestamp tn

1 Set hyper-parameters: timestamps number Nt, number of maximum training iterations
M0,M1, learning rate η, threshold value ϵ ;

2 Step (a): learn uθ0(x) by PINN ;
3 for i = 1, 2, ...,M0 do
4 Compute the mean square error loss L0(θ0);
5 Update the parameter θ0 via gradient descent θ0i+1 = θ0i − η∇L0(θ0i ) ;

6 Step (b): denote θ0∗ = θ0M0
and learn uθ1(x), ..., uθn(x), ... sequentially by transfer learning ;

7 for n = 0, 1, 2, ..., Nt − 1 do
8 for i = 1, 2, ...,M1 do
9 Compute loss Ln+1

i (θn+1
i ) by equation 5 ;

10 Update the parameter θn+1 via gradient descent θn+1
i+1 = θn+1

i − η∇Ln+1(θn+1
i ) ;

11 if |Ln+1(θn+1
i+1 )− Ln+1(θn+1

i )| < ϵ then
12 denote θn+1

∗ = θn+1
i and break ;

13 Return the optimized neural network parameters θ1∗, θ
2
∗, ..., θ

Nt
∗ .

4 THEORETICAL RESULT

In this section, we analyze the TL-DPINN method and give an error estimate result to approximate
the evolutionary differential equation 2. We have two reasonable assumptions as follows.
Assumption 4.1. The equation equation 2 is dissipative, i.e.

∫
Ω
u · N (u)dx ≤ 0 for all u(t, x).

Moreover, if N is nonlinear, then
∫
Ω
(u1−u2) ·(N (u1)−N (u2))dx ≤ 0 for all u1(t, x) and u2(t, x).

Assumption 4.2. The solution u(t, x) to equation 2 and the neural network solution uθn(x) to
equation 5 are all smooth and bounded, as well as their high order derivatives.

The first assumption is to guarantee that the solution is not increasing over time. Consider the L2 norm
∥u(t, ·)∥2 =

∫
Ω
u(t, x)2dx, we multiply equation 2 by u and integrate in x to get 1

2
d
dt ∥u∥

2
(t) =∫

Ω
u·Nudx ≤ 0, so ∥u(t, ·)∥ ≤ ∥u0∥ for all t > 0. For the simplest Heat equation with N (u) = uxx,

it is easy to verify that
∫
Ω
u · N (u)dx = −

∫
Ω
|ux|2dx ≤ 0, satisfying Assumption 4.1.

The second assumption can be verified by the standard regularity estimate result of PDEs Evans
(2022), and we omit it here for brevity.

Denote the symbol τ = ∆t and tn = nτ , we show that the error can be strictly controlled by the time
step τ , the training loss value Ln and the collocation points number Nr.
Theorem 4.1. With the assumptions equation 4.1 and equation 4.2 hold, then the error between
the solution u(tn, x) to equation 2 and the neural network solution uθn(x) to equation 5, i.e.,
en(x) = u(tn, x)− uθn(x), can be estimated in the L2 norm by

∥en∥ ≤ C
√
1 + tn(τ

2 + max
1≤i≤n

√
Li +N

1
4
r ), n = 1, ..., Nt, (6)

where C is a bounded constant depend on u(tn, x) and uθn(x).

The proof of Theorem 4.1 can be found in Appendix A.3.
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Table 1: A comparison of the relative L2 error and training time (seconds) for different PDEs.

Method RD Eq. AC Eq. KS Eq. NS Eq.
L2 error time L2 error time L2 error time L2 error time

Original PINN 4.17e-02 1397 8.23e-01 1412 1.00e+00 - 1.32e+00 -
Adaptive sampling 1.65e-02 1561 8.64e-03 1460 9.98e-01 6901 8.45e-01 25385

Self-attention 1.14e-02 1450 1.05e-01 1770 8.22e-01 5415 9.28e-01 21296
Time marching 3.98e-03 3215 2.01e-02 3715 8.02e-01 5527 8.85e-01 26200
Causal PINN 3.99e-05 7358 1.66e-03 9264 4.16e-02 22029 4.73e-02 5 days

TL-DPINN1 (ours) 1.82e-05 1463 5.92e-04 2328 7.17e-03 5050 3.44e-02 12440
TL-DPINN2 (ours) 9.34e-05 748 9.82e-04 1100 3.55e-02 5171 3.66e-02 56875

5 COMPUTATIONAL RESULTS

This section compares the accuracy and training efficiency of the TL-DPINN approach to existing
PINN methods using various key evolutionary PDEs, including the Reaction-Diffusion (RD) equation,
Allen-Cahn (AC) equation, Kuramoto–Sivashinsky (KS) equation, Navier-Stokes (NS) equation. All
the code is implemented in JAX Bradbury et al. (2018), a framework that is gaining popularity in
scientific computing and deep learning. In all examples, the activation function is tanh(·) and the
optimizer is Adam Kingma & Ba (2014). Appendix A.4.1 discusses the Fourier feature embedding
and modified fully-connected neural networks used in Wang et al. (2022a). Appendix A.4.2 details
the error metric, neural network hyper-parameters, and training approach.

