
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DART: DIFFERENTIABLE ADAPTIVE REGION TOK-
ENIZER FOR VISION FOUNDATION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

The content-agnostic, fixed-grid tokenizers used by standard large-scale vision
models like Vision Transformer (ViT) and Vision Mamba (Vim) represent a funda-
mental performance bottleneck, creating a trade-off between capturing fine-grained
detail and suffering from redundant computation. To resolve this dilemma, we
introduce DART, a fully differentiable Dynamic Adaptive Region Tokenizer.
DART employs learnable region scores and quantile-based partitioning to create
content-aware patches of varying sizes, intelligently allocating a higher token
density to information-rich regions. The impact of this approach is profound: it
unlocks a more intelligent scaling paradigm, where a DART-equipped DeiT-Small
(22M parameters) matches the performance of a DeiT-Base (86M) with nearly
double the inference speed by efficiently capturing high-resolution details in key
regions. Furthermore, the principle of adaptive tokenization proves its generality
with clear benefits in dense prediction and spatiotemporal video tasks. We argue
that by resolving the tokenizer bottleneck at its source, adaptive tokenization is
a key component for building the next generation of more efficient and capable
foundation models for multimodal AI, robotics, and content generation.

1 INTRODUCTION

A paradigm shift is underway in vision backbones for foundation models. The uniform backbone
paradigm, a simple, non-hierarchical Vision Transformer (ViT) Dosovitskiy et al. (2021) that
processes a flat sequence of image patches, has become the de facto standard. This trend is dominant
across the ecosystem, from open-source Large Multimodal Models (LMMs) like the LLaVA series Liu
et al. (2023) using a CLIP ViT Radford et al. (2021a), to proprietary models like Meta’s Llama-
3-V Yang et al. (2024) and Google’s Gemini Gemini Team (2023). This convergence extends to
generative models, where a major transition from CNN-based U-Nets to Transformers, catalyzed by
the Diffusion Transformer (DiT) Peebles & Xie (2023), now powers flagship models like OpenAI’s
Sora Brooks et al. (2024) and Stability AI’s Stable Diffusion 3 Esser et al. (2024). The uniform ViT’s
dominance is driven by its exceptional scalability and architectural simplicity.

However, this successful paradigm relies on a primitive tokenizer, creating a fundamental represen-
tational dilemma. The fixed-resolution patch grid simultaneously suffers from insufficient detail
for small objects and redundant encoding of low-information backgrounds. A common, brute-force
remedy is to increase input resolution via long-sequence fine-tuning Touvron et al. (2022). While this
improves detail capture Wei et al. (2021), it drastically worsens redundancy and incurs prohibitive
computational costs, creating a stark trade-off between higher fidelity and severe inefficiency.

Hierarchical architectures like Swin Transformer Liu et al. (2021) were designed to address this
dilemma. By structurally merging patches to create multi-scale feature pyramids, they reduce
redundancy while retaining high-resolution information in early layers. While highly successful
for tasks like classification and dense prediction, this architectural philosophy has trade-offs. Its
multi-scale features can mismatch the flat sequence-to-sequence structure of Large Language Models
(LLMs), often requiring specialized adapters Alayrac et al. (2022). Moreover, the LMM training
ecosystem’s momentum around powerful, pretrained uniform ViTs (e.g., CLIP Radford et al. (2021b),
SigLIP Zhai et al. (2023)) makes them a more direct and compatible choice.

This work explores an alternative path. Rather than altering the backbone, we ask: can the repre-
sentational dilemma be resolved at its source, within the uniform paradigm? We propose DART
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Uniform Partitioning

Figure 1: Comparison between our patch partitioning (left) and
the uniform partitioning (right). Finer patches are allocated to the
bird region, merging low-information background.
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Figure 2: FLOPs vs. Accuracy
trade-off curve for DeiT models.

(Differentiable Adaptive Region Tokenizer), a lightweight, fully differentiable module that replaces
the rigid grid with a content-aware partitioning strategy. As illustrated in Figure 1, DART allocates a
higher token density to information-rich regions, capturing critical details without redundantly pro-
cessing the background. It is a drop-in enhancement that preserves the ViT architecture’s simplicity,
scalability, and ecosystem compatibility.

