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ABSTRACT

The goal of point cloud assembly is to reconstruct a complete 3D shape by aligning
multiple point cloud pieces. This work presents a novel equivariant solver for
assembly tasks based on flow matching models. We first theoretically show that the
key to learning equivariant distributions via flow matching is to learn related vector
fields. Based on this result, we propose an assembly model, called equivariant
diffusion assembly (Eda), which learns related vector fields conditioned on the
input pieces. We further construct an equivariant path for Eda, which guarantees
high data efficiency of the training process. Our numerical results show that Eda
is highly competitive on practical datasets, and it can even handle the challenging
situation where the input pieces are non-overlapped.

1 INTRODUCTION

Point cloud (PC) assembly is a classic machine learning task which seeks to reconstruct 3D shapes
by aligning multiple point cloud pieces. This task has been intensively studied for decades and has
various applications such as scene reconstruction (Zeng et al.,2017), robotic manipulation (Ryu et al.,
2024), cultural relics reassembly (Wang et al.,[2021)) and protein designing (Watson et al,[2023). A
key challenge in this task is to correctly align PC pieces with small or no overlap region, i.e., when
the correspondences between pieces are lacking.

To address this challenge, some recent methods (Ryu et al.,|2024; [Wang and Jornsten, |2024)) utilized
equivariance priors for pair-wise assembly tasks, i.e., the assembly of two pieces. In contrast to most
of the state-of-the-art methods (Qin et al.| 2022} Zhang;, |1994) which align PC pieces based on the
inferred correspondence, these equivariant methods are correspondence-free, and they are guided by
the equivariance law underlying the assembly task. As a result, these methods are able to assemble
PCs without correspondence, and they enjoy high data efficiency and promising accuracy. However,
the extension of these works to multi-piece assembly tasks remains largely unexplored.

In this work, we develop an equivariant method for multi-piece assembly based on flow match-
ing (Lipman et al.| 2023)). Our main theoretical finding is that to learn an equivariant distribution
via flow matching, one only needs to ensure that the initial noise is invariant and the vector field is
related (Thm. In other words, instead of directly handling the S F(3)" -equivariance for N-piece
assembly tasks, which can be computationally expensive, we only need to handle the related vector
fields on SE(3)Y, which is efficient and easy to construct. Based on this result, we present a novel
assembly model called equivariant diffusion assembly (Eda), which uses invariant noise and predicts
related vector fields by construction. Eda is correspondence-free and is guaranteed to be equivariant
by our theory. Furthermore, we construct a short and equivariant path for the training of Eda, which
guarantees high data efficiency of the training process. When Eda is trained, an assembly solution
can be sampled by numerical integration, e.g., the Runge-Kutta method, starting from a random noise.
All proofs can be found in Appx.[F] A brief walk-through of our theory using a toy example with
minimal terminologies is provided in Appx.

The contributions of this work are summarized as follows:
- We present an equivariant flow matching framework for multi-piece assembly tasks. Our theory

reduces the task of constructing equivariant conditional distributions to the task of constructing
related vector fields, thus it provides a feasible way to define equivariant flow matching models.
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- Based on the theoretical result, we present a simple and efficient multi-piece PC assembly model,
called equivariant diffusion assembly (Eda), which is correspondence-free and is guaranteed to be
equivariant. We further construct an equivariant path for the training of Eda, which guarantees
high data efficiency.

- We numerically show that Eda produces highly accurate results on the challenging 3DMatch and
BB datasets, and it can even handle non-overlapped pieces.

2 RELATED WORK

Our proposed method is based on flow matching (Lipman et al., [2023)), which is one of the state-
of-the-art diffusion models for image generation tasks (Esser et al.| 2024). Some applications on
manifolds have also been investigated (Chen and Lipman, 2024} |Yim et al., 2023)). Our model has
two distinguishing features compared to existing methods: it learns conditional distributions instead
of marginal distributions, and it explicitly incorporates equivariance priors.

The PC assembly task studied in this work is related to various tasks in the literature, such as PC
registration (Qin et al., 2022 [Yu et al.l [2023)), robotic manipulation (Ryu et al.| [2024; [2023)) and
fragment reassembly (Wu et al., 2023a). All these tasks aim to align the input PC pieces, but they are
different in settings such as the number of pieces, deterministic or probabilistic, and whether the PCs
are overlapped. More details can be found in Appx.[B] In this work, we consider the most general
setting: we aim to align multiple pieces of non-overlapped PCs in a probabilistic way.

Recently, diffusion-based methods have been proposed for assembly tasks (Chen et al., 2025} Jiang
et al.} [2023; [Wu et al.|, 2023bj |Li et al.l 2025 [Ryu et al., 2024} [Scarpellini et al.| [2024; |Xu et al.,
2024)). However, most of these works ignore the manifold structure or the equivariance priors of the
task. One notable exception isRyu et al.|(2024])), which developed an equivariant diffusion method
for robotic manipulation, i.e., pair-wise assembly tasks. Compared to Ryu et al.| (2024])), our method
is conceptually simpler because it does not require Brownian diffusion on SO(3) whose kernel is
computationally intractable, and it solves the more general multi-piece problem. On the other hand,
the invariant flow theory has been studied in|Kohler et al.| (2020), which can be regarded as a special
case of our theory as discussed in Appx.[F.Il Furthermore, the optimal-transport-based method was
explored for invariant flow (Song et al., 2023} [Klein et al.| 2023).

Another branch of related work is equivariant neural networks. Due to their ability to incorporate
geometric priors, this type of networks has been widely used for processing 3D graph data such
as PCs and molecules. In particular, E3NN (Geiger and Smidt, 2022)) is a well-known equivariant
network based on the tensor product of the input and the edge feature. An acceleration technique
for E3NN was recently proposed (Passaro and Zitnick, [2023)). On the other hand, the equivariant
attention layer was studied in [Fuchs et al.| (2020); |[Liao and Smidt| (2023)); [Liao et al.| (2024). Our
work is related to this line of approach, because our diffusion network can be seen as an equivariant
network with an additional time parameter.

3 PRELIMINARIES

This section introduces the major tools used in this work. We first define the equivariances in Sec.
then we briefly recall the flow matching model in Sec.[3.2]

3.1 EQUIVARIANCES OF PC ASSEMBLY

Consider the action G = Hf\il SE(3)onasetof N (N > 2)PCs X = {Xy,...,Xn}, where
SE(3) is the 3D rigid transformation group, [ ] is the direct product, and X is the i-th PC piece
in 3D space. We define the action of g = (g1,...,g9n5) € G on X as gX = {¢g;X;}Y,, i.e., each
PC X is rigidly transformed by the corresponding g;. For the rotation subgroup SO(3)Y, the
action of 7 = (r1,...,7n) € SOB)Y on X is rX = {r; X;},. For SO(3) C G, we denote
r=(r,...,r) € SO(3) for simplicity, and the action of  on X is written as r X = {r X} ,.

We also consider the permutations of X. Let S be the permutation group of NV, the action of 0 € Sy
on X isoX = { X,z } |, and the action on g is 0g = (9o(1)s - - - » 9o(n))- For group multiplication,
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we denote R (.) the right multiplication and L., the left multiplication, i.e., (R,)r" = r'r, and
(L)' = rr' forr, " € SO(3)V.
In our setting, for the given input X, the solution to the assembly task is a conditional distribution

Px € u(@), where p(G) is the set of probability distribution on G. We study the following three
equivariances of Px in this work:

Definition 3.1. Let Px € u(G) be a probability distribution on G = SFE(3)"V conditioned on X,
and let (-)4 be the pushforward of measures.