The Crank-Nicolson time differencing is denoted as TL-DPINN1, while the Gauss-Legendre time
differencing is denoted as TL-DPINN2. Our study involves a comparison of these methods with
several robust baselines: 1) original PINN Raissi et al. (2019); 2) adaptive sampling L. Wight &
Zhao (2021); 3) self-attention McClenny & Braga-Neto (2023); 4) time marching Mattey & Ghosh
(2022) and 5) causal PINN Wang et al. (2022a) Table 1 summarizes a comparison of the relative L2

error and running time (seconds) for different equations by different methods. We note that all neural
networks are trained on an NVIDIA GeForce RTX 3080 Ti graphics card.

5.1 REACTION-DIFFUSION EQUATION

This study begins with the Reaction-Diffusion (RD) equation, which is significant to nonlinear
physics, chemistry, and developmental biology. We consider the one-dimensional Reaction-Diffusion
equation with the following form:

 ut = d1uxx + d2u
2, t ∈ [0, 1], x ∈ [−1, 1],

u(0, x) = sin(2πx)(1 + cos(2πx)),
u(t,−1) = u(t, 1) = 0,

(7)

where d1 = d2 = 0.01. The solution changes slowly over time, and Table 1 demonstrates that all
methods succeed with small relative L2 norm error in this instance. Our methods enhance accuracy
by 2 3 orders of magnitude compared to other PINN frameworks Raissi et al. (2019); L. Wight &
Zhao (2021); McClenny & Braga-Neto (2023); Mattey & Ghosh (2022) even with less training time.
We see that our method TL-DPINN1 is more accurate than causal PINN Wang et al. (2022a) with
much less computational time. We acknowledge that our methods TL-DPINN2 may be slightly less
accurate than causal PINN, but the training time is only nearly 1/10 of their method. In fact, the
casual PINN can only achieve a relative L2 error of 1.13e− 01 if we stop early at the training time
of our methods ( 748 seconds). Figure 2 shows the predicted solution against the reference solution,
and our proposed method achieves a relative L2 error of 1.82e− 05. More computational results of
the RD equation are provided in Appendix A.4.3.
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Figure 2: Comparison between the reference and predicted solutions for the Reaction-Diffusion
equation, and the L2 error is 1.82e− 05.

(a) Relative L2 errors (b) Training epochs

Figure 3: Training results for the Allen-Cahn equation.

5.2 ALLEN-CAHN EQUATION

We consider the one-dimensional Allen-Cahn (AC) equation, a benchmark problem for PINN training
L. Wight & Zhao (2021); Mattey & Ghosh (2022); Wang et al. (2022a): ut = γ1uxx + γ2u(1− u2), t ∈ [0, 1], x ∈ [−1, 1],

u(x, 0) = u0(x),
u(t,−1) = u(t, 1), ux(t,−1) = ux(t, 1).

(8)

where γ1 = 0.0001, γ2 = 5 and u0(x) = x2 cos(πx). For the original PINN, the Allen-Cahn
equation is hard to solve, but our approach performs well in accuracy and training efficiency. Figure 1
compares the predicted solution to the reference solution. Our technique achieves a relative L2 error
of 5.92e− 04. Figure 3 shows how the L2 error evolves and how many training epochs are needed
at different timestamps. The L2 error increases as the AC equation develops more complicated.
Each timestamp’s training epoch is small across the time domain, reducing training time. More
computational results of the AC equation are provided in Appendix A.4.4.

5.3 KURAMOTO–SIVASHINSKY EQUATION

The Kuramoto-Sivashinsky (KS) equation is used to model the diffusive–thermal instabilities in a
laminar flame front. Existing PINN frameworks are challenging to solve the KS equation as the
solution exhibits fast transit and chaotic behaviors Raissi (2018). The KS equation takes the form{

ut + αuux + βuxx + γuxxxx = 0,
u(0, x) = u0(x),

(9)

with periodic boundary conditions. Here α = 5, β = 0.5, γ = 0.005, and the initial condition
u0(x) = − sin(πx). Figure 4 visualizes the predicted solution against the reference solution, and our
proposed method achieves a relative L2 error of 7.17e− 03. From t = 0.4, the reference solution
begins to quickly transition, and our method is able to capture this feature. More computational
results of the KS equation are provided in Appendix A.4.5.
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Figure 4: Comparison between the reference and predicted solutions for the Kuramoto–Sivashinsky
equation, and the L2 error is 7.17e− 03.

