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Abstract

We consider the “all-for-one” decentralized learning problem for generalized linear mod-
els. The features of each sample are partitioned among several collaborating agents in a
connected network, but only one agent observes the response variables. To solve the regu-
larized empirical risk minimization in this distributed setting, we apply the Chambolle–Pock
primal–dual algorithm to an equivalent saddle-point formulation of the problem. The primal
and dual iterations are either in closed-form or reduce to coordinate-wise minimization of
scalar convex functions. We establish convergence rates for the empirical risk minimization
under two different assumptions on the loss funtion (Lipschitz and square root Lipschitz),
and show how they depend on the characteristics of the design matrix and the Laplacian of
the network.

1 Introduction

Let ℓ : R × R → R≥0 denote a given sample loss function that is convex and, for simplicity, differentiable in
its first argument. Given data points (x1, y1), . . . , (xn, yn) ∈ Rd × R and a convex regularization function
r(·), we consider the minimization of regularized empirical risk in generalized linear models, i.e.,

min
θ∈Rd

1
n

n∑
i=1

ℓ(xT
i θ, yi) + r(θ) ,

in a non-standard distributed setting where the data features, rather than samples, are distributed among
m agents that communicate through a connected network.

The problem can be formally stated as follows. With A1, . . . , Am denoting a partition of [d] def= {1, . . . , d}
into m disjoint blocks, each agent j ∈ [m] observes the local features xj,i

def= (xi)Aj ∈ Rdj for every i ∈ [n],
where (u)A denotes the restriction of u to the coordinates enumerated by the index set A. Without loss of
generality we may assume that each Aj is a set of dj consecutive indices and simply write1

xi =
[
x1,i; · · · ; xm,i

]
.

We also denote the n × dj local design matrix for agent j ∈ [m] by

Xj =
[
xj,1 · · · xj,n

]T
,

and the full n × d design matrix by

X =
[
X1 · · · Xm

]
=
[
x1 · · · xn

]T
.

We assume that only one of the agents, say the first agent, observes the response (yi)n
i=1 and the other

agents only have access to their local features. There is an underlying communication network which can
be abstracted by a connected undirected graph G over the vertex set V = [m]. If distinct agents j and

1We denote the vertical concatenations using semicolons as the delimiters.
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j′ can communicate directly, then they are adjacent in G and we write j ∼G j′. The Laplacian of the
communication graph, which is central in the distributed computations of the optimization algorithms, is
denoted by L.

Using the shorthand

ℓi(·)
def= ℓ(·, yi)

that we use henceforth to simplify the notation, we seek an approximation to the (regularized) empirical risk
minimizer

θ̂ = argmin
θ∈Rd

1
n

n∑
i=1

ℓi(xT
i θ) + r(θ) . (1)

where the regularizer r(·) is typically used to induce a certain structure (e.g., sparsity) in θ̂.

To solve this optimization in our distributed setting, we use a primal–dual formulation that accommodates
local calculations. Specifically, with ℓ∗

i : R → R denoting the convex conjugate of the function ℓi(·), the
minimization in (1) can be formulated as the saddle-point problem

min
θ∈Rd

max
λ1∈Rn

1
n

λT
1Xθ − 1

n

n∑
i=1

ℓ∗
i (λ1,i) + r(θ) ,

where λ1 =
[
λ1,1; · · · ; λ1,n

]
is the dual variable. The regularizer r(θ) might also be represented using

its conjugate, making the objective of the resulting saddle-point problem linear in the primal variable θ.
However, to avoid the need for the “dualization” of the regularizer, we focus on the special but important
case that the regularizer is separable with respect to the agents. Partitioning the coordinates of the primal
variable θ according to the partitioning of the features among the agents as

θ =
[
θ1; · · · ; θm

]
,

with θj ∈ Rdj , we assume that the regularizer takes the form

r(θ) =
m∑

j=1
rj(θj) , (2)

where for each j ∈ [m] the convex functions rj(·) have a simple proximal mapping that is available to the
jth agent. Giving each agent its own version of the dual variable denoted by λj ∈ Rn, we can express (1) in
a form which is amenable to distributed computations as

min
θ∈Rd

max
λ1,...,λm∈Rn

m∑
j=1

rj(θj) + 1
n

λT
jXjθj − 1

n

n∑
i=1

ℓ∗
i (λ1,i)

subject to L
[
λ1 · · · λm

]T = 0 .

(3)

The constraint involving the Laplacian simply enforces λj = λ′
j for all j ∼G j′. With ⟨·, ·⟩ denoting the

usual (Frobenius) inner product henceforth, we can use the Lagrangian form of the inner optimization to
express (3) equivalently as

min
θ∈Rd

max
λ1,...,λm∈Rn

min
V ∈Rn×m

1
n

⟨V T, L
[
λ1 · · · λm

]T⟩ +
m∑

j=1
rj(θj) + 1

n
λT

jXjθj − 1
n

n∑
i=1

ℓ∗
i (λ1,i)

= min
θ∈Rd

min
V ∈Rn×m

max
λ1,...,λm∈Rn

m∑
j=1

rj(θj) + 1
n

λT
jXjθj − 1

n

n∑
i=1

ℓ∗
i (λ1,i) + 1

n
⟨V L,

[
λ1 · · · λm

]
⟩

= min
θ∈Rd, V ∈Rn×m

max
λ1,...,λm∈Rn

− 1
n

n∑
i=1

ℓ∗
i (λ1,i) +

m∑
j=1

rj(θj) + 1
n

λT
j (Xjθj + V Lej) , (4)
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where the second line follows from strong duality.

In Section 2 we describe the iterations based on the Chambolle–Pock primal–dual algorithm (Chambolle &
Pock, 2016) to solve the saddle-point problem (4). Our main result and the assumptions under which it
holds are provided in Section 3. Some numerical experiments are also provided in Section 4. Proofs of the
main result can be found in Appendix A.

