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A Federated Learning Approach to Anomaly Detection in

Smart Buildings
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Engineering

Internet of Things (IoT) sensors in smart buildings are becoming increasingly ubiquitous, making buildings
more livable, energy efficient, and sustainable. These devices sense the environment and generate multivariate
temporal data of paramount importance for detecting anomalies and improving the prediction of energy
usage in smart buildings. However, detecting these anomalies in centralized systems is often plagued by
a huge delay in response time. To overcome this issue, we formulate the anomaly detection problem in a
federated learning setting by leveraging the multi-task learning paradigm, which aims at solving multiple
tasks simultaneously while taking advantage of the similarities and differences across tasks. We propose a
novel privacy-by-design federated learning model using a stacked long short-time memory (LSTM) model,
and we demonstrate that it is more than twice as fast during training convergence compared to the centralized
LSTM. The effectiveness of our federated learning approach is demonstrated on three real-world datasets
generated by the IoT production system at General Electric Current smart building, achieving state-of-the-
art performance compared to baseline methods in both classification and regression tasks. Our experimental
results demonstrate the effectiveness of the proposed framework in reducing the overall training cost without
compromising the prediction performance.
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works; • Security and privacy→ anomaly detection; • Computing methodologies→ Machine learning;
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1 INTRODUCTION

Smart buildings are making bold use of data collected by Internet of Things (IoT) sensors
to assist in a wide range of positive outcomes, including cost reduction, improved safety and
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maintenance, and prevention of building equipment downtime. In simple terms, IoT refers to a
network of sensors and other devices that are capable of sending and receiving data [32, 35], al-
lowing diverse network components to cooperate and make their resources available to execute
a common task. IoT helps create interoperable networks in smart buildings by connecting vari-
ous types of sensors and other devices from which actionable insights can be extracted through
collection and analysis of massive amounts of real-time data.

IoT-enabled smart buildings are changing the way we live, leveraging the power of intelligent
devices to remotely monitor and control key equipment in the premises while ensuring greater
energy and operational efficiency [19, 27]. In such an intelligent environment, a key objective is to
provide support tools to help building managers and users make cost-effective decisions when uti-
lizing, for example, electrical energy. It is estimated that more than half the global electrical energy
is consumed by commercial buildings, and around 45% of that energy is generated by Heating,

Ventilation and Air Conditioning (HVAC) systems [11]. To intelligently improve performance
and create smarter buildings, there is a pressing need for developing efficient machine learning
models that effectively learn the history patterns of IoT sensors in an effort to increase energy ef-
ficiency and help cut costs. Such models not only help facility managers make strategic decisions
through data analysis and actionable insights to ensure buildings are working smarter and run-
ning at maximum efficiency but can also help buildings self-diagnose and optimize. In particular,
an anomaly detection model can be used to deliver insights on the present and future performance
of critical assets in smart buildings.

Anomaly detection is the process of identifying anomalous observations, which do not con-
form to the expected pattern of other observations in a dataset. Detecting anomalies has become
a central research question in IoT applications, particularly from IoT time-series data [10, 20, 34].
For instance, a lighting energy consumption pattern might vary in an office building. Smart light-
ing control systems use occupancy sensors in correlation with light sensors to dim light based on
changing occupancy and daylight levels, with the benefit of conserving energy in the building [38].
Moreover, an observation of high energy consumption levels due to heating in a bank might be
anomalous after working hours but not during the day. Occupancy sensors can be used to measure
occupancy and space utilization, as well as in other systems such as HVAC to detect such anom-
alies [2]. Multiple types of sensors are of great importance to building operations and can be used
for a number of applications in an IoT environment, including energy consumption monitoring
and control, and security of critical systems. Most modern structures are equipped with a building

automation system (BAS), which enables facility managers to automate and oversee the energy
efficiency of a building by controlling various components within a building’s structure, such as
HVAC.

Early works on detection and prediction tasks in smart buildings have focused on centralized
approaches using IoT sensor data. Idé et al. [17] used correlation between multiple sensors to
form neighborhood graphs for computing correlation anomaly scores, but they treat a multi-sensor
system as a collection of centralized sensors. Bellido-Outeirino et al. [1] presented a building
lighting automation system by integrating digital addressable lighting interface devices in
wireless sensor networks using a centralized system, in which appliances are managed by a
wireless sensor network that focuses on lighting automation, while considering maintenance
and energy consumption costs. Yu et al. [41] developed a centralized real-time HVAC system
to construct and stabilize virtual queues associated with indoor temperatures by minimizing
the long-term total cost associated with the HVAC system in the smart grid, which is consid-
ered a key IoT application that involves the incorporation of a secure, two-way information and
communication flow, along with a two-way power flow. Li et al. [23] proposed a centralized
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water leak detection method using a classifier based on artificial neural networks using acous-
tic emission sensor data in an effort to detect water leaks in municipal pipeline systems. Chandra
et al. [5] presented a Bayesian approach to multi-task learning for dynamic time series predic-
tion via cascaded neural networks by decomposing a single task learning problem into multi-
task learning through subtasks that have inter-dependencies defined by the size of the window
used for embedding. To detect spatial, temporal, and spatio-temporal anomalies in real-time
sensor measurement data streams, Chen et al. [7] proposed an anomaly detection framework
for real-world environmental sensing systems in a bid to identify outliers in raw measurement
data.

In centralized systems, an abnormal sensor behavior is detected by a central model on a server.
Typically, all the training data are collected from the sensors through gateways and saved on
the cloud. Centralized systems are, however, prone to failures, vulnerable to cyber invasions
and infections, and often require longer access times for training data coming from remote
devices, leading to potential data exposure during the transmission from clients to server, and
hence raising concerns about clients’ privacy [14]. Federated learning has recently emerged as
a powerful alternative to centralized systems, as it enables the collaborative training of machine
learning models from decentralized datasets in users’ devices such as mobile phones, wearable
devices, and smart sensors without uploading their privacy-sensitive data to a central server or
service provider [3, 9, 21, 24–26, 29, 31, 39], while reducing communication cost [4]. For example,
in a federated learning system for smart buildings, each sensor performs model training using its
own data and sends local updates to the central server for aggregation to update the global model,
which is then redistributed to the sensors. The training process of a federated learning model is
usually carried out using the federated averaging algorithm [29] and is repeated iteratively until
model convergence or the maximum number of training rounds is reached. Moreover, secure
aggregation can be used to combine the outputs of local models on sensors for updating a global
model by leveraging secure multiparty computation [28].