- Px is SO(3)N-equivariant if (R,.-1)4Px = P,x forr € SO(3)V.
- Px is permutation-equivariant if ox Px = P, x for o € Sy.
- Px is SO(3)-invariant if (£,.) 2 Px = Px forr € SO(3).

As an example, we explicitly show the equivariance in Def. [3.1]for a two-piece deterministic problem.

Example 3.2. Assume that a solution for point clouds (X7, X2) is (r1,72), meaning 71 X7 and ro Xo
are assembled, then

- SO(3)2-equivariance: a solution for (r3 Xy, 74X5) is (r173 ", rar; );
- Permutation-equivariance: a solution for (X2, X1) is (r2,71);
- SO(3)-invariance: another solution for (X1, X5) is (171, r73).

More discussions on the definition of equivariances can be found in Appx.

We finally recall the definition of SO(3)-equivariant networks, which will be the main computational
tool of this work. We call £ € R?*! adegree-I SO(3)-equivariant feature if the action of 7 € SO(3)
on F! is the matrix-vector production: rF' = R'F! where R' € REH1*2I+1) jg the degree-
Wigner-D matrix of r. We call a network w SO(3)-equivariant if it maintains the equivariance
from the input to the output: w(rX) = rw(X), where w(X) is a SO(3)-equivariant feature. More
detailed introduction of equivariances and the underlying representation theory can be found in|Cesa
et al.|(2022).

3.2 VECTOR FIELDS AND FLOW MATCHING

To sample from a data distribution P; € p(M), where M is a smooth manifold (we only consider
M = G in this work), the flow matching (Lipman et al.,|2023) approach constructs a time-dependent
diffeomorphism ¢, : M — M satisfying (¢o)x Py = Py and (¢1)x Py = P1, where Py € u(M)
is a fixed noise distribution, and 7 € [0, 1] is the time parameter. Then the sample of P; can be
represented as ¢1(g) where g is sampled from Py.

Formally, ¢, is defined as a flow, i.e., an integral curve, generated by a time-dependent vector field
vy : M — TM, where T'M is the tangent bundle of M:

2 50(9) = v-(6:(9))

¢o(g) =g, VYgeM.
According to|Lipman et al.|(2023)), an efficient way to construct v, is to define a path h, connecting
Py to P;. Specifically, let g and g; be samples from P, and P; respectively, and hy = go and
h1 = g1. v, can be constructed as the solution to the following problem:
. 0
InvlnET»QONnglNH||U7(h7') - gh‘ru% (2)
When v is learned using (2)), we can obtain a sample from P; by first sampling a noise go from Py
and then taking the integral of (T).

(1)

In this work, we consider a family of vector fields, flows and paths conditioned on the given PC, and
we use the pushforward operator on vector fields to study their relatedness (Tu, [2011). Formally,
let ' : M — M be a diffeomorphism, v and w be vector fields on M. w is F-related to v if
w(F(g)) = Fy gv(g) forall g € M, where F, g4 is the differential of F" at g. Note that we denote
vx, ¢x and hx the vector field, flow and path conditioned on PC X respectively.
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Remark 3.3. For readers that are not familiar with this definition, relatedness can be simply regarded
as a transformation, so the above definition simply means w is the transformation of v by F'. More
details can be found in Sec.14.6 in the text book [Tul(2011).

4 METHOD

In this section, we provide the details of the proposed Eda model. First, the PC assembly problem
is formulated in Sec. .| Then, we parametrize related vector fields in Sec.[d.2] The training and
sampling procedures are finally described in Sec.[4.3]and Sec. 4.4 respectively.

4.1 PROBLEM FORMULATION

Given a set X containing N PC pieces, i.e., X = {X;}¥; where X; is the i-th piece, the goal of
assembly is to learn a distribution Px € u(G), i.e., for any sample g of Px, gX should be the
aligned complete shape. We assume that Px has the following equivariances:

Assumption 4.1. Py is SO(3)" -equivariant, permutation-equivariant and SO(3)-invariant.

We seek to approximate Px using flow matching. To avoid translation ambiguity, we also assume
that, without loss of generality, the aligned PCs gX and each input piece X; are centered, i.e.,
>, m(g; X;) =0, and m(X;) = 0 for all ¢, where m(-) is the mean vector.

4.2 EQUIVARIANT FLOW

The major challenge in our task is to ensure the equivariance of the learned distribution, because a
direct implementation of flow matching (T)) generally does not guarantee any equivariance. To address
this challenge, we utilize the following theorem, which claims that when the noise distribution F is
invariant and vector fields vx are related, the pushforward distribution (¢ x )# Py is guaranteed to be
equivariant.

Theorem 4.2. Let G be a smooth manifold, F : G — G be a diffeomorphism, and P € u(G). If
vector field vx € TG is F-related to vector field vy € TG, then
FyPx = Py, 3)

where Px = (¢x)#Po, Py = (¢py)u(FuFo). Here ¢x, ¢y : G — G are generated by vx and vy
respectively.

Specifically, Thm. provides a concrete way to construct the three equivariances required by
Assumption[d.T] as follow.

Assumption 4.3 (Invariant noise). Py is SO(3)"-invariant, permutation-invariant and SO(3)-
invariant, i.e., (Rp-1)xPy = Py, 0xPy = Py and Py = (L) 4Py forr € SOB)N, 0 € Sy
and r € SO(3).

Corollary 4.4. Under assumption

* if vy is Rp-1-related to vpx, then (R,.-1)xPx = Pr.x, where Px = (¢x)xPo and Prx =
(prx)pPo. Here ¢px,¢prx : G — G are generated by vx and vyx respectively.

* ifux is o-related to v, x, then 04 Px = P,x, where Px = (¢x )4 Py and P,x = (¢pox)#Po.
Here ¢ x,¢,x : G — G are generated by vx and v, x respectively.

* ifvx is Lp-invariant, i.e., vx is L-related to vx, then (L) Px = Px, where Px = (¢x)#Po.

According to Cor. .4] if the vector fields vx are related, then the solution Py is guaranteed
to be equivariant. Therefore, the problem is reduced to constructing related vector fields. We
start by constructing (R4-1)-related vector fields, which are (R,.-1)-related by definition, where

g € SE(3)Y and r € SO(3)". Specifically, we have the following proposition:
Proposition 4.5. vx is Ry-1-related to vgx if and only if vx (g) = vgx (e)g forall g € SE(3)".
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Prop. [4.5|suggests that for (R4-1)-related vector fields vx, vx (g) is fully determined by the value
of vgx at the identity element e. Therefore, to parametrize vy, we only need to parametrize vgx
at one single point e. Specifically, let f be a neural network parametrizing vx (e) for input X, i.e.,
f(X) =vx(e), vx can then be written as

vx(g) = f(9X)g. )
Here, f(X) € se(3)" takes the form of

N ; i
f(X) = @fi(X) where f;(X) = (wXéX) t (OX>> € s5e(3) C R4, (5)

The rotation component w’ (X) € R3*3 is a skew matrix with elements in the vector w'(X) € R3,

and t*(X) € R3 is the translation component. For simplicity, we omit the superscript i when the
context is clear.

