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ABSTRACT

Empowering safe exploration of reinforcement learning (RL) agents during training
is a critical impediment towards deploying RL agents in many real-world scenarios.
Training RL agents in unknown, black-box environments poses an even greater
safety risk when prior knowledge of the domain/task is unavailable. We introduce
ADVICE (Adaptive Shielding with a Contrastive Autoencoder), a novel post-
shielding technique that distinguishes safe and unsafe features of state-action
pairs during training, thus protecting the RL agent from executing actions that
yield potentially hazardous outcomes. Our comprehensive experimental evaluation
against state-of-the-art safe RL exploration techniques demonstrates how ADVICE
can significantly reduce safety violations during training while maintaining a
competitive outcome reward.

1 INTRODUCTION

Reinforcement Learning (RL) (Sutton and Barto, 2018) is a powerful machine learning paradigm
for solving complex decision-making tasks that has exhibited performance commensurate with the
cognitive abilities of humans in diverse applications, including game-playing (Silver et al., 2017;
2018; Berner et al., 2019) and robot control (Rudin et al., 2022; Heess et al., 2017). Despite this
huge potential, developing RL-based agents that can explore their environment safely remains a
significant challenge. Exploring unfamiliar, and potentially hazardous, states while learning from
the environment, especially in safety-critical domains, like robotics or healthcare, can pose real
dangers. Alleviating this entails RL agents capable of synthesising an optimal policy by exploring
the policy space adequately while ensuring safe exploration by preventing the execution of unsafe
actions (Amodei et al., 2016).

Ensuring safety becomes an increasingly difficult challenge in complex environments typically
characterised by high-dimensional state/action spaces (Dalal et al., 2018). Such environments require
a large amount of training time before the agent can consistently complete the task and avoid safety
concerns. This issue is further exacerbated in black-box environments where no prior knowledge
can be utilised before training; the only information available is the data observed in real time by
the RL agent. In such scenarios, the risk associated with exploration increases exponentially as the
agent must operate without pre-defined guidelines, rendering typical safe exploration techniques
inadequate (Waga et al., 2022).

Prior research on safe RL exploration formulates safety constraints as linear temporal (Alshiekh
et al., 2018; Könighofer et al., 2023; ElSayed-Aly et al., 2021) and probabilistic logic (Yang et al.,
2023) specifications, whose use as a shield protects the agent during training. Shielding techniques
are categorised into pre-shielding (restricting action choices to a predefined safe subset) and post-
shielding (evaluating and modifying actions post-selection to ensure safety) (Odriozola-Olalde et al.,
2023). Despite noteworthy advances, a common challenge across these methods is their reliance
on some degree of prior knowledge about the environment, task, or safety concern which may not
be generally available. Research targeting safe exploration in black-box environments employs
Lagrangian methods (Stooke et al., 2020; Altman, 1998; Tessler et al., 2018; Achiam et al., 2017), or
involves a pre-training phase before the shield synthesis (Tappler et al., 2022).

We present ADVICE (ADaptiVe ShIelding with a Contrastive AutoEncoder), a novel post-shielding
technique for the safe exploration of RL agents in black-box environments. The ADVICE shield is
underpinned by a contrastive autoencoder that effectively learns distinguishing latent representations
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between safe and unsafe features (state-action pairs) and a non-parametric classifier that employs
these latent representations, allowing new features to be identified as safe, or correcting them with
a new safe action when deemed unsafe. Further, ADVICE encompasses an adaptation component
that considers the agent’s recent performance to automatically regulate the risk tolerance levels of
the shield, thus encouraging exploration when appropriate. We demonstrate ADVICE’s ability to
work in highly complex black-box environments and significantly reduce safety violations during
training in comparison to state-of-the-art methods, such as Lagrangian multipliers (Lillicrap et al.,
2015), discretized shields (Shperberg et al., 2022) and conservative safety critics (Bharadhwaj et al.,
2020). To the best of our knowledge, ADVICE is the first research work that investigates shielding
for safe RL exploration in black-box environments with high-dimensional state/action spaces and
introduces an end-to-end approach for shield synthesis without using any prior knowledge.

2 RELATED WORK

Shielding Techniques. Recent research devises techniques for the safe exploration of RL agents using
safety shields, allowing the agent to select from a pool of safe actions or correct an action deemed
unsafe (Odriozola-Olalde et al., 2023). Existing shielding approaches leverage linear temporal logic
(LTL) specifications (Alshiekh et al., 2018; Könighofer et al., 2023; ElSayed-Aly et al., 2021) or
use external hints for constructing the LTL formulae (Waga et al., 2022). LTL specifications can
be replaced with probabilistic logic programming (PLP) (Yang et al., 2023), extending their use
to continuous deep RL and enabling safety constraints to be differentiable. By utilising logical
neural networks (Kimura et al., 2020), the same logic specifications can be both respected and learnt,
providing a more nuanced understanding of safety. Jansen et al. (2020) introduce probabilistic shields
to ensure safety, while other approaches implement safety under partial observability (Carr et al.,
2023) or use approximate models of the environment to maintain safety (Goodall and Belardinelli,
2023). A recurring limitation of these methods is their reliance on explicit prior knowledge of their
environment, task, and/or safety concerns. Although they can improve safety and, in some cases,
eliminate violations altogether, their applicability is restricted to a narrow set of environments and
safety considerations (Turchetta et al., 2020). In contrast, our ADVICE post-shielding method does
not need any prior knowledge, using exclusively the information captured in a typical RL problem.

Black-Box Safe Exploration Techniques. Other recent research focuses on improving safety in
black-box environments, where no prior knowledge is provided to the agent/user. A trivial but
effective solution is to record all unsafe features in a tabular format to prevent the agent from
repeating them (Shperberg et al., 2022). However, this approach is limited to discrete environments
or extremely low-dimensional spaces. Other research collects data in the environment before training,
to then utilise a safety layer (Dalal et al., 2018; Srinivasan et al., 2020; Thananjeyan et al., 2021;
Bharadhwaj et al., 2020) or shield (Tappler et al., 2022) to protect the agent. This requires a significant
amount of data collection, resulting in an increasing number of safety violations. Lagrangian methods
enable modelling the Markov Decision Process as a Constrained Markov Decision Process, leading
to their wide adoption due to their simplicity and effectiveness (Altman, 2021; Garcıa and Fernández,
2015). The Lagrangian multiplier can be fixed (Stooke et al., 2020; Altman, 1998), or integrated into
the algorithm itself (Tessler et al., 2018; Achiam et al., 2017). Other advances employ uncertainty
estimation concepts (Kahn et al., 2017; Jain et al., 2021). Defining safety in terms of uncertainty and
propagating it into the RL algorithm during training yields a cautious yet effective agent for reducing
safety violations, even in complex environments. Similarly to these approaches, ADVICE needs no
prior knowledge; however, ADVICE also entails far less data collection than the previously discussed
techniques.