While federated learning has some privacy-enhancing advantages as compared to sharing pri-
vate data with a central server, recent studies have shown that an honest-but-curious server
can analyze the local model parameter updates to perform gradient leakage attacks [13, 47], which
usually occur on comprised sensors, and hence the server may gain access to some private train-
ing data. To mitigate this issue of data leakage, federated learning can be used in conjunction
with secure multi-party computation, homomorphic encryption, or differential privacy. With se-
cure multi-party computation, for instance, the local model updates are securely combined into
a single aggregate update to ensure that the data communicated through federated learning to
the centralized server stays private [4]. Another effective strategy to prevent the gradients from
leaking private training data is to set those with small magnitudes to zero [47].

In this article, we introduce a federated stacked long short-time memory model using federated
learning on time series data generated by IoT sensors for classification and regression tasks such as
lighting fault detection and energy usage prediction. In addition to learning long-term dependen-
cies between timesteps of sequence data, the proposed model learns individual feature correlations
within each sensor and also shared feature representations across distributed datasets to improve
model convergence for faster learning. We perform the training process, which involves input data
from multiple heterogeneous data sources across numerous sensors, in a collaborative fashion on
IoT sensors in lieu of the server. This strategy not only lowers the cost and anticipates failures,
but also helps reduce computational demands and inherits the privacy-enhancing capabilities of
federated learning. The proposed framework provides (i) a reduced network traffic by sharing the
weights solely with the federated server, (ii) a shorter convergence time thanks to the collaborative
learning, and (iii) a federated methodology for training various types of sensors such as occupancy
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sensors. Moreover, we design a federated gated recurrent unit model and also a federated logistic
regression to learn a common representation among multiple sensors. Our main contributions can
be summarized as follows:

• We leverage the multi-task learning paradigm to formulate the anomaly detection problem
in smart buildings.
• We propose a novel privacy-by-design federated stacked long short-time memory model for

anomaly detection in smart buildings using IoT sensor data.
• We demonstrate that our proposed federated stacked Long Short-Term Memory (LSTM)

model converges 2× faster than the centralized LSTM during the training phase and signifi-
cantly reduces the communication cost.
• We present experimental results to demonstrate the superior performance of our model in

comparison with baseline methods on sensors event log and energy usage datasets.

The rest of this article is organized as follows. In Section 2, we provide a brief overview of central-
ized and federated learning approaches for anomaly detection in a smart building setting using
IoT sensor data. In Section 3, we present our federated learning system as well as our problem
formulation and propose a novel federated learning architecture for anomaly detection in smart
buildings. We discuss in detail the main components and algorithmic steps of the proposed frame-
work. In Section 4, we present experimental results to demonstrate the superior performance of
our approach in comparison with baseline methods. Finally, we conclude in Section 5 and point
out future work directions.

2 RELATED WORK

The growing number of smart city centers has accelerated the proliferation of IoT sensors to ob-
serve and/or interact with their internal and external environments. In recent years, the advent
of deep learning has sparked interest in the adoption of deep neural networks for learning latent
representations of IoT sensor data. Du et al. [12] introduced a deep neural network using LSTM to
model a system log as a natural language sequence by learning log patterns from normal execution
in order detect anomalies when log patterns deviate from the model trained from log data under
normal execution. Zhu et al. [46] proposed a multi-task anomaly detection framework for control
area network messages using LSTM on in-vehicle network data. Zhang et al. [43] also used an
LSTM model to predict power station working conditions from data generated by industrial IoT
sensors of a main pump in a power station. However, all the aforementioned approaches are cen-
tralized, as data generated by IoT devices are sent directly to the server, raising privacy concerns
and resulting in network overload. Moreover, the training process of centralized approaches is
bandwidth intensive and comes with significant privacy implications.

More recently, federated learning has emerged as a viable, compelling alternative to the central-
ized approach. Rather than aggregating increasingly large amounts and types of data into a central
location, federated learning distributes the global model training process such that each participat-
ing sensor’s data are used in situ to train a local model. Nguyen et al. [33] proposed an anomaly
detection system for detecting compromised IoT devices using federated learning by aggregating
anomaly-detection profiles for intrusion detection. Li et al. [22] presented an autoencoder based
anomaly detection approach at the server side to detect anomalous local weight updates from the
clients in a federated learning system. Yurochkin et al. [42] developed a probabilistic federated
learning framework with a particular emphasis on training and aggregating neural network mod-
els by decoupling the learning of local models from their aggregation into a global federated model.
Zhao et al. [44] presented a multi-task federated learning method for computer networks anomaly
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Fig. 1. IoT-enabled smart building.

Fig. 2. Federated learning system for anomaly detection.

detection, as well as for traffic recognition and classification tasks. Chen et al. [9] introduced a
federated multi-task hierarchical attention model for activity recognition and environment moni-
toring using multiple sensors.

3 METHOD

Motivated by LSTM networks’ capability of learning long-term dependencies between timesteps of
sequence data [16], we introduce in this section a novel privacy-by-design federated stacked LSTM
model for anomaly detection in smart buildings using IoT sensor data. The proposed approach
leverages the multi-task learning paradigm.