Now we proceed to the other two types of relatedness of vx. According to the following proposition,
when vx is written as (Iz_f[), these two relatedness of vy can be guaranteed if the network f is
equivariant.

Proposition 4.6. For vx defined in (),

 if f is permutation-equivariant, i.e., f(cX) = of(X) for 0 € Sy and PCs X, then vx is
o-related to vy x.

o if f is SO(3)-equivariant, i.e., w(rX) = rw(X) and t(rX) = rt(X) for r € SO(3) and PCs X,

then vx is L,-invariant.

Finally, we define Py = (Uso3) @ N (0,wI))Y, where Ugos) is the uniform distribution on SO(3),
N is the normal distribution on R?® with mean zero and isotropic variance w € R, and ® represents
the independent coupling. It is straightforward to verify that P, indeed satisfies assumption [4.3]

In summary, with Py and v constructed above, the learned distribution is guaranteed to be SO(S)N -
equivariance, permutation-equivariance and SO(3)-invariance.

4.3 TRAINING

To learn the vector field vx using flow matching , we now need to define hx, and the
sampling strategy of 7, go and g;. A canonical choice (Chen and Lipman, 2024) is h(7) =
go exp(7log(gy 'g1)), where go and g; are sampled independently, and 7 is sampled from a prede-
fined distribution, e.g., the uniform distribution U [0,1]- However, this definition of h, gg and g; does
not utilize any equivariance property of vy, thus it does not guarantee a high data efficiency.

To address this issue, we construct a “short” and equivariant hx in the following two steps. First, we
independently sample go from P, and g; from Py, and obtain g; = 7*g;, where r* € SO(3) is a
rotation correction of g1 :

r* = argmin||rg; — gOH%. (6)
reS0o(3)
Then, we define hx as
hx () = exp(rlog(g195 ))go- (7

We call hx a path generated by g and g;. A similar rotation correction in the Euclidean space
was studied in [Song et al.| (2023); [Klein et al.| (2023). Note that hx is a well-defined path
connecting gy to g1, because hx (0) = go and hx (1) = g1, and g; follows Px (Prop. .

The advantages of hx are twofold. First, instead of connecting a noise gq to an independent
data sample g, hx connects gg to a modified sample g; where the redundant rotation component is
removed, thus it is easier to learn. Second, the velocity fields of hx enjoy the same relatedness as
vx (@), which leads to high data efficiency. Formally, we have the following observation.

Proposition 4.7 (Data efficiency). Under assumption and we further assume that v
satisfies the relatedness property required in Cor. i.e., vx is Rp-1-related to v, x, vx is o-related
to vyx, and vx is L-invariant. Denote L(X) = E, g, p, g,~px ||[vx (hx (7)) — Zhx (7)|[% the
training loss (2) of PC X, where hx is generated by go and g, as defined in ([7). Then
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L(X) = L(rX) forr € SO(3)".
- L(X)=L(cX) foro € Sn.

L(X) = L(X), where L(X) = Er gt ~Po,g~ (L) Px VX (hx (T)) — %hx(r)ﬂ% is the loss
where the data distribution Px is pushed forward by L, € SO(3).

Prop. implies that when hx is combined with the equivariant components developed in
Sec. the following three data augmentations are automatically incorporated into the training
process: 1) random rotation of each input piece X;, 2) random permutation of the order of the input
pieces, and 3) random rotation of the assembled shape.

4.4 SAMPLING VIA THE RUNGE-KUTTA METHOD

Finally, when the vector field vx @I) is learned, we can obtain a sample g; from Px by numerically
integrating vx starting from a noise gy from Fy. In this work, we use the Runge-Kutta (RK) solver
on SE(3)Y, which is a generalization of the classical RK solver on Euclidean spaces. For clarity,
we present the formulations below, and refer the readers to |Crouch and Grossman|(1993) for more
details.

To apply the RK method, we first discretize the time interval [0, 1] into I steps, ie., 7, = +
forv = 0,...,I, with a step length n = % For the given input X, denote f(gX) at time 7
by fr(g) for simplicity. The first-order RK method (RK1), i.e., the Euler method, is to iterate:
git+1 = exp(nfr,(gi))gi, fori =0, ..., I. To achieve higher accuracy, we can use the fourth-order
RK method (RK4). More details can be found in[E}

5 IMPLEMENTATION
Croco Block

Self-  Cross-
attention attention

This section provides the details of the net-

work f (5). Our design principle is to imitate x, Ponsamping g & we

the standard transformer structure (Vaswani (1 x3) (m/64%3)

et al.,[2017)) to retain its best practices. In ad- X, H H L5 _|& Pooling ¥ ((33))

dition, according to Prop.[d.6] we also require (n2x3) (n2/64x3)

f to be permutation-equivariant and SO(3)- 5 i e

equivariant. Xy I Xy @ ™ (3
(ny X 3) (ny/64 % 3)

The overall structure of the proposed networkis 7y — [[ 4

shown in Flg In a forward pass, the input PC
pieces { X, };* are first downsampled using a
few downsamplmg blocks, and then fed into  Figure 1: An overview of our model. The shapes
the Croco blocks (Weinzaepfel et al.,[2022) to  of variables are shown in the brackets.

model their relations. Meanwhile, the time step

T is first embedded using a multi-layer perceptron (MLP) and then incorporated into the above blocks
via adaptive normalization (Peebles and Xie, 2023). The output is finally obtained by a piece-wise
pooling.

Time embedding

Next, we provide details of the equivariant attention layers, which are the major components of both
the downsampling block and the Croco block, in Sec.[5.1} Other layers, including the nonlinear and
normalization layers, are described in Sec.[5.2]

5.1 EQUIVARIANT ATTENTION LAYERS

The equivariant attention layers are based on e3nn (Geiger and Smidt, 2022)). For the input point
cloud, the KNN graph is first built, and the query @), key K and value V' matrices are computed for
each node. Then the dot-product attention is computed where each node attends to its neighbors. We
further use the reduction technique (Passaro and Zitnick, [2023)) to accelerate the computation. More
details can be found in Appx.[G|

Following Croco (Weinzaepfel et al., 2022), we stack two types of attention layers, i.e., the self-
attention layer and the cross-attention layer, into a Croco block to learn the features of each PC
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piece while incorporating information from other pieces. For self-attention layers, we build KNN
graph where the neighbors are selected from the same pieces, and for cross-attention layers, we build
KNN graph where the neighbors are selected from the different pieces. In addition, to reduce the
computational cost, we use downsampling layers to reduce the number of points before the Croco
layers. Each downsampling layer consists of a farthest point sampling (FPS) layer and a self-attention
layer.

5.2 ADAPTIVE NORMALIZATION AND NONLINEAR LAYERS

Following the common practice (Devlin et al.| [2019), we seek to use the GELU activation func-
tion (Hendrycks and Gimpel, [2016) in our transformer structure. However, GELU in its original form
is not SO(3)-equivariant. To address this issue, we adopt a projection formulation similar toDeng et al.

(2021). Specifically, we define the equivariant GELU (Elu) layer as: Elu(F') = GELU((F", V/VFZ>)
where Z = x/||z|| is the normalization, W € R°*¢ is a learnable weight. Note that Elu is a natural
extension of GELU, because when [ = 0, Elu(F") = GELU(+F").