3 PRELIMINARIES

Markov Decision Process. A Markov Decision Process (MDP) (Bellman, 1957) is a discrete-time
stochastic control process to model decision-making. An MDP is formally defined as a 5-tuple
M “ pS,A, P,R, γq, where S is the state space, A is the action space, P is the state transition
probability matrix such that P ps1|s, aq is the probability of transitioning to state s1 from state s
using action a, R is the reward function such that Rps, aq is the reward for taking action a in state
s, and γ is the discount factor that determines the value of future rewards. A policy π : S Ñ ∆pAq

is a distribution over actions given a state. MDPs can be solved using dynamic programming

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

techniques (e.g., value iteration, policy iteration) which require complete knowledge of the MDP’s
dynamics (Bertsekas and Tsitsiklis, 2008).

Reinforcement Learning. Reinforcement Learning (RL) involves training an agent to make a
sequence of decisions by interacting with the MDP, which represents the environment. This machine
learning technique is used to solve MDPs when full knowledge is not available. The agent’s goal
is to find a policy π˚ maximising the expected discounted return E

“
ř8

t“0 γ
tRat

pst, st`1q
‰

(Sutton
and Barto, 2018). The value function Vπpsq informs the agent how valuable a given state is when
following the current policy π. Common RL algorithms include Q-learning (Watkins and Dayan,
1992), and SARSA (Rummery and Niranjan, 1994). Deep reinforcement learning (DRL) extends
traditional algorithms by utilising deep neural networks to approximate the policy π or the value
function V when the state/action space is high-dimensional and complex. Actor-critic methods (Sutton
and Barto, 2018) are a popular class of algorithms both in traditional and deep RL. Distinctly, the
policy (actor) and the value function (critic) are modelled as separate components, allowing for
simultaneous updates to both functions. Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al.,
2015) is an example of an actor-critic method tailored specifically for continuous action spaces.

Contrastive Learning. Contrastive Learning (CL) (Hadsell et al., 2006) is an unsupervised or
semi-supervised machine learning paradigm aiming at distinguishing between similar (positive) and
dissimilar (negative) pairs of data. At its core lies a contrastive loss function, which encourages the
model to put similar pairs closer together in the embedding space while separating dissimilar pairs.
Given a pair of inputs xi, xj , the contrastive loss function is defined as:

Lpxi, xj , y, θq “ y ¨ ∥hθpxiq ´ hθpxjq∥2`p1 ´ yq ¨ maxp0,m ´ ∥hθpxiq ´ hθpxjq∥2q (1)

where the binary label y indicates if the pair is similar (y “ 1) or dissimilar (y “ 0), h is the
embedding vector and the margin m regulates the minimum distance between dissimilar pairs. The
loss function encourages the model to learn meaningful representations that reflect the inherent
similarities and differences between data points, thus facilitating the formation of well-defined
clusters in the embedding space.

4 ADVICE

Our ADVICE post-shielding technique empowers safe RL exploration in black-box environments
without requiring a system model. Figure 1 shows a high-level overview of ADVICE, including its
key shield construction, execution and adaptation stages, and its incorporation within the standard
RL loop. The core of ADVICE comprises a contrastive autoencoder (CA) model that can efficiently
distinguish between safe and unsafe features from the feature space F : S ˆ A (representing all
possible state-action pairs). A feature ft “ pst, atq, ft P F , denotes a state-action pair at timestep t.
The CA model leverages a unique loss function where similar and dissimilar features are compared,
enabling the systematic identification of meaningful latent feature representations. ADVICE employs
these latent representations and specialises an unsupervised nearest neighbours model to the learnt
embedding space, thus enabling the classification of new features. Formally, the ADVICE shield is
defined by the function

ϕ : F ˆ Z` Ñ A (2)

such that at time step t during the execution of an episode, ADVICE evaluates the agent’s desired
action ϕpft,Kq and allows the action at to be taken, or enforces the execution of another safe
action a1

t instead. The ADVICE-specific parameter K enables controlling the risk aversion levels of
the shield. In particular, ADVICE considers the agent’s performance and automatically adapts the
K value, thus supporting the dynamic calibration of ADVICE’s cautiousness level during learning.
Next, we introduce the details of ADVICE and its integration within the RL loop as a post-shield.

4.1 ADVICE SHIELD CONSTRUCTION

As a black-box post-shielding technique, ADVICE does not rely on any prior knowledge about the
RL agent or its environment. Instead, the ADVICE shield construction stage is founded on collecting
a feature set FE during an initial unshielded interaction period of E episodes where the RL agent is
allowed to interact with and collect experience from its environment. A feature ft P FE is classified
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Figure 1: A high-level overview of the ADVICE construction, execution, and adaptation.

as either safe S Ă FE , unsafe U Ă FE or inconclusive I Ă FE based on the following function:

gpftq “

$

&

%

safe if t “ 0 or st`1 “ goal (accepting state)
unsafe if st`1 “ terminal (failure state)
inconclusive otherwise

(3)

where S “ tft P FE |gpftq “ safeu, U “ tft P FE |gpftq “ unsafeu, and I “ FEzpS Y Uq. Hence
S Y U Y I “ FE and S X U X I “ H. The collected features set FE from the initial interaction
period E are organised into these categories to facilitate the contrastive learning process: (i) pairs of
features that are similar (e.g., two safe/unsafe features); and (ii) feature pairs that are dissimilar (a
safe and an unsafe feature). This categorisation is vital to allow the model to discern between safe and
unsafe features effectively and focus on finding meaningful representations in a lower-dimensional
latent space that reflect the similarities and differences. The combine function C consumes the set of
features in sets S and U and produces all pairwise combinations from S and U :

CpS Y U ,S Y Uq “ tpgpftq, gpft1 q, 1q | gpftq “ gpft1 q “ safe, ft ‰ ft1 u Y

tpgpftq, gpft1 q, 1q | gpftq “ gpft1 q “ unsafe, ft ‰ ft1 u Y

tpgpftq, gpft1 q, 0q | gpftq “ safe, gpft1 q “ unsafeu

(4)

where pgpftq, gpft1 q, 1q is a pair of similar features, and pgpftq, gpft1 q, 0q shows dissimilar features.