In a smart building setting with a federated learning system setup, we assume that there are K
sensors, each of which has a dataset Dk that is kept private, where k = 1, . . . ,K . In other words,
the data Dk of the kth sensor are not shared with the server. An IoT-enabled smart building is
depicted in Figure 1, which shows several types of sensors for a variety of tasks, including lighting
control, building access, water management, HVAC, fire suppression, and building monitoring.
Unlike the traditional centralized learning that collects and uses all local data D = ∪K

k=1Dk from
all sensors to train a model, the federated learning paradigm only collects and aggregates updated
local models from the sensors to generate a global model.
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An overall schematic layout of our federated learning system for anomaly detection is illustrated
in Figure 2. The proposed system uses historic sensor data and contextual features to identify
temporal anomalies in smart buildings using a multi-task federated recurrent neural network to
classify anomalous sensors and predict energy consumption. The main building blocks of this
system are local training, cloud aggregation, anomaly detection and global model broadcast.

Local training. Sensor data represent a time stamped input of energy consumption data recorded
at regular time intervals. These sensor data are often noisy and incomplete due largely to faulty
devices and/or communication errors [30]. To mitigate the negative impact of noisy and incom-
plete data on the performance of the federated learning system, these data instances are usually
discarded or interpolated. Each sensor trains the local model on anomalous instances. The basic
assumption is that historic sensor data are predominantly normal. The historical real datasets can
then be split into training and test sets with the objective of using the test data to evaluate the
capacity of the anomaly detection framework to identify normal behavior during the anomaly de-
tection phase. The primary goal of training is to enhance engine recognition of normal input data
patterns. At the end of the training phase, the participating sensors send the learned parameters of
their local models for aggregation to a central server via Wireless Area Controller gateways that
monitor and control data traffic between the sensors and the IoT system in the cloud [18].

Cloud aggregation. We use PySyft, a Python library for secure and private deep learning [37],
which integrates federated learning with secure multi-party computation and differential privacy
in an effort to protect against threats within the data center by ensuring that individual sensors’
updates remain encrypted in memory. The secure multi-party computation protocol leverages en-
cryption to make individual sensors’ updates uninspectable by a server [4]. At each communication
round between the server and participating sensors, the server aggregates the learned parameters
of the local models using the Federated Averaging algorithm, followed by updating the global
model. This training process is repeated for a certain number of communication rounds until a de-
sirable level of performance is achieved. Then, the updated global model is prepared for integration
into the anomaly detection engine.

In PySyft, private data leakage is mitigated with secure aggregation [4] by leveraging secure
multiparty computation to compute sums of local model parameter updates from individual sen-
sors while maintaining privacy guarantees. With secure aggregation, the local model parameter
updates are kept encrypted and their sum is only revealed to the server after a sufficient number
of communication rounds. Homomorphic encryption and differential privacy can also be used in
PySyft. However, only secure aggregation is used in our algorithm. In differential privacy, for in-
stance, each sensor adds a carefully calibrated amount of noise to its local parameter update in an
effort to mask its contribution to the learned global model.

Anomaly detection. The anomaly detection block of the proposed system is composed of four
main components: the pattern learner process, pattern recognizer, threshold determinator, and
anomaly classifier. The pattern learner receives the global model after the training has been com-
pleted and configured for testing. The pattern recognizer tests the global model and evaluates the
performance based on the test data to help the threshold determinator find a suitable value for
the specific problem. Based on the value of the threshold, the anomaly classifier generates the
inference and predicts the anomalous data points that did not pass the threshold determinator
and flags them in the anomaly detection system. The updated global model will then be ready for
deployment on sensors after this round of training.
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Table 1. Notation

Notation Description

K Number of participating sensors indexed by k
Xk Training data for thekth sensor with Nk local examples
yk Ground-truth label or target output vector
ŷk Predicted probability or response vector
L (·, ·) Loss function
σ (·) Sigmoid activation function
B Local minibatch size
E Number of local epochs
wG Global model
FC Fully Connected layer
BA Balanced Accuracy
LR Logistic Regression
FLR Federated Logistic Regression
FGRU Federated Gated Recurrent Unit
LSTM Long Short-Term Memory network
FLSTM-� Federated LSTM with � layers
FSLSTM Federated Stacked LSTM (i.e., FLSTM-3)

Global model broadcast. Once the model weights are updated using the Federated Averaging
algorithm, the anomaly detection engine, located in the IoT system, sends back the updated global
model to all sensors that are involved in the first round of training. These sensors receive the
updated global model with new weights and then replace their local models’ parameters with the
global parameters to start a new round of training.

3.1 Multi-Task Learning

We leverage the multi-task learning paradigm, which aims at solving multiple tasks simultaneously
while taking advantage of the similarities and differences across tasks, to formulate the anomaly
detection problem in a federated learning setting. Our notation is summarized in Table 1.

Suppose that we have K learning tasks (i.e., one task per sensor) and denote by (Xk , yk ) the
training data for the kth task, where Xk = (xk

1 , . . . , x
k
Nk

)T ∈ RNk×F is a data matrix consisting of
Nk samples collected from multiple sensors of the same category (e.g., occupancy sensors), and
yk = (yk

1 , . . . ,y
k
Nk

)T ∈ RNk is a vector of outputs for the Nk samples. The training samples in Xk

are generated by sensors connected to different gateways in the building. Further, we assume that
the samples have the same feature dimension F across all tasks. It is important to note that yk

i ∈ R
for regression tasks, while yk

i ∈ {0, 1} for binary classification tasks with 0 and 1 representing
“normal” and “anomalous” observations, respectively.

The goal of multi-task learning is to learn the weight parameters of a model by minimizing the
following objective function across all sensors

Eavg =
1

K

K∑

k=1

L (yk , ŷk ), (1)

where L is a loss function and ŷk is a vector of predicted values by the model for the kth task.
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Fig. 3. LSTM block architecture.

For binary classification tasks, we train a model to minimize the cross-entropy loss function
given by

L (yk , ŷk ) = − 1

Nk

Nk∑

i=1

yk
i log(ŷk

i ), (2)

whereyk
i and ŷk

i are the ground-truth label and predicted probability, respectively, for the kth task.
For regression tasks, we train a model to minimize the mean squared error (MSE) given by

L (yk , ŷk ) =
1

Nk

Nk∑

i=1

(
yk

i − ŷk
i

)2
, (3)

where yk
i and ŷk

i are the target output and predicted value by the model, respectively, for the kth
task.

