
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EQUIVARIANT FLOW MATCHING FOR POINT CLOUD
ASSEMBLY

Anonymous authors
Paper under double-blind review

ABSTRACT

The goal of point cloud assembly is to reconstruct a complete 3D shape by aligning
multiple point cloud pieces. This work presents a novel equivariant solver for
assembly tasks based on flow matching models. We first theoretically show that the
key to learning equivariant distributions via flow matching is to learn related vector
fields. Based on this result, we propose an assembly model, called equivariant
diffusion assembly (Eda), which learns related vector fields conditioned on the
input pieces. We further construct an equivariant path for Eda, which guarantees
high data efficiency of the training process. Our numerical results show that Eda
is highly competitive on practical datasets, and it can even handle the challenging
situation where the input pieces are non-overlapped.

1 INTRODUCTION

Point cloud (PC) assembly is a classic machine learning task which seeks to reconstruct 3D shapes
by aligning multiple point cloud pieces. This task has been intensively studied for decades and has
various applications such as scene reconstruction (Zeng et al., 2017), robotic manipulation (Ryu et al.,
2024), cultural relics reassembly (Wang et al., 2021) and protein designing (Watson et al., 2023). A
key challenge in this task is to correctly align PC pieces with small or no overlap region, i.e., when
the correspondences between pieces are lacking.

To address this challenge, some recent methods (Ryu et al., 2024; Wang and Jörnsten, 2024) utilized
equivariance priors for pair-wise assembly tasks, i.e., the assembly of two pieces. In contrast to most
of the state-of-the-art methods (Qin et al., 2022; Zhang, 1994) which align PC pieces based on the
inferred correspondence, these equivariant methods are correspondence-free, and they are guided by
the equivariance law underlying the assembly task. As a result, these methods are able to assemble
PCs without correspondence, and they enjoy high data efficiency and promising accuracy. However,
the extension of these works to multi-piece assembly tasks remains largely unexplored.

In this work, we develop an equivariant method for multi-piece assembly based on flow match-
ing (Lipman et al., 2023). Our main theoretical finding is that to learn an equivariant distribution
via flow matching, one only needs to ensure that the initial noise is invariant and the vector field is
related (Thm. 4.2). In other words, instead of directly handling the SE(3)N -equivariance forN -piece
assembly tasks, which can be computationally expensive, we only need to handle the related vector
fields on SE(3)N , which is efficient and easy to construct. Based on this result, we present a novel
assembly model called equivariant diffusion assembly (Eda), which uses invariant noise and predicts
related vector fields by construction. Eda is correspondence-free and is guaranteed to be equivariant
by our theory. Furthermore, we construct a short and equivariant path for the training of Eda, which
guarantees high data efficiency of the training process. When Eda is trained, an assembly solution
can be sampled by numerical integration, e.g., the Runge-Kutta method, starting from a random noise.
All proofs can be found in Appx. F. A brief walk-through of our theory using a toy example with
minimal terminologies is provided in Appx. C

The contributions of this work are summarized as follows:

- We present an equivariant flow matching framework for multi-piece assembly tasks. Our theory
reduces the task of constructing equivariant conditional distributions to the task of constructing
related vector fields, thus it provides a feasible way to define equivariant flow matching models.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

- Based on the theoretical result, we present a simple and efficient multi-piece PC assembly model,
called equivariant diffusion assembly (Eda), which is correspondence-free and is guaranteed to be
equivariant. We further construct an equivariant path for the training of Eda, which guarantees
high data efficiency.

- We numerically show that Eda produces highly accurate results on the challenging 3DMatch and
BB datasets, and it can even handle non-overlapped pieces.

2 RELATED WORK

Our proposed method is based on flow matching (Lipman et al., 2023), which is one of the state-
of-the-art diffusion models for image generation tasks (Esser et al., 2024). Some applications on
manifolds have also been investigated (Chen and Lipman, 2024; Yim et al., 2023). Our model has
two distinguishing features compared to existing methods: it learns conditional distributions instead
of marginal distributions, and it explicitly incorporates equivariance priors.

The PC assembly task studied in this work is related to various tasks in the literature, such as PC
registration (Qin et al., 2022; Yu et al., 2023), robotic manipulation (Ryu et al., 2024; 2023) and
fragment reassembly (Wu et al., 2023a). All these tasks aim to align the input PC pieces, but they are
different in settings such as the number of pieces, deterministic or probabilistic, and whether the PCs
are overlapped. More details can be found in Appx. B. In this work, we consider the most general
setting: we aim to align multiple pieces of non-overlapped PCs in a probabilistic way.

Recently, diffusion-based methods have been proposed for assembly tasks (Chen et al., 2025; Jiang
et al., 2023; Wu et al., 2023b; Li et al., 2025; Ryu et al., 2024; Scarpellini et al., 2024; Xu et al.,
2024). However, most of these works ignore the manifold structure or the equivariance priors of the
task. One notable exception is Ryu et al. (2024), which developed an equivariant diffusion method
for robotic manipulation, i.e., pair-wise assembly tasks. Compared to Ryu et al. (2024), our method
is conceptually simpler because it does not require Brownian diffusion on SO(3) whose kernel is
computationally intractable, and it solves the more general multi-piece problem. On the other hand,
the invariant flow theory has been studied in Köhler et al. (2020), which can be regarded as a special
case of our theory as discussed in Appx. F.1. Furthermore, the optimal-transport-based method was
explored for invariant flow (Song et al., 2023; Klein et al., 2023).

Another branch of related work is equivariant neural networks. Due to their ability to incorporate
geometric priors, this type of networks has been widely used for processing 3D graph data such
as PCs and molecules. In particular, E3NN (Geiger and Smidt, 2022) is a well-known equivariant
network based on the tensor product of the input and the edge feature. An acceleration technique
for E3NN was recently proposed (Passaro and Zitnick, 2023). On the other hand, the equivariant
attention layer was studied in Fuchs et al. (2020); Liao and Smidt (2023); Liao et al. (2024). Our
work is related to this line of approach, because our diffusion network can be seen as an equivariant
network with an additional time parameter.

3 PRELIMINARIES

This section introduces the major tools used in this work. We first define the equivariances in Sec. 3.1,
then we briefly recall the flow matching model in Sec. 3.2.

3.1 EQUIVARIANCES OF PC ASSEMBLY

Consider the action G =
∏N
i=1 SE(3) on a set of N (N ≥ 2) PCs X = {X1, . . . , XN}, where

SE(3) is the 3D rigid transformation group,
∏

is the direct product, and Xi is the i-th PC piece
in 3D space. We define the action of g = (g1, . . . , gN ) ∈ G on X as gX = {giXi}Ni=1, i.e., each
PC Xi is rigidly transformed by the corresponding gi. For the rotation subgroup SO(3)N , the
action of r = (r1, . . . , rN ) ∈ SO(3)N on X is rX = {riXi}Ni=1. For SO(3) ⊆ G, we denote
r = (r, . . . , r) ∈ SO(3) for simplicity, and the action of r on X is written as rX = {rXi}Ni=1.

We also consider the permutations ofX . Let SN be the permutation group ofN , the action of σ ∈ SN
onX is σX = {Xσ(i)}Ni=1, and the action on g is σg = (gσ(1), . . . , gσ(N)). For group multiplication,

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

we denote R(·) the right multiplication and L(·) the left multiplication, i.e., (Rr)r′ = r′r, and
(Lr)r′ = rr′ for r, r′ ∈ SO(3)N .

In our setting, for the given input X , the solution to the assembly task is a conditional distribution
PX ∈ µ(G), where µ(G) is the set of probability distribution on G. We study the following three
equivariances of PX in this work:
Definition 3.1. Let PX ∈ µ(G) be a probability distribution on G = SE(3)N conditioned on X ,
and let (·)# be the pushforward of measures.

- PX is SO(3)N -equivariant if (Rr−1)#PX = PrX for r ∈ SO(3)N .

- PX is permutation-equivariant if σ#PX = PσX for σ ∈ SN .

- PX is SO(3)-invariant if (Lr)#PX = PX for r ∈ SO(3).

As an example, we explicitly show the equivariance in Def. 3.1 for a two-piece deterministic problem.
Example 3.2. Assume that a solution for point clouds (X1, X2) is (r1, r2), meaning r1X1 and r2X2

are assembled, then

- SO(3)2-equivariance: a solution for (r3X1, r4X2) is (r1r
−1
3 , r2r

−1
4 );

- Permutation-equivariance: a solution for (X2, X1) is (r2, r1);

- SO(3)-invariance: another solution for (X1, X2) is (rr1, rr2).

More discussions on the definition of equivariances can be found in Appx. D

We finally recall the definition of SO(3)-equivariant networks, which will be the main computational
tool of this work. We call F l ∈ R2l+1 a degree-l SO(3)-equivariant feature if the action of r ∈ SO(3)
on F l is the matrix-vector production: rF l = RlF l, where Rl ∈ R(2l+1)×(2l+1) is the degree-l
Wigner-D matrix of r. We call a network w SO(3)-equivariant if it maintains the equivariance
from the input to the output: w(rX) = rw(X), where w(X) is a SO(3)-equivariant feature. More
detailed introduction of equivariances and the underlying representation theory can be found in Cesa
et al. (2022).