The training of the CA model involves using the pairs of collected features and optimising two loss
functions simultaneously: the mean squared error (MSE) and the contrastive loss function (CL)
presented in Equation (1). The MSE loss measures how accurately the model can reconstruct the
input features after encoding and decoding. In contrast, the CL is designed to refine the model’s
ability to cluster similar features together, whilst separating dissimilar ones within the latent space
based on the Euclidean distance between them. This distance is minimised for similar pairs and
maximised for dissimilar pairs, encouraging high cohesion and high separation between similar and
dissimilar features, respectively. Thus, the CA learns to encode and reconstruct the salient features of
the given RL problem, comprising the state of the environment and chosen action, as accurately as
possible in a lower-dimensional latent space.

Once trained, the CA model is adept at finding nuanced distinctions between safe and unsafe features
and accurately placing unseen features within the appropriate partitions in the latent space. The shield
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construction stage of ADVICE concludes with embedding an unsupervised nearest neighbours (KNN)
model in the latent space that classifies new encoded features as safe/unsafe. A visual representation
of the latent data encoding, illustrating the clear separation in the latent space, is shown in Figure 2.

4.2 ADVICE EXECUTION AND ADAPTATION

Upon the completion of the shield construction phase, ADVICE can be used as a post-shield within
the RL loop. The constructed shield encourages safe environment exploration, guarding the agent
throughout its interaction with the environment by ensuring the execution of safe actions.

The ADVICE execution and adaptation stage, shown in Algorithm 1 and Figure 1 (bottom), involves
a continuous cycle of action evaluation and decision-making until the maximum number of training
episodes Emax is reached (line 1). During an episode’s execution (line 3), the RL agent, having
observed the current state st, selects an action at based on its current policy π (line 4). Without
ADVICE, the agent would proceed with this action regardless of its potential safety implications.
Instead, ADVICE can now be used to evaluate the selected action before it is realised by the agent,
thus ensuring safe environment exploration. More specifically, to establish if the action at is safe,
ADVICE extracts the latent representation f̂ of feature ft, collects the nearest Kmax latent data
points to f̂ and checks whether the cardinality of the safe data points exceeds the safety threshold K,
in which case the action at is considered safe; otherwise, at is considered unsafe (lines 13–17).

The safety threshold K P r0,Kmaxs determines how many neighbours need to be labelled safe so
that the encoded feature can be deemed safe. The closer K is to Kmax entails that ADVICE will be
more cautious in terms of safety, while a K value closer to rK{2s means that the ADVICE shield is
more relaxed and favours exploration. A value of K ă rK{2s should not be considered as this would
allow the RL agent to execute actions that are more likely to be unsafe than safe.

If action at is deemed unsafe (line 5), ADVICE intervenes and generates a set of valid candidate
actions Aft by quantising the continuous space of each action dimension Ad, where d P D is the
dimension, and extracting the Cartesian product across the D action dimensions (line 6). The set of
candidate actions Aft is then filtered, to retain only valid and safe actions, resulting in A1

ft
Ď Aft

(line 7). If the A1
ft

set is not empty, these filtered candidate actions are evaluated by the RL agent’s
value function Qπ for their expected reward (line 9). The action with the highest expected reward
is selected, entailing that the action aligns with both the safety considerations and the agent’s

Algorithm 1 ADVICE Execution and Adaptation

Require: Contrastive Autoencoder CA, Neighbours Kmax, Recent history hr, Distant history hd

1: while E`` ď Emax do
2: s1 Ð OBSERVE()
3: for t “ 1, . . . , T do
4: at Ð πpstq
5: if !ISSAFE(ft,K,Kmax) then
6: Aft Ð

ś

dPD Ad
ft

|Ad
ft

Ă Ad

7: A1
ft

Ð ta|@a P Aft : f
1
t “ pst, aq ‚ ISSAFEpf 1

t,K,Kmaxqu

8: if A1
ft

‰ H then
9: at Ð argmaxaPA1

ft

Qπpst, aq

10: rt, st`1 Ð EXECUTEpatq
11: π Ð UPDATE_POLICYpat, st, rt, st`1q

12: K Ð UPDATE_CAUTIOUSNESSpK,Kmax, hd, hr) Ź (5)-(7)

13: function ISSAFE(f,K,Kmax)
14: f̂ Ð ENCODEpfq Ź Encode feature f into the latent space
15: Nf̂ Ð GETNEIGHBOURSpf̂ ,Kmaxq

16: if
ř

nPNf̂
rn == "safe"s ě K return True Ź Action considered safe

17: return False Ź Action considered unsafe

5
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performance objectives. Note that if no safe alternative action is identified (i.e., A1
ft

“ H), ADVICE
resorts to providing the originally selected action at; since no alternative action is predicted to be
safe, at is anticipated to achieve the highest expected reward.

At the end of each episode, ADVICE calibrates its cautiousness level by considering the recent safety
performance of the RL agent (line 12). This unique ADVICE characteristic enables moving beyond
the static definition of the safety threshold K by automatically adjusting its value in response to the
frequency of recent safety violations. Accordingly, ADVICE becomes adaptive and allows the agent
to explore more when exhibiting safe behaviour for a period of time while being more cautious, thus
interfering more, when the RL agent behaves increasingly unsafely.

