
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

SAFE REINFORCEMENT LEARNING IN BLACK-BOX EN-
VIRONMENTS VIA ADAPTIVE SHIELDING

Anonymous authors
Paper under double-blind review

ABSTRACT

Empowering safe exploration of reinforcement learning (RL) agents during training
is a critical impediment towards deploying RL agents in many real-world scenarios.
Training RL agents in unknown, black-box environments poses an even greater
safety risk when prior knowledge of the domain/task is unavailable. We introduce
ADVICE (Adaptive Shielding with a Contrastive Autoencoder), a novel post-
shielding technique that distinguishes safe and unsafe features of state-action
pairs during training, thus protecting the RL agent from executing actions that
yield potentially hazardous outcomes. Our comprehensive experimental evaluation
against state-of-the-art safe RL exploration techniques demonstrates how ADVICE
can significantly reduce safety violations during training while maintaining a
competitive outcome reward.

1 INTRODUCTION

Reinforcement Learning (RL) (Sutton and Barto, 2018) is a powerful machine learning paradigm
for solving complex decision-making tasks that has exhibited performance commensurate with the
cognitive abilities of humans in diverse applications, including game-playing (Silver et al., 2017;
2018; Berner et al., 2019) and robot control (Rudin et al., 2022; Heess et al., 2017). Despite this
huge potential, developing RL-based agents that can explore their environment safely remains a
significant challenge. Exploring unfamiliar, and potentially hazardous, states while learning from
the environment, especially in safety-critical domains, like robotics or healthcare, can pose real
dangers. Alleviating this entails RL agents capable of synthesising an optimal policy by exploring
the policy space adequately while ensuring safe exploration by preventing the execution of unsafe
actions (Amodei et al., 2016).

Ensuring safety becomes an increasingly difficult challenge in complex environments typically
characterised by high-dimensional state/action spaces (Dalal et al., 2018). Such environments require
a large amount of training time before the agent can consistently complete the task and avoid safety
concerns. This issue is further exacerbated in black-box environments where no prior knowledge
can be utilised before training; the only information available is the data observed in real time by
the RL agent. In such scenarios, the risk associated with exploration increases exponentially as the
agent must operate without pre-defined guidelines, rendering typical safe exploration techniques
inadequate (Waga et al., 2022).

Prior research on safe RL exploration formulates safety constraints as linear temporal (Alshiekh
et al., 2018; Könighofer et al., 2023; ElSayed-Aly et al., 2021) and probabilistic logic (Yang et al.,
2023) specifications, whose use as a shield protects the agent during training. Shielding techniques
are categorised into pre-shielding (restricting action choices to a predefined safe subset) and post-
shielding (evaluating and modifying actions post-selection to ensure safety) (Odriozola-Olalde et al.,
2023). Despite noteworthy advances, a common challenge across these methods is their reliance
on some degree of prior knowledge about the environment, task, or safety concern which may not
be generally available. Research targeting safe exploration in black-box environments employs
Lagrangian methods (Stooke et al., 2020; Altman, 1998; Tessler et al., 2018; Achiam et al., 2017), or
involves a pre-training phase before the shield synthesis (Tappler et al., 2022).

We present ADVICE (ADaptiVe ShIelding with a Contrastive AutoEncoder), a novel post-shielding
technique for the safe exploration of RL agents in black-box environments. The ADVICE shield is
underpinned by a contrastive autoencoder that effectively learns distinguishing latent representations

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

between safe and unsafe features (state-action pairs) and a non-parametric classifier that employs
these latent representations, allowing new features to be identified as safe, or correcting them with
a new safe action when deemed unsafe. Further, ADVICE encompasses an adaptation component
that considers the agent’s recent performance to automatically regulate the risk tolerance levels of
the shield, thus encouraging exploration when appropriate. We demonstrate ADVICE’s ability to
work in highly complex black-box environments and significantly reduce safety violations during
training in comparison to state-of-the-art methods, such as Lagrangian multipliers (Lillicrap et al.,
2015), discretized shields (Shperberg et al., 2022) and conservative safety critics (Bharadhwaj et al.,
2020). To the best of our knowledge, ADVICE is the first research work that investigates shielding
for safe RL exploration in black-box environments with high-dimensional state/action spaces and
introduces an end-to-end approach for shield synthesis without using any prior knowledge.

2 RELATED WORK

Shielding Techniques. Recent research devises techniques for the safe exploration of RL agents using
safety shields, allowing the agent to select from a pool of safe actions or correct an action deemed
unsafe (Odriozola-Olalde et al., 2023). Existing shielding approaches leverage linear temporal logic
(LTL) specifications (Alshiekh et al., 2018; Könighofer et al., 2023; ElSayed-Aly et al., 2021) or
use external hints for constructing the LTL formulae (Waga et al., 2022). LTL specifications can
be replaced with probabilistic logic programming (PLP) (Yang et al., 2023), extending their use
to continuous deep RL and enabling safety constraints to be differentiable. By utilising logical
neural networks (Kimura et al., 2020), the same logic specifications can be both respected and learnt,
providing a more nuanced understanding of safety. Jansen et al. (2020) introduce probabilistic shields
to ensure safety, while other approaches implement safety under partial observability (Carr et al.,
2023) or use approximate models of the environment to maintain safety (Goodall and Belardinelli,
2023). A recurring limitation of these methods is their reliance on explicit prior knowledge of their
environment, task, and/or safety concerns. Although they can improve safety and, in some cases,
eliminate violations altogether, their applicability is restricted to a narrow set of environments and
safety considerations (Turchetta et al., 2020). In contrast, our ADVICE post-shielding method does
not need any prior knowledge, using exclusively the information captured in a typical RL problem.

Black-Box Safe Exploration Techniques. Other recent research focuses on improving safety in
black-box environments, where no prior knowledge is provided to the agent/user. A trivial but
effective solution is to record all unsafe features in a tabular format to prevent the agent from
repeating them (Shperberg et al., 2022). However, this approach is limited to discrete environments
or extremely low-dimensional spaces. Other research collects data in the environment before training,
to then utilise a safety layer (Dalal et al., 2018; Srinivasan et al., 2020; Thananjeyan et al., 2021;
Bharadhwaj et al., 2020) or shield (Tappler et al., 2022) to protect the agent. This requires a significant
amount of data collection, resulting in an increasing number of safety violations. Lagrangian methods
enable modelling the Markov Decision Process as a Constrained Markov Decision Process, leading
to their wide adoption due to their simplicity and effectiveness (Altman, 2021; Garcıa and Fernández,
2015). The Lagrangian multiplier can be fixed (Stooke et al., 2020; Altman, 1998), or integrated into
the algorithm itself (Tessler et al., 2018; Achiam et al., 2017). Other advances employ uncertainty
estimation concepts (Kahn et al., 2017; Jain et al., 2021). Defining safety in terms of uncertainty and
propagating it into the RL algorithm during training yields a cautious yet effective agent for reducing
safety violations, even in complex environments. Similarly to these approaches, ADVICE needs no
prior knowledge; however, ADVICE also entails far less data collection than the previously discussed
techniques.

3 PRELIMINARIES

Markov Decision Process. A Markov Decision Process (MDP) (Bellman, 1957) is a discrete-time
stochastic control process to model decision-making. An MDP is formally defined as a 5-tuple
M “ pS,A, P,R, γq, where S is the state space, A is the action space, P is the state transition
probability matrix such that P ps1|s, aq is the probability of transitioning to state s1 from state s
using action a, R is the reward function such that Rps, aq is the reward for taking action a in state
s, and γ is the discount factor that determines the value of future rewards. A policy π : S Ñ ∆pAq

is a distribution over actions given a state. MDPs can be solved using dynamic programming

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

techniques (e.g., value iteration, policy iteration) which require complete knowledge of the MDP’s
dynamics (Bertsekas and Tsitsiklis, 2008).