3.2 VECTOR FIELDS AND FLOW MATCHING

To sample from a data distribution P1 ∈ µ(M), where M is a smooth manifold (we only consider
M = G in this work), the flow matching (Lipman et al., 2023) approach constructs a time-dependent
diffeomorphism φτ : M → M satisfying (φ0)#P0 = P0 and (φ1)#P0 = P1, where P0 ∈ µ(M)
is a fixed noise distribution, and τ ∈ [0, 1] is the time parameter. Then the sample of P1 can be
represented as φ1(g) where g is sampled from P0.

Formally, φτ is defined as a flow, i.e., an integral curve, generated by a time-dependent vector field
vτ : M → TM , where TM is the tangent bundle of M :

∂

∂τ
φτ (g) = vτ (φτ (g)),

φ0(g) = g, ∀g ∈M.
(1)

According to Lipman et al. (2023), an efficient way to construct vτ is to define a path hτ connecting
P0 to P1. Specifically, let g0 and g1 be samples from P0 and P1 respectively, and h0 = g0 and
h1 = g1. vτ can be constructed as the solution to the following problem:

min
v

Eτ,g0∼P0,g1∼P1
||vτ (hτ )− ∂

∂τ
hτ ||2F . (2)

When v is learned using (2), we can obtain a sample from P1 by first sampling a noise g0 from P0

and then taking the integral of (1).

In this work, we consider a family of vector fields, flows and paths conditioned on the given PC, and
we use the pushforward operator on vector fields to study their relatedness (Tu, 2011). Formally,
let F : M → M be a diffeomorphism, v and w be vector fields on M . w is F -related to v if
w(F (g)) = F∗,gv(g) for all g ∈ M , where F∗,g is the differential of F at g. Note that we denote
vX , φX and hX the vector field, flow and path conditioned on PC X respectively.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Remark 3.3. For readers that are not familiar with this definition, relatedness can be simply regarded
as a transformation, so the above definition simply means w is the transformation of v by F . More
details can be found in Sec.14.6 in the text book Tu (2011).

4 METHOD

In this section, we provide the details of the proposed Eda model. First, the PC assembly problem
is formulated in Sec. 4.1. Then, we parametrize related vector fields in Sec. 4.2. The training and
sampling procedures are finally described in Sec. 4.3 and Sec. 4.4 respectively.

4.1 PROBLEM FORMULATION

Given a set X containing N PC pieces, i.e., X = {Xi}Ni=1 where Xi is the i-th piece, the goal of
assembly is to learn a distribution PX ∈ µ(G), i.e., for any sample g of PX , gX should be the
aligned complete shape. We assume that PX has the following equivariances:

Assumption 4.1. PX is SO(3)N -equivariant, permutation-equivariant and SO(3)-invariant.

We seek to approximate PX using flow matching. To avoid translation ambiguity, we also assume
that, without loss of generality, the aligned PCs gX and each input piece Xi are centered, i.e.,∑
im(giXi) = 0, and m(Xi) = 0 for all i, where m(·) is the mean vector.

4.2 EQUIVARIANT FLOW

The major challenge in our task is to ensure the equivariance of the learned distribution, because a
direct implementation of flow matching (1) generally does not guarantee any equivariance. To address
this challenge, we utilize the following theorem, which claims that when the noise distribution P0 is
invariant and vector fields vX are related, the pushforward distribution (φX)#P0 is guaranteed to be
equivariant.

Theorem 4.2. Let G be a smooth manifold, F : G → G be a diffeomorphism, and P ∈ µ(G). If
vector field vX ∈ TG is F -related to vector field vY ∈ TG, then

F#PX = PY , (3)

where PX = (φX)#P0, PY = (φY )#(F#P0). Here φX , φY : G→ G are generated by vX and vY
respectively.

Specifically, Thm. 4.2 provides a concrete way to construct the three equivariances required by
Assumption 4.1 as follow.

Assumption 4.3 (Invariant noise). P0 is SO(3)N -invariant, permutation-invariant and SO(3)-
invariant, i.e., (Rr−1)#P0 = P0, σ#P0 = P0 and P0 = (Lr)#P0 for r ∈ SO(3)N , σ ∈ SN
and r ∈ SO(3).

Corollary 4.4. Under assumption 4.3,

• if vX is Rr−1-related to vrX , then (Rr−1)#PX = PrX , where PX = (φX)#P0 and PrX =
(φrX)#P0. Here φX , φrX : G→ G are generated by vX and vrX respectively.

• if vX is σ-related to vσX , then σ#PX = PσX , where PX = (φX)#P0 and PσX = (φσX)#P0.
Here φX , φσX : G→ G are generated by vX and vσX respectively.

• if vX is Lr-invariant, i.e., vX is Lr-related to vX , then (Lr)#PX = PX , where PX = (φX)#P0.

According to Cor. 4.4, if the vector fields vX are related, then the solution PX is guaranteed
to be equivariant. Therefore, the problem is reduced to constructing related vector fields. We
start by constructing (Rg−1)-related vector fields, which are (Rr−1)-related by definition, where
g ∈ SE(3)N and r ∈ SO(3)N . Specifically, we have the following proposition:

Proposition 4.5. vX isRg−1 -related to vgX if and only if vX(g) = vgX(e)g for all g ∈ SE(3)N .

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Prop. 4.5 suggests that for (Rg−1)-related vector fields vX , vX(g) is fully determined by the value
of vgX at the identity element e. Therefore, to parametrize vX , we only need to parametrize vgX
at one single point e. Specifically, let f be a neural network parametrizing vX(e) for input X , i.e.,
f(X) = vX(e), vX can then be written as

vX(g) = f(gX)g. (4)

Here, f(X) ∈ se(3)N takes the form of

f(X) =

N⊕
i=1

fi(X) where fi(X) =

(
wi×(X) ti(X)

0 0

)
∈ se(3) ⊆ R4×4. (5)

The rotation component wi×(X) ∈ R3×3 is a skew matrix with elements in the vector wi(X) ∈ R3,
and ti(X) ∈ R3 is the translation component. For simplicity, we omit the superscript i when the
context is clear.

Now we proceed to the other two types of relatedness of vX . According to the following proposition,
when vX is written as (4), these two relatedness of vX can be guaranteed if the network f is
equivariant.
Proposition 4.6. For vX defined in (4),

• if f is permutation-equivariant, i.e., f(σX) = σf(X) for σ ∈ SN and PCs X , then vX is
σ-related to vσX .

• if f is SO(3)-equivariant, i.e., w(rX) = rw(X) and t(rX) = rt(X) for r ∈ SO(3) and PCs X ,
then vX is Lr-invariant.

Finally, we define P0 = (USO(3)⊗N (0, ωI))N , where USO(3) is the uniform distribution on SO(3),
N is the normal distribution on R3 with mean zero and isotropic variance ω ∈ R+, and ⊗ represents
the independent coupling. It is straightforward to verify that P0 indeed satisfies assumption 4.3.

In summary, with P0 and v constructed above, the learned distribution is guaranteed to be SO(3)N -
equivariance, permutation-equivariance and SO(3)-invariance.

4.3 TRAINING

To learn the vector field vX (4) using flow matching (2), we now need to define hX , and the
sampling strategy of τ , g0 and g1. A canonical choice (Chen and Lipman, 2024) is h(τ) =
g0 exp(τ log(g−10 g1)), where g0 and g1 are sampled independently, and τ is sampled from a prede-
fined distribution, e.g., the uniform distribution U[0,1]. However, this definition of h, g0 and g1 does
not utilize any equivariance property of vX , thus it does not guarantee a high data efficiency.

To address this issue, we construct a “short” and equivariant hX in the following two steps. First, we
independently sample g0 from P0 and g̃1 from PX , and obtain g1 = r∗g̃1, where r∗ ∈ SO(3) is a
rotation correction of g̃1:

r∗ = arg min
r∈SO(3)

||rg̃1 − g0||2F . (6)

Then, we define hX as
hX(τ) = exp(τ log(g1g

−1
0 ))g0. (7)

We call hX (7) a path generated by g0 and g̃1. A similar rotation correction in the Euclidean space
was studied in Song et al. (2023); Klein et al. (2023). Note that hX (7) is a well-defined path
connecting g0 to g1, because hX(0) = g0 and hX(1) = g1, and g1 follows PX (Prop. F.5).

The advantages of hX (7) are twofold. First, instead of connecting a noise g0 to an independent
data sample g̃1, hX connects g0 to a modified sample g1 where the redundant rotation component is
removed, thus it is easier to learn. Second, the velocity fields of hX enjoy the same relatedness as
vX (4), which leads to high data efficiency. Formally, we have the following observation.
Proposition 4.7 (Data efficiency). Under assumption 4.3, 4.1, and F.4, we further assume that vX
satisfies the relatedness property required in Cor. 4.4, i.e., vX isRr−1 -related to vrX , vX is σ-related
to vσX , and vX is Lr-invariant. Denote L(X) = Eτ,g0∼P0,g̃1∼PX ||vX(hX(τ))− ∂

∂τ hX(τ)||2F the
training loss (2) of PC X , where hX is generated by g0 and g̃1 as defined in (7). Then

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

- L(X) = L(rX) for r ∈ SO(3)N .

- L(X) = L(σX) for σ ∈ SN .