3.2 LSTM

LSTM networks are a special type of recurrent neural networks, capable of learning long-term
dependencies between timesteps of sequence data while being resilient to the vanishing gradient
problem [16]. The key to an LSTM network is the cell state, which contains information learned
from the previous timesteps and has the ability to remove or add information using gates [6]. These
gates control the flow of information to and from the memory. In addition to the hidden state, the
architecture of an LSTM block is composed of a cell state, forget gate, memory cell, input gate
and output gate, as illustrated in Figure 3. At each timestep, the LSTM block takes as input the
current input data vector xt and both the hidden state (i.e., short-term memory) ht−1 and cell state
(i.e., long-term memory) ct−1 from the previous cell. To decide which information to be retained
or discarded at each timestep before passing on the long-term and short-term information to the
next cell, the LSTM block uses the forget, input and output gates, which are trainable functions
with weights and biases. The forget gate decides which information from the long-term memory
to forget, while the input gate can be regarded as a filter that selects what information can be kept
and what information to be thrown out. The memory cell gt is created by passing the current input
and short-term memory into a tanh activation function, which is a shifted version of the sigmoid
activation function. The new cell state ct is obtained by adding two pointwise multiplication terms;
the first term involves the input gate and memory cell, while the second one uses the forget gate
and the previous cell state. The cell state ct stores information about the input data across timesteps.
Finally, the hidden state ht is obtained via pointwise multiplication of the output gate ot and the
new cell state through a tanh activation function. This hidden state (i.e., new short-term memory)
is then passed on to the cell in the next timestep.
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Formally, given the input xt , current cell state ct−1 and hidden state ht−1 of the network, the
LSTM updates at timestep t are given by

ft = σ (Wf xt + Rf ht−1 + bf ),

gt = tanh(Wдxt + Rдht−1 + bд ),

it = σ (Wi xt + Ri ht−1 + bi ),

ct = ft � ct−1 + it � gt ,

ot = σ (Woxt + Roht−1 + bo ),

ht = ot � tanh(ct ),

(4)

where ft , gt , it , ot , ct , and ht are the forget gate, memory cell, input gate, output gate, cell state and
hidden state, respectively; σ (·) denotes the sigmoid activation function; � denotes the pointwise
product; W• and R• are the learnable input and recurrent weight matrices; and b• are the learnable
bias vectors.

In summary, the input gate controls what new information is added to cell state from current
input, while the forget gate controls what information to throw away from memory. The output
gate controls what information encoded in the cell state is sent to the network as input in the
following timestep. An LSTM network with multiple LSTM layers is referred to as a stacked or
deep LSTM, with the output sequence of one LSTM layer forming the input sequence of the next.

3.3 Proposed Framework

To overcome the centralized training issues such as computational demand, IoT device availability
and network bandwidth limitation, we introduce a federated stacked long short-time memory

(FSLSTM) model that contains two main components: a local model and a global model. The local
model is a stacked LSTM network composed of three LSTM layers and is applied on input data
generated by each sensor to learn a latent feature representation. A fully connected (FC) layer
is applied to the hidden representation of the last LSTM layer, followed by a softmax or linear
activation function for classification and regression tasks, respectively. The global model, how-
ever, aggregates the weights of all local models after each round. The architecture of the proposed
FSLSTM model consists of three LSTM layers, as illustrated in Figure 4.

In a federated learning setting, the training of a stacked LSTM model is distributed across the
participating sensors by iteratively aggregating local models into a joint global model. Suppose
we have training local datasets {(Xk , yk )}K

k=1 from K sensors, where the total number of samples

distributed over these sensors is N =
∑K

k=1 Nk , with Nk denoting the number of samples in the

training setDk = (Xk , yk ) = {(xk
i ,y

k
i )}Nk

i=1 of the kth sensor. We consider a federated learning task,
where these K sensors collaboratively train a model parameter vector w with the orchestration of
a remote server. The goal is to minimize the following global loss function on all the distributed
datasets,

f (w) =
K∑

k=1

Nk

N
fk (w), (5)

where fk (w) is the local loss function on the collection of data samples ξ k
i = (xk

i ,y
k
i ) from the kth

sensor

fk (w) =
1

Nk

Nk∑

i=1

�(w; ξ k
i ), (6)

and �(w; ξ k
i ) is the loss function of the prediction on the data sample ξ k

i made with model param-
eter vector w. It is important to point out that in the case of the IID assumption (i.e., the training
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Fig. 4. Architecture of proposed federated stacked LSTM model. Only the local model parameter updates

are sent back to the server.

examples are distributed over the clients uniformly at random), we have EDk
[fk (w)] = f (w),

where the expectation is taken over the set of samples assigned to a fixed sensor k .
Each local LSTM model receives a local copy of the global model weights based on a time series

window with step t .

Local model. Each participating sensor uses its local data to update parameters of the local model,
which is a stacked LSTM network with three layers. As stated earlier, at each timestep t , the LSTM
block takes as input the current input data vector xt and both the hidden state ht−1 and cell state
ct−1 from the previous cell. Then, the LSTM network learns to predict the hidden and cell states
of the next timestep as follows:

ht , ct = LSTM(ht−1, xt , ct−1; w), (7)

where LSTM is an operator representing the operations in Equation (4), ht is the new hidden state,
ct is the new cell state, and w is the parameter vector of the LSTM model. We initialize c0 and h0

as random vectors.
The output of the last hidden state is the hidden vector of the last timestep, and can be viewed

as the representation of the whole sequence. Then, we pass this hidden representation to a fully
connected layer to get the predicted values for the kth task as follows:

ŷk = σ (WFChlast + bFC), (8)

where σ is the softmax or linear activation function, hlast denotes the hidden vector in the last
timestep of LSTM, WFC and bFC are the learnable weight matrix and bias vector of the FC layer.