To assess the agent’s performance over time, ADVICE employs a double sliding window, commonly
used in the field of anomaly detection (Tu et al., 2019; Wang et al., 2024). By comparing the recent
rate of safety violations against a broader historical view, ADVICE can discern whether the current
trend deviates from the pattern seen historically. This analysis informs ADVICE whether to strengthen
or relax the cautiousness level. The adaptation function is defined as follows:

K “

$

&

%

minpK`1,Kmaxq, if MAhr
ą MAhd

` σhd

maxpK´1, rKmax{2sq, if MAhr
ă MAhd

´ σhd

K, otherwise
(5)

where MAhd
and σhd

are the moving average and standard deviation, respectively, of safety violations
Zi based on the distant history window hd, and MAhr is the moving average of Zi using the recent
history window hr, i.e., hr ă hd. Given h P thr, hru, the calculation of the moving average MAh

and standard deviation σh, considering the history of safety violations Z1, . . . ,Zt, is defined by:

MAh “
1

h

t
ÿ

i“t´h

pZi ´ Zi´1q (6) σh “

g

f

f

e

1

h

t
ÿ

i“t´h

ppZi ´ Zi´1q ´ MAhq
2 (7)

If the MAhr
rate exceeds the sum of MAhd

` σhd
, then it signifies that the agent crashes more

often than expected. Consequently, K is automatically incremented to adopt a more cautious stance.
Inversely, if the MAhr

rate is below MAhd
´σhd

, this suggests that the agent acts more conservatively
than expected. As a result, K is automatically reduced to allow the agent to explore more freely. The
safety threshold K remains the same for any other occasion. ADVICE deliberately only considers
one standard deviation as two or more standard deviations would make the adaptation slow to respond
to emerging safety risks. Our sensitivity analysis on these two parameters (Section 5.4), demonstrates
the described behaviours.

5 EVALUATION

We evaluate ADVICE 1 against state-of-the-art safe exploration methods using tasks from the Safety
Gymnasium test-suite (Ji et al., 2023a), where a robot with Lidar sensors must complete tasks by
navigating through obstacle-filled environments. This benchmark is designed to assess performance
and safety in complex, high-dimensional scenarios with various safety constraints. Accordingly, the
Safety Gymnasium is an ideal benchmark to assess the effectiveness of ADVICE and has been used
by comparable techniques (Bharadhwaj et al., 2020). A terminal state is reached when the agent
collides with an obstacle, signifying catastrophic damage to the robot and ending the episode. The
selected tasks below cover a range of complexities in agent, goal, and obstacle positions:
• Semi-random Goal: A standard goal environment with six obstacles and one goal. The obstacles

have a static spawn, while the agent and the goal have randomised positions every episode.
• Randomised Goal: A similar goal environment, but obstacles have random positions per episode.
• Randomised Circle: The agent has to circle in a given zone in this environment. The aim is to

maximise speed and distance from the zone’s centre while avoiding the three randomised obstacles.
• Constrained Randomised Goal: A randomised goal variant environment where the obstacles are

hazards that impose a step-wise cost when the agent is inside. The objective is to minimise the cost.

Further details of these four environments and the corresponding tasks are provided in Appendix A.
Figure 7 in this appendix shows a snapshot of the tasks within the Safety Gymnasium. To evaluate the
performance of ADVICE, we conduct comparisons against the following state-of-the-art algorithms:

1The ADVICE code is available at: https://anonymous.4open.science/r/ADVICE-6AF9
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• DDPG: A deep deterministic policy gradient (DDPG) agent (Lillicrap et al., 2015) which is the
foundational baseline.

• DDPG-Lag: A DDPG agent with an online Lagrangian multiplier (λ “ 0.1, α “ 0.01) which
heavily penalises constant safety violations (Borkar, 2005) dynamically.

• Tabular Shield: A DDPG agent with a discretised (1 decimal place) table of terminal state-action
pairs, which prevents the agent from executing inadequate actions again (Shperberg et al., 2022).

• Conservative Safety Critic (CSC): A DDPG agent with a conservative safety critic (ϵ “ 0.3,
β“0.2) that uses conservative estimates to evaluate the safety of actions (Bharadhwaj et al., 2020).

Each method employs the same DDPG configuration, ensuring a fair and accurate comparison.
Detailed information per algorithm structure and hyperparameter settings for all experiments is
available in Appendix F. The results are averaged across three independent runs and include mean
scores and confidence intervals (standard error of the mean), providing a performance overview.
Unless explicitly stated, the default ADVICE deployment per run is E “ 1000 with K “ 4 and
Kmax “ 5. To objectively evaluate all safe RL methods mentioned above, the setup setting employed
is common for all, i.e., unconstrained, black-box MDPs. However, this setting can lead to sparse
data due to the lack of frequent constraint violations. Therefore, to demonstrate the applicability of
ADVICE in Constrained MDP environments (Altman, 2021) tailored for the DDPG-Lag and CSC
methods, we also assess in Section 5.3 all methods in a constrained environment (i.e., Constrained
Randomised Goal). Since this constrained environment aligns with the original design of DDPG-Lag
and CSC, it enables the examination of ADVICE’s performance in the setting particularly suited for
DDPG-Lag and CSC. Theoretical analysis for ADVICE can be found in Appendix B.

5.1 PERFORMANCE RESULTS

For our first set of experiments, we evaluate the overall performance of the examined methods
(DDPG, DDPG-Lag, Tabular shield, CSC, ADVICE) for the semi-random goal, randomised goal and
randomised circle environments. Figure 2 shows the average episodic reward (return), cumulative
safety violations (failed episodes), and cumulative goal reaches (successful episodes), alongside an
example latent space visualisation from a single ADVICE execution. The obtained results provide
evidence that ADVICE, albeit designed to prioritise safety, manages to maintain a competitive
performance (reward) in all tasks. Both DDPG-Lag and ADVICE, indicate an inherent trade-off
between reward maximisation and safety prioritisation.

Since the primary goal of a safety shield is to encourage exploration and learning in a safe way, it
is evident that ADVICE, across all tasks, can significantly reduce safety violations, outperforming
by a notable margin all other methods. DDPG-Lag also manages to reduce safety violations, but
not to the magnitude of ADVICE, highlighting the effectiveness of ADVICE’s shield. Through all
three tasks, it is noticeable that the conservative safety critic (CSC) vastly underestimates safety.
This is due to the sparse data that comes with an unconstrained MDP mixed with the complex
safety constraints. Without a consistent cost signal, regular neural network-based safety techniques
struggle to keep the agent safe. This insight further highlights the strength of the contrastive learning
underpinning ADVICE. We visualise the learnt latent space from an example ADVICE run (Figure 2
right), illustrating the power of contrastive learning and validating its effectiveness at learning latent
representations that empower the distinction between safe and unsafe features. Considering that
ADVICE constructs the shield for the first E“1000 episodes and then starts its execution for safe
exploration, while DDPG-Lag aims at reducing safety violations from episode E“1, the results are
even more affirmative.