- L(X) = L̂(X), where L̂(X) = Eτ,g′0∼P0,g̃′1∼(Lr)#PX ||vX(hX(τ)) − ∂
∂τ hX(τ)||2F is the loss

where the data distribution PX is pushed forward by Lr ∈ SO(3).

Prop. 4.7 implies that when hX (7) is combined with the equivariant components developed in
Sec. 4.2, the following three data augmentations are automatically incorporated into the training
process: 1) random rotation of each input piece Xi, 2) random permutation of the order of the input
pieces, and 3) random rotation of the assembled shape.

4.4 SAMPLING VIA THE RUNGE-KUTTA METHOD

Finally, when the vector field vX (4) is learned, we can obtain a sample g1 from PX by numerically
integrating vX starting from a noise g0 from P0. In this work, we use the Runge-Kutta (RK) solver
on SE(3)N , which is a generalization of the classical RK solver on Euclidean spaces. For clarity,
we present the formulations below, and refer the readers to Crouch and Grossman (1993) for more
details.

To apply the RK method, we first discretize the time interval [0, 1] into I steps, i.e., τi = i
I

for i = 0, . . . , I , with a step length η = 1
I . For the given input X , denote f(gX) at time τ

by fτ (g) for simplicity. The first-order RK method (RK1), i.e., the Euler method, is to iterate:
gi+1 = exp(ηfτi(gi))gi, for i = 0, . . . , I . To achieve higher accuracy, we can use the fourth-order
RK method (RK4). More details can be found in E.

5 IMPLEMENTATION

Figure 1: An overview of our model. The shapes
of variables are shown in the brackets.

This section provides the details of the net-
work f (5). Our design principle is to imitate
the standard transformer structure (Vaswani
et al., 2017) to retain its best practices. In ad-
dition, according to Prop. 4.6, we also require
f to be permutation-equivariant and SO(3)-
equivariant.

The overall structure of the proposed network is
shown in Fig. 1. In a forward pass, the input PC
pieces {Xi}Ni=1 are first downsampled using a
few downsampling blocks, and then fed into
the Croco blocks (Weinzaepfel et al., 2022) to
model their relations. Meanwhile, the time step
τ is first embedded using a multi-layer perceptron (MLP) and then incorporated into the above blocks
via adaptive normalization (Peebles and Xie, 2023). The output is finally obtained by a piece-wise
pooling.

Next, we provide details of the equivariant attention layers, which are the major components of both
the downsampling block and the Croco block, in Sec. 5.1. Other layers, including the nonlinear and
normalization layers, are described in Sec. 5.2.

5.1 EQUIVARIANT ATTENTION LAYERS

The equivariant attention layers are based on e3nn (Geiger and Smidt, 2022). For the input point
cloud, the KNN graph is first built, and the query Q, key K and value V matrices are computed for
each node. Then the dot-product attention is computed where each node attends to its neighbors. We
further use the reduction technique (Passaro and Zitnick, 2023) to accelerate the computation. More
details can be found in Appx. G.

Following Croco (Weinzaepfel et al., 2022), we stack two types of attention layers, i.e., the self-
attention layer and the cross-attention layer, into a Croco block to learn the features of each PC

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

piece while incorporating information from other pieces. For self-attention layers, we build KNN
graph where the neighbors are selected from the same pieces, and for cross-attention layers, we build
KNN graph where the neighbors are selected from the different pieces. In addition, to reduce the
computational cost, we use downsampling layers to reduce the number of points before the Croco
layers. Each downsampling layer consists of a farthest point sampling (FPS) layer and a self-attention
layer.

5.2 ADAPTIVE NORMALIZATION AND NONLINEAR LAYERS

Following the common practice (Devlin et al., 2019), we seek to use the GELU activation func-
tion (Hendrycks and Gimpel, 2016) in our transformer structure. However, GELU in its original form
is not SO(3)-equivariant. To address this issue, we adopt a projection formulation similar to Deng et al.
(2021). Specifically, we define the equivariant GELU (Elu) layer as: Elu(F l) = GELU(〈F l, ŴF l〉)
where x̂ = x/‖x‖ is the normalization, W ∈ Rc×c is a learnable weight. Note that Elu is a natural
extension of GELU, because when l = 0, Elu(F 0) = GELU(±F 0).

As for the normalization layers, we use RMS-type layer normalization layers (Zhang and Sennrich,
2019) following Liao et al. (2023), and we use the adaptive normalization (Peebles and Xie, 2023)
technique to incorporate the time step τ . Specifically, we use the adaptive normalization layer AN

defined as: AN(F l, τ) = F l/σ · MLP(τ), where σ =
√

1
c·lmax

∑lmax
l=1

1
2l+1 〈F l, F l〉, lmax is the

maximum degree, and MLP is a multi-layer perceptron that maps τ to a vector of length c.

We finally remark that the network f defined in this section is SO(3)-equivariant because each layer
is SO(3)-equivariant by construction. f is also permutation-equivariant because it does not use any
order information of Xi.

6 EXPERIMENT

This section evaluates Eda on practical assembly tasks. After introducing the experiment settings in
Sec. 6.1, we first evaluate Eda on the pair-wise registration tasks in Sec. 6.2, and then we consider the
multi-piece assembly tasks in Sec. 6.3. An ablation study is finally presented in Sec. 6.4.

6.1 EXPERIMENT SETTINGS

We evaluate the accuracy of an assembly solution using the averaged pair-wise error. For a predicted
assembly g and the ground truth ĝ, the rotation error ∆r and the translation error ∆t are computed as:
(∆r,∆t) = 1

N(N−1)
∑
i 6=j ∆̃(ĝi, ĝjg

−1
j gi), where the pair-wise error ∆̃ is computed as ∆̃(g, ĝ) =(

180
π accos

(
1
2

(
tr(rr̂T )− 1

))
, ‖t̂ − t‖

)
. Here g = (r, t), ĝ = (r̂, t̂), and tr(·) represents the trace.

This metric is the pair-wise rotation/translation error: it measures the averaged error of gi w.r.t. gj
for all (i, j) pairs of pieces.

For Eda, we use 2 Croco blocks, and 4 downsampling layers with a downsampling ratio 0.25. We
use k = 10 nearest neighbors, lmax = 2 degree features with d = 64 channels and 4 attention
heads. Following Peebles and Xie (2023), we keep an exponential moving average (EMA) with a
decay of 0.99, and we use the AdamW (Loshchilov and Hutter, 2017) optimizer with a learning rate
10−4. Following Esser et al. (2024), we use a logit-normal sampling for time variable τ . For each
experiment, we train Eda on 3 Nvidia A100 GPUs for at most 5 days. We denote Eda with q steps of
RKp as “Eda (RKp, q)” , e.g., Eda (RK1, 10) represents Eda with 10 steps of RK1.

6.2 PAIR-WISE REGISTRATION

Table 1: The overlap ratio of PC pairs (%).
3DM 3DL 3DZ

Training set (10, 100) 0
Test set (30, 100) (10, 30) 0

This section evaluates Eda on rotated
3DMatch (Zeng et al., 2017) (3DM) dataset
containing PC pairs from indoor scenes.
Following Huang et al. (2021), we consider the
3DLoMatch split (3DL), which contains PC
pairs with smaller overlap ratios. Furthermore, to highlight the ability of Eda on non-overlapped

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

assembly tasks, we consider a new split called 3DZeroMatch (3DZ), which contains non-overlapped
PC pairs. The comparison of these three splits is shown in Tab. 1.

Table 2: Quantitative results on rotated 3DMatch. ROI
(n): ROI with n RANSAC samples.

3DM 3DL 3DZ
∆r ∆t ∆r ∆t ∆r ∆t

FGR 69.5 0.6 117.3 1.3 − −
GEO 7.43 0.19 28.38 0.69 − −

ROI (500) 5.64 0.15 21.94 0.53 − −
ROI (5000) 5.44 0.15 22.17 0.53 − −

AMR 5.0 0.13 20.5 0.53 − −
Eda (RK4, 50) 2.38 0.17 8.57 0.4 78.32 2.74

We compare Eda against the following
baseline methods: FGR (Zhou et al., 2016),
GEO (Qin et al., 2022), ROI (Yu et al.,
2023), and AMR (Chen et al., 2025),
where FGR is a classic optimization-based
method, GEO and ROI are correspondence-
based methods, and AMR is a recently pro-
posed diffusion-like method based on GEO.
We report the results of the baseline meth-
ods using their official implementations.
Note that the correspondence-free methods
like Ryu et al. (2024); Wang and Jörnsten (2024) do not scale to this dataset.

We report the results in Tab 2. On 3DM and 3DL, we observe that Eda outperforms the baseline
methods by a large margin, especially for rotation errors, where Eda achieves more than 50% lower
rotation errors on both 3DL and 3DM. We provide more details of Eda on 3DL in Fig. 5 in the
appendix.

(a) Ground truth (b) The result of Eda (c) Distribution of ∆r

Figure 2: More details of Eda on 3DZ. (b): A result of Eda. Cameras are set to look at the room
from above. Two PC pieces are marked by different colors. (c): the distribution of ∆r on the test set.