Figure 5: Comparison between the reference and predicted solutions of w(t, x, y) for the Navier-
Stokes equation at t = 1.0, and the L2 error is 3.44e− 02.

5.4 NAVIER-STOKES EQUATION

We consider the 2D Navier-Stokes (NS) equation in the velocity-vorticity form Wang et al. (2022a) wt + u · ∇w = 1
Re∆w, in [0,T]× Ω,

∇ · u = 0, in [0,T]× Ω,
w(0, x, y) = w0(x, y), in Ω.

(10)

with periodic boundary conditions. Here, u = (u, v) represents the flow velocity field, w = ∇× u
represents the vorticity, and Re is the Reynolds number. In addition, Ω is set to [0, 2π]2 and Re is set
to 100. Figure 5 presents the predicted solution of w(t, x, y) compared to the reference solution. Our
proposed method can obtain a result similar to that in Wang et al. (2022a), while the training time is
only 1/58 of their method. More computational results of the NS equation are provided in Appendix
A.4.6.

5.5 ABLATION STUDY

We conduct ablation studies on the relatively simpler RD Eq. and AC Eq. to ablate the main designs
in our algorithm.

Time differencing scheme study. Numerous time differencing schemes have been developed in the
last decades. We list some commonly used schemes in Appendix A.2. We do experiments on different
time differencing schemes to validate that implicit time differencing schemes (2nd Crank-Nicolson or
4th Gauss-Legendre) are more stable and lead to better performance. The results are given in Table 2.

Transfer learning study. To see weather the transfer learning part is effective, we do ablation
studies without using transfer learning. Besides, since our strategy of transfer learning is to fine tune
all the network parameters, we also do experiments to fine tune the last 1/2/3 layers of the network.
The results are given in Table 3. We can see that transfer learning is effective both in the efficiency
and accuracy of our method.
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Table 2: Time differencing scheme study

Method RD Eq. AC Eq.
L2 error time L2 error time

Forward Euler 1.32e-03 208 9.57e-03 304
Backward Euler 2.74e-03 206 1.64e-02 444

2nd RK 1.97e-03 761 1.17e-03 1054
4th RK 2.11e-03 1187 1.31e-03 1779

TL-DPINN1 1.82e-05 1463 5.92e-04 2328
TL-DPINN2 9.34e-05 748 9.82e-04 1100

Table 3: Transfer learning study

Method RD Eq. AC Eq.
L2 error time L2 error time

Without TL 4.01e-04 5880 1.35e-02 9170
last layer 3.31e-04 638 1.01e-02 3624

last 2 layers 3.22e-04 221 1.01e-02 4029
last 3 layers 4.08e-04 232 1.01e-02 4685

TL-DPINN1 1.82e-05 1463 5.92e-04 2328
TL-DPINN2 9.34e-05 748 9.82e-04 1100

Repeated test. To further demonstrate the well-performance of our TL-DPINN method through
accuracy and efficiency, we do 5 random runs for RD and AC Eq. by casual PINN and our method
for comparison. The results are given in Table 4.

Table 4: Repeated test.

Method RD Eq. AC Eq.
L2 error time L2 error time

Causal PINN 3.73e-05 ± 4.66e-06 7207 ± 219 1.51e-03 ± 2.12e-04 9060 ± 341
TL-DPINN1 1.76e-05 ± 1.06e-06 1463 ± 53 6.08e-04 ± 3.06e-05 2328 ± 89
TL-DPINN2 9.89e-05 ± 8.94e-06 811 ± 122 9.29e-04 ± 8.06e-05 1291 ± 178

5.6 TRAINING EFFICIENCY

Table 5 illustrates how the computation efficiency is affected by different time discretization methods
on different equations. In addition, the casual PINN method is also compared. All neural networks
are trained on an NVIDIA GeForce RTX 3080 Ti graphics card. We note that the total training epochs
of our methods are not fixed due to the stopping criterion (see Algorithm 1). The training efficiency
in Table 5 is consistent with the training time in Table 1.

Table 5: A comparison of training efficiency for different equations.

Method Training efficiency (epochs/sec.)
Reaction-Diffusion Allen-Cahn Kuramoto-Sivashinsky Navier-Stokes

Casual PINN 61.70 52.33 26.24 2.77
TL-DPINN1 439.37 384.47 259.20 8.32
TL-DPINN2 276.40 239.52 127.55 6.37

6 CONCLUSION

In this paper, we propose a method for solving evolutionary partial differential equations via transfer-
learning enhanced discrete physics-informed neural networks (TL-DPINN). The discrete PINNs were
thought to be time-consuming and seldom applied in the PINNs literature. We contribute to the PINN
community by rediscovering the good performance of the discrete PINNs applied to solve evolutionary
PDEs, both theoretically and numerically. Our method first employs a classical numerical implicit
time differencing scheme to produce a series of stable propagation equations in space, and then applies
PINN approximation to sequentially solve. Transfer learning is used to reduce computational costs
while maintaining precision. We demonstrate the convergence property, accuracy, and computational
effectiveness of our TL-DPINN method both theoretically and numerically. Our proposed method
achieves state-of-the-art results among different PINN frameworks while significantly reducing the
computational cost.
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A APPENDIX

A.1 TABLE OF NOTATIONS

A table of notations is given in Table 1.

