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Intravascular optical coherence tomography (IVOCT) has been successfully utilized for in vivo diagnostics of coro-
nary plaques. However, classification of atherosclerotic tissues is mainly performedmanually by experienced experts,
which is time-consuming and subjective. To overcome these limitations, an automatic method of segmentation and
classification of IVOCT images is developed in this paper. The method is capable of detecting the plaque contour
between the fibrous tissues and other components. Subsequently, the method classifies the tissues based on their
texture features described by Fourier transform and discrete wavelet transform. The experimental results of 103
images show that an overall classification accuracy of over 80% in the indicator of depth and span angle is achieved
in comparison to manual results. The validation suggests that this method is objective, accurate, and automatic
without any manual intervention. The proposed method is able to demonstrate the artery wall morphology success-
fully, which is valuable for the research of atherosclerotic disease. © 2017 Optical Society of America

OCIS codes: (170.4500) Optical coherence tomography; (170.6935) Tissue characterization; (100.0100) Image processing.
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1. INTRODUCTION

Coronary artery disease is the leading cause of death in the
world [1]. Coronary arteries are the network of arteries that
provide the blood supply for the heart. Normally, the vessel
wall of the coronary artery is constituted by a layered architec-
ture, comprising intima, media, and adventitia. When the coro-
nary arteries get fatty deposits (plaque) on their inner walls, this
condition is called atherosclerosis, which can narrow the
arteries and restrict blood flow to the heart. Especially, the rup-
ture of vulnerable atherosclerotic plaques accounts for coronary
thrombosis, myocardial ischemia, and sudden cardiac death [2].
Therefore, with the ability to detect plaque vulnerability,
a high-resolution imaging technique will advance our under-
standing of the atherosclerosis process and facilitate the devel-
opment of therapeutic interventions.

Intravascular optical coherence tomography (IVOCT) [3–5]
has drawn the attention of the scientific and clinical commun-
ities, with a 10–20 μm resolution and a 0.5–1.5 mm penetration
depth. The unique imaging resolution can provide important
insights into the physiology of atherosclerosis [6,7]. The image
features of atherosclerosis tissues are significant in IVOCT im-
ages. Fibrous tissues (FTs) are homogeneous signal-rich regions,
and locate close to the lumen and overlay other tissue behind
it [8]. Especially, the plaque contour is defined as the border
between FT and other tissues in this paper. In addition, lipid

tissues (LTs) are signal-poor regions with diffuse borders, and
the calcium tissues (CTs) are sharply delineated signal-poor re-
gions with islands of signal-rich regions, and in some cases mixed
tissues (MTs) appear as a mixture of both characteristics of CT
and LT. Adventitia tissues (ATs) are clearly visualized in seg-
ments with slight plaque burden. Therefore, the texture of these
tissues presents a unique character that can be used to classify the
atherosclerosis tissues [9].

With the goal of automatic tissue discrimination, Xu et al.
performed quantitative analysis of plaque characterization by
the combined parameters of the backscattering coefficient and
the attenuation coefficient [10]. Later, van Soest et al. demon-
strated an algorithm for the automatic quantification of the op-
tical attenuation coefficient [11]. Although these studies have
provided a basis for tissue identification in IVOCT images, both
approaches were limited due to their parameters, which were
analyzed across the entire A-lines without using the characteris-
tics of the plaque region. More recently, growing interest has
been raised in exploiting the identification methods based on
digital image processing. A semiautomated calcium detection
method has been demonstrated by Wang et al. combined with
edge detection and an active contour model [12]. Based on
plaque texture features, random forest (RF) classification meth-
ods were proposed by Ughi et al. [13] and Athanasiou et al. [14].
These works have shown that image-processing techniques can
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be applied to atherosclerotic classification, which can signifi-
cantly improve the accuracy of IVOCT images automatic
analysis.

In this paper, we propose an automatic method for segmen-
tation and classification of atherosclerosis composition based on
image-processing techniques. To make full use of the character-
istics of the plaque region, the plaque contour is proposed for
the first time. Due to the same properties of the pixels behind
the plaque contour, the FT, CT, and AT can be classified easily.
Subsequently, the residual pixels can be divided into two cat-
egories by the RF classifier. Compared with recently published
works, only a small part of the pixels of the OCT image needs
be processed in our algorithm, so that it greatly improves effi-
ciency and reduces the complexity of the classifier. The pro-
posed approach is validated against manual assessments by
experienced readers.