Despite its conservative prioritisation to reward, ADVICE still reaches the goal (successful episode
execution) with a similar frequency to all other methods. In fact, ADVICE completes the task without
compromising safety, and the difference in accumulated reward is due to the reward function design
and the reduced time the agent has to complete the task using a cautious path. Through additional
experiments with an increased number of maximum steps per episode (E1 “ 2000 – Figure 14 -
Appendix C), we have established that ADVICE’s average episodic return is very similar to the other
methods. Hence, increasing the episode’s duration yields improved ADVICE-based results.

These core results corroborate that ADVICE’s contrastive approach to shielding an RL agent from
unsafe actions is effective in comparison to other methods. ADVICE significantly reduces safety
violations without detracting much from the agent’s overall performance.
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(a) Semi-random goal environment results

(b) Randomised goal environment results

(c) Randomised circle environment results

Figure 2: Average episodic reward, cumulative safety violations, cumulative goal reaches of examined
methods (DDPG, DDPG-Lag, Tabular shield, Conservative Safety Critic, ADVICE) and example
latent space visualisation for the semi-random goal (top), randomised goal (middle) and randomised
circle (bottom) environments.

(a) DDPG (b) DDPG-Lag (c) Tabular Shield (d) CSC (e) ADVICE

Figure 3: Example trajectories of the DDPG, DDPG-Lag, Tabular Shield, Conservative Safety Critic,
and ADVICE RL agents on the semi-random goal environment; obstacles are purple, goals are green
circles, and the RL agent is the red vehicle.

Figure 3 visualises example trajectories of the evaluated methods on the semi-random goal environ-
ment, further validating our core findings. The DDPG and Tabular shield agents focus primarily on
maximising expected return, and thus, navigate through the centre of the wall of objects to reach
the goal. Alongside action noise, this is risky as the agent may collide with an object, as shown in
Figure 2a. The DDPG-Lag and CSC agents tend to learn similar behaviours, except they leave a
larger gap between themselves and the objects, considering the possibility of action noise. Finally,
ADVICE adopts a cautious approach, learning to navigate the long way around the wall of objects.
Learning this path ensures that the agent is less likely to collide with an obstacle. However, this incurs
a longer trajectory and a slightly reduced reward due to moving further away from the goal initially.
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Figure 4: Average episodic reward, cumulative safety violations, and cumulative goal reaches on the
semi-randomised goal environment where ADVICE , Tabular Shield, and CSC have a pre-trained
shield.

Figure 5: Average episodic reward, average episodic cost, cumulative goal reaches, and example
latent space visualisation on the constrained randomised goal environment.

5.2 TRANSFER LEARNING

Figure 4 demonstrates the transfer learning capabilities of ADVICE in a semi-random environment.
ADVICE, along with Tabular Shield and CSC, utilizes a pre-trained shield from a randomized
environment and is then deployed in a new setting with different goal and agent positions. Leveraging
this pre-trained shield, ADVICE significantly reduces safety violations from the outset, unlike the
other methods. Over 1000 episodes, ADVICE reduces violations by over 50%, showcasing its
ability to generalize the shield to similar/non-stationary environments despite subtle differences. This
substantial reduction in violations, even in an unseen environment, highlights ADVICE’s robustness
and flexibility, which other methods lack. While ensuring safety, ADVICE achieves a comparable
reward and goal-reaching frequency to the other methods, providing strong empirical evidence that
its shield effectively supports transfer learning tasks.

5.3 CONSTRAINED ENVIRONMENT

While constrained MDP environments are less common in real-world scenarios compared to uncon-
strained ones, to examine ADVICE’s performance in such settings, we compared it against several
methods in the Constrained Randomized Goal environment, as illustrated in Figure 5. Complete
results are provided in Appendix C. Notably, ADVICE consistently maintains the lowest average
episodic cost, outperforming both DDPG-Lag and CSC, which exhibit significant oscillations. These
fluctuations reflect the inherent struggle of these methods to balance cost reduction with reward
maximization, a common challenge highlighted in the literature for these methods (Liu et al., 2022).
Interestingly, we did not observe such oscillations in environments with sparse costs, such as the
unconstrained settings discussed in Section 5.1.

5.4 ADVICE ADAPTATION

To evaluate ADVICE’s adaptation capabilities, we conducted a sensitivity analysis focusing on the
impact of varying the distant history window hd and the recent history window hr. For each hd and
hr combination, Table 1 shows the number of consecutive episodes K was fixed at a specific value,
the frequency of K adjustments, and the impact on mean safety violations.

Our findings reveal an impact of hr on the frequency of K adjustments. A smaller hr leads to
more frequent K increases, allowing the system to quickly respond to immediate safety violations.
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Table 1: Mean sensitivity analysis of hd and hr on the randomised goal environment for Emax “1000

hd

hr Metrics 10 25

2

Consecutive Episodes (K “ 3) 24.49 ˘ 9.59 31.09 ˘ 4.53
Consecutive Episodes (K “ 4) 1.00 ˘ 0.00 7.89 ˘ 0.77
Consecutive Episodes (K “ 5) 32.97 ˘ 7.95 151.60 ˘ 3.09
Changes of K 116.33 ˘ 9.87 27.67 ˘ 4.62

2

Safety Violations 50.42 ˘ 9.94 57.88 ˘ 7.64

Consecutive Episodes (K “ 3) 166.81 ˘ 5.71 117.35 ˘ 8.07
Consecutive Episodes (K “ 4) 21.10 ˘ 6.86 28.76 ˘ 9.26
Consecutive Episodes (K “ 5) 13.49 ˘ 5.40 149.68 ˘ 8.71
Changes of K 28.67 ˘ 1.41 19.33 ˘ 2.83

3

Safety Violations 51.69 ˘ 6.93 54.45 ˘ 5.10

Consecutive Episodes (K “ 3) 954.49 ˘ 9.59 169.07 ˘ 9.02
Consecutive Episodes (K “ 4) 22.60 ˘ 6.71 22.10 ˘ 7.26
Consecutive Episodes (K “ 5) 0.00 ˘ 0.00 181.35 ˘ 4.92
Changes of K 2.33 ˘ 0.47 17.77 ˘ 2.72

4

Safety Violations 55.48 ˘ 5.64 50.17 ˘ 5.47

Conversely, a larger hr tends to stabilise K by filtering out anomalies and adjusting only in response
to sustained trends of increased violations. Similarly, hd influences the decrease of K; a smaller hd

facilitates rapid decreases in K following a reduction in safety violations, whereas a larger hd results
in less frequent reductions, promoting stability in ADVICE’s behaviour. The interaction between hd

and hr minimally affects the overall rate of safety violations, suggesting that while these parameters
impact the adaptiveness and stability of K, they do not directly correlate with safety violations. These
insights highlight the role of hd and hr primarily as tuning parameters to balance responsiveness
against stability in ADVICE.