As for the normalization layers, we use RMS-type layer normalization layers (Zhang and Sennrich,
2019) following|Liao et al.|(2023)), and we use the adaptive normalization (Peebles and Xie, [2023)
technique to incorporate the time step 7. Specifically, we use the adaptive normalization layer AN

defined as: AN(F',7) = F'/o - MLP(7), where o = \/# bmae L (FUFU), Lyap is the

clmaax 2041
maximum degree, and MLP is a multi-layer perceptron that maps 7 to a vector of length c.

We finally remark that the network f defined in this section is SO(3)-equivariant because each layer
is SO(3)-equivariant by construction. f is also permutation-equivariant because it does not use any
order information of X;.

6 EXPERIMENT

This section evaluates Eda on practical assembly tasks. After introducing the experiment settings in
Sec.[6.1] we first evaluate Eda on the pair-wise registration tasks in Sec. [6.2] and then we consider the
multi-piece assembly tasks in Sec.[6.3] An ablation study is finally presented in Sec. [6.4]

6.1 EXPERIMENT SETTINGS

We evaluate the accuracy of an assembly solution using the averaged pair-wise error. For a predicted
assembly g and the ground truth g, the rotation error Ar and the translation error At are computed as:

(Ar, At) = m Doitj A(gs, gjgj_lgq;), where the pair-wise error A is computed as A(g, §) =
(%ccos (& (tr(rfT) — 1)), ||t — t||). Here g = (r,t), § = (#,1), and tr(-) represents the trace.
This metric 1s the pair-wise rotation/translation error: it measures the averaged error of g; w.r.t. g;
for all (¢, j) pairs of pieces.

For Eda, we use 2 Croco blocks, and 4 downsampling layers with a downsampling ratio 0.25. We
use k£ = 10 nearest neighbors, l,,,,, = 2 degree features with d = 64 channels and 4 attention
heads. Following |[Peebles and Xie| (2023)), we keep an exponential moving average (EMA) with a
decay of 0.99, and we use the AdamW (Loshchilov and Hutter, 2017) optimizer with a learning rate
10~*. Following Esser et al.|(2024), we use a logit-normal sampling for time variable 7. For each
experiment, we train Eda on 3 Nvidia A100 GPUs for at most 5 days. We denote Eda with ¢ steps of
RKp as “Eda (RKp, q)”, e.g., Eda (RK1, 10) represents Eda with 10 steps of RK1.

6.2 PAIR-WISE REGISTRATION

This section evaluates Eda on rotated
3DMatch (Zeng et al., [2017) (3DM) dataset
containing PC pairs from indoor scenes. —
Following Huang et al.| (2021)), we consider the Tr%}ellgltnitset (30 1(010(;’ 10?1) 0,30) 8
3DLoMatch split (3DL), which contains PC - J :

pairs with smaller overlap ratios. Furthermore, to highlight the ability of Eda on non-overlapped

Table 1: The overlap ratio of PC pairs (%).
3DM 3DL 3Dz
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assembly tasks, we consider a new split called 3DZeroMatch (3DZ), which contains non-overlapped
PC pairs. The comparison of these three splits is shown in Tab. [T}

We compare Eda against the following

baseline methods: FGR (Zhou et al1, 20T6). Table 2: Quantitative results on rotated 3DMatch. ROI

(n): ROI with n RANSAC samples.

GEO (Qin et al. 2022), ROI (Yu et al.,

2023), and AMR (Chen et al., [2025), AiDl\gt AiDLAt AiDZAt
where FGR is a classic optimization-based FGR 905 06 1173 13 = =
method, GEO and ROI are correspondence- GEO 743 0.19 2838 0.69 —  —
based methods, and AMR is a recently pro- ROI (500) 5.64 0'15 21'94 0'53 L
posed diffusion-like method based on GEO. ROI (5000) 5440152217 053 —  —

We report the results of the baseline meth- AMR 50 013 205 053 —

ods using their official implementations. .
Note that the correspondence-free methods Eda (RK4, 50) 2.38 0.17 8.57 0.4 78.32 2.74

like Ryu et al.| (2024); [Wang and Jornsten|(2024) do not scale to this dataset.

We report the results in Tab[2] On 3DM and 3DL, we observe that Eda outperforms the baseline
methods by a large margin, especially for rotation errors, where Eda achieves more than 50% lower
rotation errors on both 3DL and 3DM. We provide more details of Eda on 3DL in Fig. [5]in the
appendix.

23000
c
S 2000/
5]
L= 1000 1
0 0 90 180
Ar
(a) Ground truth (b) The result of Eda (¢) Distribution of Ar

Figure 2: More details of Eda on 3DZ.[(b)} A result of Eda. Cameras are set to look at the room
from above. Two PC pieces are marked by different colors. the distribution of Ar on the test set.

As for 3DZ, we only report the results of Eda in Tab 2} because all baseline methods are not applicable
to 3DZ, i.e., their training goal is undefined when the correspondence does not exist. We observe
that Eda’s error on 3DZ is much larger compared to that on 3DL, suggesting that there exists much
larger ambiguity. Nevertheless, as shown in in Fig.[2(b)] Eda indeed learned the global geometry of
the indoor scenes instead of just random guessing, because it tends to place large planes, i.e., walls,
floors and ceilings, in a parallel or orthogonal position, and keep a plausible distance between walls
of the assembled room.

To show that this behavior is consistent in the whole test set, we present the distribution of Ar of
Eda on 3DZ in Fig. A simple intuition is that for rooms consisting of 6 parallel or orthogonal
planes (four walls, a floor and a ceiling), if the orthogonality or parallelism of planes is correctly
maintained in the assembly, then Ar should be 0, 90, or 180. We observe that this is indeed the
case in Fig. where Ar is centered at 0, 90, and 180. We remark that the ability to learn global
geometric properties beyond correspondences is a key advantage of Eda, and it partially explains the
superior performance of Eda in Tab. 2]

6.3 MULTI-PIECE ASSEMBLY

This section evaluates Eda on the volume constrained version of BB dataset (Sellan et al.| [2022)). We
consider the shapes with 2 < N < 8 pieces in the “everyday” subset. We compare Eda against the
following baseline methods: DGL (Zhan et al.,[2020), LEV (Wu et al.| 2023a)), GLO (Sellan et al.|
2022), JIG (Lu et al.| [2023) and GARF (L1 et al.| [2025). JIG is correspondence-based, GARF is
diffusion-based, and other baseline methods are regression-based. For Eda, we process all fragments
by grid downsampling with a grid size 0.02. For the baseline methods, we follow their original
preprocessing steps. We do not pretrain GARF for fair comparison,. To reproduce the results of the
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baseline methods, we use the implementation of DGL and GLO in the official benchmark suite of
BB, and we use the official implementation of LEV, JIG and GARF.

The results are shown in Tab. 3| where we also

report the computation time of all methods on Table 3: Quantitative results on BB dataset and the

which is measured on a A40 GPU because it Ar At Time (min)
does not support the T4 GPU. We observe that GLO 1263 03 0.9
Eda outperforms all baseline methods by a large DGL 125.8 0.3 0.9
margin at a moderate computation cost. We LEV 1259 03 8.1
present some qualitative results in Fig.[/|in the 711G 1065 024 1222
appendix, where we observe that Eda can gen- GARF 956 0.2 (48)
erally reconstruct the shapes more accurately Eda (RK1, 10) 80.64 0.16 194
than the baseline methods. An example of the Eda (RK4, 10) 79.2 0.16 76.9

assembly process of Eda is presented in Fig.