Reinforcement Learning. Reinforcement Learning (RL) involves training an agent to make a
sequence of decisions by interacting with the MDP, which represents the environment. This machine
learning technique is used to solve MDPs when full knowledge is not available. The agent’s goal
is to find a policy π˚ maximising the expected discounted return E

“
ř8

t“0 γ
tRat

pst, st`1q
‰

(Sutton
and Barto, 2018). The value function Vπpsq informs the agent how valuable a given state is when
following the current policy π. Common RL algorithms include Q-learning (Watkins and Dayan,
1992), and SARSA (Rummery and Niranjan, 1994). Deep reinforcement learning (DRL) extends
traditional algorithms by utilising deep neural networks to approximate the policy π or the value
function V when the state/action space is high-dimensional and complex. Actor-critic methods (Sutton
and Barto, 2018) are a popular class of algorithms both in traditional and deep RL. Distinctly, the
policy (actor) and the value function (critic) are modelled as separate components, allowing for
simultaneous updates to both functions. Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al.,
2015) is an example of an actor-critic method tailored specifically for continuous action spaces.

Contrastive Learning. Contrastive Learning (CL) (Hadsell et al., 2006) is an unsupervised or
semi-supervised machine learning paradigm aiming at distinguishing between similar (positive) and
dissimilar (negative) pairs of data. At its core lies a contrastive loss function, which encourages the
model to put similar pairs closer together in the embedding space while separating dissimilar pairs.
Given a pair of inputs xi, xj , the contrastive loss function is defined as:

Lpxi, xj , y, θq “ y ¨ ∥hθpxiq ´ hθpxjq∥2`p1 ´ yq ¨ maxp0,m ´ ∥hθpxiq ´ hθpxjq∥2q (1)

where the binary label y indicates if the pair is similar (y “ 1) or dissimilar (y “ 0), h is the
embedding vector and the margin m regulates the minimum distance between dissimilar pairs. The
loss function encourages the model to learn meaningful representations that reflect the inherent
similarities and differences between data points, thus facilitating the formation of well-defined
clusters in the embedding space.

4 ADVICE

Our ADVICE post-shielding technique empowers safe RL exploration in black-box environments
without requiring a system model. Figure 1 shows a high-level overview of ADVICE, including its
key shield construction, execution and adaptation stages, and its incorporation within the standard
RL loop. The core of ADVICE comprises a contrastive autoencoder (CA) model that can efficiently
distinguish between safe and unsafe features from the feature space F : S ˆ A (representing all
possible state-action pairs). A feature ft “ pst, atq, ft P F , denotes a state-action pair at timestep t.
The CA model leverages a unique loss function where similar and dissimilar features are compared,
enabling the systematic identification of meaningful latent feature representations. ADVICE employs
these latent representations and specialises an unsupervised nearest neighbours model to the learnt
embedding space, thus enabling the classification of new features. Formally, the ADVICE shield is
defined by the function

ϕ : F ˆ Z` Ñ A (2)

such that at time step t during the execution of an episode, ADVICE evaluates the agent’s desired
action ϕpft,Kq and allows the action at to be taken, or enforces the execution of another safe
action a1

t instead. The ADVICE-specific parameter K enables controlling the risk aversion levels of
the shield. In particular, ADVICE considers the agent’s performance and automatically adapts the
K value, thus supporting the dynamic calibration of ADVICE’s cautiousness level during learning.
Next, we introduce the details of ADVICE and its integration within the RL loop as a post-shield.

4.1 ADVICE SHIELD CONSTRUCTION

As a black-box post-shielding technique, ADVICE does not rely on any prior knowledge about the
RL agent or its environment. Instead, the ADVICE shield construction stage is founded on collecting
a feature set FE during an initial unshielded interaction period of E episodes where the RL agent is
allowed to interact with and collect experience from its environment. A feature ft P FE is classified

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

ADVICE Adaptat ion

2. ADVICE Execut ion

Environment RL Agent

Reward

State
Action

Safe Act ion

ADVICE Shield

E
n

coder

. . .

Select New
Actions

False

Are K / Kmax
neighbors safe?

Return Highest
Reward Act ion

True
State

Action

Encoded Feature
ADVICE Shield

Adaptive Neighbours (5)

Rate of Safety
Violat ions

MAhr >
MAhd + ?hd

hr hd

MAhr >
MAhd - ?hd

3.

1. ADVICE Const ruct ion

Action

Safe Features S Unsafe Features U

If Crash
If Start or

Goal Reach

Generate Pairs (4)
ADVICE Training

E
n

coder

. . .

D
ec

od
er

. . .

MSE Loss

CL Loss (1)

Neighbours Model

Train Dataset

Learnt Embeddings

RL AgentEnvironment
Reward

State

False

True

Safe Act ions

K++ K-- K

K

False

True

Figure 1: A high-level overview of the ADVICE construction, execution, and adaptation.

as either safe S Ă FE , unsafe U Ă FE or inconclusive I Ă FE based on the following function:

gpftq “

$

&

%

safe if t “ 0 or st`1 “ goal (accepting state)
unsafe if st`1 “ terminal (failure state)
inconclusive otherwise

(3)

where S “ tft P FE |gpftq “ safeu, U “ tft P FE |gpftq “ unsafeu, and I “ FEzpS Y Uq. Hence
S Y U Y I “ FE and S X U X I “ H. The collected features set FE from the initial interaction
period E are organised into these categories to facilitate the contrastive learning process: (i) pairs of
features that are similar (e.g., two safe/unsafe features); and (ii) feature pairs that are dissimilar (a
safe and an unsafe feature). This categorisation is vital to allow the model to discern between safe and
unsafe features effectively and focus on finding meaningful representations in a lower-dimensional
latent space that reflect the similarities and differences. The combine function C consumes the set of
features in sets S and U and produces all pairwise combinations from S and U :

CpS Y U ,S Y Uq “ tpgpftq, gpft1 q, 1q | gpftq “ gpft1 q “ safe, ft ‰ ft1 u Y

tpgpftq, gpft1 q, 1q | gpftq “ gpft1 q “ unsafe, ft ‰ ft1 u Y

tpgpftq, gpft1 q, 0q | gpftq “ safe, gpft1 q “ unsafeu

(4)

where pgpftq, gpft1 q, 1q is a pair of similar features, and pgpftq, gpft1 q, 0q shows dissimilar features.

The training of the CA model involves using the pairs of collected features and optimising two loss
functions simultaneously: the mean squared error (MSE) and the contrastive loss function (CL)
presented in Equation (1). The MSE loss measures how accurately the model can reconstruct the
input features after encoding and decoding. In contrast, the CL is designed to refine the model’s
ability to cluster similar features together, whilst separating dissimilar ones within the latent space
based on the Euclidean distance between them. This distance is minimised for similar pairs and
maximised for dissimilar pairs, encouraging high cohesion and high separation between similar and
dissimilar features, respectively. Thus, the CA learns to encode and reconstruct the salient features of
the given RL problem, comprising the state of the environment and chosen action, as accurately as
possible in a lower-dimensional latent space.

Once trained, the CA model is adept at finding nuanced distinctions between safe and unsafe features
and accurately placing unseen features within the appropriate partitions in the latent space. The shield

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

construction stage of ADVICE concludes with embedding an unsupervised nearest neighbours (KNN)
model in the latent space that classifies new encoded features as safe/unsafe. A visual representation
of the latent data encoding, illustrating the clear separation in the latent space, is shown in Figure 2.