2. MATERIALS AND METHODS

A. OCT Images

The coronary IVOCT imaging study was performed at
Nanjing Drum Tower Hospital. This study was approved
by the internal review board and informed written consent
was obtained. The OCT system is a C7-XR Fourier-domain
OCT system (Lightlab Inc., Westford, Massachusetts, U.S.)
by using the C7 Dragonfly catheter. It provides an axial reso-
lution of 15 μm and a lateral resolution of 19 μm. Each frame
consists of 504 lines × 976 pixels, resulting in 5.12 μm per
pixel. After conversion by bilinear interpolation, the size of cor-
responding Cartesian image is 1953 pixels × 1953 pixels. In
this study, 10 OCT pullbacks from nine patients were used
to validate the proposed methodology.

B. Methodology Pipeline

The entire plaque analysis method is implemented based on the
plaque contour and the texture features, as shown in Fig. 1.
First, after the segmentation of the lumen and the tissue area,
the catheter, the guide wire, and the lumen contour are de-
tected. Then, the plaque contour is localized by bilateral filter,
gradient operator, and threshold method. Finally, segmentation
of CT is achieved by a level set algorithm. Classification of AT,
LT, and MT is implemented by texture analysis methods, in-
cluding spectral description and statistics matrix.

C. Detection of Lumen Contour

The Otsu’s threshold [15] is performed in the polar IVOCT im-
age [Fig. 2(a)], and this identifies three large structures: the cath-
eter artifact, the guide wire, and the arterial wall. The catheter
artifact is removed by Hough transformation, and the guide wire
by an area constrain. The first nonzero pixels of arterial wall are
detected based on scanning each A-line from top to bottom
[Fig. 2(b)]. Subsequently, these pixels are connected using cubic
interpolation, and the result is converted into Cartesian coordi-
nates to generate an initial lumen contour [Fig. 2(c)]. Finally, the
contour is evolved based on the active contour model [16] to
detect lumen accurately [Fig. 2(d)]. The signal out of the limited
penetration of IVOCT has a sharply decreased signal-to-noise
ratio. The outer boundary (OB) is the maximum penetration
depth of IVOCT, locating at a penetration of 1.5 mm [14]

Fig. 1. Flow chart of the entire method.

Fig. 2. Detection of lumen contour and ROI. (a) Original polar
image; (b) connecting of first nonzero pixels; (c) initial lumen contour
in Cartesian image; and (d) ROI.
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in the light-propagation. Therefore, only the area enclosed by
lumen contour and OB is considered in this paper, which is
the defined region of interest (ROI) [Fig. 2(d)].

D. Detection of the Plaque Contour

The border of CT and AT is sharp, and the difference of signal
intensity of the FT and LT region is significant; therefore, detec-
tion of the plaque contour can be implemented by the edge de-
tection method. However, due to the blur and noise of the border,
image preprocessing should be performed first by sequential ap-
proaches. The Cartesian IVOCT image is transformed into a
parameter image by log operator and normalization processing.
The lumen contour is filled with the average value of superficial
vessel wall to exclude the lumen in the following detection steps.
A bilateral filter is implemented to enhance border information
and to reduce noise.

After image preprocessing, the searching region covering the
tissue border is detected by the derivative operator of a Gauss
filter due to its two salient features. The Gauss part of the op-
erator reduces the intensity of structures, including noise at
scales much smaller than the standard deviation σ. Here, the
preprocessed image is denoted as I p�x; y�, and the Gaussian
function is denoted as G�x; y�

G�x; y� � exp

�
−
x2 � y2

2σ2

�
; (1)

I s�x; y� � G�x; y� ⊗ I p�x; y�: (2)

The derivative part of the operator is sensitive to gradient
information at the tissue border. The gradient magnitude
M �x; y�, also referred as the gradient image [Fig. 3(a)], is ob-
tained from

I x �
∂
∂x

I s �
−x

4πσ4
exp

�
−
x2 � y2

2σ2

�
⊗ Ip�x; y�; (3)

I y �
∂
∂y

I s �
−y

4πσ4
exp

�
−
x2 � y2

2σ2

�
⊗ I p�x; y�; (4)