Figure 3: From left to right: the assembly process of a 8-piece bottle by Eda.

6.4 ABLATION STUDIES

We first investigate the influence of the ¢ Edad = 3
number of pieces on the performance Eda-3 L8 =

of Eda. We use the kitti odometry 301 % 3 ,}

dataset (Geiger et al.,[2012) containing PCs ¥ 121= 9 Edad
of city road views. For each sequence of ofE £ 06 Eda-3
data, we keep pieces that are at least 100 3 3 1 5 6 T2 3 456
meters apart so that they do not necessar- M M

ily overlap, and we downsample them us-
ing grid downsampling with a grid size 0.5.
We train Eda on all consecutive pieces of
length 2 ~ N, in sequences 0 ~ 8. We
call the trained model Eda-V,,,,. We then evaluate Eda-V,,,, on all consecutive pieces of length M
in sequence 9 ~ 10.

Figure 4: The results of Eda on different number of
pieces.

The results are shown in Fig.[4] We observe that for Ar, when the length of the test data is seen in
the training set, i.e., M < N4, Eda performs well, and M > N, leads to worse performance. In
addition, Eda-4 generalizes better than Eda-3 on data of unseen length (5 and 6). The result indicates
the necessity of using training data whose lengths subsume that of the test data. Meanwhile, the
translation errors of Eda-4 and Eda-3 are comparable, and they both increase with the length of data.

Then we investigate the influence of the components in our theory. . .

We compare Ed%l with Eda-O on the 3DL dl?altaset, where O is z Table 4: Ablat12n sttgity.
combination of the following modifications: 1) r: removing r* Eda 132 02

in hx . 2) h: replacing hy (7) by the canonical path h. 3) e: Eda-(r) 15.4 023
replacing f by a non-equivariant network. The results are shown in Eda-(r, ) 79: 4 0:51
Tab. 4] where we observe that 7 leads to a small performance drop, Eda-( r: ¢) 862 0.37

while h and e lead to large performance drops. In addition, Eda- Eda-(r, h, ¢)
(r, h, e) fails to converge. More details can be found in Appx. T

7 CONCLUSION

This work studied the theory of equivariant flow matching, and presented a multi-piece assembly
method, called Eda, based on the theory. We show that Eda can accurately assemble PCs on practical
datasets. More discussions can be found in Appx.
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A THE USE OF LARGE LANGUAGE MODELS (LLM)

We use an LLM to correct grammar errors.

B MORE DETAILS OF THE RELATED TASKS

The registration task aims to reconstruct the scene from multiple overlapped views. A registration
method generally consists of two stages: first, each pair of pieces is aligned using a pair-wise
method (Qin et al.| [2022), then all pieces are merged into a complete shape using a synchronization
method (Arrigoni et al.,[2016}; [Lee and Civeral [2022}; |Gojcic et al.,[2020). In contrast to other tasks,
the registration task generally assumes that the pieces are overlapped. In other words, it assumes that
some points observed in one piece are also observed in the other piece, and the goal is to match the
points observed in both pieces, i.e., corresponding points. The state-of-the-art registration methods
usually infer the correspondences based on the feature similarity (Yu et al., | 2023) learned by neural
networks, and then align them using the SVD projection (Arun et al.| [1987)) or RANSAC.

The robotic manipulation task aims to move one PC to a certain position relative to another PC. For
example, one PC can be a cup, and the other PC can be a table, and the goal is to move the cup onto
the table. Since the input PCs are sampled from different objects, they are generally non-overlapped.
Unlike the other two tasks, this task is generally formulated in a probabilistic setting, as the solution
is generally not unique. Various probabilistic models, such as energy-based models (Simeonov et al.,
2022; Ryu et al.| 2023)), or diffusion models (Ryu et al.l 2024)), have been used for this task.

The reassembly task aims to reconstruct the complete object from multiple fragment pieces. This
task is similar to the registration task, except that the input PCs are sampled from different fragments,
thus they are not necessarily overlapped, e.g., due to missing pieces or the erosion of the surfaces.
Most of the existing methods are based on regression, where the solution is directly predicted from
the input PCs (Wu et al., 2023a};|Chen et al.| 2022; Wang and Jornsten, |2024). Some probabilistic
methods, such as diffusion-based methods (Xu et al., 2024; |Scarpellini et al., 2024), have also been
proposed. Note that there exist some exceptions (Lu et al.,|2023)) which assume the overlap of the
pieces, and they rely on the inferred correspondences as the registration methods.

A comparison of these three tasks is presented in Tab. [3]

Table 5: Comparison between registration, reassembly and manipulation tasks.

Task Number of piecesProbabilistic/Deterministic ~ Overlap
Registration >2 Deterministic Overlapped
Reassembly >2 Deterministic Non-overlapped
Manipulation 2 Probabilistic Non-overlapped

Assembly (this work) >2 Probabilistic Non-overlapped

C A WALK-THROUGH OF THE MAIN THEORY

This section provides a walk-through of the theory using the two-piece deterministic example. We
follow the notation in example let (r1,72) be the solution for the input point clouds (X7, X2),
meaning r1 X7 and 73 X5 are assembled.

Our theory addresses the following equivariance question. Assume that a diffusion model works
for the input (X1, X3), i.e., the predicted vector field v(x,  x,) flows to the correct solution (r1,73).
How to ensure it also works for the perturbed input? For example, for SO(3)2-equivariance, the
question is how to ensure the model also works for (r3X7,74X52). ie., to ensure the predicted vector
field v(,, x, r, x,) flows to (riryt,raryt).

Corollary 4.4 shows that the goal can be achieved if v(,., x ,, x,) is @ proper "transformation" of
V(X1,Xs) (relatedness), and the noise is invariant.
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Then, the next question is how to satisfy the relatedness requirement. Proposition 4.5 suggests that
this can be simply done by parametrizing the vector fields as

V(x,,x0) (17, 18) = f(re X1, 78 X0)(r7 D rg), where f(X1,Xo) = (wi,t1) ® (wa,t2)  (8)
is a neural network mapping (X7, X5) to their respective rotation/translation velocity components
w and t, and & is the concatenation. In summary, we can now answer the question from the last
paragraph: if the diffusion model predicts the vector field as in (8)) and it works for (X7, X5), then it
also works for (r3 X7, 74 X5).

Further more, Proposition 4.6 suggests that, to ensure the other two requirements (permutation
equivariance and SO(3)-invariance) of the model, f needs to satisfy

f(Xo, X1) = (wa, t2) ® (w1, t1) and  f(rXi,rXs) = (rwy,rt1) & (rwe, rts) 9)

Finally, Proposition 4.7 suggests that some data augmentations are not needed when all the above
requirements are satisfied. For example, for data (X7, X5) we learn a vector field V(X1 X,)- Wecan
use randomly augmented data (r3 X7, 74 X>) and learn V(ry X1,r4 Xo)- HOWever, this is not necessary
because v(,, x,,r, x,) 1$ already guaranteed to be a transformation of v(x, x,) as described above,
and the loss for them is the same, i.e., learning V(x,,X,) alone is enough. Similar results hold for the
other two types of augmentations.