Global model. At each round r , the server randomly chooses a subset Sr of sensors for synchro-
nous aggregation and broadcasts the global model parameter vector wr to the participating sensors.
For the choice of Sr , the random number generator is initialized with the same seed value for all
training rounds. Each sensor updates the local model parameters by minimizing the loss function
over its local data dataset, starting from the global model parameter vector wr shared by the server
and using stochastic gradient descent algorithm for E epochs and with a batch size B. At the end of
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the training phase, the parameters of local models are sent to the server for aggregation, which is
done synchronously using the federated averaging algorithm to obtain the global model parameter
vector wr+1 for the next round.

The update of local and global models is repeated for a certain number of rounds until the
global loss function converges. The main algorithmic steps of our proposed federated stacked
LSTM network are summarized in Algorithm 1. This algorithm starts by randomly initializing
the global model. Then, the server randomly selects a subset of sensors and distributes the current
global model to these sensors. Each sensor trains the global model with its local data independently,
and then the server collects the parameters of the locally trained models for all selected sensors
and aggregates them using the federated averaging algorithm by computing a weighted average
of these parameters to obtain a shared global model.

At the beginning of the training round of communication, each sensor reads the current pa-
rameter vector of the global model from the central server and updates it via stochastic gradient
descent, where the stochastic gradient computed using a mini-batch sampled uniformly at random
from the local dataset of the kth sensor. At the end of the training round of communication, our
proposed federated stacked LSTM returns a vector of predicted values. Then, we concatenate all
the predicted outcomes from the K sensors to obtain a vector ŷ ∈ RN as follows:

ŷ = ŷ1 ⊕ . . . ⊕ ŷK , (9)

where ⊕ denotes the concatenation operator.
Based on these predictions, the model sends back answers to the anomaly detection engine,

where the values are passed on to the threshold determinator to make decisions regarding anoma-
lous sensors, and subsequently take appropriate actions for isolation and maintenance.

ALGORITHM 1: Federated Stacked LSTM

Input: Training sets {(Xk , yk )}K
k=1 from K sensors, initial global model parameters w0, local mini-

batch size B, number of local epochs E, learning rate η, number of rounds R, number of sensors
per roundm.

Output: Vector ŷ of predicted values.
1: for r = 1 to R do

2: Server randomly selects a subset Sr ofm sensors.
3: Server broadcasts wr to the subset Sr

4: for each sensor k ∈ Sr in parallel do

5: wk
r+1 ← SensorUpdate(k,wr )

wr+1 ←
∑K

k=1
Nk

N
wk

r+1 //aggregate updates

SensorUpdate(k,w): //run on sensor k
B ← partition local data (Xk , yk ) into batches of size B

6: for each local epoch from 1 to E do

7: for mini-batch sample ξ ∈ B do

8: ht , ct = LSTM(ht−1, xt , ct−1; w) //LSTM at timestep t
9: ŷk = σ (WFChlast + bFC) //predicted outcomes

10: w← w − η

B

∑
ξ ∈B ∇�(w; ξ ) //update local model

return learned parameter vector w to server
11: Concatenate predicted values: ŷ← ŷ1 ⊕ . . . ⊕ ŷK
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Fig. 5. Distribution of sensors’ categories.

4 EXPERIMENTS

In this section, we conduct experiments to demonstrate and analyze the performance of the pro-
posed FSLSTM model in anomaly detection and regression on three real-world datasets generated
by the IoT production system at General Electric Current smart building in Montreal. For privacy
concerns, we hashed the primary keys and a few privacy-sensitive features such as vendor name,
device identification and some of the prototypes information. The effectiveness of our approach is
validated by performing comparison with several baseline methods.

Datasets. We use a Sensors Event Log dataset for anomaly detection and an Energy Usage dataset
for electricity consumption. We also use a Weather API dataset in conjunction with energy usage to
enrich model learning. The weather data are collected from the building API that displays the basic
weather parameters such as temperature, barometric pressure, humidity, precipitation, solar radia-
tion and wind speed from May to August 2019. The weather data are used as a secondary source of
information to enrich the Sensors Event Log dataset and help the model predict the energy usage.
We simulate each zone in a separate category and allocate a specific task to it for learning.

The Sensors Event Log and Energy Usage datasets are generated by 180 sensors from five dif-
ferent categories: lights, HVAC thermostats, occupancy sensors, water leakage sensors, and access
sensors. The distribution of these categories is shown in Figure 5. We use these categories for clas-
sification tasks, as the target is to identify which sensor is faulty, rendering it unable to properly
communicate with HVAC and other control devices. In addition, the energy usage metric of thermo-
stat sensors is used for regression tasks, with the aim of predicting future energy consumption of
IoT devices, such as temperature, humidity, and pressure sensors, which are the most commonly
used sensors for HVAC and building equipment applications. The pre-processing phase of data
generation and wrangling are performed to ensure the confidentiality of the datasets used in our
experiments and the privacy of the company’s infrastructure.

• Sensors Event Log Dataset: Sensors data such as occupancy sensors, lights, thermometer
and humidity are collected from 180 devices. These sensors are categorized into 5 different
groups and are distributed all over the building. In our experiments, we select 1 million event

ACM Transactions on Internet of Things, Vol. 2, No. 4, Article 28. Publication date: August 2021.



A Federated Learning Approach to Anomaly Detection in Smart Buildings 28:13

logs with a window time of 4 months. We limit data collection to one particular season
(summer in our case) to learn feature vectors of time and frequency domain variables for
this specific period of the year. We believe that each season should be considered separately
for better learning purposes. For example, the heating pattern during the winter season is
different from the cooling stages during summer. We consider each sensor as a separate task
and predict its activities such as drop in temperature, excessive energy usage and running
water.
• Energy Usage Dataset: Energy data gathered from sensors measure the electricity con-

sumed per device. In our case, appliances can represent any equipment that is connected to
the building automation system and falls under the five aforementioned categories. The unit
is measured in kW/h for a variety of appliances, including LED light bulbs, rooftop units,
humidity sensors, smart sensors that capture water leakage events, and occupancy activities
around the building. The latter are sophisticated sensors, which are equipped with a smart
dashboard for data analytics and different measuring tools to monitor important indicators
related to indoor farms and laboratories. The data are aggregated every 15 minutes, stored in
the Energy Usage table, and then merged into the Event Log dataset based on the sensor ID.