As for 3DZ, we only report the results of Eda in Tab 2, because all baseline methods are not applicable
to 3DZ, i.e., their training goal is undefined when the correspondence does not exist. We observe
that Eda’s error on 3DZ is much larger compared to that on 3DL, suggesting that there exists much
larger ambiguity. Nevertheless, as shown in in Fig. 2(b), Eda indeed learned the global geometry of
the indoor scenes instead of just random guessing, because it tends to place large planes, i.e., walls,
floors and ceilings, in a parallel or orthogonal position, and keep a plausible distance between walls
of the assembled room.

To show that this behavior is consistent in the whole test set, we present the distribution of ∆r of
Eda on 3DZ in Fig. 2(c). A simple intuition is that for rooms consisting of 6 parallel or orthogonal
planes (four walls, a floor and a ceiling), if the orthogonality or parallelism of planes is correctly
maintained in the assembly, then ∆r should be 0, 90, or 180. We observe that this is indeed the
case in Fig. 2(c), where ∆r is centered at 0, 90, and 180. We remark that the ability to learn global
geometric properties beyond correspondences is a key advantage of Eda, and it partially explains the
superior performance of Eda in Tab. 2

6.3 MULTI-PIECE ASSEMBLY

This section evaluates Eda on the volume constrained version of BB dataset (Sellán et al., 2022). We
consider the shapes with 2 ≤ N ≤ 8 pieces in the “everyday” subset. We compare Eda against the
following baseline methods: DGL (Zhan et al., 2020), LEV (Wu et al., 2023a), GLO (Sellán et al.,
2022), JIG (Lu et al., 2023) and GARF (Li et al., 2025). JIG is correspondence-based, GARF is
diffusion-based, and other baseline methods are regression-based. For Eda, we process all fragments
by grid downsampling with a grid size 0.02. For the baseline methods, we follow their original
preprocessing steps. We do not pretrain GARF for fair comparison,. To reproduce the results of the

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

baseline methods, we use the implementation of DGL and GLO in the official benchmark suite of
BB, and we use the official implementation of LEV, JIG and GARF.

Table 3: Quantitative results on BB dataset and the
total computation time on the test set.

∆r ∆t Time (min)
GLO 126.3 0.3 0.9
DGL 125.8 0.3 0.9
LEV 125.9 0.3 8.1
JIG 106.5 0.24 122.2

GARF 95.6 0.2 (48)
Eda (RK1, 10) 80.64 0.16 19.4
Eda (RK4, 10) 79.2 0.16 76.9

The results are shown in Tab. 3, where we also
report the computation time of all methods on
the test set on a Nvidia T4 GPU except GARF,
which is measured on a A40 GPU because it
does not support the T4 GPU. We observe that
Eda outperforms all baseline methods by a large
margin at a moderate computation cost. We
present some qualitative results in Fig. 7 in the
appendix, where we observe that Eda can gen-
erally reconstruct the shapes more accurately
than the baseline methods. An example of the
assembly process of Eda is presented in Fig. 3.

Figure 3: From left to right: the assembly process of a 8-piece bottle by Eda.

6.4 ABLATION STUDIES

Figure 4: The results of Eda on different number of
pieces.

We first investigate the influence of the
number of pieces on the performance
of Eda. We use the kitti odometry
dataset (Geiger et al., 2012) containing PCs
of city road views. For each sequence of
data, we keep pieces that are at least 100
meters apart so that they do not necessar-
ily overlap, and we downsample them us-
ing grid downsampling with a grid size 0.5.
We train Eda on all consecutive pieces of
length 2 ∼ Nmax in sequences 0 ∼ 8. We
call the trained model Eda-Nmax. We then evaluate Eda-Nmax on all consecutive pieces of length M
in sequence 9 ∼ 10.

The results are shown in Fig. 4. We observe that for ∆r, when the length of the test data is seen in
the training set, i.e., M ≤ Nmax, Eda performs well, and M > Nmax leads to worse performance. In
addition, Eda-4 generalizes better than Eda-3 on data of unseen length (5 and 6). The result indicates
the necessity of using training data whose lengths subsume that of the test data. Meanwhile, the
translation errors of Eda-4 and Eda-3 are comparable, and they both increase with the length of data.

Table 4: Ablation study.
∆r ∆t

Eda 13.3 0.2
Eda-(r) 15.4 0.23

Eda-(r, h) 79.4 0.51
Eda-(r, e) 86.2 0.37

Eda-(r, h, e) − −

Then we investigate the influence of the components in our theory.
We compare Eda with Eda-O on the 3DL dataset, where O is a
combination of the following modifications: 1) r: removing r∗

in hX (7). 2) h: replacing hX (7) by the canonical path h. 3) e:
replacing f by a non-equivariant network. The results are shown in
Tab. 4, where we observe that r leads to a small performance drop,
while h and e lead to large performance drops. In addition, Eda-
(r, h, e) fails to converge. More details can be found in Appx. H.

7 CONCLUSION

This work studied the theory of equivariant flow matching, and presented a multi-piece assembly
method, called Eda, based on the theory. We show that Eda can accurately assemble PCs on practical
datasets. More discussions can be found in Appx. I.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Federica Arrigoni, Beatrice Rossi, and Andrea Fusiello. Spectral synchronization of multiple views
in se (3). SIAM Journal on Imaging Sciences, 9(4):1963–1990, 2016.

K Somani Arun, Thomas S Huang, and Steven D Blostein. Least-squares fitting of two 3-d point sets.
IEEE Transactions on pattern analysis and machine intelligence, (5):698–700, 1987.

Gabriele Cesa, Leon Lang, and Maurice Weiler. A program to build e (n)-equivariant steerable cnns.
In International Conference on Learning Representations, 2022.

Ricky TQ Chen and Yaron Lipman. Flow matching on general geometries. In The Twelfth Interna-
tional Conference on Learning Representations, 2024.

Yun-Chun Chen, Haoda Li, Dylan Turpin, Alec Jacobson, and Animesh Garg. Neural shape mating:
Self-supervised object assembly with adversarial shape priors. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 12724–12733, 2022.

Zhi Chen, Yufan Ren, Tong Zhang, Zheng Dang, Wenbing Tao, Sabine Susstrunk, and Mathieu
Salzmann. Adaptive multi-step refinement network for robust point cloud registration. Transactions
on Machine Learning Research, 2025. ISSN 2835-8856. URL https://openreview.net/
forum?id=M3SkSMfWcP.

Peter E Crouch and R Grossman. Numerical integration of ordinary differential equations on
manifolds. Journal of Nonlinear Science, 3:1–33, 1993.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and
memory-efficient exact attention with IO-awareness. In Advances in Neural Information Processing
Systems (NeurIPS), 2022.

Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacchi, and Leonidas J
Guibas. Vector neurons: A general framework for so (3)-equivariant networks. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 12200–12209, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pages 4171–4186, 2019.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. In Forty-first international conference on machine learning, 2024.

Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max Welling. Se(3)-transformers: 3d roto-
translation equivariant attention networks. Advances in neural information processing systems, 33:
1970–1981, 2020.

Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti
vision benchmark suite. In 2012 IEEE conference on computer vision and pattern recognition,
pages 3354–3361. IEEE, 2012.

Mario Geiger and Tess Smidt. e3nn: Euclidean neural networks. arXiv preprint arXiv:2207.09453,
2022.

Zan Gojcic, Caifa Zhou, Jan D Wegner, Leonidas J Guibas, and Tolga Birdal. Learning multiview 3d
point cloud registration. In International conference on computer vision and pattern recognition
(CVPR), 2020.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Shengyu Huang, Zan Gojcic, Mikhail Usvyatsov, Andreas Wieser, and Konrad Schindler. Predator:
Registration of 3d point clouds with low overlap. In Proceedings of the IEEE/CVF Conference on
computer vision and pattern recognition, pages 4267–4276, 2021.

10

https://openreview.net/forum?id=M3SkSMfWcP
https://openreview.net/forum?id=M3SkSMfWcP


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Haobo Jiang, Mathieu Salzmann, Zheng Dang, Jin Xie, and Jian Yang. Se (3) diffusion model-based
point cloud registration for robust 6d object pose estimation. Advances in Neural Information
Processing Systems, 36:21285–21297, 2023.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Leon Klein, Andreas Krämer, and Frank Noé. Equivariant flow matching. Advances in Neural
Information Processing Systems, 36:59886–59910, 2023.

Jonas Köhler, Leon Klein, and Frank Noé. Equivariant flows: exact likelihood generative learning for
symmetric densities. In International conference on machine learning, pages 5361–5370. PMLR,
2020.

Seong Hun Lee and Javier Civera. Hara: A hierarchical approach for robust rotation averaging. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
15777–15786, 2022.

Sihang Li, Zeyu Jiang, Grace Chen, Chenyang Xu, Siqi Tan, Xue Wang, Irving Fang, Kristof
Zyskowski, Shannon P McPherron, Radu Iovita, Chen Feng, and Jing Zhang. Garf: Learning
generalizable 3d reassembly for real-world fractures. In International Conference on Computer
Vision (ICCV), 2025.

Yi-Lun Liao and Tess Smidt. Equiformer: Equivariant graph attention transformer for 3d atomistic
graphs. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=KwmPfARgOTD.

Yi-Lun Liao, Brandon Wood, Abhishek Das, and Tess Smidt. Equiformerv2: Improved equivariant
transformer for scaling to higher-degree representations. arXiv preprint arXiv:2306.12059, 2023.