D CONNECTIONS WITH BI-EQUIVARIANCE

This section briefly discusses the connections between Def. and the equivariances defined inRyu
et al.|(2024) and Wang and Jornsten| (2024) in pair-wise assembly tasks.

We first recall the definition of the probabilistic bi-equivariance.

Definition D.1 (Eqn. (10) in Ryu et al.| (2024) and Def. (1) in Ryu et al[(2022)). P € u(SE(3))is
bi-equivariant if for all g1, g2 € SO(3), PCs X1, X5, and a measurable set A C SE(3),

P(A|X1, X)) = P(gaAgy g1 X1, g2 Xo). (10)

Note that we only consider g1, g2 € SO(3) instead of g1, g2 € SE(3) because we require all input
PCs, ie., X;, g X;, 1 = 1,2, to be centered.
Then we recall Def. [3.1] for pair-wise assembly tasks:

Definition D.2 (Restate SO(3)?-equivariance and SO(3)-invariance in Def. 3.1|for pair-wise prob-
lems). Let X3, X5 be the input PCs and P € pu(SE(3) x SE(3)).

* Pis SO(3)%-equivariant if P(A|X1, X2) = P(A(g; ", 95 1)]g1X1, 92X>) forall gy, go € SO(3)
and A C SO(3) x SO(3), where A(g; ", 95 ") = {(a19; ', a2g5 ") : (a1,a2) € A}.

* Pis SO(3)-invariant if P(A|X1,X5) = P(rA|X1,Xs) forall r € SO(3) and A C SO(3) x
SO(3).

Intuitively, both Def. and Def.[D.2]describe the equivariance property of an assembly solution, and
the only difference is that Def.[D.T|describes the special case where X can be rigidly transformed and
X5, 1s fixed, while Def. describes the solution where both X; and X5 can be rigidly transformed.
In other words, a solution satisfying Def.[D.2]can be converted to a solution satisfying Def.[D.T| by
fixing X5. Formally, we have the following proposition.

Proposition D.3. Let P be SO(3)%-equivariant and SO(3)-invariant. If P(A| X1, X5) £ P(A x
{e}| X1, X2) for A C SO(3), then P is bi-equivariant.

Proof. We prove this proposition by directly verifying the definition.

P(g2Ag7 91 X1, 92X2) = P(g2Ag97 " x {e}g1X1, g2 X2) (11)
= P(g2A x {e}| X1, 92X2) (12)
= P(A x {g5 '}|X1,92X5) (13)
= P(A x {e}| X1, X>) (14)
= P(A|X,, X5). (15)
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Here, the second and the fourth equation hold because P is SO(3)2-equivariant, the third equation
holds because P is SO(3)-invariant, and the first and last equation are due to the definition. O

We note that the deterministic definition of bi-equivariance in/Wang and Jornsten| (2024) is a special
case of Def. where P is a Dirac delta function. In addition, as discussed in Appx. E in/Wang and
Jornsten| (2024)), a major limitation of the deterministic definition of bi-equivariance is that it cannot
handle symmetric shapes. In contrast, it is straightforward to see that the probabilistic definition, i.e.,
both Def. [D.T|and Def. [D.2] are free from this issue. Here, we consider the example in Wang and
Jornsten| (2024). Assume that X is symmetric, i.e., there exists g1 € SO(3) such that g1 X; = X;.
Under Def.[D.1] we have P(A| X1, X2) = P(A|g1 X1, Xa) = P(Ag1|X1, X»), which simply means
that P(A| X, X2) is R, -invariant. Note that this will not cause any contradiction, i.e., the feasible
set is not empty. For example, a uniform distribution on SO(3) is R, -invariant.

As for the permutation-equivariance, the swap-equivariance in [Wang and Jornsten| (2024)) is a
deterministic pair-wise version of the permutation-equivariance in Def.[D.2] and they both mean that
the assembled shape is independent of the order of the input pieces.

E THE RK4 FORMULATION

1 1
ki = fri(9i)s k2 = friy 1 (ex(50K1)G:), ks = fr,y 1y (exp(51k2)g1)s Ka = Jriin (exp(nks)gs),
1 1 1 1
9i+1 = eXP(gﬁkO eXp(gnk:s) eXP(gﬁkz) eXP(gﬁkl)gi- (16)

Note that RK4 is more computationally expensive than RK1, because it requires four evaluations
of vx at different points at each step, i.e., four forward passes of network f, while the Euler method
only requires one evaluation per step.

F PROOFS

F.1 PROOF IN SEC.

To prove Thm. .2 which established the relations between related vector fields and equivariant
distributions, we proceed in two steps: first, we prove lemma [F.I] which connects related vector
fields to equivariant mappings; then we prove lemma. which connects equivariant mappings to
equivariant distributions.

Lemma F.1. Let G be a smooth manifold, F : G — G be a diffeomorphism. If vector field v is
F-related to vector field w for T € [0,1], then F o ¢, = 1), o F, where ¢ and 1, are generated by
v, and w, respectively.

Proof. Let 1/37 £ Fo¢, o F~'. We only need to show that 1 coincides with U

We consider a curve ¢, (F(go)), 7 € [0, 1], for a arbitrary gy € G. We first verify that 1o (F(go)) =
FoggoF~toF(gy) = F(go). Note that the second equation holds because ¢ (go) = go. i.e., ¢r
is an integral path. Then we verify

(0 (F(g0))) == (F © 61(g0)) a7
=Fo (a0 © (61 (00)) 1s)
=F 0. (g0) © V7 (¢+(90)) (19)
=w-(F o ¢-(g0)) (20
=w, (- (F(g0))) e3))

where the 2-nd equation holds due to the chain ru~le, and the 4-th equation holds becomes v, is
F-related to w.. Therefore, we can conclude that ¢~ (F(go)) is an integral curve generated by w.

16
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starting from F'(go). However, by definition of ¥, ¥, (F(go)) is also the integral curve generated
by w, and starts from F'(go). Due to the uniqueness of integral curves, we have ¢, = 1. O

Lemma F.2. Let ¢, ¥, F : G — G be three diffeomorphisms satisfying F' o ¢ = 1) o F. We have
Fu(oup) = Yu(Fyp) for all distribution p on G.

Proof. Let A C G be a measurable set. We first verify that ¢~ (F~1(A)) = F~1(yp~1(A)): If
x € ¢~ (F~1(A)), then (F o ¢)(z) € A. Since F o ¢ = 1) o F, we have (1) o F)(x) € A, which
implies x € F~1(xy~1(A)), i.e, 71 (F~1(A)) C F~1(xp~1(A)). The other side can be verified
similarly. Then we have

(Fy(d))(A) = p(¢7 (F7(A))) = p(F~H (17 1(A))) = (g (Fgp))(A), (22)

which proves the lemma. O
Now, we can prove Thm. .2 using the above two lemmas.

Proof of Thm. Since vy is F-related to vy, according to lemma|F1] we have F o ¢px = ¢y o F.
Then according to lemma [F.2} we have Fiu(¢x4FPo) = ¢y4(FuPy). The proof is complete by
letting Px = Qﬁx#Po and Py = d)y# (F#Po). O

We remark that our theory extends the results in [Kohler et al.| (2020), where only invariance is
considered, Specifically, we have the following corollary.