5.5 DISCUSSION

Despite ADVICE achieving a significantly lower safety violation rate compared to other methods,
there are a few areas that warrant further exploration. Firstly, while ADVICE experiences a cold-start
period due to the need to gather sufficient features for training the contrastive autoencoder, it still
outperforms methods that start learning from timestep t0 by significantly reducing violations. This
challenge can be mitigated through transfer learning (as seen in Figure 4). Furthermore, although
ADVICE increases computational demands due to continuous inference at each timestep, optimizing
inference intervals or leveraging more efficient models can help balance performance and resource
usage. This adaptation may help extend its applicability to resource-constrained settings without
compromising safety. Lastly, in dynamic environments with temporally changing obstacles, ADVICE
might benefit from incorporating temporal context through methods like LSTM, which would enhance
its ability to handle these situations effectively. This could offer a promising avenue for further
enhancing safety performance, despite the additional computational load.

6 CONCLUSION AND FUTURE WORK

We introduced ADVICE, a post-shielding technique for the safe exploration of RL agents operating in
complex black-box environments. ADVICE does not need any prior knowledge and uses a contrastive
autoencoder to distinguish between safe and unsafe features efficiently. Our evaluation shows that
ADVICE significantly reduces safety violations while maintaining competitive performance against
state-of-the-art methods. Despite its effectiveness, ADVICE has areas for improvement, including
mitigating the cold-start issue, reducing high computational demands, and addressing challenges
with dynamic obstacles. In future work plan to explore meta-learning techniques (Hospedales et al.,
2021) to address the cold-start problem, enabling faster activation of ADVICE without sacrificing
performance. Quantisation or pruning could reduce computational demands, enhancing applicability
in computationally constrained domains. We envisage that ADVICE serves as a foundational step in
using neural network-based shielding for safe RL exploration in complex, black-box environments
without any prior knowledge.
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A TASK DETAILS

In the Safety Gymnasium (Ji et al., 2023a) 2 test-suite, a robot with Lidar sensors has to navigate
through environments with obstacles to complete a given task. The test suite comes with a multitude
of robots (e.g. Point, Ant, Car) and a set of tasks (e.g. Goal, Circle, Button) that can be evaluated. In
our experiments, found in Section 5, we chose to use:

• Car robot: This robot has two wheels on the rear that the agent can control with one
free-rolling front wheel. Steering and movement require nuanced coordination. The action
space for the car is r´1, 1s

2, and the agent is shown in Figure 6.
• Semi-random Goal: A standard goal environment, where the agent aims to reach the goal

at the end of the episode whilst navigating through six obstacles. The six obstacles have a
static spawn, the agent and the goal have randomised positions every episode. We placed
the six obstacles to form a large wall, where the agent can fit through to reach the goal
but with an increased risk of crashing. In this instance, we want to determine if ADVICE
and other safe RL exploration methods will learn to avoid the wall or risk going through
it. Deployment trajectories in Figure 3, show the learnt trajectories of ADVICE and other
methods.

• Randomised Goal: This environment is similar to the semi-random goal environment,
with the additional complexity of the obstacles also having random spawns. This extra
randomised aspect adds increased difficulty as the agent and safety mechanisms cannot
memorise the positions of the obstacles to avoid.

• Randomised Circle: The agent has to circle in a given zone in this environment. The aim is
to maximise speed and distance from the centre of the zone whilst navigating through three
randomised obstacles. This scenario element further increases the task difficulty as now the
obstacles to avoid are directly within the area where the agent can maximise its reward.

• Constrained Randomised Goal: This environment is similar to the random goal environ-
ment, but instead the task is set up as a constrained MDP. Instead of obstacles that terminate
the episode, the task includes hazards that give the agent ´0.2 cost per step when inside
them. The agent cannot terminate in this task and instead has to minimise cost whilst
maximizing rewards.

In all environments for all the tasks above, the agent uses psuedo Lidar to perceive objects in the
environment. Each type of object (e.g. goal, obstacles) in the environment has its own separate Lidar
observation, where a Lidar vector has 16 bins. All vectors are flattened into one observational vector
and then given to the agent as the current state. For example, in the semi-random goal environment,
there is a goal and a set of obstacles. Here the observational space is r0, 1s

32. All lidar vectors have a
max distance of 3 meters. In both goal environments, an episode has a maximum timestep of 1000.
In the circle environment, the maximum timestep is 500. A goal reach in both goal environments is
defined as reaching the goal before the episode truncates, in the circle environment it is defined as
being within the circle when the episode truncates. A crash is defined as the agent colliding with
an obstacle, when this occurs, the episode is terminated shortly. Anything else is considered as the
episode timing out.

(a) Front (b) Back (c) Left (d) Right

Figure 6: Different views of the Car robot in the Safety Gymnasium test suite (Ji et al., 2023b).

Each task has a separate reward function for the agent to maximise. Whenever the agent comes
into contact with an obstacle, a constraint cost of ´1 is given (the exception being the Constrained
Randomised Goal task). The reward functions for each task are:

2More details here: https://github.com/PKU-Alignment/safety-gymnasium

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

(a) Semi-random Goal (b) Randomised Goal (c) Randomised Circle (d) Constrained
Randomised Goal

Figure 7: Example navigation tasks with varying complexity levels for evaluating ADVICE. The
purple blocks are the obstacles, the green circles are the goals, and the red vehicle is the agent.

• Semi-random, Randomised Goal & Constrained Randomised Goal: Rt “ pDlast ´

Dnowqβ, where Dlast is the distance between the agent and the goal in timestep t´1, Dnow

is the distance between the agent and the goal in timestep t, and β is the discount factor.
Simply, the agent moving towards the goal, in terms of Euclidean distance, gains a positive
reward. The agent moving away from the goal gains a negative reward. Reaching the goal
gains a static reward of `1.

• Randomised Circle: Rt “ 1
1`|ragent´rcircle|

˚
p´uy`vxq

ragent
where pu, vq is the x-y velocity

coordinates of the agent, px, yq are the x-y coordinates, ragent is the Euclidean distance of
the agent from the origin of the circle, and rcircle is the radius of the circle. Simply, the
agent is rewarded for moving at speed along the circumference of the circle.