A.2 TIME DIFFERENCING SCHEMES

A.2.1 EXPLICIT SCHEMES

First-order forward Euler scheme:

un+1(x)− un(x)

∆t
= N [un(x)] . (11)

Second-order explicit Runge-Kutta (2nd RK) scheme:

un+1(x)− un(x)

∆t
= N

[
un(x) +

∆t

2
N [un(x)]

]
. (12)

Fouth-order explicit Runge-Kutta (4th RK) scheme:

un+1(x)− un(x)

∆t
=

1

6
[k1(x) + 2k2(x) + 2k3(x) + k4(x)] , (13)

k1(x) = N [un(x)], (14)

k2(x) = N
[
un(x) +

∆t

2
N [k1(x)]

]
, (15)

k3(x) = N
[
un(x) +

∆t

2
N [k2(x)]

]
, (16)

k4(x) = N [un(x) + ∆tN [k3(x)]] . (17)

12



Under review as a conference paper at ICLR 2024

Table 6: Table of notations

Notation Meaning

PINN Physics-informed neural network
PDE Partial differential equation
TL-DPINN Transfer learning enhanced discrete PINN
TL-DPINN1 Crank-Nicolson time differencing in TL-DPINN
TL-DPINN1 Gauss-Legendre time differencing in TL-DPINN
L or Ln Physics-informed loss function
N Differential operator, such as N (u) = uxx

R The residual term of the evolutionary PDE, for example R(u) = ut − uxx

Ω Spatial domain
∂Ω The boundary of the spatial domain
T End time
Nt Timestamps number
Nb The collocation points number on ∂Ω
Nu,Nr The collocation points number in Ω or Ω× [0, T ]
u(t, x) The exact solution to the evolutionary PDE
un(x) The time differencing scheme solution to the evolutionary PDE
uθn(x) The discrete PINN solution to the evolutionary PDE
hj The j component in the output of the last hidden layer of the neural network
x , xr , xb Spatial coordinate
t or tn Temporal coordinate
θ or θn, Wn, wn Neural network parameters
∆t or τ Time step, the interval time between two adjacent timestamps
M0, M1 Number of maximum iterations in different training stages
η The learning rate in gradient descent methods
ϵ The threshold value

∥·∥ The L2 norm of a function, defined by ∥f∥ =
(∫

Ω
|f(x)|2dx

) 1
2
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A.2.2 IMPLICIT SCHEMES

First-order backward Euler scheme:
un+1(x)− un(x)

∆t
= N

[
un+1(x)

]
. (18)

Second-order Trapezoidal scheme:

un+1(x)− un(x)

∆t
=

N [un+1(x)] +N [un+(x)]

2
. (19)

Second-order Crank-Nicolson scheme (used in TL-DPINN1):
un+1(x)− un(x)

∆t
= N

[
un+1(x) + un+(x)

2

]
. (20)

Forth-order Gauss-Legendre scheme (used in TL-DPINN2):

un+1(x)− un(x)

∆t
=

k1(x) + k2(x)

2
, (21)

k1(x) = N

[
un(x) +

1

4
∆tk1(x) +

(
1

4
+

√
3

6

)
∆tk2(x)

]
, (22)

k2(x) = N

[
un(x) +

(
1

4
−

√
3

6

)
∆tk1(x) +

1

4
∆tk2(x).

]
(23)

The general form of Runge–Kutta schemes with q stages:

un+1(x)− un(x)

∆t
=

q∑
i=1

biki(x), (24)

ki(x) = N

un(x) + ∆t

q∑
j=1

aijkj(x)

 , i = 1, ..., q. (25)

where the coefficients {aij , bi} are determined. Since there are no significant differences for PINN
approximation of explicit schemes (i.e. aij = 0 for all j ≥ i) and implicit schemes (i.e. not all
aij = 0 for j ≥ i), we prefer implicit schemes as they possess the A-stable property to make the
time-marching process stable Butcher (2007).