Corollary F.3 (Thm 2 in|Kohler et al.|(2020)). Let G be the Euclidean space, F' be a diffeomorphism
on G, and v, be a F-invariant vector field, i.e., v, is F-related to v, then we have F o ¢, = ¢, o F),
where ¢, is generated by v..

Proof. This is a direct consequence of lemma. [F-T|where G is the Euclidean space and w, = v,. [

Note that the terminology used in |[Kohler et al.| (2020) is different from ours: The F'-invariant vector
fields in our work is called F-equivariant vector field in Kohler et al.| (2020)), and |[Kohler et al.| (2020)
does not consider general related vector fields.

Finally, we present the proof of Prop. .5]and Prop.[4.6]

Proof of Prop. If vx is Rg-1-related to vgx, we have vgx (99 ™1) = (Rg-1)+,gvx(g) for all
g,9 € SE(3)N. By letting g = g, we have

vx(g) = (Rg)«.cvgx(€) (23)
where (Rg)ue = ((Rg-1)eq) " due to the chain rule of RgR,-1 = €.
On the other hand, if Eqn. @) holds, we have
(Rg-1)x,50x(9) = (Rg-1)x.6(Rg)sevax(e) = (Rgg-1)sevax(e) = vgx(9g™"),  (24)
which suggests that vx is Rq-1-related to vgx. Note that the second equation holds due to the chain

rule of Rg-1Rg = Rygg-1, and the first and the third equation are the result of Eqn. (23). [

Proof of Prop. 1) Assume vy is o-related to vox: (0)«,qvx(9) = Vox(o(g)). By inserting
Eqn. @) to this equation, we have

(0)+.g(Rg)xef(9X) = (Rog)s.c f(0(g)a(X)). (25)

Since 0oRg = Ryg00, by the chain rule, we have 0, (Rg)+« = (Rog)«0«. Inaddition, o(g)o(X) =
o(gX). Thus, this equation can be simplified as

(Rog)«0«f(gX) = (Rog)s.e f(o(gX)) (26)

which suggests
U*f = f oo. (27)
The first statement in Prop. can be proved by reversing the discussion.
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2) Assume vy is L-related to vx: (L)« 4vx(g) = Vx(rg). By inserting Eqn. (5) to this equation,

we have

(£1)4,9(Rg)xef(9X) = (Rig)s.ef(rgX). (28)
Since R,q = Rg © R;, by the chain rule, we have (R,g)s«c = (Rg)«,r(Rr)s.. In addition,
(£;)(Rg) = (Rg)(L,), by the chain rule, we have (L;)..g(Rg)x,e = (Rg)s,r(Lr)s,e. Thus the
above equation can be simplified as

(L), f(9X) = (Ry)sef(rgX) (29
which implies
for=(Ri—1)sro(Ly)seof. (30)
By representing f in the matrix form, we have
wi (rX) = rwl (X)r" (31
t'(rX) = rt"(X) (32)

for all 7, where 7 on the right hand side represents the matrix form of the rotation r. Here the first
equation can be equivalently written as w*(rX) = rw*(X). The second statement in Prop. |4.6|can
be proved by reversing the discussion.

F.2 PROOFS IN SEC.[4]3]

To establish the results in this section, we need to assume the uniqueness of r* @):
Assumption F.4. The solution to (6) is unique.

Note that this assumption is mild. A sufficient condition (Wang and Jornsten| [2024) of assumption [F:4]
is that the singular values of g7 go € R3*3 satisfy o1 > 09 > 03 > 0, i.e., 02 and 073 are not equal.
We leave the more general treatment without requiring the uniqueness of r* to future work.

We first justify the definition of g; = r*g; by showing that g; follows P, in the following proposition.

Proposition K.5. Let Py and Py be two SO(3)-invariant distributions, and go, g1 be independent
samples from Py and P respectively. If r* is given by (6) and assumption[F4) holds, then g1 = r* g,
follows P.

Proof. Define Az, = {go|r*(go,g1) = e}, where we write r* as a function of g; and gy. Then we
have P(r* = e|g1) = Py(Ag, ) by definition. In addition, due to the uniqueness of the solution to (6),
for an arbitrary 7 € SO(3), we have P(r* = #|g1) = Py(7Ag,). Since Py is SO(3)-invariant, we
have Py(7Ag,) = Py(Ag, ), thus, P(r* = 7|g1) = P(r* = €|g1). In other words, for a given g1, r*
follows the uniform distribution Ugo 3.

Finally we compute the probability density of g;:

Plg) = [ " =i ig) Putign)ds (33)

= / Uso(s) (7) P1(g1)dr (34)

= Pi(g1), (35)

which suggests that g; follows P;. Here the second equation holds because P; is SO(3)-invariant.
O

Then we discuss the equivariance of the constructed hx (7).

Proposition F.6. Given r € SO(3)", go,g1 € SE(3)N, 0 € Sy, r € SO(3) and 7 € [0,1]. Let
hx be a path generated by go and g,. Under assumption[F4]

e if hyx is generated by gor~! and gi1v =1, then hy.x (1) = Rp—1hx (7).
* if hyx is generated by o(go) and o(g1), then hox (1) = o(hx (7).

e if hx is generated by rgo and gy, then hx (1) = Ly (hx (7)).

18
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Proof. 1) Due to the uniqueness of the solution to (6), we have r*(gor !, g17~1) = 7*(go, §1)-
Thus, we have

hex(T) = exp(r log;(glgo_l))gor*1 =Rp—1(hex(7)). (36)

2) Due to the uniqueness of the solution to (6), we have r*(o(go), 0(g1)) = o(r*(go,g1)). Thus,
we have o(hx) = hox.

3) Due to the uniqueness of the solution to @), we have 7*(rgo, 7g1) = r7*(go, g1)r . Thus,
hex () = exp(7log(rr*gigy 'r~"))rgo = rexp(rlog(r*gigy ))go = L (hx (7). (37)

O
With the above preparation, we can finally prove Prop.
Proof of Prop. 1) By definition
L(rX) =E; g1 npy.g;~Prx | [Vrx (ex (7)) — 3th(T)Hfm (38)

or

where h,. x is the path generated by g and g}. Since Py = (R,.—1)%Fp and Pr.x = (R,.-1)xPx by
assumption, we can write g, = gor ! and g} = g17 1, where gg ~ Py and g; ~ Px. According to
the first part of Prop. we have h,. x (1) = R,-1hx(7), where hx is a path generated by g¢ and g;.
By taking derivative on both sides of the equation, we have 2 h,.x (1) = (Ryp-1)s hy (1) = hx (7).
Then we have

0
L(rX) = Er gipy gy~ [[0rx (Rp1hx (7)) = (Rp-)unx (g -hx (T)I[F - (39)

by inserting these two equations into Eqn. (38). Since vx is R,.—:-related to v, x by assumption, we
have v, x (Rp-1hx(7)) = (Rp-1) s hx (r)vx (hx (7)). Thus, we have
0 0

[[orx (Ry-1hx (7)) = Ry ) (r) 5= hx (D[ = [(Ret ) () (v (hix (7)) = - hx (7))

=[x (hx (7)) = achx (I @0)

where the second equation holds because (R -1 ). p (- is an orthogonal matrix. The desired result
follows.