1.1 Related work

Minimization of a sum of (convex) functions is the most studied problem in distributed optimization due to its
prevalence in machine learning. The most commonly considered setting in the literature is by far the sample-
distributed setting, where each agent merely has access to one of the summands of the objective function
that can be computed using the locally available samples. The literature primarily considers two different
communication models. Centralized first-order methods have a main computing agent that aggregates the
local (sub)gradient evaluations of the other agents, updates the iterate and sends it back to the other
agents. Therefore, the communication time for these methods grows linearly with the diameter of the
underlying network. In contrast, decentralized first-order methods do not rely on a single aggregating agent;
every agent maintains and updates a local copy of the candidate minimizer through local computations
and communications with its immediate neighbors, and consistency of the solution across agents is achieved
either through local averaging or consensus constraints. Due to the diffusion-style nature of the iterations, the
convergence rate of these methods depends on a certain notion of spectral gap of the communication graph.
Many algorithms have been introduced for sample-distributed decentralized convex optimization; surveys of
the literature can be found in (Yang et al., 2019; Gorbunov et al., 2020), and prominent references include
(Johansson et al., 2008; Nedić & Ozdaglar, 2009; Wang & Elia, 2011; Zhu & Martinez, 2012; Duchi et al.,
2012; Scaman et al., 2017). In general, the computation and communication complexity of these algorithms
to find an ϵ-accurate solution range from the “slow rate” of O(ε−2)+O(ε−1) for Lipschitz-continuous convex
functions, to the “linear rate” of O(log(1/ε)) for smooth and strongly convex functions. Lower bounds and
(nearly) optimal algorithms for a few common objective classes are established in (Scaman et al., 2019).

The “feature-distributed” setting that we consider is studied to a lesser extent, but has found important ap-
plications such as sensor fusion (Sasiadek, 2002) and cross-silo federated learning (Kairouz et al., 2021). This
setting is also relevant in parallelized computing to amplify the performance of resource limited computing
agents in large-scale problems.

Centralized federated learning protocols, in which the agents communicate with a server, with distributed
features are proposed in (Hu et al., 2019) and (Chen et al., 2020). Hu et al. (2019) proposed the FDML
method and, under convexity and smoothness of the objective, established a regret bound for SGD that
decays with the number of iterations T at the rate of O(1/

√
T ). It is also assumed in this result that

the iterates never exit a neighborhood of the true parameter, basically imposing the strong convexity on
the objective in an implicit form. Chen et al. (2020) proposed a method called VAFL, in which a server
maintains a global parameter and each client operates on local features and parameters that determine
the client’s corresponding predictor. The clients and the server communicate in an asynchronous fashion
and exchange the value of clients’ predictors and the gradients of the sample loss with respect to these
predictors. Under certain models of the communication delays that impose the asynchrony, a variant of
stochastic gradient descent is shown to converge at a rate O(1/T ) under strong convexity. The performance
of VAFL in the case of smooth nonconvex objectives and nonlinear predictors that are separable across the
agents is also considered in (Chen et al., 2020). However, in this general setting where the guarantees are
inevitably weaker, only the temporal average of the squared norm of the gradients (in expectation with
respect to the SGD samples) are shown to converge at a rate O(1/

√
T ).

The CoLa algorithm of He et al. (2018) considers a ubiquitous class of convex minimization problems in
machine learning and statistics that involve linear predictors, in the decentralized distributed setting. Fol-
lowing the formulation of (Smith et al., 2018), a pair of convex programs that are dual to each other are
considered in (He et al., 2018) depending on whether the data is split across the samples, or across the
features. This latter setting is the closest related work in the literature to the present paper. The main
step in each iteration of the CoLa algorithm is a regularized convex quadratic minimization. This minimiza-
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tion step is generally nontrivial and needs to be performed by a dedicated subroutine, though the analysis
accommodates subroutines that compute inexact solutions. In contrast, our convex-concave saddle point
formulation of the problem leads to iterations in which every agent evaluates either a closed-from expres-
sion or a simple proximal operator, except for one agent whose computations are as simple as performing
one-dimensional strongly convex minimization for each dual coordinate. Furthermore, while our algorithm
achieves an accuracy of O(1/T ) after T iterations similar to the CoLa (in the general convex setting), our
convergence analysis applies to the broader class of square root Lipschitz loss functions, defined below in
Section 3, that includes the usual smooth loss functions as special case (Srebro et al., 2010, Lemma 2.1).

Arablouei et al. (2015); Gratton et al. (2018) present algorithms based on ADMM for solving decentral-
ized least-squares problems with distributed features, and establish asymptotic convergence. A feature-
decentralized algorithm for logistic regression is presented in (Slavković et al., 2007), though no convergence
guarantees are given.

Finally, the primal-dual algorithm we present in the next section is related to an application of the distributed
saddle point algorithm of Mateos-Núñez & Cortés (2017) where the goal is minimizing a sum of functions of
independent variables subject to linear inequality constraints (see Remark III.1 in that paper). The general
algorithm considered in (Mateos-Núñez & Cortés, 2017) is a (projected) gradient descent ascent method.
Consequently, its convergence analysis relies on certain boundedness assumptions on the iterates and the
corresponding gradients. Furthermore, while being applicable to a broader set of saddle point problems than
our method, this gradient descent ascent method is only shown to converge at the rate 1/

√
T .

1.2 Contributions

Using the dual representation of the loss functions ℓi(·) in (1), we convert the corresponding minimiza-
tion problem to a saddle-point problem that enables us to perform the decentralized minimization in the
unconventional feature-distributed setting.

Using the Chambole–Pock primal–dual algorithm as a natural method to solve the resulting saddle-point
problem, we provide convergence guarantees for the algorithm in terms of the primal objective (rather than
the primal–dual gap). In particular, we show convergence to the minimum primal value at a rate of 1/T ,
assuming that the loss functions ℓi(·) are either Lipschitz or square root Lipschitz smooth. The square root
Lipschitz smooth functions include the more common Lipschitz gradient functions.

In each iteration, the updates to the primal variables are either in closed-form or involve evaluation of a
simple proximal mapping. Updating the dual variable corresponding to the “main agent” among the n
agents, only requires computing the Moreau envelope of n univariate functions that is highly parallelizable
and can be solved efficiently. Updating the dual variables for the rest of the agents is even simpler and is
expressed in closed-form.

2 The primal–dual algorithm

Let f and g be convex functions such that f is smooth and has a tractable first-order oracle, and the
possibly nonsmooth g admits a tractable proximal mapping. Furthermore, let h be a convex function whose
convex conjugate, denoted by h∗, admits a tractable proximal mapping. The Chambolle–Pock primal–dual
algorithm (Chambolle & Pock, 2016) solves the saddle-point problem

min
z

max
λ

f(z) + g(z) + λTKz − h∗(λ) ,

for a given matrix K. Denoting the columns of V by v1, . . . , vm, and the Kronecker product by ⊗, the
optimization problem (4) fits into the above formulation by choosing

z =
[
θ1; · · · ; θm; v1; · · · ; vm

]
,

λ =
[
λ1; · · · ; λm

]
,
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K = 1
n


X1 0 0 · · · 0
0 X2 0 · · · 0
...

... . . . ...
0 0 0 · · · Xm

L ⊗ I

 ,

f ≡ 0 ,

g(z) = r(θ) =
m∑

j=1
rj(θj) ,

and

h∗(λ) = 1
n

n∑
i=1

ℓ∗
i (λ1,i) .