It should be emphasized that the agent or methods used in the evaluation have no prior knowledge of
the task/environment/safety concern. Thus, we can define this environment and all tasks within as
black box.

B THEORETICAL ANALYSIS

In this section, we theoretically analyze ADVICE and show that the expected probability of ADVICE
misclassifying an unseen feature is bounded and can be decreased by diversifying the data collected
before episode E.

Theorem 1 The probability of ADVICE misclassifying a feature is bounded by expp´γ{2σ2q, where
γ is the contrastive separation margin and σ2 is the variance of the assumed Gaussian noise in the
latent space.

The contrastive separation margin in the latent space is defined as:

γ “ min
fsPS,fuPU

}ENCODEpfsq ´ ENCODEpfuq}2 (8)

The noise in the latent space is assumed to follow a Gaussian distribution ϵ „ Np0, σ2q. In ADVICE,
an unseen feature f is classified as safe if the K-nearest neighbours of ENCODEpfq contain safer
than unsafe features. So, let ds “ }ENCODEpfq ´ ENCODEpfsq}2 and du “ }ENCODEpfq ´

ENCODEpfuq}2 define the Euclidean distance to the nearest safe and unsafe feature for an unseen
feature f . Therefore, misclassification occurs when f P S and du ă ds or f P U and du ą ds. The
contrastive separation margin γ ensures that, in a noise-free case }ENCODEpfq´ENCODEpfsq}2 ě γ.
In a realistic presence of noise, the distances ds and du are perturbed by ϵs, ϵu „ Np0, σ2q. Therefore:

du ´ ds “ }ENCODEpfq ´ ENCODEpfuq}2 ´ }ENCODEpfq ´ ENCODEpfsq}2 « γ ` ϵ (9)

where ϵ “ ϵu ´ ϵs „ Np0, σ2q and is independent and Gaussian. The probability of du ă ds
(misclassification) when f P S is given by:
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P pdu ă dsq “ P pγ ` ϵ ă 0q “ P pϵ ă ´γq (10)

Since ϵ „ Np0, σ2q, we can normalise it so that:

P pdu ă dsq “ P pZ ă ´
γ

?
2 ¨ σ

q (11)

where Z „ Np0, 1q. Using the cumulative distribution function of the standard normal distribution
Φ, we get:

P pdu ă dsq “ Φp´
γ

?
2 ¨ σ

q (12)

ADVICE uses K-nearest neighbours to classify an unseen feature f . If γ is large relative to σ,
the probability of misclassifying an unseen feature decreases exponentially. So, we can define the
expected number of misclassified features to be:

Ermisclassified featuress ď N ¨ exp
´

´
γ

2σ2

¯

(13)

The noise σ in the latent space can come from: noisy data, imperfect model training, randomness in
batch sampling, etc.

Theorem 2 The probability of ADVICE misclassifying a feature decreases exponentially with im-
proved data diversity, bounded by expp

a

HpFEq{2σ2q.

Let γm express the effective achieved separation margin between sets S and U , where γm ď γ.
Equality only holds under ideal conditions, such as perfectly diverse data, perfect model training, no
data noise, etc. The diversity of the feature set FE collected before episode E can be quantified using
entropy:

HpFEq “ ´
ÿ

fPFE

ppfq log ppfq (14)

where ppfq is the probability distribution of features f P FE . Higher entropy corresponds to a broader
set of features, ensuring greater diversity. Greater diversity results in more representative embeddings,
given good model training, allowing the contrastive loss function to achieve better separation and
clusterings of sets S and U . The effective separation margin γm depends on HpFEq. As diversity
increases, the embeddings for S and U become more separable, thereby γm 9 k ¨

a

HpFEq where
k ą 0 is a proportionality factor that links the entropy HpFEq of the feature set to the effective
separation margin γm. It encapsulates the influence of latent space geometry, scaling properties,
and model-specific parameters. While k may vary depending on the training process and feature
distribution, it is assumed to be stable for a given setup. Empirically, k can be estimated by observing
the relationship between γm and HpFEq across diverse datasets or configurations. From Theorem 1,
with the substitution of γm for γ, the probability of misclassifying a feature is bounded by:

P pmisclassificationq ď exp
´

´
γm
2σ2

¯

ď exp

˜

´
k ¨

a

HpFEq

2σ2

¸ (15)

therefore showing that increasing the diversity of the feature set reduces the misclassification proba-
bility of a feature exponentially.
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(a) Full results on semi-random goal environment.

(b) Full results on randomised goal environment.

(c) Full results on randomised circle environment.

Figure 8: Average episodic reward, cumulative safety violations, cumulative goal reaches of examined
methods (DDPG, DDPG-Lag, Tabular shield, Conservative Safety Critic, ADVICE) and example
latent space visualisation for the semi-random goal (top), randomised goal (middle) and randomised
circle (bottom) environments.

Figure 9: Average episodic reward, average episodic cost, cumulative goal reaches, and example
latent space visualisation on the constrained randomised goal environment.

C FULL TRAINING RESULTS

In Section 5.1, we show the main results for all methods in a set of tasks. For fair comparison, we
show results from episode 1000 and standardise all metrics to zero. Below, in Figure 8, we show the
unstandardised results for the same experiments.

In all experiments, the Tabular Shield method performs approximately the same as the standard
DDPG agent. To show why this behaviour occurs, we plot the average shield activations for ADVICE
and the Tabular Shield in Figure 10. From these results, it is evident that the Tabular Shield does
not once activate during training across all tasks. This is due to the high dimensionality of the
environments evaluated. Even though the features stored are discretised to 1 decimal place, the agent
has to observe the exact same values across all « 32 dimensions plus the actions for the shield to
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Figure 10: The average shield activations for ADVICE and the Tabular Shield in the semi-random
goal, random goal, random circle, and constrained random goal environments respectively.

Figure 11: The rate of safety violations for all methods in the semi-random goal, random goal, and
circle environments respectively.

activate. Our experiments show that this method fails in these types of environments. A trend that
can be noticed with ADVICE is when the shield is first activated, the amount of interventions starts
relatively high. As training progresses this number reduces, which shows that the agent learns to
adapt to the shield’s understanding of safety.