Yi-Lun Liao, Brandon M Wood, Abhishek Das, and Tess Smidt. Equiformerv2: Improved equivariant
transformer for scaling to higher-degree representations. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
mCOBKZmrzD.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In The Eleventh International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=PqvMRDCJT9t.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Jiaxin Lu, Yifan Sun, and Qixing Huang. Jigsaw: Learning to assemble multiple fractured objects.
Advances in Neural Information Processing Systems, 36:14969–14986, 2023.

Saro Passaro and C Lawrence Zitnick. Reducing so (3) convolutions to so (2) for efficient equivariant
gnns. In International Conference on Machine Learning, pages 27420–27438. PMLR, 2023.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pages 4195–4205, 2023.

Zheng Qin, Hao Yu, Changjian Wang, Yulan Guo, Yuxing Peng, and Kai Xu. Geometric transformer
for fast and robust point cloud registration. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 11143–11152, 2022.

Hyunwoo Ryu, Hong-in Lee, Jeong-Hoon Lee, and Jongeun Choi. Equivariant descriptor fields: Se
(3)-equivariant energy-based models for end-to-end visual robotic manipulation learning. arXiv
preprint arXiv:2206.08321, 2022.

Hyunwoo Ryu, Hong in Lee, Jeong-Hoon Lee, and Jongeun Choi. Equivariant descriptor fields:
Se(3)-equivariant energy-based models for end-to-end visual robotic manipulation learning. In
The Eleventh International Conference on Learning Representations, 2023. URL https://
openreview.net/forum?id=dnjZSPGmY5O.

11

https://openreview.net/forum?id=KwmPfARgOTD
https://openreview.net/forum?id=mCOBKZmrzD
https://openreview.net/forum?id=mCOBKZmrzD
https://openreview.net/forum?id=PqvMRDCJT9t
https://openreview.net/forum?id=dnjZSPGmY5O
https://openreview.net/forum?id=dnjZSPGmY5O


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Hyunwoo Ryu, Jiwoo Kim, Hyunseok An, Junwoo Chang, Joohwan Seo, Taehan Kim, Yubin Kim,
Chaewon Hwang, Jongeun Choi, and Roberto Horowitz. Diffusion-edfs: Bi-equivariant denoising
generative modeling on se (3) for visual robotic manipulation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 18007–18018, 2024.

Gianluca Scarpellini, Stefano Fiorini, Francesco Giuliari, Pietro Moreiro, and Alessio Del Bue.
Diffassemble: A unified graph-diffusion model for 2d and 3d reassembly. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 28098–28108, 2024.

Silvia Sellán, Yun-Chun Chen, Ziyi Wu, Animesh Garg, and Alec Jacobson. Breaking bad: A dataset
for geometric fracture and reassembly. Advances in Neural Information Processing Systems, 35:
38885–38898, 2022.

Anthony Simeonov, Yilun Du, Andrea Tagliasacchi, Joshua B Tenenbaum, Alberto Rodriguez, Pulkit
Agrawal, and Vincent Sitzmann. Neural descriptor fields: Se (3)-equivariant object representations
for manipulation. In 2022 International Conference on Robotics and Automation (ICRA), pages
6394–6400. IEEE, 2022.

Yuxuan Song, Jingjing Gong, Minkai Xu, Ziyao Cao, Yanyan Lan, Stefano Ermon, Hao Zhou,
and Wei-Ying Ma. Equivariant flow matching with hybrid probability transport for 3d molecule
generation. Advances in Neural Information Processing Systems, 36:549–568, 2023.

Loring W Tu. Manifolds. In An Introduction to Manifolds, pages 47–83. Springer, 2011.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Haiping Wang, Yufu Zang, Fuxun Liang, Zhen Dong, Hongchao Fan, and Bisheng Yang. A
probabilistic method for fractured cultural relics automatic reassembly. Journal on Computing and
Cultural Heritage (JOCCH), 14(1):1–25, 2021.

Ziming Wang and Rebecka Jörnsten. Se (3)-bi-equivariant transformers for point cloud assembly. In
The Thirty-eighth Annual Conference on Neural Information Processing Systems (NeurIPS), 2024.

Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E Eisenach,
Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo design of protein
structure and function with rfdiffusion. Nature, 620(7976):1089–1100, 2023.

Philippe Weinzaepfel, Vincent Leroy, Thomas Lucas, Romain Brégier, Yohann Cabon, Vaibhav Arora,
Leonid Antsfeld, Boris Chidlovskii, Gabriela Csurka, and Jérôme Revaud. Croco: Self-supervised
pre-training for 3d vision tasks by cross-view completion. Advances in Neural Information
Processing Systems, 35:3502–3516, 2022.

Ruihai Wu, Chenrui Tie, Yushi Du, Yan Zhao, and Hao Dong. Leveraging se (3) equivariance for
learning 3d geometric shape assembly. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 14311–14320, 2023a.

Yue Wu, Yongzhe Yuan, Xiaolong Fan, Xiaoshui Huang, Maoguo Gong, and Qiguang Miao. Pcrdif-
fusion: Diffusion probabilistic models for point cloud registration. CoRR, 2023b.

Qun-Ce Xu, Hao-Xiang Chen, Jiacheng Hua, Xiaohua Zhan, Yong-Liang Yang, and Tai-Jiang
Mu. Fragmentdiff: A diffusion model for fractured object assembly. In SIGGRAPH Asia 2024
Conference Papers, pages 1–12, 2024.

Jason Yim, Andrew Campbell, Andrew YK Foong, Michael Gastegger, José Jiménez-Luna, Sarah
Lewis, Victor Garcia Satorras, Bastiaan S Veeling, Regina Barzilay, Tommi Jaakkola, et al. Fast
protein backbone generation with se (3) flow matching. arXiv preprint arXiv:2310.05297, 2023.

Hao Yu, Zheng Qin, Ji Hou, Mahdi Saleh, Dongsheng Li, Benjamin Busam, and Slobodan Ilic.
Rotation-invariant transformer for point cloud matching. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pages 5384–5393, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Andy Zeng, Shuran Song, Matthias Nießner, Matthew Fisher, Jianxiong Xiao, and Thomas
Funkhouser. 3dmatch: Learning local geometric descriptors from rgb-d reconstructions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1802–1811,
2017.

Guanqi Zhan, Qingnan Fan, Kaichun Mo, Lin Shao, Baoquan Chen, Leonidas J Guibas, Hao Dong,
et al. Generative 3d part assembly via dynamic graph learning. Advances in Neural Information
Processing Systems, 33:6315–6326, 2020.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural
Information Processing Systems, 32, 2019.

Zhengyou Zhang. Iterative point matching for registration of free-form curves and surfaces. Interna-
tional Journal of Computer Vision, 13(2):119–152, 1994.

Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Fast global registration. In Computer Vision–ECCV
2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings,
Part II 14, pages 766–782. Springer, 2016.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS (LLM)

We use an LLM to correct grammar errors.

B MORE DETAILS OF THE RELATED TASKS

The registration task aims to reconstruct the scene from multiple overlapped views. A registration
method generally consists of two stages: first, each pair of pieces is aligned using a pair-wise
method (Qin et al., 2022), then all pieces are merged into a complete shape using a synchronization
method (Arrigoni et al., 2016; Lee and Civera, 2022; Gojcic et al., 2020). In contrast to other tasks,
the registration task generally assumes that the pieces are overlapped. In other words, it assumes that
some points observed in one piece are also observed in the other piece, and the goal is to match the
points observed in both pieces, i.e., corresponding points. The state-of-the-art registration methods
usually infer the correspondences based on the feature similarity (Yu et al., 2023) learned by neural
networks, and then align them using the SVD projection (Arun et al., 1987) or RANSAC.

The robotic manipulation task aims to move one PC to a certain position relative to another PC. For
example, one PC can be a cup, and the other PC can be a table, and the goal is to move the cup onto
the table. Since the input PCs are sampled from different objects, they are generally non-overlapped.
Unlike the other two tasks, this task is generally formulated in a probabilistic setting, as the solution
is generally not unique. Various probabilistic models, such as energy-based models (Simeonov et al.,
2022; Ryu et al., 2023), or diffusion models (Ryu et al., 2024), have been used for this task.

The reassembly task aims to reconstruct the complete object from multiple fragment pieces. This
task is similar to the registration task, except that the input PCs are sampled from different fragments,
thus they are not necessarily overlapped, e.g., due to missing pieces or the erosion of the surfaces.
Most of the existing methods are based on regression, where the solution is directly predicted from
the input PCs (Wu et al., 2023a; Chen et al., 2022; Wang and Jörnsten, 2024). Some probabilistic
methods, such as diffusion-based methods (Xu et al., 2024; Scarpellini et al., 2024), have also been
proposed. Note that there exist some exceptions (Lu et al., 2023) which assume the overlap of the
pieces, and they rely on the inferred correspondences as the registration methods.

A comparison of these three tasks is presented in Tab. 5.