4.2 ADVICE EXECUTION AND ADAPTATION

Upon the completion of the shield construction phase, ADVICE can be used as a post-shield within
the RL loop. The constructed shield encourages safe environment exploration, guarding the agent
throughout its interaction with the environment by ensuring the execution of safe actions.

The ADVICE execution and adaptation stage, shown in Algorithm 1 and Figure 1 (bottom), involves
a continuous cycle of action evaluation and decision-making until the maximum number of training
episodes Emax is reached (line 1). During an episode’s execution (line 3), the RL agent, having
observed the current state st, selects an action at based on its current policy π (line 4). Without
ADVICE, the agent would proceed with this action regardless of its potential safety implications.
Instead, ADVICE can now be used to evaluate the selected action before it is realised by the agent,
thus ensuring safe environment exploration. More specifically, to establish if the action at is safe,
ADVICE extracts the latent representation f̂ of feature ft, collects the nearest Kmax latent data
points to f̂ and checks whether the cardinality of the safe data points exceeds the safety threshold K,
in which case the action at is considered safe; otherwise, at is considered unsafe (lines 13–17).

The safety threshold K P r0,Kmaxs determines how many neighbours need to be labelled safe so
that the encoded feature can be deemed safe. The closer K is to Kmax entails that ADVICE will be
more cautious in terms of safety, while a K value closer to rK{2s means that the ADVICE shield is
more relaxed and favours exploration. A value of K ă rK{2s should not be considered as this would
allow the RL agent to execute actions that are more likely to be unsafe than safe.

If action at is deemed unsafe (line 5), ADVICE intervenes and generates a set of valid candidate
actions Aft by quantising the continuous space of each action dimension Ad, where d P D is the
dimension, and extracting the Cartesian product across the D action dimensions (line 6). The set of
candidate actions Aft is then filtered, to retain only valid and safe actions, resulting in A1

ft
Ď Aft

(line 7). If the A1
ft

set is not empty, these filtered candidate actions are evaluated by the RL agent’s
value function Qπ for their expected reward (line 9). The action with the highest expected reward
is selected, entailing that the action aligns with both the safety considerations and the agent’s

Algorithm 1 ADVICE Execution and Adaptation

Require: Contrastive Autoencoder CA, Neighbours Kmax, Recent history hr, Distant history hd

1: while E`` ď Emax do
2: s1 Ð OBSERVE()
3: for t “ 1, . . . , T do
4: at Ð πpstq
5: if !ISSAFE(ft,K,Kmax) then
6: Aft Ð

ś

dPD Ad
ft

|Ad
ft

Ă Ad

7: A1
ft

Ð ta|@a P Aft : f
1
t “ pst, aq ‚ ISSAFEpf 1

t,K,Kmaxqu

8: if A1
ft

‰ H then
9: at Ð argmaxaPA1

ft

Qπpst, aq

10: rt, st`1 Ð EXECUTEpatq
11: π Ð UPDATE_POLICYpat, st, rt, st`1q

12: K Ð UPDATE_CAUTIOUSNESSpK,Kmax, hd, hr) Ź (5)-(7)

13: function ISSAFE(f,K,Kmax)
14: f̂ Ð ENCODEpfq Ź Encode feature f into the latent space
15: Nf̂ Ð GETNEIGHBOURSpf̂ ,Kmaxq

16: if
ř

nPNf̂
rn == "safe"s ě K return True Ź Action considered safe

17: return False Ź Action considered unsafe

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

performance objectives. Note that if no safe alternative action is identified (i.e., A1
ft

“ H), ADVICE
resorts to providing the originally selected action at; since no alternative action is predicted to be
safe, at is anticipated to achieve the highest expected reward.

At the end of each episode, ADVICE calibrates its cautiousness level by considering the recent safety
performance of the RL agent (line 12). This unique ADVICE characteristic enables moving beyond
the static definition of the safety threshold K by automatically adjusting its value in response to the
frequency of recent safety violations. Accordingly, ADVICE becomes adaptive and allows the agent
to explore more when exhibiting safe behaviour for a period of time while being more cautious, thus
interfering more, when the RL agent behaves increasingly unsafely.

To assess the agent’s performance over time, ADVICE employs a double sliding window, commonly
used in the field of anomaly detection (Tu et al., 2019; Wang et al., 2024). By comparing the recent
rate of safety violations against a broader historical view, ADVICE can discern whether the current
trend deviates from the pattern seen historically. This analysis informs ADVICE whether to strengthen
or relax the cautiousness level. The adaptation function is defined as follows:

K “

$

&

%

minpK`1,Kmaxq, if MAhr
ą MAhd

` σhd

maxpK´1, rKmax{2sq, if MAhr
ă MAhd

´ σhd

K, otherwise
(5)

where MAhd
and σhd

are the moving average and standard deviation, respectively, of safety violations
Zi based on the distant history window hd, and MAhr is the moving average of Zi using the recent
history window hr, i.e., hr ă hd. Given h P thr, hru, the calculation of the moving average MAh

and standard deviation σh, considering the history of safety violations Z1, . . . ,Zt, is defined by:

MAh “
1

h

t
ÿ

i“t´h

pZi ´ Zi´1q (6) σh “

g

f

f

e

1

h

t
ÿ

i“t´h

ppZi ´ Zi´1q ´ MAhq
2 (7)

If the MAhr
rate exceeds the sum of MAhd

` σhd
, then it signifies that the agent crashes more

often than expected. Consequently, K is automatically incremented to adopt a more cautious stance.
Inversely, if the MAhr

rate is below MAhd
´σhd

, this suggests that the agent acts more conservatively
than expected. As a result, K is automatically reduced to allow the agent to explore more freely. The
safety threshold K remains the same for any other occasion. ADVICE deliberately only considers
one standard deviation as two or more standard deviations would make the adaptation slow to respond
to emerging safety risks. Our sensitivity analysis on these two parameters (Section 5.4), demonstrates
the described behaviours.

5 EVALUATION

We evaluate ADVICE 1 against state-of-the-art safe exploration methods using tasks from the Safety
Gymnasium test-suite (Ji et al., 2023a), where a robot with Lidar sensors must complete tasks by
navigating through obstacle-filled environments. This benchmark is designed to assess performance
and safety in complex, high-dimensional scenarios with various safety constraints. Accordingly, the
Safety Gymnasium is an ideal benchmark to assess the effectiveness of ADVICE and has been used
by comparable techniques (Bharadhwaj et al., 2020). A terminal state is reached when the agent
collides with an obstacle, signifying catastrophic damage to the robot and ending the episode. The
selected tasks below cover a range of complexities in agent, goal, and obstacle positions:
• Semi-random Goal: A standard goal environment with six obstacles and one goal. The obstacles

have a static spawn, while the agent and the goal have randomised positions every episode.
• Randomised Goal: A similar goal environment, but obstacles have random positions per episode.
• Randomised Circle: The agent has to circle in a given zone in this environment. The aim is to

maximise speed and distance from the zone’s centre while avoiding the three randomised obstacles.
• Constrained Randomised Goal: A randomised goal variant environment where the obstacles are

hazards that impose a step-wise cost when the agent is inside. The objective is to minimise the cost.

Further details of these four environments and the corresponding tasks are provided in Appendix A.
Figure 7 in this appendix shows a snapshot of the tasks within the Safety Gymnasium. To evaluate the
performance of ADVICE, we conduct comparisons against the following state-of-the-art algorithms:

1The ADVICE code is available at: https://anonymous.4open.science/r/ADVICE-6AF9

6

https://anonymous.4open.science/r/ADVICE-6AF9

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

• DDPG: A deep deterministic policy gradient (DDPG) agent (Lillicrap et al., 2015) which is the
foundational baseline.