Baseline methods. We evaluate the performance of the proposed FSLSTM network consisting of
three LSTM layers against several baseline models, including centralized logistic regression (LR),
LSTM, federated logistic regression (FLR), federated gated recurrent unit (FGRU), feder-

ated LSTM with one LSTM layer (FLSTM-1), and federated LSTM with two LSTM layers

(FLSTM-2). Both LSTM and GRU networks address the vanishing/exploding gradient problem of
traditional recurrent neural networks. While the LSTM block consists of three gates (forget, in-
put and output), the GRU block has only two gates (update and reset). The update gate in the
GRU block determines the amount of previous information that needs to be passed along the next
state, while the reset gate decides how much of the past information is needed to neglect. It is
worth pointing out that we designed the federated logistic regression and federated GRU baseline
models for comparison purposes with FSLSTM, whereas the centralized logistic regression and
LSTM are well-known prediction baselines in the literature. Our proposed framework leverages
the popular federated averaging algorithm, which uses stochastic gradient descent as both sensor
and server optimizers to update the local and global parameters, where the server learning rate is
equal to 1. More recently, Sashank et al. [36] have introduced an adaptive optimization framework,
in which federated versions of popular adaptive algorithms are incorporated for the sensor-side
or server-side model updates.

Implementation details. All experiments are carried out on a Linux desktop computer running
4.4 GHz and 64-GB RAM with an NVIDIA GeForce RTX 2080 Ti GPU. The algorithms are imple-
mented in PyTorch. The hyper-parameters are optimized using grid search. For fair comparison,
we set the number of hidden units to 128 per layer in both LSTM and GRU blocks. We also set
the number of nodes in the fully connected layer to 100. In addition, we use regular and recurrent
dropouts of 20% and apply the ReLU activation function in an effort to avoid overfitting. Our grid
search selects a batch size of 1,024 for training and an initial learning rate of 0.001 as the best com-
bination. We use cross-entropy and MSE as loss functions for classification and regression tasks,
respectively. In all experiments, we split our datasets into 80% training and 20% testing.

4.1 Results

The effectiveness of our FSLSTM model (i.e., FLSTM-3) is assessed by conducting a comprehensive
comparison with the baseline methods using several performance evaluation metrics. The results
are summarized in Table 2.
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Table 2. Performance Comparison Results of FSLSTM Against Baselines Models on the Sensors Event

Log Test Set for Anomaly Detection (Classification) and Energy Usage Test Set (Regression)

Sensors Data EU Data

Methods Precision Recall F1 BA MAE MSE RMSE

LR 0.57 0.60 0.52 0.72 0.341 0.48 0.692
LSTM 0.66 0.61 0.58 0.71 0.243 0.33 0.574
FLR (ours) 0.65 0.71 0.70 0.69 0.339 0.34 0.583
FGRU (ours) 0.84 0.66 0.59 0.80 0.211 0.29 0.538
FSLSTM (ours) 0.89 0.79 0.87 0.90 0.162 0.19 0.435

Bold numbers indicate the best performance.

For regression tasks, we use the mean absolute error (MAE), MSE, and root mean squared

error (RMSE) as evaluation metrics, which are given by

MAE =
1

m

m∑

i=1

|yi − ŷi |, (10)

MSE =
1

m

m∑

i=1

(yi − ŷi )2, (11)

and RMSE =
√

MSE, wherem is the number of samples in the test set,yi is the actual (ground truth)
value, and ŷi is the model’s predicted value. A small value of these error metrics indicates a better
performance of the model. We rely on a 15 minute window aggregation to reduce buffer overflow
over the network and also to remove missing values that are sometimes generated by some sensors
due to inactivity. As shown in Table 2, FSLSTM significantly outperforms the baselines methods
on the Energy Usage datasets. In terms of MAE, for example, FSLSTM yields a much smaller error
compared to the one obtained by LSTM, and more than half the error obtained by LR and FLR.
Moreover, FSLSTM yields a 4.9 percentage points performance improvement over FGRU.

For classification tasks, we use precision, recall, F1 score, BA, receiver operating character-

istic (ROC) curve, and area under the ROC curve (AUC) as evaluation metrics. Precision and
recall are defined as

Precision =
TP

TP + FP
, and Recall =

TP

TP + FN
, (12)

with true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN),
respectively. TP is the number of correctly predicted anomalous observations, while TN is the num-
ber of correctly predicted normal observations. Recall, also known as true positive rate (TPR), is
the percentage of positive instances correctly classified, and indicates how often a classifier misses
a positive prediction.

AUC summarizes the information contained in the ROC curve, which plots TPR versus FPR =
FP/(FP + TN), the false positive rate, at various thresholds. Larger AUC values indicate better
performance at distinguishing between anomalous and normal observations. FPR is is the ratio of
normal observations that were incorrectly classified as anomalous.

Since our datasets are highly imbalanced, we use the balanced F1 score defined as the harmonic
mean of precision and recall, and the balanced accuracy given by

BA =
TPR + TNR

2
, (13)
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Fig. 6. ROC curves for FSLSTM and baseline methods, along with the corresponding AUC values, on the

Sensors Event Log test set.

where TNR = 1−FPR, also called specificity, refers to the ability of a classifier to correctly identify
the observations that are not anomalous.

As shown in Table 2, the proposed model outperforms all the baseline methods by a large margin
in terms of F1 score, yielding performance improvements of 29 percentage points over LSTM and
28 percentage points over FGRU. In terms of balanced accuracy, FSLSTM also achieves notable
performance improvements of 19 percentage points over LSTM and 10 percentage points over
FGRU. This demonstrates the significant prediction ability of FSLSTM in anomaly detection. It
is also important to note that LSTM yields comparable performance to FLR, due in large part to
the fact that linear models cannot effectively represent temporal dependency, even in a federated
learning setting.