The update rule of the Chambolle–Pock algorithm can be summarized as

zt+1 = argmin
z∈Rd+mn

f(zt) + ⟨∇f(zt), z − zt⟩ + g(z) + λT
tKz + 1

2τ
∥z − zt∥2

2

λt+1 = argmin
λ∈Rmn

h∗(λ) − λTK (2zt+1 − zt) + 1
2σ

∥λ − λt∥2
2 ,

for appropriately chosen parameters τ, σ > 0. Writing this update explicitly for our special case, we have

zt+1 = argmin
z∈Rd+mn

r
(
(z)[d]

)
+ λT

tKz + 1
2τ

∥z − zt∥2
2

λt+1 = argmin
λ∈Rmn

1
n

n∑
i=1

ℓ∗
i (λ1,i) − λTK(2zt+1 − zt) + 1

2σ
∥λ − λt∥2

2 .

Expanding the linear term in the primal update, the equivalent local primal update for each agent j ∈ [m]
can be written as

θj,t+1 = argmin
θj∈R

dj

rj(θj) + 1
n

λT
j,tXjθj + 1

2τ
∥θj − θj,t∥2

2, (5)

vj,t+1 = argmin
vj∈Rn

1
n

 ∑
j′∈[m] : j∼Gj′

λj,t − λj′,t

T

vj + 1
2τ

∥vj − vj,t∥2
2 . (6)

Similarly, the equivalent local dual update for each agent j ∈ [m]\{1} is

λj,t+1 = argmin
λj∈Rn

− 1
n

λT
j

 ∑
j′∈[m] : j∼Gj′

2(vj,t+1 − vj′,t+1) − vj,t + vj′,t


− 1

n
λT

jXj (2θj,t+1 − θj,t) + 1
2σ

∥λj − λj,t∥2
2 .

(7)

The fact that h∗(·) depends entirely on λ1 makes the local dual update for the first agent (i.e., j = 1)
different and in the form

λ1,t+1 = argmin
λ1∈Rn

1
n

n∑
i=1

ℓ∗
i (λ1,i) − 1

n
λT

1

 ∑
j′∈[m] : 1∼Gj′

2(v1,t+1 − vj′,t+1) − v1,t + vj′,t


− 1

n
λT

1X1 (2θ1,t+1 − θ1,t) + 1
2σ

∥λ1 − λ1,t∥2
2 ,

(8)

where the scalars (λ1,i)i denote the coordinates of λ1 and should not be confused with the vectors (λ1,t)t.
The primal update (5) is simply an evaluation of the proximal mapping of τrj denoted by proxτrj

(u) =
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argminu′ τrj(u′) + ∥u′ − u∥2
2/2. The updates (6) and (7) can also be solved in closed-form. While (8)

does not admit a similar closed-form expression, it can be equivalently written in terms of the functions
ℓ1(·), . . . , ℓn(·) using the separability of the objective function and the relation between the Moreau envelope
of a function and its convex conjugate (Bauschke & Combettes, 2011, Proposition 13.24). Therefore, we can
summarize the iterations as

θj,t+1 = proxτrj

(
θj,t − τ

n
XT

j λj,t

)
, for j ∈ [m] , (9)

vj,t+1 = vj,t − τ

n

∑
j′∈[m] : j∼Gj′

λj,t − λj′,t , for j ∈ [m] , (10)

λj,t+1 =λj,t + σ

n
Xj (2θj,t+1 − θj,t) + σ

n

∑
j′∈[m] : j∼Gj′

2(vj,t+1 − vj′,t+1) − vj,t + vj′,t , for j ∈ [m]\{1} , (11)

λ1,t+1 = argmin
λ1∈Rn

1
n

n∑
i=1

ℓi

(n

σ

(
λ1,t+1/2 − λ1

)
i

)
+ 1

2σ
∥λ1∥2

2 , (12)

where (u)i denotes the ith coordinate of a vector u, and the “intermediate dual iterate” λ1,t+1/2 is defined
as

λ1,t+1/2 = λ1,t + σ

n
X1 (2θ1,t+1 − θ1,t) + σ

n

∑
j′∈[m] : 1∼Gj′

2(v1,t+1 − vj′,t+1) − v1,t + vj′,t . (13)

Interestingly, (12) is a separable optimization with respect to the coordinates of λ1, i.e., for each i ∈ [n] we
have

(λ1,t+1)i = argmin
λ∈R

1
n

ℓi

(n

σ

(
λ1,t+1/2

)
i
− λ

)
+ 1

2σ
λ2 .

Therefore, (12) admits efficient and parallelizable solvers.

3 Convergence guarantees

We begin by stating a few assumptions that will be used to provide convergence guarantees for the primal
iterates (θj,t)t≥1. Recall the assumptions that the loss function ℓ(·, ·) is nonnegative and the regularizer is
separable as in (2). We will provide convergence rates for two different classes of loss functions. First, the
Lipschitz loss functions, for which there exists a constant ρ ≥ 0 such that

|ℓ(u, w) − ℓ(v, w)| ≤ ρ|u − v| , for all u, v, w ∈ R .

By differentiability of ℓ(·, ·) in its first argument, the condition above is equivalent to∣∣∣∣dℓ(u, v)
du

∣∣∣∣ ≤ ρ, for all u, v ∈ R . (Lip.)

Examples of the Lipschitz loss functions are the absolute loss, the Huber loss, and the logistic loss. Second,
the square root Lipschitz loss functions, for which there exists a constant ρ ≥ 0 such that

|
√

ℓ(u, w) −
√

ℓ(v, w)| ≤ ρ

2 |u − v| , for all u, v, w ∈ R .

Again, invoking differentiability of ℓ(·, ·) we can equivalently write∣∣∣∣dℓ(u, v)
du

∣∣∣∣ ≤ ρ
√

ℓ(u, v) . (
√

-Lip.)
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Examples of the square root Lipschitz loss functions are the squared loss, the Huber loss.