• DDPG-Lag: A DDPG agent with an online Lagrangian multiplier (λ “ 0.1, α “ 0.01) which
heavily penalises constant safety violations (Borkar, 2005) dynamically.

• Tabular Shield: A DDPG agent with a discretised (1 decimal place) table of terminal state-action
pairs, which prevents the agent from executing inadequate actions again (Shperberg et al., 2022).

• Conservative Safety Critic (CSC): A DDPG agent with a conservative safety critic (ϵ “ 0.3,
β“0.2) that uses conservative estimates to evaluate the safety of actions (Bharadhwaj et al., 2020).

Each method employs the same DDPG configuration, ensuring a fair and accurate comparison.
Detailed information per algorithm structure and hyperparameter settings for all experiments is
available in Appendix F. The results are averaged across three independent runs and include mean
scores and confidence intervals (standard error of the mean), providing a performance overview.
Unless explicitly stated, the default ADVICE deployment per run is E “ 1000 with K “ 4 and
Kmax “ 5. To objectively evaluate all safe RL methods mentioned above, the setup setting employed
is common for all, i.e., unconstrained, black-box MDPs. However, this setting can lead to sparse
data due to the lack of frequent constraint violations. Therefore, to demonstrate the applicability of
ADVICE in Constrained MDP environments (Altman, 2021) tailored for the DDPG-Lag and CSC
methods, we also assess in Section 5.3 all methods in a constrained environment (i.e., Constrained
Randomised Goal). Since this constrained environment aligns with the original design of DDPG-Lag
and CSC, it enables the examination of ADVICE’s performance in the setting particularly suited for
DDPG-Lag and CSC. Theoretical analysis for ADVICE can be found in Appendix B.

5.1 PERFORMANCE RESULTS

For our first set of experiments, we evaluate the overall performance of the examined methods
(DDPG, DDPG-Lag, Tabular shield, CSC, ADVICE) for the semi-random goal, randomised goal and
randomised circle environments. Figure 2 shows the average episodic reward (return), cumulative
safety violations (failed episodes), and cumulative goal reaches (successful episodes), alongside an
example latent space visualisation from a single ADVICE execution. The obtained results provide
evidence that ADVICE, albeit designed to prioritise safety, manages to maintain a competitive
performance (reward) in all tasks. Both DDPG-Lag and ADVICE, indicate an inherent trade-off
between reward maximisation and safety prioritisation.

Since the primary goal of a safety shield is to encourage exploration and learning in a safe way, it
is evident that ADVICE, across all tasks, can significantly reduce safety violations, outperforming
by a notable margin all other methods. DDPG-Lag also manages to reduce safety violations, but
not to the magnitude of ADVICE, highlighting the effectiveness of ADVICE’s shield. Through all
three tasks, it is noticeable that the conservative safety critic (CSC) vastly underestimates safety.
This is due to the sparse data that comes with an unconstrained MDP mixed with the complex
safety constraints. Without a consistent cost signal, regular neural network-based safety techniques
struggle to keep the agent safe. This insight further highlights the strength of the contrastive learning
underpinning ADVICE. We visualise the learnt latent space from an example ADVICE run (Figure 2
right), illustrating the power of contrastive learning and validating its effectiveness at learning latent
representations that empower the distinction between safe and unsafe features. Considering that
ADVICE constructs the shield for the first E“1000 episodes and then starts its execution for safe
exploration, while DDPG-Lag aims at reducing safety violations from episode E“1, the results are
even more affirmative.

Despite its conservative prioritisation to reward, ADVICE still reaches the goal (successful episode
execution) with a similar frequency to all other methods. In fact, ADVICE completes the task without
compromising safety, and the difference in accumulated reward is due to the reward function design
and the reduced time the agent has to complete the task using a cautious path. Through additional
experiments with an increased number of maximum steps per episode (E1 “ 2000 – Figure 14 -
Appendix C), we have established that ADVICE’s average episodic return is very similar to the other
methods. Hence, increasing the episode’s duration yields improved ADVICE-based results.

These core results corroborate that ADVICE’s contrastive approach to shielding an RL agent from
unsafe actions is effective in comparison to other methods. ADVICE significantly reduces safety
violations without detracting much from the agent’s overall performance.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

(a) Semi-random goal environment results

(b) Randomised goal environment results

(c) Randomised circle environment results

Figure 2: Average episodic reward, cumulative safety violations, cumulative goal reaches of examined
methods (DDPG, DDPG-Lag, Tabular shield, Conservative Safety Critic, ADVICE) and example
latent space visualisation for the semi-random goal (top), randomised goal (middle) and randomised
circle (bottom) environments.

(a) DDPG (b) DDPG-Lag (c) Tabular Shield (d) CSC (e) ADVICE

Figure 3: Example trajectories of the DDPG, DDPG-Lag, Tabular Shield, Conservative Safety Critic,
and ADVICE RL agents on the semi-random goal environment; obstacles are purple, goals are green
circles, and the RL agent is the red vehicle.

Figure 3 visualises example trajectories of the evaluated methods on the semi-random goal environ-
ment, further validating our core findings. The DDPG and Tabular shield agents focus primarily on
maximising expected return, and thus, navigate through the centre of the wall of objects to reach
the goal. Alongside action noise, this is risky as the agent may collide with an object, as shown in
Figure 2a. The DDPG-Lag and CSC agents tend to learn similar behaviours, except they leave a
larger gap between themselves and the objects, considering the possibility of action noise. Finally,
ADVICE adopts a cautious approach, learning to navigate the long way around the wall of objects.
Learning this path ensures that the agent is less likely to collide with an obstacle. However, this incurs
a longer trajectory and a slightly reduced reward due to moving further away from the goal initially.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Figure 4: Average episodic reward, cumulative safety violations, and cumulative goal reaches on the
semi-randomised goal environment where ADVICE , Tabular Shield, and CSC have a pre-trained
shield.

Figure 5: Average episodic reward, average episodic cost, cumulative goal reaches, and example
latent space visualisation on the constrained randomised goal environment.

5.2 TRANSFER LEARNING

Figure 4 demonstrates the transfer learning capabilities of ADVICE in a semi-random environment.
ADVICE, along with Tabular Shield and CSC, utilizes a pre-trained shield from a randomized
environment and is then deployed in a new setting with different goal and agent positions. Leveraging
this pre-trained shield, ADVICE significantly reduces safety violations from the outset, unlike the
other methods. Over 1000 episodes, ADVICE reduces violations by over 50%, showcasing its
ability to generalize the shield to similar/non-stationary environments despite subtle differences. This
substantial reduction in violations, even in an unseen environment, highlights ADVICE’s robustness
and flexibility, which other methods lack. While ensuring safety, ADVICE achieves a comparable
reward and goal-reaching frequency to the other methods, providing strong empirical evidence that
its shield effectively supports transfer learning tasks.

5.3 CONSTRAINED ENVIRONMENT

While constrained MDP environments are less common in real-world scenarios compared to uncon-
strained ones, to examine ADVICE’s performance in such settings, we compared it against several
methods in the Constrained Randomized Goal environment, as illustrated in Figure 5. Complete
results are provided in Appendix C. Notably, ADVICE consistently maintains the lowest average
episodic cost, outperforming both DDPG-Lag and CSC, which exhibit significant oscillations. These
fluctuations reflect the inherent struggle of these methods to balance cost reduction with reward
maximization, a common challenge highlighted in the literature for these methods (Liu et al., 2022).
Interestingly, we did not observe such oscillations in environments with sparse costs, such as the
unconstrained settings discussed in Section 5.1.