Figure 11 shows the rate of safety violations during training. This outcome further validates the
results and conclusions discussed in Section 5.1. We observe that the DDPG and Tabular Shield
agents perform similarly. The CSC agent, due to sparse data, underestimates safety and only reduces
violations by a fractional amount. The DDPG-Lag agent manages to reduce the safety violations
somewhat towards the end of training, which is particularly evident in the circle environment. Once
ADVICE is turned on, it significantly reduces the rate of safety violations in all environments.

D PARAMETER ANALYSIS

In this section, we present an extended analysis of ADVICE to display the robustness and adaptability
of the approach. These experiments were chosen to explore the effects of varying K thresholds, and
the timing of ADVICE’s activations E.

A user can specify the conservativeness of ADVICE using the safety threshold K. In Figure 12,
we evaluate how this parameter affects the model’s safety, and performance. The results are clear,
increasing K leads to a more conservative behaviour as hypothesised. The reward decreases a small
amount as well as the cumulative goal reaches, however, it also results in fewer safety violations.
Conversely, decreasing K allows the underlying DDPG agent more freedom. As a result, average
reward and goal reaches are increased at the expense of safety violations. These findings display a
clear trade-off between return efficiency and safety assurance.

ADVICE has a cold-start, meaning it requires some period of time before activation to collect data in
order to work efficiently. We acknowledge that this can affect the performance of ADVICE evidently
we show the results of various activation points in Figure 13. To allow for a fair comparison as
possible, we show the rate of safety violations for the subsequent 1000 episodes after activation.
Again, we visualise a trade-off. Delaying ADVICE’s activation for longer results in fewer safety
violations and increased goal reaches. However, the RL agent observes more cumulative safety

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Figure 12: Average episodic reward, cumulative safety violations, and cumulative goal reaches of
various values of K on the randomised goal environment.

Figure 13: The rate of safety violations, and rate of goal reaches when ADVICE is activated at
different intervals E.

violations up to the point of activation. Starting ADVICE earlier decreases the number of safety
violations up to activation but gives the autoencoder fewer data points to train off. Evidently, safety
violations are not reduced to the same magnitude and goal reaches also decrease. This is to be
expected with any neural network-based approach.

Based on results in Figure 2b, we hypothesise that the reduced reward and cumulative goal reaches
is a result of ADVICE not having enough time to complete the task. As seen in Figure 3, ADVICE
learns to take a longer route to the objective, so by doubling the maximum step count allowed per
episode, we expect to see an increase in cumulative goal reaches, average reward, and no increase
to safety violations. Results for this experiment are shown in Figure 14. As expected, given more
time to complete the task, ADVICE now reaches the goal more than when the maximum step counter
is the default value. As a result, we observe an increase in average episodic return much closer to
baseline methods.

Figure 14: Average episodic reward, cumulative safety violations, and cumulative goal reaches of
various methods on the randomised goal environment where the maximum episodic steps are doubled.
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Figure 15: The rate of safety violations, lower threshold pMAhd
´ σhd

q, upper threshold pMAhd
`

σhd
q, recent moving average pMAhr

q, and value of K during an example run where hd “ 10 and
hr “ 2.

Figure 16: Rate of safety violations and value of K on an example run (one random seed) that shows
the adaptation of ADVICE (hd “ 10, hr “ 2).

E ADAPTIVE ADVICE

To validate that Adaptive ADVICE correctly increases and lowers K during training, we plot
an example visualisation window in Figure 15 showing the rate of safety violations, the upper
pMAhd

` σhd
q and lower pMAhd

´ σhd
q thresholds, the moving average pMAhr

q, and the value of
K.

It can be seen that when the recent moving average pMAhr
q is above the upper threshold pMAhd

`

σhd
q, the adaptive module correctly increments K. An example of this can be seen at episode 1553.

The agent crashes, and both thresholds adjust but the recent moving average climbs above the upper
threshold, increasing K as a result. In subsequent episodes afterwards, the recent moving average
falls between both thresholds. Here the adaptive module correctly keeps K at the same value until
episode 1564 where the moving average is equal to the lower threshold. As a result, K is decreased.
This example window validates that the adaptive shield works as expected and also provides an
insight into how it works during training.
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Table 2: Summary of hyperparameters in the DDPG algorithm and the ADVICE shield.

Parameter DDPG Parameter ADVICE Shield

Network size (256, 256) Size of network (512, 2, 512)
Optimizer Adam Optimizer NAdam
Actor learning rate 2e-3 Learning rate Reduce on plateau
Critic learning rate 1e-3 Batch size 32
Size of replay buffer 2e5 Max epochs 500
Batch size 64 No. Neighbours (Kmax) 5
Gamma 0.95 No. Safe neighbours (K) 4
Tau 5e-3 Losses (MSE, MSE, CL)
Ornstein-Uhlenbeck noise 0.2 Loss weights (1, 1, 1.25)
- - Unshielded Episodes (E) 1000

F HYPERPARAMETER ANALYSIS AND COMPUTATIONAL OVERHEADS

This section lists the hyperparameters used by all models and ADVICE. Table 2 summarises all
hyperparameters used in Section 5. We will refer the reader to our source code repository 1 for the
remaining details.

Using all model configurations in Table 2, a single ADVICE run (one random seed) takes 12, 24,
12, and 12 hours of training, respectively, in the semi-random goal, random goal, random circle,
and constrained random goal environments. For all other methods, a single run takes 3, 4, 3, and 5
hours in the same environments, respectively. All experiments were run on a large computing cluster
utilising two Nvidia H100 GPUs, 16 CPUs, and up to 500GB memory.

Hyperparameters for the DDPG algorithm started with author recommendations (Lillicrap et al., 2015).
They were manually tuned afterwards to achieve a high performance on individual environments
before tests were carried out, meaning the RL algorithm for all approaches was of high performance
and fair comparison. Hyperparameters for ADVICE were manually tuned for performance in CL loss
and MSE loss. Some hyperparameter analysis was conducted in Section D to justify certain choices.
Parameters for the DDPG-Lag method started with recommendations (Stooke et al., 2020) and were
tuned for performance in our experiments.

21


	Introduction
	Related Work
	Preliminaries
	ADVICE
	ADVICE Shield Construction
	ADVICE Execution and Adaptation

	Evaluation
	Performance Results
	Transfer Learning
	Constrained Environment
	ADVICE Adaptation
	Discussion

	Conclusion and Future Work
	Task Details
	Theoretical Analysis
	Full Training Results
	Parameter Analysis
	Adaptive ADVICE
	Hyperparameter Analysis and Computational Overheads