Table 5: Comparison between registration, reassembly and manipulation tasks.
Task Number of piecesProbabilistic/Deterministic Overlap

Registration ≥ 2 Deterministic Overlapped
Reassembly ≥ 2 Deterministic Non-overlapped

Manipulation 2 Probabilistic Non-overlapped
Assembly (this work) ≥ 2 Probabilistic Non-overlapped

C A WALK-THROUGH OF THE MAIN THEORY

This section provides a walk-through of the theory using the two-piece deterministic example. We
follow the notation in example 3.2: let (r1, r2) be the solution for the input point clouds (X1, X2),
meaning r1X1 and r2X2 are assembled.

Our theory addresses the following equivariance question. Assume that a diffusion model works
for the input (X1, X2), i.e., the predicted vector field v(X1,X2) flows to the correct solution (r1, r2).
How to ensure it also works for the perturbed input? For example, for SO(3)2-equivariance, the
question is how to ensure the model also works for (r3X1, r4X2). i.e., to ensure the predicted vector
field v(r3X1,r4X2) flows to (r1r

−1
3 , r2r

−1
4 ).

Corollary 4.4 shows that the goal can be achieved if v(r3X,r4X2) is a proper "transformation" of
v(X1,X2) (relatedness), and the noise is invariant.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Then, the next question is how to satisfy the relatedness requirement. Proposition 4.5 suggests that
this can be simply done by parametrizing the vector fields as
v(X1,X2)(r7, r8) = f(r7X1, r8X2)(r7 ⊕ r8), where f(X1, X2) = (w1, t1)⊕ (w2, t2) (8)

is a neural network mapping (X1, X2) to their respective rotation/translation velocity components
w and t, and ⊕ is the concatenation. In summary, we can now answer the question from the last
paragraph: if the diffusion model predicts the vector field as in (8) and it works for (X1, X2), then it
also works for (r3X1, r4X2).

Further more, Proposition 4.6 suggests that, to ensure the other two requirements (permutation
equivariance and SO(3)-invariance) of the model, f needs to satisfy

f(X2, X1) = (w2, t2)⊕ (w1, t1) and f(rX1, rX2) = (rw1, rt1)⊕ (rw2, rt2) (9)

Finally, Proposition 4.7 suggests that some data augmentations are not needed when all the above
requirements are satisfied. For example, for data (X1, X2) we learn a vector field v(X1,X2). We can
use randomly augmented data (r3X1, r4X2) and learn v(r3X1,r4X2). However, this is not necessary
because v(r3X1,r4X2) is already guaranteed to be a transformation of v(X1,X2) as described above,
and the loss for them is the same, i.e., learning v(X1,X2) alone is enough. Similar results hold for the
other two types of augmentations.

D CONNECTIONS WITH BI-EQUIVARIANCE

This section briefly discusses the connections between Def. 3.1 and the equivariances defined in Ryu
et al. (2024) and Wang and Jörnsten (2024) in pair-wise assembly tasks.

We first recall the definition of the probabilistic bi-equivariance.
Definition D.1 (Eqn. (10) in Ryu et al. (2024) and Def. (1) in Ryu et al. (2022)). P̂ ∈ µ(SE(3)) is
bi-equivariant if for all g1, g2 ∈ SO(3), PCs X1, X2, and a measurable set A ⊆ SE(3),

P̂ (A|X1, X2) = P̂ (g2Ag
−1
1 |g1X1, g2X2). (10)

Note that we only consider g1, g2 ∈ SO(3) instead of g1, g2 ∈ SE(3) because we require all input
PCs, i.e., Xi, giXi, i = 1, 2, to be centered.

Then we recall Def. 3.1 for pair-wise assembly tasks:
Definition D.2 (Restate SO(3)2-equivariance and SO(3)-invariance in Def. 3.1 for pair-wise prob-
lems). Let X1, X2 be the input PCs and P ∈ µ(SE(3)× SE(3)).

• P is SO(3)2-equivariant if P (A|X1, X2) = P (A(g−11 , g−12 )|g1X1, g2X2) for all g1, g2 ∈ SO(3)
and A ⊆ SO(3)× SO(3), where A(g−11 , g−12 ) = {(a1g−11 , a2g

−1
2 ) : (a1, a2) ∈ A}.

• P is SO(3)-invariant if P (A|X1, X2) = P (rA|X1, X2) for all r ∈ SO(3) and A ⊆ SO(3) ×
SO(3).

Intuitively, both Def. D.1 and Def. D.2 describe the equivariance property of an assembly solution, and
the only difference is that Def. D.1 describes the special case whereX1 can be rigidly transformed and
X2 is fixed, while Def. D.2 describes the solution where both X1 and X2 can be rigidly transformed.
In other words, a solution satisfying Def. D.2 can be converted to a solution satisfying Def. D.1 by
fixing X2. Formally, we have the following proposition.
Proposition D.3. Let P be SO(3)2-equivariant and SO(3)-invariant. If P̃ (A|X1, X2) , P (A×
{e}|X1, X2) for A ⊆ SO(3), then P̃ is bi-equivariant.

Proof. We prove this proposition by directly verifying the definition.

P̃ (g2Ag
−1
1 |g1X1, g2X2) = P (g2Ag

−1
1 × {e}|g1X1, g2X2) (11)

= P (g2A× {e}|X1, g2X2) (12)

= P (A× {g−12 }|X1, g2X2) (13)
= P (A× {e}|X1, X2) (14)

= P̃ (A|X1, X2). (15)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Here, the second and the fourth equation hold because P is SO(3)2-equivariant, the third equation
holds because P is SO(3)-invariant, and the first and last equation are due to the definition.

We note that the deterministic definition of bi-equivariance in Wang and Jörnsten (2024) is a special
case of Def. D.1, where P̂ is a Dirac delta function. In addition, as discussed in Appx. E in Wang and
Jörnsten (2024), a major limitation of the deterministic definition of bi-equivariance is that it cannot
handle symmetric shapes. In contrast, it is straightforward to see that the probabilistic definition, i.e.,
both Def. D.1 and Def. D.2 are free from this issue. Here, we consider the example in Wang and
Jörnsten (2024). Assume that X1 is symmetric, i.e., there exists g1 ∈ SO(3) such that g1X1 = X1.
Under Def. D.1, we have P (A|X1, X2) = P (A|g1X1, X2) = P (Ag1|X1, X2), which simply means
that P (A|X1, X2) isRg1 -invariant. Note that this will not cause any contradiction, i.e., the feasible
set is not empty. For example, a uniform distribution on SO(3) isRg1 -invariant.

As for the permutation-equivariance, the swap-equivariance in Wang and Jörnsten (2024) is a
deterministic pair-wise version of the permutation-equivariance in Def. D.2, and they both mean that
the assembled shape is independent of the order of the input pieces.

E THE RK4 FORMULATION

k1 = fτi(gi), k2 = fτi+ 1
2η

(
exp(

1

2
ηk1)gi

)
, k3 = fτi+ 1

2η

(
exp(

1

2
ηk2)gi

)
, k4 = fτi+η

(
exp(ηk3)gi

)
,

gi+1 = exp(
1

6
ηk4) exp(

1

3
ηk3) exp(

1

3
ηk2) exp(

1

6
ηk1)gi. (16)

Note that RK4 (16) is more computationally expensive than RK1, because it requires four evaluations
of vX at different points at each step, i.e., four forward passes of network f , while the Euler method
only requires one evaluation per step.

F PROOFS

F.1 PROOF IN SEC. 4.2

To prove Thm. 4.2, which established the relations between related vector fields and equivariant
distributions, we proceed in two steps: first, we prove lemma F.1, which connects related vector
fields to equivariant mappings; then we prove lemma. F.2, which connects equivariant mappings to
equivariant distributions.
Lemma F.1. Let G be a smooth manifold, F : G → G be a diffeomorphism. If vector field vτ is
F -related to vector field wτ for τ ∈ [0, 1], then F ◦ φτ = ψτ ◦F , where φτ and ψτ are generated by
vτ and wτ respectively.

Proof. Let ψ̃τ , F ◦ φτ ◦ F−1. We only need to show that ψ̃τ coincides with ψτ .

We consider a curve ψ̃τ (F (g0)), τ ∈ [0, 1], for a arbitrary g0 ∈ G. We first verify that ψ̃0(F (g0)) =
F ◦ φ0 ◦ F−1 ◦ F (g0) = F (g0). Note that the second equation holds because φ0(g0) = g0, i.e., φτ
is an integral path. Then we verify

∂

∂τ
(ψ̃τ (F (g0))) =

∂

∂τ
(F ◦ φτ (g0)) (17)

=F∗,φτ (g0) ◦
∂

∂τ
(φτ (g0)) (18)

=F∗,φτ (g0) ◦ vτ (φτ (g0)) (19)

=wτ (F ◦ φτ (g0)) (20)

=wτ (ψ̃τ (F (g0))) (21)

where the 2-nd equation holds due to the chain rule, and the 4-th equation holds becomes vτ is
F -related to wτ . Therefore, we can conclude that ψ̃τ (F (g0)) is an integral curve generated by wτ

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

starting from F (g0). However, by definition of ψτ , ψτ (F (g0)) is also the integral curve generated
by wτ and starts from F (g0). Due to the uniqueness of integral curves, we have ψ̃τ = ψτ .

Lemma F.2. Let φ, ψ, F : G → G be three diffeomorphisms satisfying F ◦ φ = ψ ◦ F . We have
F#(φ#ρ) = ψ#(F#ρ) for all distribution ρ on G.