5.4 ADVICE ADAPTATION

To evaluate ADVICE’s adaptation capabilities, we conducted a sensitivity analysis focusing on the
impact of varying the distant history window hd and the recent history window hr. For each hd and
hr combination, Table 1 shows the number of consecutive episodes K was fixed at a specific value,
the frequency of K adjustments, and the impact on mean safety violations.

Our findings reveal an impact of hr on the frequency of K adjustments. A smaller hr leads to
more frequent K increases, allowing the system to quickly respond to immediate safety violations.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Table 1: Mean sensitivity analysis of hd and hr on the randomised goal environment for Emax “1000

hd

hr Metrics 10 25

2

Consecutive Episodes (K “ 3) 24.49 ˘ 9.59 31.09 ˘ 4.53
Consecutive Episodes (K “ 4) 1.00 ˘ 0.00 7.89 ˘ 0.77
Consecutive Episodes (K “ 5) 32.97 ˘ 7.95 151.60 ˘ 3.09
Changes of K 116.33 ˘ 9.87 27.67 ˘ 4.62

2

Safety Violations 50.42 ˘ 9.94 57.88 ˘ 7.64

Consecutive Episodes (K “ 3) 166.81 ˘ 5.71 117.35 ˘ 8.07
Consecutive Episodes (K “ 4) 21.10 ˘ 6.86 28.76 ˘ 9.26
Consecutive Episodes (K “ 5) 13.49 ˘ 5.40 149.68 ˘ 8.71
Changes of K 28.67 ˘ 1.41 19.33 ˘ 2.83

3

Safety Violations 51.69 ˘ 6.93 54.45 ˘ 5.10

Consecutive Episodes (K “ 3) 954.49 ˘ 9.59 169.07 ˘ 9.02
Consecutive Episodes (K “ 4) 22.60 ˘ 6.71 22.10 ˘ 7.26
Consecutive Episodes (K “ 5) 0.00 ˘ 0.00 181.35 ˘ 4.92
Changes of K 2.33 ˘ 0.47 17.77 ˘ 2.72

4

Safety Violations 55.48 ˘ 5.64 50.17 ˘ 5.47

Conversely, a larger hr tends to stabilise K by filtering out anomalies and adjusting only in response
to sustained trends of increased violations. Similarly, hd influences the decrease of K; a smaller hd

facilitates rapid decreases in K following a reduction in safety violations, whereas a larger hd results
in less frequent reductions, promoting stability in ADVICE’s behaviour. The interaction between hd

and hr minimally affects the overall rate of safety violations, suggesting that while these parameters
impact the adaptiveness and stability of K, they do not directly correlate with safety violations. These
insights highlight the role of hd and hr primarily as tuning parameters to balance responsiveness
against stability in ADVICE.

5.5 DISCUSSION

Despite ADVICE achieving a significantly lower safety violation rate compared to other methods,
there are a few areas that warrant further exploration. Firstly, while ADVICE experiences a cold-start
period due to the need to gather sufficient features for training the contrastive autoencoder, it still
outperforms methods that start learning from timestep t0 by significantly reducing violations. This
challenge can be mitigated through transfer learning (as seen in Figure 4). Furthermore, although
ADVICE increases computational demands due to continuous inference at each timestep, optimizing
inference intervals or leveraging more efficient models can help balance performance and resource
usage. This adaptation may help extend its applicability to resource-constrained settings without
compromising safety. Lastly, in dynamic environments with temporally changing obstacles, ADVICE
might benefit from incorporating temporal context through methods like LSTM, which would enhance
its ability to handle these situations effectively. This could offer a promising avenue for further
enhancing safety performance, despite the additional computational load.

6 CONCLUSION AND FUTURE WORK

We introduced ADVICE, a post-shielding technique for the safe exploration of RL agents operating in
complex black-box environments. ADVICE does not need any prior knowledge and uses a contrastive
autoencoder to distinguish between safe and unsafe features efficiently. Our evaluation shows that
ADVICE significantly reduces safety violations while maintaining competitive performance against
state-of-the-art methods. Despite its effectiveness, ADVICE has areas for improvement, including
mitigating the cold-start issue, reducing high computational demands, and addressing challenges
with dynamic obstacles. In future work plan to explore meta-learning techniques (Hospedales et al.,
2021) to address the cold-start problem, enabling faster activation of ADVICE without sacrificing
performance. Quantisation or pruning could reduce computational demands, enhancing applicability
in computationally constrained domains. We envisage that ADVICE serves as a foundational step in
using neural network-based shielding for safe RL exploration in complex, black-box environments
without any prior knowledge.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without
human knowledge. nature, 550(7676):354–359, 2017.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen
Simonyan, and Demis Hassabis. A general reinforcement learning algorithm that masters chess,
shogi, and go through self-play. Science, 362(6419):1140–1144, 2018. doi: 10.1126/science.
aar6404.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large scale
deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Nikita Rudin, David Hoeller, Philipp Reist, and Marco Hutter. Learning to walk in minutes us-
ing massively parallel deep reinforcement learning. In Aleksandra Faust, David Hsu, and Ger-
hard Neumann, editors, Proceedings of the 5th Conference on Robot Learning, volume 164 of
Proceedings of Machine Learning Research, pages 91–100. PMLR, 08–11 Nov 2022. URL
https://proceedings.mlr.press/v164/rudin22a.html.

Nicolas Heess, Dhruva Tb, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval Tassa,
Tom Erez, Ziyu Wang, SM Eslami, et al. Emergence of locomotion behaviours in rich environments.
arXiv preprint arXiv:1707.02286, 2017.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.
Concrete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin Paduraru, and Yuval
Tassa. Safe exploration in continuous action spaces. arXiv preprint arXiv:1801.08757, 2018.

Masaki Waga, Ezequiel Castellano, Sasinee Pruekprasert, Stefan Klikovits, Toru Takisaka, and Ichiro
Hasuo. Dynamic shielding for reinforcement learning in black-box environments. In International
Symposium on Automated Technology for Verification and Analysis, pages 25–41. Springer, 2022.

Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott Niekum, and
Ufuk Topcu. Safe reinforcement learning via shielding. In Proceedings of the AAAI conference on
artificial intelligence, volume 32, 2018.

Bettina Könighofer, Julian Rudolf, Alexander Palmisano, Martin Tappler, and Roderick Bloem.
Online shielding for reinforcement learning. Innovations in Systems and Software Engineering, 19
(4):379–394, 2023.

Ingy ElSayed-Aly, Suda Bharadwaj, Christopher Amato, Rüdiger Ehlers, Ufuk Topcu, and Lu Feng.
Safe multi-agent reinforcement learning via shielding. In Proceedings of the 20th International
Conference on Autonomous Agents and MultiAgent Systems, pages 483–491, 2021.

Wen-Chi Yang, Giuseppe Marra, Gavin Rens, and Luc De Raedt. Safe reinforcement learning via
probabilistic logic shields. In Proceedings of the Thirty-Second International Joint Conference on
Artificial Intelligence, pages 5739–5749, 2023.

Haritz Odriozola-Olalde, Maider Zamalloa, and Nestor Arana-Arexolaleiba. Shielded reinforcement
learning: A review of reactive methods for safe learning. In 2023 IEEE/SICE International
Symposium on System Integration (SII), pages 1–8. IEEE, 2023.

Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning by
pid lagrangian methods. In International Conference on Machine Learning, pages 9133–9143.
PMLR, 2020.

Eitan Altman. Constrained markov decision processes with total cost criteria: Lagrangian approach
and dual linear program. Mathematical methods of operations research, 48:387–417, 1998.

11

https://proceedings.mlr.press/v164/rudin22a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward constrained policy optimization. In
International Conference on Learning Representations, 2018.