2) The second statement can be proved similarly as the first one, where o-equivariance is considered
instead of R,.-1-equivariance.

3) Denote g\, = rgo and g7 = rg1, where go ~ Py and g; ~ Px. According to the third part of
Prop. we have hx (1) = L, (hx(7)). By taking derivative on both sides of the equation, we have

a%ilx (1) = (Lr)s,hx (7) %hx (7). Then the rest of the proof can be conducted similarly to the first
part of the proof. O

G MODEL DETAILS

Let F! € Re*(2!+1) be a channel-c degree-I feature at point u. The equivariant dot-product attention

is defined as: (Qu Ko)
A=Y PNy Zou VL, (41)
U ekt (up 2w ek (u) P (Qus Koru)) T

where (-, -) is the dot product, KNN(u) C |J; X; is a subset of points u attends to, K,V € Re*(2+1)

take the form of the e3nn (Geiger and Smidt, [2022) message passing, and Q € R¢*(2+1) is obtained
by a linear transform:

Lle,l l
Quf@% b K *EBZ ) ()Y (vu) @, B 42)
Lo,y
vi= ST (juo vt (ma) @, B (43)
le,ly
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Here, Wé) € R is a learnable weight, |vu| is the distance between point v and u, vu = vt/ |vu| €

R3 is the normalized direction, Y! : R® — R2?*! is the degree-I spherical harmonic function,
¢ : Ry — Ris alearnable function that maps |vu| to a coefficient, and ® is the tensor product with
the Clebsch-Gordan coefficients.

To accelerate the computation of K and V, we use the SO(2)-reduction technique (Passaro and
Zitnick, 2023)), which rotates the edge uv to the y-axis, so that the computation of spherical harmonic
function, the Clebsch-Gordan coefficients, and the iterations of [, are no longer needed.

The main idea of SO(2)-reduction (Passaro and Zitnick, 2023)) is to rotate the edge uv to the y-axis,
and then update node feature in the rotated space. Since all 3D rotations are reduced to 2D rotations
about the y-axis in the rotated space, the feature update rule is greatly simplified.

Here, we describe this technique in the matrix form to facilitates better parallelization. Let F! €
Re* (41 be a c-channel I-degree feature of point v, and L > 0 be the maximum degree of features.
We construct £} € Re*2L+1) by padding F! with L — [ zeros at the beginning and the end of
the feature, then we define the full feature F, € R*L*(2L+1) a5 the concatenate of all £ with
0 < I < L. For an edge vu, there exists a rotation r,,, that aligns uv to the y-axis. We define
Ry, € REXCLADXZLA1) 6 be the full rotation matrix, where the I-th slice R, [l,:, :] is the I-th

Wigner-D matrix of r,,, with zeros padded at the boundary. K, defined in (42) can be efficiently
computed as

K, =R, x12 Wk x3 (Di x12 Rou X12 Fy)), (44)

where M; x; M, represents the batch-wise multiplication of M; and M5y with the ¢-th dimen-
sion of M5 treated as the batch dimension. Wy € R(eL)x(eL) ig a learnable weight, Dy €
Rex L+1)X(2L+1) i 3 Jearnable matrix taking the form of 2D rotations about the y-axis, i.e., for
each i, Dkli,:,:] is

ay —by
a2 —bo
ar—1 —br_1
ar, (45)
br—1 ar—1
b a2
_bl al -
where a1, -+ ,ar, by, -+ ,br—1 : Ry — R are learnable functions that map |vu| to the coefficients.

V., defined in (42)) can be computed similarly. Note that (44)) does not require the computation of
Clebsch-Gordan coefficients, the spherical harmonic functions, and all computations are in the matrix
form where no for-loop is needed, so it is much faster than the computations in (42).

H MORE DETAILS OF SEC.

We present more details of Eda on 3DL in Fig.[5] We observe that the vector field is is gradually
learned during training, i.e., the training error converges. On the test set, RK4 outperforms the RK1,
and they both benefit from more time steps, especially for rotation errors.

We now provide more details for the ablation study reported in Tab.[d The curve of validation errors
of all methods are presented in Fig. @ All methods use (RK1, 10) for sampling. Eda-(r) satisfies
all equivariances. Eda-(r, h) breaks the first and third part of Prop. Eda-(r, ) and Eda-(r, h, ¢)
further break the second part of Prop.[d.6] The non-equivariant network is obtained by replacing the
matrix (#5) by a linear transformation with exactly the same number of parameters. All methods
considered in this study contain exactly the same number of trainable parameters.

We provide the complete version of Table 2]in Table [6] where we additionally report the standard
deviations of Eda.
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Figure 5: More details of Eda on 3DL. Left: the training curve. Middle and right: the influence of
RK4/RK1 and the number of time steps on Ar and Aft.
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Figure 6: Validation error curves of all methods in Tab. El The training of Eda-(r, h, ) is unstable
and produces NaN value at the early stage.

Table 6: The complete version of Table [2] with stds of Eda reported in bracked.

3DM 3DL 3DZ
Ar At Ar At Ar At
FGR 69.5 0.6 117.3 1.3 — —
GEO 7.43 0.19 28.38 0.69 - -
ROI (500) 5.64 0.15 21.94 0.53 - -
ROI (5000) 5.44 0.15 22.17 0.53 - -
AMR 5.0 0.13 20.5 0.53 -

Eda (RK4, 50) 2.38 (0.16) 0.16 (0.01) 8.57 (0.08) 0.4 (0.0) 78.74

(0.6) 0.96 Z0.0

D

We provide some qualitative results on BB datasets in Fig.[7] Eda can generally recover the shape of
the objects.

A complete version of Tab. 3] is provided in Tab. [7]] where we additionally report the standard
deviations of Eda.

Table 7: The complete version of Table [3 with stds of Eda reported in brackets.

Ar At Time (min)
GLO 126.3 0.3 0.9
DGL 125.8 0.3 0.9
LEV 125.9 0.3 8.1
Eda (RK1, 10)  80.64 0.16 19.4

Eda (RK4, 10) 79.2 (0.58) 0.16 (0.0)  76.9

We provide a few examples of the reconstructed road views in Fig. [8]
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DGL

GLO

GARF

Eda

Figure 7: Qualitative results on BB.
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(a) 2-piece assembly (b) 3-piece assembly (c) 4-piece assembly

Figure 8: Qualitative results of Eda on kitti. We present the results of Eda (1-st row) and the ground
truth (2-nd row). For each assembly, Eda correctly places the input road views on the same plane.

I LIMIATION AND FUTURE WORKS

Eda in its current form has several limitations. First, Eda is slow when using a high order RK solver
with a large number of steps. Besides its iterative nature, another cause is the lack of CUDA kernel
level optimization like FlashAttention 2022) for equivariant attention layers. We expect
to see acceleration in the future when such optimization is available. Second, Eda always uses all
input pieces, which is not suitable for applications like archeology reconstruction, where the input
data may contain pieces from unrelated objects. Finally, the scaling law (Kaplan et al.}[2020) of Eda
is an interesting research direction left for future work, where we expect to see that an increase in
model size leads to an increase in performance similar to image generation applications

Xiel 2023).

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

(a) Ground truth (b) 3 runs of Eda

Figure 9: Qualitative results of Eda on 3DZ. Cameras are set to look at the room from above.
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