Proof. Let A ⊆ G be a measurable set. We first verify that φ−1(F−1(A)) = F−1(ψ−1(A)): If
x ∈ φ−1(F−1(A)), then (F ◦ φ)(x) ∈ A. Since F ◦ φ = ψ ◦ F , we have (ψ ◦ F )(x) ∈ A, which
implies x ∈ F−1(ψ−1(A)), i.e., φ−1(F−1(A)) ⊆ F−1(ψ−1(A)). The other side can be verified
similarly. Then we have

(F#(φ#ρ))(A) = ρ(φ−1(F−1(A))) = ρ(F−1(ψ−1(A))) = (ψ#(F#ρ))(A), (22)

which proves the lemma.

Now, we can prove Thm. 4.2 using the above two lemmas.

Proof of Thm. 4.2. Since vX is F -related to vY , according to lemma F.1, we have F ◦ φX = φY ◦F .
Then according to lemma F.2, we have F#(φX#P0) = φY#(F#P0). The proof is complete by
letting PX = φX#P0 and PY = φY#(F#P0).

We remark that our theory extends the results in Köhler et al. (2020), where only invariance is
considered, Specifically, we have the following corollary.
Corollary F.3 (Thm 2 in Köhler et al. (2020)). Let G be the Euclidean space, F be a diffeomorphism
on G, and vτ be a F -invariant vector field, i.e., vτ is F -related to vτ , then we have F ◦ φτ = φτ ◦F ,
where φτ is generated by vτ .

Proof. This is a direct consequence of lemma. F.1 where G is the Euclidean space and wτ = vτ .

Note that the terminology used in Köhler et al. (2020) is different from ours: The F -invariant vector
fields in our work is called F -equivariant vector field in Köhler et al. (2020), and Köhler et al. (2020)
does not consider general related vector fields.

Finally, we present the proof of Prop. 4.5 and Prop. 4.6.

Proof of Prop. 4.5. If vX is Rg−1-related to vgX , we have vgX(ĝg−1) = (Rg−1)∗,ĝvX(ĝ) for all
ĝ, g ∈ SE(3)N . By letting g = ĝ, we have

vX(g) = (Rg)∗,evgX(e) (23)

where (Rg)∗,e =
(
(Rg−1)∗,g

)−1
due to the chain rule ofRgRg−1 = e.

On the other hand, if Eqn. (23) holds, we have

(Rg−1)∗,ĝvX(ĝ) = (Rg−1)∗,ĝ(Rĝ)∗,evĝX(e) = (Rĝg−1)∗,evĝX(e) = vgX(ĝg−1), (24)

which suggests that vX isRg−1 -related to vgX . Note that the second equation holds due to the chain
rule ofRg−1Rĝ = Rĝg−1 , and the first and the third equation are the result of Eqn. (23).

Proof of Prop. 4.6. 1) Assume vX is σ-related to vσX : (σ)∗,gvX(g) = VσX(σ(g)). By inserting
Eqn. (5) to this equation, we have

(σ)∗,g(Rg)∗,ef(gX) = (Rσg)∗,ef(σ(g)σ(X)). (25)

Since σ◦Rg = Rσg◦σ, by the chain rule, we have σ∗(Rg)∗ = (Rσg)∗σ∗. In addition, σ(g)σ(X) =
σ(gX). Thus, this equation can be simplified as

(Rσg)∗σ∗f(gX) = (Rσg)∗,ef(σ(gX)) (26)

which suggests
σ∗f = f ◦ σ. (27)

The first statement in Prop. 4.6 can be proved by reversing the discussion.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

2) Assume vX is Lr-related to vX : (Lr)∗,gvX(g) = VX(rg). By inserting Eqn. (5) to this equation,
we have

(Lr)∗,g(Rg)∗,ef(gX) = (Rrg)∗,ef(rgX). (28)
Since Rrg = Rg ◦ Rr, by the chain rule, we have (Rrg)∗,e = (Rg)∗,r(Rr)∗,e. In addition,
(Lr)(Rg) = (Rg)(Lr), by the chain rule, we have (Lr)∗,g(Rg)∗,e = (Rg)∗,r(Lr)∗,e. Thus the
above equation can be simplified as

(Lr)∗,ef(gX) = (Rr)∗,ef(rgX) (29)

which implies
f ◦ r = (Rr−1)∗,r ◦ (Lr)∗,e ◦ f. (30)

By representing f in the matrix form, we have

wi×(rX) = rwi×(X)rT (31)

ti(rX) = rti(X) (32)

for all i, where r on the right hand side represents the matrix form of the rotation r. Here the first
equation can be equivalently written as wi(rX) = rwi(X). The second statement in Prop. 4.6 can
be proved by reversing the discussion.

F.2 PROOFS IN SEC. 4.3

To establish the results in this section, we need to assume the uniqueness of r∗ (6):
Assumption F.4. The solution to (6) is unique.

Note that this assumption is mild. A sufficient condition (Wang and Jörnsten, 2024) of assumption F.4
is that the singular values of g̃T1 g0 ∈ R3×3 satisfy σ1 ≥ σ2 > σ3 ≥ 0, i.e., σ2 and σ3 are not equal.
We leave the more general treatment without requiring the uniqueness of r∗ to future work.

We first justify the definition of g1 = r∗g̃1 by showing that g1 follows P1 in the following proposition.
Proposition F.5. Let P0 and P1 be two SO(3)-invariant distributions, and g0, g̃1 be independent
samples from P0 and P1 respectively. If r∗ is given by (6) and assumption F.4 holds, then g1 = r∗g̃1
follows P1.

Proof. Define Ag̃1 = {g0|r∗(g0, g̃1) = e}, where we write r∗ as a function of g̃1 and g0. Then we
have P (r∗ = e|g̃1) = P0(Ag̃1

) by definition. In addition, due to the uniqueness of the solution to (6),
for an arbitrary r̂ ∈ SO(3), we have P (r∗ = r̂|g̃1) = P0(r̂Ag̃1

). Since P0 is SO(3)-invariant, we
have P0(r̂Ag̃1

) = P0(Ag̃1
), thus, P (r∗ = r̂|g̃1) = P (r∗ = e|g̃1). In other words, for a given g̃1, r∗

follows the uniform distribution USO(3).

Finally we compute the probability density of g1:

P (g1) =

∫
P (r∗ = r̂−1|r̂g1)P1(r̂g1)dr̂ (33)

=

∫
USO(3)(r̂)P1(g1)dr̂ (34)

= P1(g1), (35)

which suggests that g1 follows P1. Here the second equation holds because P1 is SO(3)-invariant.

Then we discuss the equivariance of the constructed hX (7).
Proposition F.6. Given r ∈ SO(3)N , g0, g̃1 ∈ SE(3)N , σ ∈ SN , r ∈ SO(3) and τ ∈ [0, 1]. Let
hX be a path generated by g0 and g̃1. Under assumption F.4,

• if hrX is generated by g0r
−1 and g̃1r

−1, then hrX(τ) = Rr−1hX(τ).

• if hσX is generated by σ(g0) and σ(g̃1), then hσX(τ) = σ(hX(τ)).

• if ĥX is generated by rg0 and rg̃1, then ĥX(τ) = Lr(hX(τ)).

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Proof. 1) Due to the uniqueness of the solution to (6), we have r∗(g0r−1, g̃1r−1) = r∗(g0, g̃1).
Thus, we have

hrX(τ) = exp(τ log(g1g
−1
0 ))g0r

−1 = Rr−1(hrX(τ)). (36)

2) Due to the uniqueness of the solution to (6), we have r∗(σ(g0), σ(g̃1)) = σ(r∗(g0, g̃1)). Thus,
we have σ(hX) = hσX .

3) Due to the uniqueness of the solution to (6), we have r∗(rg0, rg̃1) = rr∗(g0, g̃1)r−1. Thus,

ĥrX(τ) = exp(τ log(rr∗g̃1g
−1
0 r−1))rg0 = r exp(τ log(r∗g̃1g

−1
0 ))g0 = Lr(hX(τ)). (37)

With the above preparation, we can finally prove Prop. 4.7.

Proof of Prop. 4.7. 1) By definition

L(rX) = Eτ,g′0∼P0,g̃′1∼PrX
||vrX(hrX(τ))− ∂

∂τ
hrX(τ)||2F , (38)

where hrX is the path generated by g′0 and g̃′1. Since P0 = (Rr−1)#P0 and PrX = (Rr−1)#PX by
assumption, we can write g′0 = g0r

−1 and g̃′1 = g̃1r
−1, where g0 ∼ P0 and g̃1 ∼ PX . According to

the first part of Prop. F.6, we have hrX(τ) = Rr−1hX(τ), where hX is a path generated by g0 and g̃1.
By taking derivative on both sides of the equation, we have ∂

∂τ hrX(τ) = (Rr−1)∗,hX(τ)
∂
∂τ hX(τ).