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
International conference on machine learning, pages 22–31. PMLR, 2017.

Martin Tappler, Stefan Pranger, Bettina Könighofer, Edi Muškardin, Roderick Bloem, and Kim Larsen.
Automata learning meets shielding. In International Symposium on Leveraging Applications of
Formal Methods, pages 335–359. Springer, 2022.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Shahaf S Shperberg, Bo Liu, and Peter Stone. Learning a shield from catastrophic action effects:
Never repeat the same mistake. arXiv preprint arXiv:2202.09516, 2022.

Homanga Bharadhwaj, Aviral Kumar, Nicholas Rhinehart, Sergey Levine, Florian Shkurti, and
Animesh Garg. Conservative safety critics for exploration. In International Conference on
Learning Representations, 2020.

Daiki Kimura, Subhajit Chaudhury, Akifumi Wachi, Ryosuke Kohita, Asim Munawar, Michiaki
Tatsubori, and Alexander Gray. Reinforcement learning with external knowledge by using logical
neural networks. In International Joint Conference on Artificial Intelligence, 2020.

Nils Jansen, Bettina Könighofer, Sebastian Junges, Alex Serban, and Roderick Bloem. Safe rein-
forcement learning using probabilistic shields. In 31st International Conference on Concurrency
Theory (CONCUR 2020). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2020.

Steven Carr, Nils Jansen, Sebastian Junges, and Ufuk Topcu. Safe reinforcement learning via shielding
under partial observability. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pages 14748–14756, 2023.

Alexander W Goodall and Francesco Belardinelli. Approximate model-based shielding for safe
reinforcement learning. In ECAI 2023, pages 883–890. IOS Press, 2023.

Matteo Turchetta, Andrey Kolobov, Shital Shah, Andreas Krause, and Alekh Agarwal. Safe rein-
forcement learning via curriculum induction. Advances in Neural Information Processing Systems,
33:12151–12162, 2020.

Krishnan Srinivasan, Benjamin Eysenbach, Sehoon Ha, Jie Tan, and Chelsea Finn. Learning to be
safe: Deep rl with a safety critic. arXiv preprint arXiv:2010.14603, 2020.

Brijen Thananjeyan, Ashwin Balakrishna, Suraj Nair, Michael Luo, Krishnan Srinivasan, Minho
Hwang, Joseph E Gonzalez, Julian Ibarz, Chelsea Finn, and Ken Goldberg. Recovery rl: Safe
reinforcement learning with learned recovery zones. IEEE Robotics and Automation Letters, 6(3):
4915–4922, 2021.

Eitan Altman. Constrained Markov decision processes. Routledge, 2021.

Javier Garcıa and Fernando Fernández. A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(1):1437–1480, 2015.

Gregory Kahn, Adam Villaflor, Vitchyr Pong, Pieter Abbeel, and Sergey Levine. Uncertainty-aware
reinforcement learning for collision avoidance. arXiv preprint arXiv:1702.01182, 2017.

Arushi Jain, Khimya Khetarpal, and Doina Precup. Safe option-critic: learning safety in the option-
critic architecture. The Knowledge Engineering Review, 36:e4, 2021.

Richard Bellman. A markovian decision process. Journal of mathematics and mechanics, pages
679–684, 1957.

Dimitri Bertsekas and John N Tsitsiklis. Introduction to probability, volume 1. Athena Scientific,
2008.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:279–292, 1992.

Gavin A Rummery and Mahesan Niranjan. On-line Q-learning using connectionist systems, vol-
ume 37. University of Cambridge, Department of Engineering Cambridge, UK, 1994.

Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an invariant
mapping. In 2006 IEEE computer society conference on computer vision and pattern recognition
(CVPR’06), volume 2, pages 1735–1742. IEEE, 2006.

Bing Tu, Nanying Li, Zhuolang Liao, Xianfeng Ou, and Guoyun Zhang. Hyperspectral anomaly
detection via spatial density background purification. Remote Sensing, 11(22), 2019. ISSN
2072-4292. doi: 10.3390/rs11222618. URL https://www.mdpi.com/2072-4292/11/
22/2618.

Degang Wang, Lina Zhuang, Lianru Gao, Xu Sun, Xiaobin Zhao, and Antonio Plaza. Sliding dual-
window-inspired reconstruction network for hyperspectral anomaly detection. IEEE Transactions
on Geoscience and Remote Sensing, 62:1–15, 2024. doi: 10.1109/TGRS.2024.3351179.

Jiaming Ji, Borong Zhang, Jiayi Zhou, Xuehai Pan, Weidong Huang, Ruiyang Sun, Yiran Geng,
Yifan Zhong, Josef Dai, and Yaodong Yang. Safety gymnasium: A unified safe reinforcement
learning benchmark. Advances in Neural Information Processing Systems, 36, 2023a.

Vivek S Borkar. An actor-critic algorithm for constrained markov decision processes. Systems &
control letters, 54(3):207–213, 2005.

Zuxin Liu, Zhepeng Cen, Vladislav Isenbaev, Wei Liu, Steven Wu, Bo Li, and Ding Zhao. Constrained
variational policy optimization for safe reinforcement learning. In International Conference on
Machine Learning, pages 13644–13668. PMLR, 2022.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural
networks: A survey. IEEE transactions on pattern analysis and machine intelligence, 44(9):
5149–5169, 2021.

Jiaming Ji, Yaodong Yang, Juntao Dai, Yifan Zhong, Yiran Geng, Ruiyang Sun, Weidong Huang,
Xuehai Pan, Jiayi Zhou, and Borong Zhang. Safety gymnasium, car robot, Nov 2023b.
URL https://safety-gymnasium.readthedocs.io/en/latest/components_
of_environments/agents/car.html.

13

https://www.mdpi.com/2072-4292/11/22/2618
https://www.mdpi.com/2072-4292/11/22/2618
https://safety-gymnasium.readthedocs.io/en/latest/components_of_environments/agents/car.html
https://safety-gymnasium.readthedocs.io/en/latest/components_of_environments/agents/car.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A TASK DETAILS

In the Safety Gymnasium (Ji et al., 2023a) 2 test-suite, a robot with Lidar sensors has to navigate
through environments with obstacles to complete a given task. The test suite comes with a multitude
of robots (e.g. Point, Ant, Car) and a set of tasks (e.g. Goal, Circle, Button) that can be evaluated. In
our experiments, found in Section 5, we chose to use:

• Car robot: This robot has two wheels on the rear that the agent can control with one
free-rolling front wheel. Steering and movement require nuanced coordination. The action
space for the car is r´1, 1s

2, and the agent is shown in Figure 6.
• Semi-random Goal: A standard goal environment, where the agent aims to reach the goal

at the end of the episode whilst navigating through six obstacles. The six obstacles have a
static spawn, the agent and the goal have randomised positions every episode. We placed
the six obstacles to form a large wall, where the agent can fit through to reach the goal
but with an increased risk of crashing. In this instance, we want to determine if ADVICE
and other safe RL exploration methods will learn to avoid the wall or risk going through
it. Deployment trajectories in Figure 3, show the learnt trajectories of ADVICE and other
methods.

• Randomised Goal: This environment is similar to the semi-random goal environment,
with the additional complexity of the obstacles also having random spawns. This extra
randomised aspect adds increased difficulty as the agent and safety mechanisms cannot
memorise the positions of the obstacles to avoid.

• Randomised Circle: The agent has to circle in a given zone in this environment. The aim is
to maximise speed and distance from the centre of the zone whilst navigating through three
randomised obstacles. This scenario element further increases the task difficulty as now the
obstacles to avoid are directly within the area where the agent can maximise its reward.