A.3 THEORETICAL ANALYSIS

A.3.1 PROOF OF THEOREM 4.1

Proof. We split the error en(x) = u(tn, x)− uθn(x) into two parts:
en(x) = u(tn, x)− un(x)

⊜ξn(x)

+un(x)− uθn(x)
⊜ηn(x)

(26)

The first term ξn(x) estimates the error from the Crank-Nicolson time differencing schemes. From
Lemma A.1 we have ∥ξn∥ ≤ Cτ2. The second term η(x) estimates the error from the PINN
approximation in space and the cumulative effect of time. From Lemma A.2 we have ∥ηn∥ ≤
C
√
tn( max

1≤i≤n

√
Li +N

1
4
r ). Then by the triangular inequality, we finish the proof.

A.3.2 SOME LEMMAS IN THE PROOF OF THEOREM 4.1

Lemma A.1. Denote ξn(x) = u(tn, x)−un(x), where u(tn, x) is the exact solution to evolutionary
PDEs and un(x) is the Crank-Nicolson time differencing discrete solution, then we have the estimate

∥ξn∥ ≤ Cτ2, (27)
for some constant C independent of time step τ , collocation points number Nr and trained loss value
Ln.
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Proof. Firstly, we replace un(x) in the Crank-Nicolson time differencing scheme by the evolutionary
PDE’s solution u(tn, x) and compare the difference. This can be achieved by the standard Taylor
expansion techniques. We do Taylor expansion at the point tn+ 1

2
= (n+ 1

2 )τ to get

u(tn+1, x)− u(tn, x)

τ
= ut(tn+ 1

2
, x) +O(τ2),

and

N
[
u(tn+1, x) + u(tn, x)

2

]
= N

[
u(tn+ 1

2
, x)
]
+O(τ2).

Noticing that u(t, x) is satisfied with the evolutionary PDE ut = N [u], we have

u(tn+1, x)− u(tn, x)

τ
= N

[
u(tn+1, x) + u(tn, x)

2

]
+O(τ2). (28)

Now subtracting equation 28 from the Crank-Nicolson scheme, we obtain the relation of the propaga-
tion error ξn(x) = u(tn, x)− un(x) as

ξn+1(x)− ξn(x)

τ
= N

[
u(tn+1, x) + u(tn, x)

2

]
−N

[
un+1(x) + un(x)

2

]
+O(τ2), (29)

Secondly, we estimate the L2 norm error estimate of ξn(x). This can be achieved by the standard
Höder inequality estimate techniques. We multiply equation 29 by 1

2 (ξ
n+1(x)+ ξn(x)) and integrate

for x on the domain Ω. With Assumption 4.1 holds, we have∥∥ξn+1
∥∥2 − ∥ξn∥2

2τ
≤
∫
Ω

O(τ2) · ξ
n+1(x) + ξn(x)

2

≤ C0τ
4 +

1

2

∥∥ξn+1
∥∥2 + 1

2
∥ξn∥2 ,

for some constant C0 only depends on u(t, x) and its derivatives. We rearrange it to the following
form ∥∥ξn+1

∥∥2 ≤ 1 + τ

1− τ
∥ξn∥2 + 2C0

1− τ
τ5.

Since ξ0(x) = 0, we apply Lemma A.3 to get

∥ξn∥2 ≤ 2C0τ
5

1− τ
·

(
1+τ
1−τ

)n
− 1

1+τ
1−τ − 1

≤ 6C0tnτ
4.

So we have ∥ξn∥ ≤ C
√
tnτ

2 for some constant C =
√
6C0 and we finish the proof.

Lemma A.2. Denote ηn(x) = un(x)−uθn(x), where un(x) is the Crank-Nicolson time differencing
discrete solution and uθn(x) is the discrete PINN solution, then we have the estimate

∥ηn∥ ≤ C
√
tn( max

1≤i≤n

√
Li +N

1
4
r ), (30)

Proof. The PINN solution uθn+1(x) is obtained by optimize the physics-informed loss Ln+1(θn+1).
Define the residual function Rn+1(x) by

Rn+1(x) =
uθn+1(x)− uθn(x)

τ
−N

[
uθn+1(x) + uθn(x)

2

]
, ∀x ∈ Ω. (31)

The loss Ln+1(θn+1) is partially composed of the residual function on some randomly sampled point,
so

Ln+1 ≥ λr

Nr

Nr∑
i=1

|R(xi
r)|2.
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By the Monte-Carlo quadrature rule in the numerical integration method, we can estimate the L2

norm of the residual function R(x) by the discrete form∥∥Rn+1
∥∥2 =

∫
Ω

|Rn+1(x)|2dx

≤ 1

Nr

Nr∑
i=1

|R(xi
r)|2 + C1N

− 1
2

r

≤ Ln+1

λr
+ C1N

− 1
2

r ,

for some constant C1 depends on the regularities of the PINN solution uθn(x).