M�x; y� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2x � I 2y

q
: (5)

The plaque contour detection is performed in the gradient
image; this includes the following steps. The areas out of OB
and behind the guide wire are removed to exclude ineffective
information [Fig. 3(b)], and then a binary image is automatically
obtained by the hysteresis threshold [17] method [Fig. 3(c)].
Subsequently, the border-searching region in the binary image
is automatically recognized by applying an area threshold
(Th_Area). However, some connected components adjoining
lumen contour are improper, which are generated by inaccurate
lumen detection. The average distance from each pixel of the
components to lumen is used to delete improper components
by a cutoff value (Th_Dist) [Fig. 3(d)]. The plaque contour
is finally obtained by calculating the skeleton line of each of
the remaining connected components [Fig. 3(e)].

E. Classification of CTs and ATs

Calcium plaque with a sharp border is the easiest to be detected;
it has been studied by many research groups. According to the
proposed methods, the calcium plaque contour is initialized by
K-means algorithm [14] and then evolved using a level-set
model [12].

Adventitia is represented as layer structural textures that go
along the tangential direction. With the advantage of describing
the directionality of periodic patterns, the spectral approach is
ideally suitable for AT classification.

Adventitia detection based on the plaque contour and spec-
tral approach is illustrated in Fig. 4. The three lines in the top
left of the figure from the inside to the outside are the plaque
contour, middle line, and OB. The middle line is defined as the
middle position between the plaque contour and OB in the

Fig. 3. Location of the plaque contour. (a) Gradient image; (b) remove the areas out of OB and behind the guide wire; (c) binary image through
hysteresis threshold; (d) remove improper components and small regions; (e) location results of the plaque contour.
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radial direction. For the ith pixel in the middle line, the rotate
angle θi is calculated and a 64 pixel × 64 pixel neighborhood is
selected (shown as red box in top left of Fig. 4). It is obvious that
the 2D fast Fourier transform (FFT) spectrum of the neighborhood
is sensitive to the rotate angle θi due to the directional property of
layer structural texture. Therefore, the spectrum is rotated −θi to
align spectral energy in the same direction along the x axis.
Subsequently, all the rotated spectra are used to calculate the average
spectrum to reduce the impact of noise. Due to the fundamental
spatial period of the texture patterns, the average spectrum is passed
by a bandpass filter, whereDBP is the radial center of the band and
W is the width of the band. Eventually, the final spectrum is ob-
tained by a y axis low-pass filter, whereDLP is the cutoff frequency.

The final spectrum contains enough information to classify
the adventitia border. For the same kind of tissue, the total en-
ergy of the final spectrum is stable. For different kinds of tissue,
the total energy of the final spectrum is significantly different.
Therefore, classification of AT is performed simply by compar-
ing the accumulation sum of the final spectrum with the pre-
setting threshold Th_Adven.

F. Classification of LTs and MTs

Considering the properties of lipid and mixed plaque, texture
feature vectors based on discrete wavelet transformation
(DWT) [18] is defined to characterize the geometric feature
of these two tissues. First, the tissue regions of lipid and mixed
plaques between the plaque contour and OB are obtained,
which is defined as classification regions. As shown in Fig. 5(a),

for each pixel of classification regions, a 64 pixel × 64 pixel
neighborhood is denoted as the local image I 0. The first-level
DWT decomposition of I 0 using the Daubechies basis gener-
ates four components, including one low-pass subimage I 1LL
and three high-pass subimages I 1LH, I

1
HL, I

1
HH. The low-pass

subimage I 1LL can be further decomposed, generating the
second-level DWT decomposition components I 2LL, I 2LH,
I 2HL, I 2HH. Here, I 1LL presents the principal geometric fea-
ture of local image I 0, and IkLH and IkHL (k � 1; 2) present
most high-pass information for each level of resolution
along the two coordinate axes x and y. To make the feature
vector insensitive to rotation, ILH and IHL at each level are
processed as

Ik�i; j� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jI kLH�i; j�j2 � jI kHL�i; j�j2

q
: (6)

Finally, the I 1LL and I k (k � 1; 2) are selected as the feature
subimage group.