Furthermore, we assume that for some known constant R > 0 the empirical risk minimizer θ̂ is bounded as∥∥∥θ̂
∥∥∥

2
≤ R . (minimizer bound)

We also assume that the agents are provided with the constant χ that bounds the usual operator norm of
the design matrix as

∥X∥ ≤ χ . (design bound)

The constants δ > 0 that bounds the spectral gap of the network as∥∥L†∥∥ ≤ δ−1 , (spectral gap)

with M † denoting the Moore-Penrose pseudoinverse of the matrix M , as well as the constant D > 0 that
bounds the operator norm of the Laplacian as

∥L∥ ≤ D , (Laplacian bound)

are also provided to the agents. Because n∥K∥ ≤ maxj∈[m] ∥Xj∥ + ∥L ⊗ I∥ ≤ ∥X∥ + ∥L∥, instead of
assuming an additional bound for ∥K∥, we will use the bound ∥K∥ ≤ (χ + D)/n.
Theorem 1. Suppose that the m agents are given the positive constants R, χ, δ and D that respectively
satisfy (minimizer bound), (design bound), (spectral gap), and (Laplacian bound), so that they can choose
σ = m1/2n3/2ρ/

(
(χ + D)R

√
1 + 2χ2/δ2

)
and τ = n2/

(
(χ + D)2σ

)
. Denote the temporal average of the

vectors θj,t over the first T ≥ 1 iterations by

θj = 1
T

T∑
t=1

θj,t , for j ∈ [m] , (14)

and let θ =
[

θ1; · · · ; θm

]
. Under the Lipschitz loss model (Lip.) we have

1
n

n∑
i=1

ℓi(θ) + r(θ) ≤ 1
n

n∑
i=1

ℓi(θ̂) + r(θ̂) + 2(χ + D)Rρ

(n/m)1/2T

√
1 + 2χ2

δ2 (15)

Similarly, under the square root Lipschitz loss model (
√

-Lip.) and for T ≥ 2mnρ2/σ we have an “isompor-
phic convergence” given by

1
n

n∑
i=1

ℓi(θ) + r(θ) ≤

(
1 + 2(χ + D)Rρ

m1/2n3/2T

√
1 + 2χ2

δ2

)
×

 1
n

n∑
j=1

ℓi

(
(Xθ̂)i

)
+ r(θ̂) + (χ + D)Rρ

(n/m)1/2T

√
1 + 2χ2

δ2

 .

(16)

The prescribed τ and σ are “optimized” for the Lipschitz model. The well-tuned choice of τ and σ under
the square root Lipschitz model is slightly different and depends on the minimum value of the objective. For
simplicity, we used the former in the theorem for both models.

For a better understanding of the convergence bounds (15) and (16), it is worth considering more interpretable
approximations of the quantities D and δ. With ∆(G) denoting the maximum degree of the graph G, we
have an elementary bound ∥L∥ ≤ 2∆(G), so it suffices to choose D ≥ 2∆(G). Furthermore, for a connected
graph,

∥∥L†
∥∥ is reciprocal to the second smallest eigenvalue of L, and we can invoke an inequality due to

Mohar (1991, Theorem 2.3) that relates the spectral gap, diameter, and the maximum degree of a graph,
we have

∥∥L†
∥∥ ≥ 2 (diam(G) − 1 − log(m − 1)) /∆(G) which can provide a general bound on how large δ can

possibly be. Another inequality (Mohar, 1991, Theorem 4.2), attributed to Brendan Mckay, also provides the
bound

∥∥L†
∥∥ ≤ m diam(G)/4 which implies a conservative choice of δ ≤ 4/(m diam(G)). The networks that
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are (spectral) expanders are more favorable as they typically have larger spectral gap and smaller maximum
degree simultaneously. For instance, for k-regular Ramanujan graphs we can choose δ = k − 2

√
k − 1

(Lubotzky et al., 1988; Mohar, 1992).

The algorithm can be generalized by assigning weights to the edges of the network and choosing L to be the
Laplacian of the weighted network. The effect of using weighted edges on the algorithm is that the simple
summation iterates of the neighboring agents in (10), (11), and (13) (thereby (12)), will become weighted
summations. Using weighted edges allows us, in principle, to optimize bounds (15) and (16) by adjusting
the edge weights.

We have shown that we can solve (1) in the feature-distributed setting and achieve a convergence rate
of O(1/T ) under relatively simple assumptions. The iterations each agent has to solve is rather simple,
including (12) thanks to its separability. However, there are a few limitations in the proposed framework
that have to be considered. First, the agents cannot rely only on local information to choose τ and σ; in
general they can obtain the required global information at the cost of extra communications. Second, the
scope of the algorithm is limited by the fact that the loss function acts on linear predictors xT

i θ. It is worth
mentioning, however, that this limitation is basically necessary to stay in the realm of convex optimization;
we are not aware of any widely used nonlinear predictor whose composition with standard loss functions is
convex. Third, the considered saddle-point formulation incurs a significant communication and computation
cost associated with the iterates (λj,t) and (vj,t); it is not clear if this is inherent to the problem.

4 Numerical Experiments

We provide several numerical experiments to illustrate the behavior of the proposed algorithm with varying
quantities of agents and communication graphs. In the case where computation is of greater cost than
communication, we find that our algorithm can make use of parallelism to improve performance.

We solve the least squares problem

minimize
θ

1
2∥Xθ − y∥2

2

for a synthetic dataset of 214 = 16384 samples and 211 = 2048 features so that X is a 16384 × 2048 matrix.
To construct the synthetic dataset, the design matrix X, the ground truth vector θ⋆, and the noise vector
e are all populated by i.i.d. samples of the standard normal distribution. The corresponding noisy response
vector y is then computed as y = Xθ⋆ + e. In all experiments, the features are partitioned equally among
the agents, i.e., each agent has access to exactly d/m features.

We explore the following communication graph structures:

• Complete Graph: All agents are connected to all other agents.

• Star Graph: All agents are connected only to the first agent.

• Erdős–Rényi Graph: Each of the possible
(

m
2
)

pairs of agents are connected with probability p ∈
{0.1, 0.5} independent of the other connections. To avoid violating the connectivity requirement of
the communication graph (with high probability), we only consider graphs of 8 or more agents in
the case p = 0.5, and graphs of 32 or more agents in the case of p = 0.1.

• 2D Lattice Graph: The agents are arranged in 2D space as a square lattice. Each agent is connected
to its cardinal and diagonal neighbors. The first agent is located at one of the four center-most
lattice points.

• Random Geometric Graph: Agents are assigned positions in the 2D unit square uniformly at random.
A pair of agents are connected if the Euclidean distance between their positions is less than 0.3.
Again, to avoid violating the connectivity requirement of the communication graph (with high
probability), we only consider 32 agents or more.
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Figure 1: Plots depicting algorithm progress for varying communication graph structures and number of
agents. The single agent progress is included in all plots for reference. With Lt denoting the objective
(i.e., the regularized empirical risk) at θt, and L⋆ denoting the minimum value of the objective, the vertical
axis represents the base-10 logarithm of the relative error defined as log10

(
Lt−L⋆

L0−L⋆

)
. The horizontal axis

represents number of iterations completed.