Now we turn to estimate the L2 norm error estimate of ηn(x). We first replace un(x) in the
Crank-Nicolson time differencing scheme by the PINN solution uθn(x) and compare the difference.
Subtracting equation 31 from the Crank-Nicolson scheme, we obtain the relation of the propagation
error ηn(x) = un(x)− uθn(x) as

ηn+1 − ηn

τ
−
(
N
[
un+1(x) + un(x)

2

]
−N

[
uθn+1(x) + uθn(x)

2

])
= −R(x) (32)

Similar to the proof in Lemma A.1, we multiply equation 32 by 1
2 (η

n+1(x) + ηn(x)) and integrate
for x on the domain Ω. With Assumption 4.1 holds, we have∥∥ηn+1

∥∥2 − ∥ηn∥2

2τ
≤ −

∫
Ω

R(x) · η
n+1(x) + ηn(x)

2

≤ 1

4

∥∥Rn+1
∥∥2 + 1

2

∥∥ηn+1
∥∥2 + 1

2
∥ηn∥2 ,

then we rearrange it to the following form∥∥ηn+1
∥∥2 ≤ 1 + τ

1− τ
∥ηn∥2 + τ

1− τ

∥∥Rn+1
∥∥2 .

then we apply Lemma A.3 to get

∥ηn∥2 ≤
(
1 + τ

1− τ

)n ∥∥η0∥∥2 +
(

1+τ
1−τ

)n
− 1

1+τ
1−τ − 1

·
τ max

1≤i≤n

∥∥Ri
∥∥2

1− τ

≤ (1 + 6tn)
∥∥η0∥∥2 + 3tn

2
max
1≤i≤n

∥∥Ri
∥∥2 .

Since η0(x) = 0, we have ∥ηn∥ ≤ C
√
tn( max

1≤i≤n

√
Li +N

1
4
r ) for some constant C and we finish the

proof.

Lemma A.3. If the sequence {Tn}∞n=0 satisfies the following propagation relation for some positive
constant α and {βn}∞n=1:

Tn+1 ≤ αTn + βn+1, n ≥ 0,

then we have

Tn ≤ αnT0 +
αn − 1

α− 1
max
1≤i≤n

βi, n ≥ 1.

Proof. This is accomplished by a standard recurrence formula.

A.4 EXPERIMENTAL DETAILS

In this section, we provide the details on the numerical experiments of Section 5.
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A.4.1 NEURAL NETWORK ARCHITECTURE

We present two practical considerations for the PINN network architecture, which has been applied
in CausualPINN Wang et al. (2022a) and other PINN frameworks. Although not deemed crucial for
the successful application of Algorithm 1, we have empirically observed that including them can lead
to further enhancements in accuracy and computational efficiency.

Fourier Features Embedding. Many researchers have utilized Fourier features embedding to
enhance the accuracy and generalization Tancik et al. (2020); Wang et al. (2021b). We employ 1-D
Fourier features embedding in the following format:

γ(x) = [1, cos(ωx), sin(ωx), cos(2ωx), sin(2ωx), ..., cos(Mωx), sin(Mωx)]T

where ω = 2π/L and M is a positive integer hyper-parameter. It maps the input data to a higher
dimensional space by Fourier transforms. The major advantage of this technique is that it improves
the model’s ability to approximate periodic or oscillatory behavior in the input data. It allows us to
satisfy the periodic boundary condition as

g(xi
b) = g(xi

b + L)

where L represents the period of the periodic boundary condition. Furthermore, for the two-
dimensional Navier-Stokes equation, the Fourier feature embedding takes the following form

γ(x) =



1

cos(ωxx), ..., cos(Mωxx)

cos(ωyy), ..., cos(Mωyy)

sin(ωxx), ..., sin(Mωxx)

sin(ωyy), ..., sin(Mωyy)

cos(ωxx) cos(ωyy), ..., cos(Mωxx) cos(Mωyy)

cos(ωxx) sin(ωyy), ..., cos(Mωxx) sin(Mωyy)

sin(ωxx) cos(ωyy), ..., sin(Mωxx) cos(Mωyy)

sin(ωxx) sin(ωyy), ..., sin(Mωxx) sin(Mωyy)


Previous studies Lu et al. (2021b); Sukumar & Srivastava (2022) have shown that this method can
generally be applied to any problem that exhibits periodic or oscillatory behavior, regardless of the
particular boundary conditions involved. For instance, Fourier feature embedding can be employed to
solve problems with Dirichlet boundary conditions in which the solution is specified at the boundary
(or Neumann boundary conditions in which the solution’s derivative is specified at the boundary). In
such a scenario, the embedding technique can be used to capture the periodic and oscillatory behavior
of the input data, while the neural network can be trained to satisfy the Dirichlet boundary conditions
(or Neumann boundary conditions).