The texture feature vectors are obtained by the following
steps for each feature subimage. For example, the means
u�n� and the variances σ�n� of I 1LL within nth different spheri-
cal shells are calculated [shown in Fig. 5(b)], where n is the
index. Specifically, the inner radius of spherical shells is
�n − 1�Δr, and the outer radius is nΔr, where Δr is the con-
stant thickness of spherical shells. Subsequently, a relatively
short vector V LL of I 1LL can be obtained as

V LL � �u�1�; u�2�;…; u�N �; λσ�1�; λσ�2�;…; λσ�N ��; (7)

Fig. 4. Adventitia detection based on the plaque contour and spectral approach.

Research Article Vol. 34, No. 7 / July 2017 / Journal of the Optical Society of America A 1155



where the λ is the weight. Finally, the short vector V 1 and V 2

are calculated, and the feature vectors are represented
as V � �V LL; V 1; V 2�.

The previous feature vector of the pixels belonging to classi-
fication regions are used as the input of the RF algorithm [19].
First, the RF classifier is trained by a training set. Then the pixels
are classified into two classes: LT and MT. As mentioned earlier,
the classification regions behind plaque contour are always com-
posed of only one kind of plaque tissue; therefore, the classifi-
cation task is performed by the proportion of pixels classes.

3. RESULTS

A. Computing Time of the Algorithms

All algorithms are implemented on a personal computer (I3 CPU
at 3.30 GHz, 2G memory) in MATLAB R2012b. The comput-
ing time for plaque contour segmentation is ∼2.2 s. The time
required by AT detection is∼1.6 s. Based on plaque contour, the
number of pixels to be classified accounts for 35� 17% of the

pixels in the original ROI. The time for computing texture fea-
ture vector based on wavelet decomposition requires ∼10.9 s,
while the RF classification takes ∼1.7 s.

B. Result of Lumen Detection

We randomly selected 217 IVOCT images from the data set of
10 OCT pullbacks, the lumen contour of which is manually
marked by an experienced reader. Specially, the proposed method
in this paper was suitable for plaque images without stents and
big thrombus. The lumen detection is shown in Fig. 6.

In order to validate the efficiency of the method, the expert’s
manual analysis results and the automatic analysis results were
compared in the indicator of lumen area. The Pearson corre-
lation coefficient was calculated, and Bland–Altman analysis
was performed. As shown in Fig. 7, there was a consistency
between the manual and automatic results, with a high linear
correlation of 0.99, low average error of 0.09, and low standard
deviation of 0.09.

Fig. 5. (a) Wavelet decomposition subimages; (b) structure of the feature vector.

Fig. 6. Results of lumen detection.

Fig. 7. (a) Correlation plot and (b) Bland–Altman plots for lumen areas.

Table 1. Optimal Parameters for the Algorithms

Parameter Value

σ 8
Th_Area 500 pixels
Th_Dist 19 pixels
DBP 6∕64 	 2 pi
W 2∕64 	 2 pi
DLP 2∕64 	 2 pi
Th_Adven 390 intensity

1156 Vol. 34, No. 7 / July 2017 / Journal of the Optical Society of America A Research Article



C. Result of Tissue Classification

To verify the performance of the tissue classification method,
103 images were selected by two experts. The features of these
images, including obvious morphology, facilitate the classifica-
tion task. 281 tissue regions including 54 calcium plaques, 75
ATs, 48 lipid plaques, and 104 mixed plaques were marked.
Then the two manual results were processed by the average
method, and the mean estimation was used as the gold standard.

All these selected images were used for optimal tuning of the
algorithm parameters. Optimal parameters for the algorithms
had been determined based on visual inspection of the results.
The final parameters are shown in Table 1.

The training set of RF was created by randomly selecting 60
of the total 152 lipid and mixed plaques. After parameter tuning
by this training set, the specific set with 100 trees and eight var-
iables were selected as the required parameters. The remaining
92 plaques were used as the testing set. A number of ∼2.4 · 105
training pixels were analyzed, resulting in a total of ∼1.6 · 106
testing pixels. The pixel-wise classification accuracy of 91.5% for
lipid plaques and 78.1% for mixed plaques was found.

The performance of the entire analysis method is validated
based on the accuracy of the plaque contour detection.
Figure 8 shows examples of the automated classification results
(lowest row) for adventitia, lipid, mixed and calcium plaque,

respectively, as well as manual classification (middle row). For
calcium plaque, the boundaries are well detected by level set
method. For AT, the plaque contour is discontinuous because

Fig. 9. Quantification metrics.