As a baseline, we solve the single agent problem using the proposed primal-dual algorithm but with the
Lagrange multiplier v terms fixed at zero, however we recognize that the problem choice could also be solved
by other algorithms, e.g. gradient descent. (For the single agent case, the Laplacian constraints of (3) are
trivially satisfied and can be omitted.) Figure 1 shows the convergence behavior of the proposed algorithm
for each of the aforementioned communication graph structures. The complete graph tends to converge
faster than any other graph for a fixed number of agents, and performs best at 64 agents (with 32 features
per agent) instead of continually improving with increasing quantity of agents. Similarly, the Erdős-Rényi

9
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Figure 2: Plots depicting algorithm progress for Erdős-Rényi (p = 0.1) and random geometric graphs under
the given cost paradigm. With Lt denoting the objective (i.e., the regularized empirical risk) at θt, and L⋆

denoting the minimum value of the objective, the vertical axis represents the base-10 logarithm of the relative
error defined as log10

(
Lt−L⋆

L0−L⋆

)
. The horizontal axis represents units of operations per agent completed (not

iteration) normalized such that the single agent case completes one iteration per unit of operation (i.e. the
single agent completes 32 iterations). Explicitly, iteration t corresponds to n(4(d/m)+2∆(G)+7)+5(d/m)

n(4d+1)+5d t on the
horizontal axis (except for the single agent case, where iteration t corresponds to t on the horizontal axis).
In short, settings with fewer operations per agent per iteration complete more iterations.

graphs perform best at 128 and 256 agents for p = 0.5 and p = 0.1, respectively. Convergence degrades as p
decreases. The random geometric graph performs very similarly to the Erdős-Rényi graph for p = 0.1. Both
the star and 2D lattice graphs perform increasingly worse as the quantity of agents increases. We speculate
this is caused by a large quantity of comparatively small eigenvalues for the associated Laplacian matrices.

If we assume a situation where cost is dominated by computation rather than communication, the proposed
algorithm can achieve comparable performance to the single agent case even under relatively sparse graphs.
Recall that n, m, and d represent the number of samples, agents, and features, respectively, and that
∆(G) denotes the maximum degree of the communication graph G. One can show that each iteration of the
proposed algorithm requires each agent complete n(4(d/m)+2∆(G)+7)+5(d/m) floating point operations.2
In the single agent case, one can show n(4d + 1) + 5d floating point operations are needed per iteration.3

We also compare scenarios for a fixed number of operations per agent. As the number of agents increases X
and θ are increasingly split over more agents, effectively parallelizing the problem. This leads to a decrease
in the number of operations per agent for the matrix-vector multiplies in (9) and (11) which dominate the
operation cost. Figure 2 illustrates how, under this cost paradigm, the relatively sparse Erdős-Rényi (p = 0.1)
and random geometric graphs with 256 agents achieve performance comparable to that of the single agent
case. This speaks to the promise of the proposed algorithm for very large problem sizes over relatively sparse
graphs.

References
Reza Arablouei, Kutluyil Doğançay, Stefan Werner, and Yih-Fang Huang. Model-distributed solution of reg-

ularized least-squares problem over sensor networks. In 2015 IEEE International Conference on Acoustics,
2On a per-iteration per-agent basis, updating θ according to (9) equates to 2n(d/m) + 4(d/m) operations, updating v

according to (10) equates to n(∆(G)+3) operations, and updating λ according to (11) equates to n(2(d/m)+∆(G)+4)+(d/m)
operations. We omit the presumed negligible cost of the first agent solving (12), which for the specific case of least squares
would be an extra 2n operations. For the specific case of non-regularized least squares, we could also omit 3(d/m) operations
from the θ updates.

3To compute the required operations in the single agent case, a similar calculation is performed to that of Footnote 2 with
caveats. The v quantities are absent, leading to a reduction of n(∆(G) + 3) from the updates in (10) as well as n(∆(G) + 3)
from the updates in (11).

10



Under review as submission to TMLR

Speech and Signal Processing (ICASSP), pp. 3821–3825, 2015. doi: 10.1109/ICASSP.2015.7178686.

Heinz H. Bauschke and Patrick L. Combettes. Convex Analysis and Monotone Operator Theory in
Hilbert Spaces. Springer New York, New York, NY, 2011. ISBN 978-1-4419-9467-7. doi: 10.1007/
978-1-4419-9467-7. URL https://doi.org/10.1007/978-1-4419-9467-7.

Antonin Chambolle and Thomas Pock. On the ergodic convergence rates of a first-order primal—dual
algorithm. Math. Program., 159(1–2):253–287, September 2016. ISSN 0025-5610. doi: 10.1007/
s10107-015-0957-3.

Tianyi Chen, Xiao Jin, Yuejiao Sun, and Wotao Yin. VAFL: a method of vertical asynchronous federated
learning. arXiv preprint arXiv: 2007.06081 [cs.LG], 2020.

J. C. Duchi, A. Agarwal, and M. J. Wainwright. Dual averaging for distributed optimization: convergence
analysis and network scaling. IEEE Trans. Auto. Control, 57(3):592–606, 2012.

Eduard Gorbunov, Alexander Rogozin, Aleksandr Beznosikov, Darina Dvinskikh, and Alexander Gasnikov.
Recent theoretical advances in decentralized distributed convex optimization. arXiv preprint arXiv:
2011.13259 [math.OC], 2020.

Cristiano Gratton, Naveen K.D. Venkategowda, Reza Arablouei, and Stefan Werner. Distributed ridge re-
gression with feature partitioning. In 2018 52nd Asilomar Conference on Signals, Systems, and Computers,
pp. 1423–1427, 2018. doi: 10.1109/ACSSC.2018.8645549.

Lie He, An Bian, and Martin Jaggi. Cola: Decentralized linear learning. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information
Processing Systems, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/
paper/2018/file/05a70454516ecd9194c293b0e415777f-Paper.pdf.

Yaochen Hu, Di Niu, Jianming Yang, and Shengping Zhou. FDML: A collaborative machine learning
framework for distributed features. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD ’19, pp. 2232––2240, New York, NY, USA, 2019. Association
for Computing Machinery. ISBN 9781450362016. doi: 10.1145/3292500.3330765. URL https://doi.org/
10.1145/3292500.3330765.

B. Johansson, T. Kevieczky, M. Johansson, and K. H. Johansson. Subgradient methods and consensus
algorithms for solving convex optimization problems. In Proc. IEEE Conf. Decision and Control, pp.
4185–4190, Cancun, Mexico, 2008.

Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G. L. D’Oliveira, Hubert
Eichner, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi,
Phillip B. Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchin-
son, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konečný, Aleksandra
Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar
Mohri, Richard Nock, Ayfer Özgür, Rasmus Pagh, Mariana Raykova, Hang Qi, Daniel Ramage, Ramesh
Raskar, Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian
Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and
Sen Zhao. Advances and open problems in federated learning. In Peter Kairouz and H. Brendan McMahan
(eds.), Foundations and Trends in Machine Learning, volume 14. 2021. doi: 10.1561/2200000083. URL
http://dx.doi.org/10.1561/2200000083.

Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Ramanujan graphs. Comb., 8(3):261–277, 1988. doi:
10.1007/BF02126799. URL https://doi.org/10.1007/BF02126799.

David Mateos-Núñez and Jorge Cortés. Distributed saddle-point subgradient algorithms with laplacian
averaging. IEEE Transactions on Automatic Control, 62(6):2720–2735, 2017. doi: 10.1109/TAC.2016.
2616646.

11

https://doi.org/10.1007/978-1-4419-9467-7
https://arxiv.org/abs/2007.06081
https://arxiv.org/abs/2011.13259
https://arxiv.org/abs/2011.13259
https://proceedings.neurips.cc/paper/2018/file/05a70454516ecd9194c293b0e415777f-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/05a70454516ecd9194c293b0e415777f-Paper.pdf
https://doi.org/10.1145/3292500.3330765
https://doi.org/10.1145/3292500.3330765
http://dx.doi.org/10.1561/2200000083
https://doi.org/10.1007/BF02126799


Under review as submission to TMLR

Bojan Mohar. Eigenvalues, diameter, and mean distance in graphs. Graph. Comb., 7(1):53–64, March 1991.
ISSN 0911-0119. doi: 10.1007/BF01789463. URL https://doi.org/10.1007/BF01789463.

Bojan Mohar. Laplace eigenvalues of graphs—-a survey. Discrete Mathematics, 109(1):171–183, 1992. ISSN
0012-365X. doi: https://doi.org/10.1016/0012-365X(92)90288-Q. URL https://www.sciencedirect.
com/science/article/pii/0012365X9290288Q.

A. Nedić and A. Ozdaglar. Distributed subgradient methods for multi-agent optimization. IEEE Trans.
Auto. Control, 54(1):48–61, 2009.

J.Z. Sasiadek. Sensor fusion. Annual Reviews in Control, 26(2):203–228, 2002. ISSN 1367-5788. doi: https:
//doi.org/10.1016/S1367-5788(02)00045-7. URL https://www.sciencedirect.com/science/article/
pii/S1367578802000457.

K. Scaman, F. Bach, S. Bubeck, Y. T. Lee, and L. Massoulié. Optimal algorithms for smooth and strongly
convex distributed optimization in networks. In Proc. Int. Conf. Machine Learning, volume 70, pp. 3027–
3036, 2017.

Kevin Scaman, Francis Bach, Sébastien Bubeck, Yin Tat Lee, and Laurent Massoulié. Optimal convergence
rates for convex distributed optimization in networks. Journal of Machine Learning Research, 20(159):
1–31, 2019. URL http://jmlr.org/papers/v20/19-543.html.

Aleksandra B. Slavković, Yuval Nardi, and Matthew M. Tibbits. “secure” logistic regression of horizontally
and vertically partitioned distributed databases. In Seventh IEEE International Conference on Data
Mining Workshops (ICDMW 2007), pp. 723–728, 2007. doi: 10.1109/ICDMW.2007.114.

Virginia Smith, Simone Forte, Chenxin Ma, Martin Takáč, Michael I. Jordan, and Martin Jaggi. CoCoA:
A general framework for communication-efficient distributed optimization. Journal of Machine Learning
Research, 18(230):1–49, 2018. URL http://jmlr.org/papers/v18/16-512.html.

Nathan Srebro, Karthik Sridharan, and Ambuj Tewari. Smoothness, low noise and fast rates. In J. Lafferty,
C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta (eds.), Advances in Neural Information Processing
Systems, volume 23. Curran Associates, Inc., 2010. URL https://proceedings.neurips.cc/paper/
2010/file/76cf99d3614e23eabab16fb27e944bf9-Paper.pdf.

J. Wang and N. Elia. A control perspective for centralized and distributed convex optimization. In Proc.
IEEE Conf. Decision and Control, pp. 3800–3805, Orlando, FL, 2011.

Tao Yang, Xinlei Yi, Junfeng Wu, Ye Yuan, Di Wu, Ziyang Meng, Yiguang Hong, Hong Wang, Zongli
Lin, and Karl H. Johansson. A survey of distributed optimization. Annual Reviews in Control, 47:278–
305, 2019. ISSN 1367-5788. doi: https://doi.org/10.1016/j.arcontrol.2019.05.006. URL https://www.
sciencedirect.com/science/article/pii/S1367578819300082.

M. Zhu and S. Martinez. On distributed convex optimization under inequality and equality constraints.
IEEE Trans. Auto. Control, 57(1):151–164, 2012.

A Proof of Theorem 1

As the dual parameters are not important for our purposes, our goal is to convert the established saddle-
point convergence rates of the Chambolle–Pock algorithm (Chambolle & Pock, 2016) into primal convergence
rates. Similar to (14), define the temporal average of the other iterates over the first T iterations as

vj = 1
T

T∑
t=1

vj,t

λj = 1
T

T∑
t=1

λj,t ,

12

https://doi.org/10.1007/BF01789463
https://www.sciencedirect.com/science/article/pii/0012365X9290288Q
https://www.sciencedirect.com/science/article/pii/0012365X9290288Q
https://www.sciencedirect.com/science/article/pii/S1367578802000457
https://www.sciencedirect.com/science/article/pii/S1367578802000457
http://jmlr.org/papers/v20/19-543.html
http://jmlr.org/papers/v18/16-512.html
https://proceedings.neurips.cc/paper/2010/file/76cf99d3614e23eabab16fb27e944bf9-Paper.pdf
https://proceedings.neurips.cc/paper/2010/file/76cf99d3614e23eabab16fb27e944bf9-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S1367578819300082
https://www.sciencedirect.com/science/article/pii/S1367578819300082


Under review as submission to TMLR

for j ∈ [m], and let V =
[

v1 · · · vm

]
and λ =

[
λ1; · · · ; λn

]
. Furthermore, denote the objective of

the saddle-point problem (4) by

E(θ, V , λ) =
m∑

j=1
rj(θj)︸ ︷︷ ︸

=r(θ)

+ 1
n

λT
j (Xjθj + V Lej) − 1

n

n∑
i=1

ℓ∗
i (λ1,i) . (17)

With the iterates initialized at zero (i.e., θj,0 = 0, vj,0 = 0, and λj,0 = 0 for all j ∈ [m]), and observing that

τσ∥K∥2 ≤ 1 ,

we can apply the convergence rate established in (Chambolle & Pock, 2016, Theorem 1, and Remark 2) to
obtain