Modified Multi-layer Perceptrons. In recent researches Wang et al. (2022a; 2021a), “modified
MLP”, a novel multi-layer perceptron architecture, has been proposed. Compared to conventional
multi-layer perceptrons, the “modified MLP” demonstrates superior performance because it excels at
capturing steep gradients and minimizing residuals of partial differential equations. The form of this
architecture is given as:

U = σ(XWu + bu),
V = σ(XWv + bv),
H(1) = σ(XW(0) + b(0)),
Z(n) = σ(H(n)W(n) + b(n)), n = 1, 2, ..., D − 1.
H(n+1) = (1− Z(n))⊙ U + Z(n) ⊙ V, n = 1, 2, ..., D − 1.
uθ(X) = H(D)W(D) + b(D).

(33)

where σ(·) represents activation function (tanh(·) in this work); the trainable parameters of the neural
network are indicated by Wu,Wv,W(n), bu, bv, b(n); D represents the depth of neural network;
and ⊙ denotes the operation of point-wise multiplication. The use of skip connections or residual
connections is a significant distinction between “modified MLP” and conventional MLP. These
connections enable the network to bypass certain layers and transmit information directly from earlier
layers to later layers.
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Multiple Neural Networks. For PINN with backward Euler or Crank-Nicolson time differencing,
the neural network has the form of single input x and single output uθ(x). However, for the general
form of Runge-Kutta with q stages, we have multiple outputs [k1(x), k2(x), · · · , kq(x), un+1(x)].
While it is possible to use a single neural network with multiple outputs for the PINN approximation,
this approach may lead to slow convergence. This is because the hidden function ki(x) can differ in
scale from the solution un+1(x). Instead, we use q + 1 neural networks to separately approximate
k1(x), k2(x), · · · , kq(x), un+1(x). Although this approach leads to an increase in the number of
neural network parameters, it greatly enhances both the training efficiency and accuracy.

A.4.2 CONFIGURATION OF TRAINING

Error metric To quantify the performance of our methods, we apply a relative L2 norm over the
spatial-temporal domain:

relative L2 error =

√√√√∑Nt

n=1

∑Nr

i=1 |uθn(xi)− u(tn, xi)|2∑Nt

n=1

∑Nr

i=1 u(tn, xi)2
(34)

Neural networks and training parameters In all examples, the Fourier feature embedding is
applied and the modified MLP is used. Multiple neural networks are used in our TL-DPINN2 method
while a single neural network is used in our TL-DPINN1 method. Adam optimizer with an initial
learning rate of 0.001 and exponential rate decay is used. More details about the hyper-parameters of
neural networks and the hyper-parameters of Algorithm 1 are presented in Table 7.

Table 7: Detailed experimental settings of Section 5.

Equations Depth Width Features M Nt Nr Iterations (M0,M1) ϵ

RD 4 128 10 200 512 (10000,1000) 1e-9
AC 4 128 10 200 512 (10000,2000) 1e-10

KS(regular) 3 256 5 250 500 (10000,3000) 1e-8
KS(chaotic) 8 128 5 250 500 (10000,7000) 1e-10

NS 4 128 5 100 100 (10000,5000) 1e-5

For the configuration of other five baselines: 1) original PINN Raissi et al. (2019); 2) adaptive sam-
pling L. Wight & Zhao (2021); 3) self-attention McClenny & Braga-Neto (2023); 4) time marching
Mattey & Ghosh (2022) and 5) causal PINN Wang et al. (2022a), all of them have a neural network
size with the same width and 1 deeper depth than that in Table 7. The collocation points number
for all five baselines are configured to be Nt ×Nr in Table 7. For example, a continuous original
PINN has size [2, 128, 128, 128, 128, 128, 1] and 200 × 512 collocation points on the space-time
domain to compute the loss, then each discrete PINN has the smaller size [1, 128, 128, 128, 128, 1]
and much smaller collocation points 512 on space domain. The total parameters and computation
of 200 discrete PINNs and the computation on the loss calculation are about the same with a single
continuous PINN. In this configuration, we can sure that the comparison between our TL-DPINNs
and other five baselines is fair, showing the discrete PINNs are efficient for practical applications.

A.4.3 ADDITIONAL RESULTS FOR REACTION-DIFFUSION EQUATION

Figure 6 (a) depicts how the L2 error changes as time goes on, as we can see, the L2 error increases
in the early training steps and is kept at a stable level between 1.00e− 05 and 5.00e− 05 later. As
shown in Figure 6 (b), based on the trainable parameters of the preceding time stamp, only a few
hundred steps of training are required for each time stamp to satisfy the early stopping criterion,
and then move to the training of the next time stamp. Figure 8 shows the training loss at different
time steps. Figure 7 compares the predicted and reference solutions at different time instants. The
predictions given by our method are identical to the reference solutions.

A.5 ADDITIONAL RESULTS FOR ALLEN-CAHN EQUATION

Figure 9 shows the predicted solution against the reference solution, our proposed method achieves a
relative L2 error of 5.92e − 04. Figure 10 presents the comparison between the reference and the
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(a) Relative L2 errors (b) Training epochs

Figure 6: Training results for the Reaction-Diffusion equation.