Fig. 8. Results of tissue classification. The colors of the plaque contour indicate the tissue behind the border (green, AT; red, LT; blue, MT; and
white, CT.
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of the process of threshold of gradient image and removal of
small connected components. For lipid plaque, the sensitivity
of the plaque contour location algorithm has good performance
due to the obvious difference of intensity. For mixed plaque, the
plaque contour is accurately detected but discontinuous in some
cases, which has a slight effect on the performance of the
proposed method.

Two quantitative indicators, depth and span angle, were cal-
culated automatically for each plaque-contour, as shown in Fig. 9.
With the reference of the centroid, the depth was defined as

Depth � 1

n

Xn
i�1

Di;

where n is the pixel number of the tissue border. The span angle α
(indicated by AFF) was denoted as the largest angle between the
rays across the plaque region.

The quantitative validation of depth and AFF showed excel-
lent agreement. The absolute and relative differences between
the automatic and manual method are given in Table 2.
Overall, the accuracy of >80% in the indicator of depth for
all types of tissue suggested reasonable agreement between the
automatic and manual results. Also, accuracy >80% in the
indicator of AFF was achieved for all types of tissue except
for AT, which results in a low accuracy of 66.2%.

4. DISCUSSION

Plaque morphology has played a more and more important role
in the study of cardiovascular disease. The morphology is de-
fined as the composition of artery wall and geometric shape of
atherosclerotic plaques. Based on this information, the math-
ematical model of cardiovascular hemodynamics is important
to advance the general understanding of coronary athero-
sclerotic disease and facilitate the development of new therapies
and interventions. A few papers have been published recently
that made mention of detecting plaque morphology. The para-
metric techniques focused on the signal across the A-line and
detected the division points of different layers. However, there
was no association among these division points.

For what we believe is the first time, a detection method of
the plaque contour based on image processing is proposed. The
plaque contour is defined as the border between fibrous and
other tissues, which can demonstrate plaque morphology suc-
cessfully. Therefore, this is a complete framework for all ath-
erosclerotic tissues without any manual interaction. The
good agreement between the automatic and experts’ manual
results confirms the effectiveness of this method (CT:0.03�
0.03 mm, AT:0.04� 0.07 mm, LT:0.04� 0.05 mm).

The proposed method is capable of detecting the plaque struc-
ture of clinical significance such as the thin-cap fibroatheroma

(TCFA) and lipid core. In addition, the method has the advan-
tages of high accuracy and provides objective and robust analysis
results, avoiding the manual factors in the process. Therefore, the
promotion of this method is significant enough to be integrated
in clinical routines, which contributes to the diagnosis and treat-
ment of atherosclerotic disease. As an example, characterization
and quantification of the atherosclerotic tissues can be valuable
both for preprocedure and postprocedure observation of percuta-
neous coronary intervention (PCI).

A limitation of the proposed method is the fact that the
plaque contour location results are discontinuous, especially
in the adventitia region, which decreases detection sensitivity
and accuracy. In addition, validation is performed using experts’
manual analysis as the gold standard in this paper. However,
except for calcium plaque with sharply boundaries and AT with
lamellar texture, most LTs and MTs were not typical, so that it
is difficult for experts to derive reliable assessments. Therefore,
the histological data or intravascular ultrasound (IVUS) images
are required as additional information, the purpose of which is
to give more objective and detailed analysis.

There is still significant work required to improve accuracy
and extend the application. IVOCT images are intrinsically
three-dimensional; therefore, three-dimensional methods are
more robust and efficient to implement segmentation, detec-
tion, and classification tasks. In addition, automated detection
of coronary stent struts in IVOCT images is of importance.
Further development of the methodology includes improving
tissue border location performance to reduce the sensitivity to
the shadow behind stents.

5. CONCLUSION

We presented an automatic analysis method for arteriosclerosis
tissues through IVOCT images. The innovative aspects of the
proposed method are: (1) automatic analysis without any
manual intervention; (2) the plaque contour defined in this pa-
per plays a key role in accurate segmentation of arteriosclerosis
tissues; (3) detection of adventitia and LTs relied on the spectral
approach. The validation shows that this method is objective
and accurate, which is valuable for the diagnosis and treatment
of atherosclerotic disease.
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