Figure 6 displays the ROC curves, which show the better performance of FSLSTM in comparison
with baseline methods on the Sensors Event Log test set. Each point on ROC represents different
tradeoff between false positives and false negatives. An ROC curve that is closer to the upper right
indicates a better performance (TPR is higher than FPR). The overall performance of FSLSTM is
significantly better than the baselines, as indicated by both the ROC curves and AUC values.

Federated vs. centralized learning. The LSTM model adopts a centralized approach, which re-
quires the training data to be aggregated on the server, meaning that no training is performed on
the edge devices. The learning is carried out by partitioning the data into training and test sets in
a central machine. However, centralized training is privacy intrusive, especially for clients with
important sensors’ data aggregated on the cloud, as some sensors may contain private patterns,
such as occupancy and access information. In a centralized setting, sensors have to trade their
privacy by sending and storing data on the cloud owned by a third-party service provider.

Unlike the centralized training framework, our federated learning based approach is decentral-
ized and enables sensors located at different locations inside the building to collaboratively learn a
federated model, while keeping all data that may contain private information on devices. Therefore,
sensors can benefit from using a federated model without sending raw data to the cloud. Sensitive
data may include the sensor’s model number, manufacturer name, or even serial numbers of newly
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produced prototypes that are still in the testing phase. Another limitation of centralized learning
is the computing power [8]. In our setting, however, the computing power for each sensor is negli-
gible compared to dedicated GPUs. In a centralized learning environment, a large amount of data
collected from different IoT devices need to be merged into one dataset and then we wait for the
machine to finish training. In our proposed federated framework, we train the model on the data
of each device in parallel, resulting in better performance and faster convergence time. The better
performance of our federated stacked LSTM model may be attributed not only to the strong capa-
bilities of LSTM in prediction tasks, but also to the stacked LSTM layers that help generate a deep
feature representation of the input data.

The ability to quickly detect and respond to anomalies is critical to the successful operation
of smart buildings. Models trained on data of individual devices help improve critical incidents
detection, such as technical glitches that may arise in smart buildings, where smart fire sensors, for
instance, need not only be triggered in the case of an emergency, but also be capable of predicting
specific scenarios and patterns. During the training phase, our FSLSTM model converges twice
as fast as the centralized LSTM on the same datasets. As shown in Figure 7 (top), the centralized
LSTM model does not seem to attain a stable state even after 50 epochs. The federated stacked
LSTM model, however, is capable of significantly reducing the loss function and reaching a stable
performance with higher accuracy in only 20 epochs, as shown in Figure 7 (bottom). Each epoch
represents a full round of the 180 sensors that are participating in the experiment. Moreover, notice
that the learning curves of the federated model are less fluctuating compared to the centralized
LSTM. This smoothness property is attributed, in large part, to the number of sensors involved in
the learning process.

Convergence performance. An important factor in our experiments is the convergence speed of
the model. We test the effect of the parameterK (i.e., number of sensors) on the convergence perfor-
mance of the proposed approach. The results of convergence time for FSLSTM, FGRU, and LSTM
using a varying number of sensors on the Sensors Event Log dataset are shown in Figure 8. Note
that unlike the centralized LSTM model, the convergence time of both federated models decreases
when the number of sensors increases. Training a deep neural network involves using an optimiza-
tion algorithm to find a set of weights to best map inputs to outputs, while convergence describes
a progression towards a stable state where the network has learned to properly respond to a set
of training patterns within some margin of error. The choice of the network’s hyperparameters,
such as the number of sensors, play an important role in convergence. To assess the performance
of FSLSTM with respect to the number of sensors K , we use the mini-batch stochastic gradient de-
scent optimization algorithm with a fixed batch size for the local update by increasing the value of
K from 20 to 200. For all sensors, even when the learning rate is tuned carefully, FSLSTM achieves,
in all batch size settings, a better performance, as reported in Table 2. Figure 8 shows that an in-
crease in the number of participating sensors positively impacts the convergence time of FSLSTM,
reducing the time from 6 hours for the centralized LSTM to only 2 hours for FSLSTM using 200
sensors. However, a larger number of participating sensors requires higher local computation at
the sensors, resulting in an increase in energy consumption by these sensors.

It is also important to point out that there a is slight increase of convergence time when the
number of sensors is between 20 and 40, but then the convergence time decreases when the number
of sensors exceeds 42. This is largely due to the delay in response of the rooftop units’ thermostats
that are connected to the network through the Wireless Area Controller gateways. The latency
time of these sensors is twice longer than other sensors in the buildings, leading to a slight increase
in convergence time. Once these sensors are equipped with all the global parameters that are
necessary for the training phase, the convergence time drops proportionally to the number of
participating sensors.
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Fig. 7. Training and testing learning curves of LSTM (top) and FSLSTM (bottom) on the Sensors Event Log

dataset.

Collective and contextual anomalies. A collective anomaly describes a group of data points
that exhibits an anomalous behavior compared to the rest of the dataset [45]. An individual in-
stance within the anomalous group is not necessarily anomalous on its own. If a data instance is
anomalous in a specific context, but not otherwise, then it is termed as a contextual anomaly, also
referred to as conditional anomaly [15]. We train FSLSTM on normal data before performing a live
prediction for each timestep, which is equal to 600 minutes. Instead of considering each timestep
separately, the observation of prediction errors from a certain number of timesteps is now used for
detecting collective anomalies. The prediction errors from a number of the latest timesteps above
a threshold, as set by the threshold determinator, will indicate a collective anomaly. We take a
sample of our initial data, which includes four HVAC sensors, all measuring the electricity from
power meters located in different areas within the building. In the first step, FSLSTM determines

ACM Transactions on Internet of Things, Vol. 2, No. 4, Article 28. Publication date: August 2021.



28:18 R. A. Sater and A. B. Hamza

Fig. 8. Convergence time comparison between FSLSTM, FGRU, and LSTM using a varying number of sensors

on the Sensors Event Log dataset.