• Constrained Randomised Goal: This environment is similar to the random goal environ-
ment, but instead the task is set up as a constrained MDP. Instead of obstacles that terminate
the episode, the task includes hazards that give the agent ´0.2 cost per step when inside
them. The agent cannot terminate in this task and instead has to minimise cost whilst
maximizing rewards.

In all environments for all the tasks above, the agent uses psuedo Lidar to perceive objects in the
environment. Each type of object (e.g. goal, obstacles) in the environment has its own separate Lidar
observation, where a Lidar vector has 16 bins. All vectors are flattened into one observational vector
and then given to the agent as the current state. For example, in the semi-random goal environment,
there is a goal and a set of obstacles. Here the observational space is r0, 1s

32. All lidar vectors have a
max distance of 3 meters. In both goal environments, an episode has a maximum timestep of 1000.
In the circle environment, the maximum timestep is 500. A goal reach in both goal environments is
defined as reaching the goal before the episode truncates, in the circle environment it is defined as
being within the circle when the episode truncates. A crash is defined as the agent colliding with
an obstacle, when this occurs, the episode is terminated shortly. Anything else is considered as the
episode timing out.

(a) Front (b) Back (c) Left (d) Right

Figure 6: Different views of the Car robot in the Safety Gymnasium test suite (Ji et al., 2023b).

Each task has a separate reward function for the agent to maximise. Whenever the agent comes
into contact with an obstacle, a constraint cost of ´1 is given (the exception being the Constrained
Randomised Goal task). The reward functions for each task are:

2More details here: https://github.com/PKU-Alignment/safety-gymnasium

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

(a) Semi-random Goal (b) Randomised Goal (c) Randomised Circle (d) Constrained
Randomised Goal

Figure 7: Example navigation tasks with varying complexity levels for evaluating ADVICE. The
purple blocks are the obstacles, the green circles are the goals, and the red vehicle is the agent.

• Semi-random, Randomised Goal & Constrained Randomised Goal: Rt “ pDlast ´

Dnowqβ, where Dlast is the distance between the agent and the goal in timestep t´1, Dnow

is the distance between the agent and the goal in timestep t, and β is the discount factor.
Simply, the agent moving towards the goal, in terms of Euclidean distance, gains a positive
reward. The agent moving away from the goal gains a negative reward. Reaching the goal
gains a static reward of `1.

• Randomised Circle: Rt “ 1
1`|ragent´rcircle|

˚
p´uy`vxq

ragent
where pu, vq is the x-y velocity

coordinates of the agent, px, yq are the x-y coordinates, ragent is the Euclidean distance of
the agent from the origin of the circle, and rcircle is the radius of the circle. Simply, the
agent is rewarded for moving at speed along the circumference of the circle.

It should be emphasized that the agent or methods used in the evaluation have no prior knowledge of
the task/environment/safety concern. Thus, we can define this environment and all tasks within as
black box.

B THEORETICAL ANALYSIS

In this section, we theoretically analyze ADVICE and show that the expected probability of ADVICE
misclassifying an unseen feature is bounded and can be decreased by diversifying the data collected
before episode E.

Theorem 1 The probability of ADVICE misclassifying a feature is bounded by expp´γ{2σ2q, where
γ is the contrastive separation margin and σ2 is the variance of the assumed Gaussian noise in the
latent space.

The contrastive separation margin in the latent space is defined as:

γ “ min
fsPS,fuPU

}ENCODEpfsq ´ ENCODEpfuq}2 (8)

The noise in the latent space is assumed to follow a Gaussian distribution ϵ „ Np0, σ2q. In ADVICE,
an unseen feature f is classified as safe if the K-nearest neighbours of ENCODEpfq contain safer
than unsafe features. So, let ds “ }ENCODEpfq ´ ENCODEpfsq}2 and du “ }ENCODEpfq ´

ENCODEpfuq}2 define the Euclidean distance to the nearest safe and unsafe feature for an unseen
feature f . Therefore, misclassification occurs when f P S and du ă ds or f P U and du ą ds. The
contrastive separation margin γ ensures that, in a noise-free case }ENCODEpfq´ENCODEpfsq}2 ě γ.
In a realistic presence of noise, the distances ds and du are perturbed by ϵs, ϵu „ Np0, σ2q. Therefore:

du ´ ds “ }ENCODEpfq ´ ENCODEpfuq}2 ´ }ENCODEpfq ´ ENCODEpfsq}2 « γ ` ϵ (9)

where ϵ “ ϵu ´ ϵs „ Np0, σ2q and is independent and Gaussian. The probability of du ă ds
(misclassification) when f P S is given by:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

P pdu ă dsq “ P pγ ` ϵ ă 0q “ P pϵ ă ´γq (10)

Since ϵ „ Np0, σ2q, we can normalise it so that:

P pdu ă dsq “ P pZ ă ´
γ

?
2 ¨ σ

q (11)

where Z „ Np0, 1q. Using the cumulative distribution function of the standard normal distribution
Φ, we get:

P pdu ă dsq “ Φp´
γ

?
2 ¨ σ

q (12)

ADVICE uses K-nearest neighbours to classify an unseen feature f . If γ is large relative to σ,
the probability of misclassifying an unseen feature decreases exponentially. So, we can define the
expected number of misclassified features to be:

Ermisclassified featuress ď N ¨ exp
´

´
γ

2σ2

¯

(13)

The noise σ in the latent space can come from: noisy data, imperfect model training, randomness in
batch sampling, etc.

Theorem 2 The probability of ADVICE misclassifying a feature decreases exponentially with im-
proved data diversity, bounded by expp

a

HpFEq{2σ2q.

Let γm express the effective achieved separation margin between sets S and U , where γm ď γ.
Equality only holds under ideal conditions, such as perfectly diverse data, perfect model training, no
data noise, etc. The diversity of the feature set FE collected before episode E can be quantified using
entropy:

HpFEq “ ´
ÿ

fPFE

ppfq log ppfq (14)

where ppfq is the probability distribution of features f P FE . Higher entropy corresponds to a broader
set of features, ensuring greater diversity. Greater diversity results in more representative embeddings,
given good model training, allowing the contrastive loss function to achieve better separation and
clusterings of sets S and U . The effective separation margin γm depends on HpFEq. As diversity
increases, the embeddings for S and U become more separable, thereby γm 9 k ¨

a

HpFEq where
k ą 0 is a proportionality factor that links the entropy HpFEq of the feature set to the effective
separation margin γm. It encapsulates the influence of latent space geometry, scaling properties,
and model-specific parameters. While k may vary depending on the training process and feature
distribution, it is assumed to be stable for a given setup. Empirically, k can be estimated by observing
the relationship between γm and HpFEq across diverse datasets or configurations. From Theorem 1,
with the substitution of γm for γ, the probability of misclassifying a feature is bounded by:

P pmisclassificationq ď exp
´

´
γm
2σ2

¯

ď exp

˜

´
k ¨

a

HpFEq

2σ2

¸ (15)

therefore showing that increasing the diversity of the feature set reduces the misclassification proba-
bility of a feature exponentially.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

(a) Full results on semi-random goal environment.

(b) Full results on randomised goal environment.

(c) Full results on randomised circle environment.

Figure 8: Average episodic reward, cumulative safety violations, cumulative goal reaches of examined
methods (DDPG, DDPG-Lag, Tabular shield, Conservative Safety Critic, ADVICE) and example
latent space visualisation for the semi-random goal (top), randomised goal (middle) and randomised
circle (bottom) environments.

Figure 9: Average episodic reward, average episodic cost, cumulative goal reaches, and example
latent space visualisation on the constrained randomised goal environment.