Figure 7: Comparison between the predicted and reference solutions at different time instants for the
Reaction-Diffusion equation.

Figure 8: Loss curves at different time steps for the Reaction-Diffusion equation.
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Figure 9: Comparison between the reference and predicted solutions for the Allen-Cahn equation,
and the L2 error is 4.04e− 03.

Figure 10: Comparison between the predicted and reference solutions at different time instants for
the Allen-Cahn equation.

predicted solutions at given time instants t = 0.25, 0.50, 0.75, 1.00. As time goes on, our method is
capable of exactly fitting the evolutionary reference solution.

A.6 ADDITIONAL RESULTS FOR KURAMOTO–SIVASHINSKY EQUATION

Regular. The example presented in Section 5.3 shows a relatively regular solution. From Figure 11
(a), we can figure out how the L2 error changes with the evolution of the equation. The L2 error
is relatively small in the early time stamps compared with the L2 error in later time stamps for the
solution happens to experience a fast transition as time goes on. Figure 11 (b) represents the training
epochs required at different time steps. The KS equation tends to become complex at around t = 0.5,
leading to a drastic surge in demand for training epochs. Figure 12 presents the comparison between
the reference and the predicted solutions at different time moments t = 0.2, 0.4, 0.6, 0.8, 1.0, and it
is clear that our predicted solution is highly consistent with the reference solution.

(a) Relative L2 errors (b) Training epochs

Figure 11: Training results for the Kuramoto–Sivashinsky (regular) equation.
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Figure 12: Comparison between the predicted and reference solutions at different time instants for
the Kuramoto–Sivashinsky (regular) equation.

Figure 13: Loss curves at different time steps for the Kuramoto–Sivashinsky (regular) equation.

Chaotic. We consider using the Kuramoto-Sivashinsky equation to describe more complex chaotic
phenomena, in which α = 100/16, β = 100/162, γ = 100/164, and the initial condition u0(x) =
cos(x)(1 + sin(x)). The comparison between the reference and the predicted solution is visualized
in Figure 14. As discussed in the previous section, PINN has difficulty learning sharp features for
a larger number of evolutionary equations. However, our proposed method can learn solutions to
chaotic phenomena. Our proposed method gives a relative L2 error of 3.74e− 01, whose variation
trend is shown in Figure 15 (a). As shown in Figure 15 (b), with the reference solution becoming
complex later in the training process, the maximum of the training epoch is always reached.

From a critical standpoint, here we should also mention that difficulties can still arise in simulating
the long-time behavior of chaotic systems. We observe that our predicted solution accurately captures
the transition to chaos at around t = 0.4, while eventually losing accuracy after t = 0.8 as depicted in
Figure 14, as well as in CasualPINN Wang et al. (2022a). Figure 16 depicts the comparison between
the predicted and reference solution at different time instants. From t = 0.4, our method has difficulty
in fitting the reference solution exactly and the contrast in the final state is even worse. This may be
due to the chaotic nature of the problem and the inevitable numerical error accumulation of PINNs,
which have appeared and been discussed in Wang et al. (2022a).

A.6.1 ADDITIONAL RESULTS FOR NAVIER-STOKES EQUATION

Our method is effective in solving NS Eq. with turbulence behavior. As shown in Figure 18, only
one thousand training epochs are required on average for each timestamp to converge. Figure 20
shows additional comparisons of w(t, x, y) at different time stamps. As time passes, both the absolute
error and the L2 error between the reference and predicted w(t, x, y) increase gradually. Figure 19
shows how the loss value decreases at different timestamps, where Ln

w is the loss for the equation
wt + uθn · ∇w − 1

Re∆w = 0, and Ln
c for the equation ∇ · uθn = 0.
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Figure 14: Comparison between the reference and predicted solutions for the Ku-
ramoto–Sivashinsky(chaotic) equation, and the L2 error is 3.74e− 01.

(a) Relative L2 errors (b) Training epochs

Figure 15: Training results for the Kuramoto–Sivashinsky (chaotic) equation.

Figure 16: Comparison between the predicted and reference solutions at different time instants for
the Kuramoto–Sivashinsky(chaotic) equation.

Figure 17: Loss curves at different time steps for the Kuramoto–Sivashinsky (chaotic) equation.
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(a) Relative L2 errors (b) Training epochs

Figure 18: Training results for the Navier-Stokes equation.

Figure 19: Loss curves at different time steps for the Navier-Stokes equation.
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Figure 20: Comparison between the reference and predicted solutions of w(t, x, y) for the Navier-
Stokes equation at t = 0.2, 0.4, 0.6, 0.8, 1.0.
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