Table 3. Collective and Contextual Anomaly Detection Comparison

Method
Collective Anomalies Contextual Anomalies

Correct Alarms False Alarms Correct Alarms False Alarms
Triggered (%) Triggered (%) Triggered (%) Triggered (%)

LR 56 54 63 48
LSTM 66 33 74 29
FLR (ours) 65 21 78 18
FGRU (ours) 74 12 82 7
FSLSTM (ours) 88 9 90 4

the point anomalies in real time, while in the second step, the anomaly detection engine decides if
these anomalies are contextual or collective based on different alarm profiles and system rules, as
well as specific temperature profiles for each category of devices. Our proposed model efficiently
determines context/collection based anomalies in real time, as reported in Table 3.

As expected, we noticed through experimentation that it is possible to obtain a higher accuracy
on collective anomalies detection, but the number of false alarms triggered tends to be quite high.
As shown in in Table 3, FSLSTM yields superior performance by correctly detecting 88% of the
alarms of 1000 instances in this experiment with only nine false alarms. On the contextual side,
FSLSTM achieves even a better performance of 90% with only four false alarms.

Prediction performance. For regression tasks, we test the performance of FSLSTM on the En-
ergy Usage dataset to predict the building energy consumption on a window time of 600 minutes
for two main reasons. First, the confidence interval of the model shows a high accuracy of energy
prediction, as illustrated in Figure 9, which displays the actual vs. predicted building energy con-
sumption using FSLSTM. Second, it makes more sense from an industrial perspective as 600 min
equals 10 hours, which roughly represents a full working day. This time frame provides building
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Fig. 9. Actual vs. predicted building energy consumption using FSLSTM on the Energy Usage test set.

managers with plenty of insightful information to anticipate and predict the daily usage of energy,
and allows them to plan activities accordingly. As shown in Figure 9, the FSLSTM model has a
stable performance and is able to predict energy consumption in the building with 90% accuracy.

For the sensors fault detection, we run the classification task on the Sensors dataset to detect
anomalous devices. The experiment includes lights, thermostats of rooftop units and water leakage
sensors for a window time ranging from 4 to 6 days. Figure 10 demonstrates the effectiveness
of the FSLTM model in detecting outstanding and malfunctioning behaviors expressed by these
sensors at different times of the day. As can be seen, the model is able to capture outliers with
high accuracy, along with the corresponding value and time stamp. During working hours (light
orange color), the weather temperature (dark gray color) shows an increase during the day due to
sunlight and heat, while the site energy demand (green color) is stable during the majority of hours.
As shown in Figure 10 (top), the weather temperature is higher during working hours than during
non-working hours (white bars). During this window time, the site has stable energy demands
ranging between 0 and 35 Kw. FSLSTM is capable of capturing an anomalous amount of energy
demands, caused by a cluster of malfunctioning devices, highlighting it as an outlier in real time
and eventually recording these devices with their manufacturing information and sending it back
to the federated learning system. Then, the threshold determinator makes the appropriate decision
and sends it over the BAS system for maintenance.

Communication Cost. One of the key challenges in our federated learning system is the com-
munication cost, which is typically expressed as a function of data volume, e.g., Megabytes. As
shown in Figure 11, the proposed FSLSTM model significantly reduces the communication cost
compared to the baseline methods on the Sensors Event Log dataset. We argue that the supe-
rior performance of FSLSTM over the centralized LSTM and LR models is largely attributed to
the effective participation of sensors in the training phase [40]. Federated learning models en-
able decentralized IoT devices to collaboratively learn a shared prediction model without sending
the actual data that is generated during the specific round to the central server. This property of
federated learning enhances the communication quality and reduces the cost, while keeping all
the training data on device and hence reducing concerns on data security and privacy.

4.2 Ablation Study

To validate the effectiveness of our FSLSTM framework, we perform an ablation study under dif-
ferent configurations by changing the number of LSTM layers and retraining the models on the
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Fig. 10. Testing FSLSTM for anomaly detection on three types of sensors: lights, thermostats, and water

leakage. The red dot indicates an anomaly.

same datasets. We design the FLSTM-1 and FSLSTM-2 models by removing one and two LSTM
layers, respectively, from the proposed FLSTM architecture, which consists of three LSTM layers.
The results are reported in Table 4, which shows that both FSLSTM-1 and FSLSTM-2 achieve better
performance than LSTM and FGRU. It is important to note that with only a single LSTM layer, the
federated LSTM model is able to outperform all baselines methods in terms of balanced accuracy
and mean absolute error metrics. We also experimented with more than three LSTM layers, but we
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Fig. 11. Communication cost comparison between FSLSTM and baseline methods, all trained for 50 epochs.

Table 4. Ablation Study of FSLSTM on The Sensors Event Log and Energy Usage Test Sets

Using Different LSTM Layers

Sensors Data EU Data

Methods Precision Recall F1 BA MAE MSE RMSE

FLSTM-1 0.85 0.68 0.69 0.81 0.192 0.24 0.489
FLSTM-2 0.87 0.73 0.71 0.83 0.171 0.21 0.458
FSLSTM 0.89 0.79 0.87 0.90 0.162 0.19 0.435

Bold numbers indicate the best performance.

did not notice significant performance improvements. In addition, some small sensors (e.g., water
leakage sensors) are unable to support the growing size of the model.

5 CONCLUSION

In this article, we introduced a federated stacked LSTM framework for anomaly detection in smart
buildings using federated learning for IoT sensor data. The proposed FSLSTM network consists
of a local LSTM model that captures individual sensors’ data and a global model that aggregates
the weights, updates the parameters and shares them again with sensors across all tasks. Experi-
mental results on two datasets demonstrated FLSTM’s ability to significantly improve the results
of a variety of centralized models in IoT settings, achieving much better performance compared
to baseline methods in both classification and regression tasks. We also showed that our federated
stacked LSTM model converges twice as fast than the centralized LSTM during the training phase.
In addition, we conducted an ablation study on our FSLSTM network to evaluate its performance
and robustness under different configurations by changing the number of LSTM layers and retrain-
ing the models on the same datasets. In the future, we plan to investigate other IoT applications in
a federated learning setting such as blockchain and electric vehicle charging networks.
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