C FULL TRAINING RESULTS

In Section 5.1, we show the main results for all methods in a set of tasks. For fair comparison, we
show results from episode 1000 and standardise all metrics to zero. Below, in Figure 8, we show the
unstandardised results for the same experiments.

In all experiments, the Tabular Shield method performs approximately the same as the standard
DDPG agent. To show why this behaviour occurs, we plot the average shield activations for ADVICE
and the Tabular Shield in Figure 10. From these results, it is evident that the Tabular Shield does
not once activate during training across all tasks. This is due to the high dimensionality of the
environments evaluated. Even though the features stored are discretised to 1 decimal place, the agent
has to observe the exact same values across all « 32 dimensions plus the actions for the shield to

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Figure 10: The average shield activations for ADVICE and the Tabular Shield in the semi-random
goal, random goal, random circle, and constrained random goal environments respectively.

Figure 11: The rate of safety violations for all methods in the semi-random goal, random goal, and
circle environments respectively.

activate. Our experiments show that this method fails in these types of environments. A trend that
can be noticed with ADVICE is when the shield is first activated, the amount of interventions starts
relatively high. As training progresses this number reduces, which shows that the agent learns to
adapt to the shield’s understanding of safety.

Figure 11 shows the rate of safety violations during training. This outcome further validates the
results and conclusions discussed in Section 5.1. We observe that the DDPG and Tabular Shield
agents perform similarly. The CSC agent, due to sparse data, underestimates safety and only reduces
violations by a fractional amount. The DDPG-Lag agent manages to reduce the safety violations
somewhat towards the end of training, which is particularly evident in the circle environment. Once
ADVICE is turned on, it significantly reduces the rate of safety violations in all environments.

D PARAMETER ANALYSIS

In this section, we present an extended analysis of ADVICE to display the robustness and adaptability
of the approach. These experiments were chosen to explore the effects of varying K thresholds, and
the timing of ADVICE’s activations E.

A user can specify the conservativeness of ADVICE using the safety threshold K. In Figure 12,
we evaluate how this parameter affects the model’s safety, and performance. The results are clear,
increasing K leads to a more conservative behaviour as hypothesised. The reward decreases a small
amount as well as the cumulative goal reaches, however, it also results in fewer safety violations.
Conversely, decreasing K allows the underlying DDPG agent more freedom. As a result, average
reward and goal reaches are increased at the expense of safety violations. These findings display a
clear trade-off between return efficiency and safety assurance.

ADVICE has a cold-start, meaning it requires some period of time before activation to collect data in
order to work efficiently. We acknowledge that this can affect the performance of ADVICE evidently
we show the results of various activation points in Figure 13. To allow for a fair comparison as
possible, we show the rate of safety violations for the subsequent 1000 episodes after activation.
Again, we visualise a trade-off. Delaying ADVICE’s activation for longer results in fewer safety
violations and increased goal reaches. However, the RL agent observes more cumulative safety

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Figure 12: Average episodic reward, cumulative safety violations, and cumulative goal reaches of
various values of K on the randomised goal environment.

Figure 13: The rate of safety violations, and rate of goal reaches when ADVICE is activated at
different intervals E.

violations up to the point of activation. Starting ADVICE earlier decreases the number of safety
violations up to activation but gives the autoencoder fewer data points to train off. Evidently, safety
violations are not reduced to the same magnitude and goal reaches also decrease. This is to be
expected with any neural network-based approach.

Based on results in Figure 2b, we hypothesise that the reduced reward and cumulative goal reaches
is a result of ADVICE not having enough time to complete the task. As seen in Figure 3, ADVICE
learns to take a longer route to the objective, so by doubling the maximum step count allowed per
episode, we expect to see an increase in cumulative goal reaches, average reward, and no increase
to safety violations. Results for this experiment are shown in Figure 14. As expected, given more
time to complete the task, ADVICE now reaches the goal more than when the maximum step counter
is the default value. As a result, we observe an increase in average episodic return much closer to
baseline methods.

Figure 14: Average episodic reward, cumulative safety violations, and cumulative goal reaches of
various methods on the randomised goal environment where the maximum episodic steps are doubled.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Figure 15: The rate of safety violations, lower threshold pMAhd
´ σhd

q, upper threshold pMAhd
`

σhd
q, recent moving average pMAhr

q, and value of K during an example run where hd “ 10 and
hr “ 2.

Figure 16: Rate of safety violations and value of K on an example run (one random seed) that shows
the adaptation of ADVICE (hd “ 10, hr “ 2).

E ADAPTIVE ADVICE

To validate that Adaptive ADVICE correctly increases and lowers K during training, we plot
an example visualisation window in Figure 15 showing the rate of safety violations, the upper
pMAhd

` σhd
q and lower pMAhd

´ σhd
q thresholds, the moving average pMAhr

q, and the value of
K.

It can be seen that when the recent moving average pMAhr
q is above the upper threshold pMAhd

`

σhd
q, the adaptive module correctly increments K. An example of this can be seen at episode 1553.

The agent crashes, and both thresholds adjust but the recent moving average climbs above the upper
threshold, increasing K as a result. In subsequent episodes afterwards, the recent moving average
falls between both thresholds. Here the adaptive module correctly keeps K at the same value until
episode 1564 where the moving average is equal to the lower threshold. As a result, K is decreased.
This example window validates that the adaptive shield works as expected and also provides an
insight into how it works during training.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Table 2: Summary of hyperparameters in the DDPG algorithm and the ADVICE shield.

Parameter DDPG Parameter ADVICE Shield

Network size (256, 256) Size of network (512, 2, 512)
Optimizer Adam Optimizer NAdam
Actor learning rate 2e-3 Learning rate Reduce on plateau
Critic learning rate 1e-3 Batch size 32
Size of replay buffer 2e5 Max epochs 500
Batch size 64 No. Neighbours (Kmax) 5
Gamma 0.95 No. Safe neighbours (K) 4
Tau 5e-3 Losses (MSE, MSE, CL)
Ornstein-Uhlenbeck noise 0.2 Loss weights (1, 1, 1.25)
- - Unshielded Episodes (E) 1000

F HYPERPARAMETER ANALYSIS AND COMPUTATIONAL OVERHEADS

This section lists the hyperparameters used by all models and ADVICE. Table 2 summarises all
hyperparameters used in Section 5. We will refer the reader to our source code repository 1 for the
remaining details.

Using all model configurations in Table 2, a single ADVICE run (one random seed) takes 12, 24,
12, and 12 hours of training, respectively, in the semi-random goal, random goal, random circle,
and constrained random goal environments. For all other methods, a single run takes 3, 4, 3, and 5
hours in the same environments, respectively. All experiments were run on a large computing cluster
utilising two Nvidia H100 GPUs, 16 CPUs, and up to 500GB memory.

Hyperparameters for the DDPG algorithm started with author recommendations (Lillicrap et al., 2015).
They were manually tuned afterwards to achieve a high performance on individual environments
before tests were carried out, meaning the RL algorithm for all approaches was of high performance
and fair comparison. Hyperparameters for ADVICE were manually tuned for performance in CL loss
and MSE loss. Some hyperparameter analysis was conducted in Section D to justify certain choices.
Parameters for the DDPG-Lag method started with recommendations (Stooke et al., 2020) and were
tuned for performance in our experiments.

21

	Introduction
	Related Work
	Preliminaries
	ADVICE
	ADVICE Shield Construction
	ADVICE Execution and Adaptation

	Evaluation
	Performance Results
	Transfer Learning
	Constrained Environment
	ADVICE Adaptation
	Discussion

	Conclusion and Future Work
	Task Details
	Theoretical Analysis
	Full Training Results
	Parameter Analysis
	Adaptive ADVICE
	Hyperparameter Analysis and Computational Overheads