E(θ, V , λ) − E(θ, V , λ)

≤ 1
T

m∑
j=1

(
1
2τ

∥θj − θj,0∥2
2 + 1

2τ
∥vj − vj,0∥2

2 + 1
2σ

∥λj − λj,0∥2
2

− 1
n

(λj − λj,0)T
(

Xj(θj − θj,0) +
∑

j′∈[m] : j∼Gj′

vj − vj,0 − vj′ + vj′,0

))

≤ 1
T

m∑
j=1

(
1
τ

∥θj − θj,0∥2
2 + 1

τ
∥vj − vj,0∥2

2 + 1
σ

∥λj − λj,0∥2
2

)

= 1
T

(
1
τ

∥θ∥2
2 + 1

τ
∥V ∥2

F + 1
σ

∥λ∥2
2

)
,

for all θ, V , and λ. Rearranging the terms, we equivalently have

E(θ, V , λ) − 1
Tσ

∥λ∥2
2 ≤ E(θ, V , λ) + 1

Tτ

(
∥θ∥2

2 + ∥V ∥2
F

)
.

Recalling (17), taking the maximum of the left-hand side with respect to λ, and applying Lemma 1 to the
part corresponding to λ1, we have

r(θ) + 1
n

n∑
i=1

ℓi

(
(X1θ1 + V Le1)i

)
− 1

Tσ

n∑
i=1

(ℓ′
i((X1θ1 + V Le1)i))2 +

m∑
j=2

Tσ

4n2

∥∥Xjθj + V Lej

∥∥2
2

≤ min
θ∈Rd,V ∈Rn×m

r(θ) + 1
n

m∑
j=1

λ
T

j (Xjθj + V Lej) − 1
n

n∑
i=1

ℓ∗
i (λ1,i) + 1

Tτ

(
∥θ∥2

2 + ∥V ∥2
F

)
.

(18)

Next we establish a few more inequalities depending on the characteristics of the loss function, that together
with (18) yield the desired convergence rates.

A.1 Lower bound for the left-hand side of (18)

A.1.1 Lipschitz loss

We first consider the case of Lipschitz loss functions (Lip.). Using convexity of ℓi(·), we can write

1
n

n∑
i=1

ℓi

(
(X1θ1 + V Le1)i

)
≥ 1

n

n∑
i=1

ℓi

(
(Xθ)i

)
− ℓ′

i((Xθ)i)
m∑

j=2

(
Xjθj + V Lej

)
i

≥ 1
n

n∑
i=1

ℓi

(
(Xθ)i

)
− m − 1

Tσ

n∑
i=1

(ℓ′
i((Xθ)i))2 − Tσ

4n2

m∑
j=2

∥∥Xjθj + V Lej

∥∥2
2 ,

13



Under review as submission to TMLR

where the second inequality is an application of the basic inequality 2ab ≤ a2 + b2. By construction, we have

X1θ1 + V Le1 +
m∑

j=2
Xjθj + V Lej = Xθ .

Therefore, in view of (Lip.), what we have shown is

r(θ) + 1
n

n∑
i=1

ℓi

(
(X1θ1 + V Le1)i

)
− 1

Tσ

n∑
i=1

(ℓ′
i((X1θ1 + V Le1)i))2 +

m∑
j=2

Tσ

4n2

∥∥Xjθj + V Lej

∥∥2
2

≥ 1
n

n∑
i=1

ℓi

(
(Xθ)i

)
+ r(θ) − mnρ2

Tσ
.

(19)

A.1.2 Square root Lipschitz loss

The second case we consider is that of the square root Lipschitz loss functions (
√

-Lip.). It follows from
(
√

-Lip.) that
n∑

i=1
(ℓ′

i((X1θ1 + V Le1)i))2 ≤ ρ2
n∑

i=1
ℓi((X1θ1 + V Le1)i) .

For sufficiently large T we have γ
def= nρ2/(Tσ) < 1/m, and we can lower bound the left-hand side of (18),

excluding the term r(θ), as

1
n

n∑
i=1

ℓi

(
(X1θ1 + V Le1)i

)
− 1

Tσ

n∑
i=1

(ℓ′
i((X1θ1 + V Le1)i))2 +

m∑
j=2

Tσ

4n2

∥∥Xjθj + V Lej

∥∥2
2

≥ (1 − γ) 1
n

n∑
i=1

ℓi

(
(X1θ1 + V Le1)i

)
+

m∑
j=2

Tσ

4n2

∥∥Xjθj + V Lej

∥∥2
2

≥ (1 − γ)

 1
n

n∑
i=1

ℓi

(
(Xθ)i

)
− ℓ′

i((Xθ)i)
m∑

j=2

(
Xjθj + V Lej

)
i

+
m∑

j=2

Tσ

4n2

∥∥Xjθj + V Lej

∥∥2
2 , (20)

where we used the convexity of the function ℓi(·) in the second line. Again using the basic inequality
2ab ≤ a2 + b2, we have

1
n

n∑
i=1

ℓ′
i((Xθ)i)

m∑
j=2

(
Xjθj + V Lej

)
i

≤
n∑

i=1

(1 − γ)(m − 1)
Tσ

(
ℓ′

i((Xθ)i)
)2 + Tσ

4(1 − γ)n2

m∑
j=2

(
Xjθj + V Lej

)2
i

= (1 − γ)(m − 1)
Tσ

n∑
i=1

(
ℓ′

i((Xθ)i)
)2 + Tσ

4(1 − γ)n2

m∑
j=2

∥∥Xjθj + V Lej

∥∥2
2 . (21)

By (
√

-Lip.) we also have
n∑

i=1
(ℓ′

i((Xθ)i))2 ≤ ρ2
n∑

i=1
ℓi((Xθ)i) ,

which together with (20) and (21), and by adding back the term r(θ), yields

r(θ) + 1
n

n∑
i=1

ℓi

(
(X1θ1 + V Le1)i

)
− 1

Tσ

n∑
i=1

(ℓ′
i((X1θ1 + V Le1)i))2
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+
m∑

j=2

Tσ

4n2

∥∥Xjθj + V Lej

∥∥2
2

≥ r(θ) + (1 − γ) (1 − γ(1 − γ)(m − 1)) 1
n

n∑
i=1

ℓi

(
(Xθ)i

)
≥ (1 − mγ)

(
1
n

n∑
i=1

ℓi

(
(Xθ)i

)
+ r(θ)

)
(22)

A.2 Upper bound for the right-hand side of (18)

Furthermore, the right-hand side of the inequality (18) can be bounded as

min
θ∈Rd,V ∈Rn×m

r(θ) + 1
n

m∑
j=1

λ
T

j (Xjθj + V Lej) − 1
n

n∑
i=1

ℓ∗
i (λ1,i) + 1

Tτ

(
∥θ∥2

2 + ∥V ∥2
F

)
≤ min

θ∈Rd,V ∈Rn×m
r(θ) + 1

n

n∑
i=1

ℓi ((X1θ1 + V Le1)i) + 1
n

m∑
j=2

λ
T

j (Xjθj + V Lej) + 1
Tτ

(
∥θ∥2

2 + ∥V ∥2
F

)
.