Then we have

L(rX) = Eτ,g′0∼P0,g̃′1∼PrX
||vrX(Rr−1hX(τ))− (Rr−1)∗,hX(τ)

∂

∂τ
hX(τ)||2F (39)

by inserting these two equations into Eqn. (38). Since vX isRr−1 -related to vrX by assumption, we
have vrX(Rr−1hX(τ)) = (Rr−1)∗,hX(τ)vX(hX(τ)). Thus, we have

||vrX(Rr−1hX(τ))− (Rr−1)∗,hX(τ)
∂

∂τ
hX(τ)||2F = ||(Rr−1)∗,hX(τ)(vrX(hX(τ))− ∂

∂τ
hX(τ))||2F

= ||(vrX(hX(τ))− ∂

∂τ
hX(τ))||2F (40)

where the second equation holds because (Rr−1)∗,hX(τ) is an orthogonal matrix. The desired result
follows.

2) The second statement can be proved similarly as the first one, where σ-equivariance is considered
instead ofRr−1 -equivariance.

3) Denote g′0 = rg0 and g̃′1 = rg̃1, where g0 ∼ P0 and g̃1 ∼ PX . According to the third part of
Prop. F.6, we have ĥX(τ) = Lr(hX(τ)). By taking derivative on both sides of the equation, we have
∂
∂τ ĥX(τ) = (Lr)∗,hX(τ)

∂
∂τ hX(τ). Then the rest of the proof can be conducted similarly to the first

part of the proof.

G MODEL DETAILS

Let F lu ∈ Rc×(2l+1) be a channel-c degree-l feature at point u. The equivariant dot-product attention
is defined as:

Alu =
∑

v∈KNN(u)\{u}

exp (〈Qu,Kvu〉)∑
v′∈KNN(u)\{u} exp (〈Qu,Kv′u〉)

V lvu, (41)

where 〈·, ·〉 is the dot product, KNN(u) ⊆
⋃
iXi is a subset of points u attends to, K,V ∈ Rc×(2l+1)

take the form of the e3nn (Geiger and Smidt, 2022) message passing, and Q ∈ Rc×(2l+1) is obtained
by a linear transform:

Qu =
⊕
l

W l
QF

l
u, Kv =

⊕
l

∑
le,lf

c
(l,le,lf )
K (|uv|)Y le(v̂u)⊗lle,lf F

lf
v , (42)

V lv =
∑
le,lf

c
(l,le,lf )
V (|uv|)Y le(v̂u)⊗lle,lf F

lf
v . (43)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Here, W l
Q ∈ Rc×c is a learnable weight, |vu| is the distance between point v and u, v̂u = ~vu/|vu| ∈

R3 is the normalized direction, Y l : R3 → R2l+1 is the degree-l spherical harmonic function,
c : R+ → R is a learnable function that maps |vu| to a coefficient, and ⊗ is the tensor product with
the Clebsch-Gordan coefficients.

To accelerate the computation of K and V , we use the SO(2)-reduction technique (Passaro and
Zitnick, 2023), which rotates the edge uv to the y-axis, so that the computation of spherical harmonic
function, the Clebsch-Gordan coefficients, and the iterations of le are no longer needed.

The main idea of SO(2)-reduction (Passaro and Zitnick, 2023) is to rotate the edge uv to the y-axis,
and then update node feature in the rotated space. Since all 3D rotations are reduced to 2D rotations
about the y-axis in the rotated space, the feature update rule is greatly simplified.

Here, we describe this technique in the matrix form to facilitates better parallelization. Let F lv ∈
Rc×(2l+1) be a c-channel l-degree feature of point v, and L > 0 be the maximum degree of features.
We construct F̂ lv ∈ Rc×(2L+1) by padding F lv with L − l zeros at the beginning and the end of
the feature, then we define the full feature Fv ∈ Rc×L×(2L+1) as the concatenate of all F̂ lv with
0 < l ≤ L. For an edge vu, there exists a rotation rvu that aligns uv to the y-axis. We define
Rvu ∈ RL×(2L+1)×(2L+1) to be the full rotation matrix, where the l-th slice Rvu[l, :, :] is the l-th
Wigner-D matrix of rvu with zeros padded at the boundary. Kv defined in (42) can be efficiently
computed as

Kv = RTvu ×1,2 (WK ×3 (DK ×1,2 Rvu ×1,2 Fv)), (44)

where M1 ×i M2 represents the batch-wise multiplication of M1 and M2 with the i-th dimen-
sion of M2 treated as the batch dimension. WK ∈ R(cL)×(cL) is a learnable weight, DK ∈
Rc×(2L+1)×(2L+1) is a learnable matrix taking the form of 2D rotations about the y-axis, i.e., for
each i, DK [i, :, :] is 

a1 −b1
a2 −b2

. . . ...
aL−1 −bL−1

aL
bL−1 aL−1

... . . .
b2 a2

b1 a1


, (45)

where a1, · · · , aL, b1, · · · , bL−1 : R+ → R are learnable functions that map |vu| to the coefficients.
Vv defined in (42) can be computed similarly. Note that (44) does not require the computation of
Clebsch-Gordan coefficients, the spherical harmonic functions, and all computations are in the matrix
form where no for-loop is needed, so it is much faster than the computations in (42).

H MORE DETAILS OF SEC. 6

We present more details of Eda on 3DL in Fig. 5. We observe that the vector field is is gradually
learned during training, i.e., the training error converges. On the test set, RK4 outperforms the RK1,
and they both benefit from more time steps, especially for rotation errors.

We now provide more details for the ablation study reported in Tab. 4. The curve of validation errors
of all methods are presented in Fig. 6. All methods use (RK1, 10) for sampling. Eda-(r) satisfies
all equivariances. Eda-(r, h) breaks the first and third part of Prop. 4.7. Eda-(r, e) and Eda-(r, h, e)
further break the second part of Prop. 4.6. The non-equivariant network is obtained by replacing the
matrix (45) by a linear transformation with exactly the same number of parameters. All methods
considered in this study contain exactly the same number of trainable parameters.

We provide the complete version of Table 2 in Table 6, where we additionally report the standard
deviations of Eda.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 5: More details of Eda on 3DL. Left: the training curve. Middle and right: the influence of
RK4/RK1 and the number of time steps on ∆r and ∆t.

Figure 6: Validation error curves of all methods in Tab. 4. The training of Eda-(r, h, e) is unstable
and produces NaN value at the early stage.

Table 6: The complete version of Table 2 with stds of Eda reported in bracked.
3DM 3DL 3DZ

∆r ∆t ∆r ∆t ∆r ∆t
FGR 69.5 0.6 117.3 1.3 − −
GEO 7.43 0.19 28.38 0.69 − −

ROI (500) 5.64 0.15 21.94 0.53 − −
ROI (5000) 5.44 0.15 22.17 0.53 − −

AMR 5.0 0.13 20.5 0.53 − −
Eda (RK4, 50) 2.38 (0.16) 0.16 (0.01) 8.57 (0.08) 0.4 (0.0) 78.74 (0.6) 0.96 (0.01)

We provide some qualitative results on BB datasets in Fig. 7. Eda can generally recover the shape of
the objects.

A complete version of Tab. 3 is provided in Tab. 7, where we additionally report the standard
deviations of Eda.

Table 7: The complete version of Table 3 with stds of Eda reported in brackets.
∆r ∆t Time (min)

GLO 126.3 0.3 0.9
DGL 125.8 0.3 0.9
LEV 125.9 0.3 8.1

Eda (RK1, 10) 80.64 0.16 19.4
Eda (RK4, 10) 79.2 (0.58) 0.16 (0.0) 76.9

We provide a few examples of the reconstructed road views in Fig. 8.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

JIG

LEV

DGL

GLO

GARF

Eda

Figure 7: Qualitative results on BB. Zoom in to see details.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

(a) 2-piece assembly (b) 3-piece assembly (c) 4-piece assembly

Figure 8: Qualitative results of Eda on kitti. We present the results of Eda (1-st row) and the ground
truth (2-nd row). For each assembly, Eda correctly places the input road views on the same plane.

I LIMIATION AND FUTURE WORKS

Eda in its current form has several limitations. First, Eda is slow when using a high order RK solver
with a large number of steps. Besides its iterative nature, another cause is the lack of CUDA kernel
level optimization like FlashAttention (Dao et al., 2022) for equivariant attention layers. We expect
to see acceleration in the future when such optimization is available. Second, Eda always uses all
input pieces, which is not suitable for applications like archeology reconstruction, where the input
data may contain pieces from unrelated objects. Finally, the scaling law (Kaplan et al., 2020) of Eda
is an interesting research direction left for future work, where we expect to see that an increase in
model size leads to an increase in performance similar to image generation applications (Peebles and
Xie, 2023).

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

(a) Ground truth (b) 3 runs of Eda

Figure 9: Qualitative results of Eda on 3DZ. Cameras are set to look at the room from above.

24


	Introduction
	Related work
	Preliminaries
	Equivariances of PC assembly
	Vector fields and flow matching

	Method
	Problem formulation
	Equivariant flow
	Training
	Sampling via the Runge-Kutta method

	Implementation
	Equivariant attention layers
	Adaptive normalization and nonlinear layers

	Experiment
	Experiment settings
	Pair-wise registration
	Multi-piece assembly
	Ablation studies

	Conclusion
	The Use of Large Language Models (LLM)
	More details of the related tasks
	A walk-through of the main theory
	Connections with bi-equivariance
	The RK4 formulation
	Proofs
	Proof in Sec. 4.2
	Proofs in Sec. 4.3

	Model details
	More details of Sec. 6
	Limiation and future works