Imposing the constraints Xjθj + V Lej = 0 for j = 2, . . . , m, can only increase the value of minimum on
the right-hand side. Namely, we have

min
θ∈Rd,V ∈Rn×m

r(θ) + 1
n

m∑
j=1

λ
T

j (Xjθj + V Lej) − 1
n

n∑
i=1

ℓ∗
i (λ1,i) + 1

Tτ

(
∥θ∥2

2 + ∥V ∥2
F

)
≤ min

θ∈Rd,V ∈Rn×m
r(θ) + 1

n

n∑
i=1

ℓi ((X1θ1 + V Le1)i) + 1
Tτ

(
∥θ∥2

2 + ∥V ∥2
F

)
subject to Xjθj + V Lej = 0 , for j ∈ [m]\{1}

≤ min
V ∈Rn×m

1
Tτ

∥V ∥2
F + 1

n

n∑
i=1

ℓi

(
(Xθ̂)i

)
+ r(θ̂) + 1

Tτ

∥∥∥θ̂
∥∥∥2

2

subject to Xj θ̂j + V Lej = 0 , for j ∈ [m]\{1}

≤ 1
n

n∑
i=1

ℓi

(
(Xθ̂)i

)
+ r(θ̂) + 1

Tτ

∥∥∥θ̂
∥∥∥2

2
+ 1

Tτ

∥∥(L ⊗ I)†∥∥2
∥∥∥[∑m

j=2 Xj θ̂j ; −X2θ̂2; · · · ; −Xmθ̂m

]∥∥∥2

2

≤ 1
n

n∑
i=1

ℓi

(
(Xθ̂)i

)
+ r(θ̂) + 1

Tτ

∥∥∥θ̂
∥∥∥2

2
+ 2

Tτ

∥∥(L ⊗ I)†∥∥2∥X∥2
∥∥∥θ̂
∥∥∥2

2
, (23)

where θ̂ is the empirical risk minimizer given by (1), and we used the bound∥∥∥[∑m
j=2 Xj θ̂j ; −X2θ̂2; · · · ; −Xmθ̂m

]∥∥∥2

2
≤ ∥X∥2

∥∥∥θ̂
∥∥∥2

2
+ max

j∈[m]\{1}
∥Xj∥2

∥∥∥θ̂
∥∥∥2

2
.

A.3 Convergence of the regularized empirical risk

We are now ready to derive the convergence rates under the loss models (Lip.) and (
√

-Lip.).

A.3.1 Lipschitz loss

In the case of Lipschitz loss model (Lip.), the bounds (18), (19), and (23) guarantee that

1
n

n∑
i=1

ℓi

(
(Xθ)i

)
+ r(θ) ≤ 1

n

n∑
i=1

ℓi

(
(Xθ̂)i

)
+ r(θ̂) + 1

Tτ

(
1 + 2

∥∥(L ⊗ I)†∥∥2∥X∥2
)∥∥∥θ̂

∥∥∥2

2
+ mnρ2

Tσ
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≤ 1
n

n∑
i=1

ℓi

(
(Xθ̂)i

)
+ r(θ̂) + 1

Tτ

(
1 + 2χ2

δ2

)
R2 + mnρ2

Tσ
.

Using the values of σ and τ prescribed by Theorem 1, we get (15).

A.3.2 Square root Lipschitz loss

Similarly, for square root Lipschitz losses (
√

-Lip.), it follows from (18), (22), and (23) that for T ≥ 2mnρ2/σ
we have

1
n

n∑
i=1

ℓi

(
(Xθ)i

)
≤
(

1 − mnρ2

Tσ

)−1( 1
n

n∑
i=1

ℓi

(
(Xθ̂)i

)
+ r(θ̂) + 1

Tτ

(
1 + 2

∥∥(L ⊗ I)†∥∥2∥X∥2
)∥∥∥θ̂

∥∥∥2

2

)

≤
(

1 + 2mnρ2

Tσ

)(
1
n

n∑
i=1

ℓi

(
(Xθ̂)i

)
+ r(θ̂) + 1

Tτ

(
1 + 2χ2

δ2

)
R2

)
.

Using the values of σ and τ prescribed by Theorem 1 yields (16).

A.4 Auxiliary Lemma

Lemma 1. Let f1 and f2 be differentiable (closed) convex functions defined over a linear space X . Denote
their corresponding convex conjugate functions defined on the dual space X ∗ respectively by f∗

1 and f∗
2 . For

all u ∈ X we have

max
v∈X ∗

⟨u, v⟩ − (f∗
1 (v) + f∗

2 (v)) ≥ f1(u) − f∗
2 (∇f1(u)) .

Proof. The result follows from the duality of summation and infimal convolution (Bauschke & Combettes,
2011, Proposition 13.24), that is

max
v∈X ∗

⟨u, v⟩ − (f∗
1 (v) + f∗

2 (v)) = min
w∈X

f1(u − w) + f2(w)

≥ min
w∈X

f1(u) − ⟨∇f1(u), w⟩ + f2(w)

= f1(u) − f∗
2 (∇f1(u)) .

B Supplementary Code and Figures

All code may be found in the supplementary materials file, along with a read-me file which details how to
reproduce the results.

In an attempt to mimic the results of Figure 1, 101 trials were run for each setting. The random number
generator was given a unique seed in each trial to generate different values. As a result, all of the problem
tensors (X, θ⋆, e and by consequence y) along with graph structure (for random graphs) were re-sampled
in each trial. Figure 3 shows the statistic results from these trials. It appears that convergence is most
influenced by choice of graph structure as the random graphs tend to have a higher variance. However,
intuitively this influence diminishes as the number of agents increases. A non-random graph structure yields
nearly no perceivable spread, implying that the problem description is sufficiently robust for our purposes.
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Figure 3: Plots highlighting the effect of randomness on convergence results. All plots are analogous to those
in Figure 1, however the series’ values now portray the median loss while the shaded regions portray the
10th to 90th percentile over 101 trials iteration-wise. For the results of non-random graphs (i.e. the single
agent, complete graph, star graph, and 2D lattice graph) the difference between 10th and 90th percentile is
not readily visible, but has indeed been plotted.
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