Crucially, DART’s impact transcends mere efficiency; it unlocks a more intelligent and efficient
paradigm for performance scaling. Our results are compelling: when handling higher-resolution
inputs, a DeiT-Small Touvron et al. (2021) with DART matches the baseline’s performance while
requiring only 46% of the computational cost. More profoundly, this enables superior "test-time scal-
ing" over brute-force "train-time scaling." As shown in Figure 2, a DeiT-Small (22M params) Touvron
et al. (2021) equipped with DART matches the 81.8% ImageNet accuracy of a much larger DeiT-Base
(86M params) Touvron et al. (2021), using only a quarter of the parameters at nearly double the
inference speed (0.58x latency, 1.7x throughput, detailed in Table 6). Similarly, a Vim-Small
(29M) Zhu et al. (2024) surpasses its Vim-Base counterpart (98M) Zhu et al. (2024), demonstrating a
comparable leap in efficiency. Furthermore, the principle of adaptive tokenization proves broadly
applicable, delivering consistent improvements on downstream tasks ranging from dense prediction
to spatiotemporal video classification. This shows that how a computational budget is spent is as
crucial as its size, offering a more cost-effective path to high performance. Our contributions are:

• We introduce DART, a fully differentiable, content-adaptive tokenizer that resolves the core
representational dilemma of the uniform ViT paradigm without altering its architecture.

• We demonstrate that DART unlocks a more intelligent scaling paradigm, enabling smaller
models to match or surpass larger counterparts with substantially lower computational cost.

• We validate DART on canonical backbones like DeiT Touvron et al. (2021) and Vision
Mamba Zhu et al. (2024), showing significant improvements across image and video tasks.

2 RELATED WORK

2.1 SOLVING THE TOKENIZATION BOTTLENECK: ARCHITECTURAL VS. FRONT-END
SOLUTIONS

The inefficiency of the uniform tokenizer in ViT Dosovitskiy et al. (2021) has been widely recognized,
leading to two distinct philosophical approaches for resolution.

Architectural Solutions. The first approach is architectural, exemplified by hierarchical models
like PVT Wang et al. (2021) and Swin Transformer Liu et al. (2021). These models use downsample
mechanisms like patch merging to create multi-scale feature pyramids, reducing spatial redundancy
in deeper layers. However, this is a heavyweight solution that fundamentally alters ViT’s simple,
homogenous structure. This incurs the architectural costs discussed previously: complexity in
multimodal fusion and a mismatch with the ecosystem of pretrained uniform ViTs. Furthermore, this
hierarchical downsampling process is content-agnostic; it applies a fixed, structural reduction across
the entire feature map instead of dynamically allocating more resolution to critical details.
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Front-End Solutions. In contrast, DART is a lightweight, front-end solution. Our philosophy
is not to change the powerful ViT engine, but to equip it with a more intelligent intake system.
By performing content-aware partitioning before the backbone, DART provides the ViT with an
information-dense token sequence from the outset. This non-invasive approach preserves the ar-
chitectural integrity and benefits of the uniform backbone paradigm, making it a "plug-and-play"
enhancement rather than a fundamental redesign.

2.2 DYNAMIC INFERENCE: PRE-TOKENIZATION VS. POST-TOKENIZATION ADAPTATION

Another line of work focuses on dynamic inference, but operates under a different paradigm.

Post-Tokenization Adaptation. This category includes token pruning and merging techniques
like DynamicViT Rao et al. (2021), A-ViT Yin et al. (2022), and IA-RED2 Pan et al. (2022). These
methods act as a post-hoc remedy. They first accept the low-quality tokens produced by the rigid
tokenizer and then employ an auxiliary network inside the backbone to predict and discard or merge
unimportant ones. This is a strategy of "belated reduction." Critically, the decision to keep or discard a
token is discrete and not natively differentiable, often requiring proxies like Gumbel-Softmax Jang
et al. (2017); Maddison et al. (2017) for training. This results in an "all-or-nothing" treatment of
tokens and often produces variable-length sequences that can complicate hardware-efficient batching.

Pre-Tokenization Adaptation. DART, conversely, is a pre-tokenization optimization strategy that
prevents the problem at its source. It ensures that the tokens entering the backbone are already content-
aware and efficiently allocated. Our method of determining patch boundaries via differentiable
quantile operations is natively and fully differentiable, allowing for smooth, end-to-end optimization
where boundaries can fluidly slide to optimal positions. Instead of crudely discarding tokens, DART
performs a more nuanced reallocation of the spatial budget. This "proactive optimization" approach
consistently yields a fixed-length token sequence, ensuring seamless integration with standard training
pipelines.

2.3 EMERGING UNIFORM BACKBONES AND THE NEED FOR ADAPTIVE TOKENIZATION

The sequence modeling landscape is evolving, with State Space Models (SSMs) like Mamba Gu &
Dao (2024) emerging as powerful alternatives to self-attention. Vision Mamba (Vim) adapts this for
vision, yet as a new member of the uniform backbone family, it inherits ViT’s primitive, fixed-patch
tokenizer. This makes it a perfect case study for DART’s general applicability. We posit that an
intelligent front-end that efficiently converts an image into an information-rich token sequence is a
fundamental need, regardless of the backbone’s processing mechanism (attention, SSMs, or future
ones). DART is designed as a universal solution to this challenge.

3 METHOD

3.1 OVERALL PIPELINE

Our dynamic, content-aware tokenizer replaces the conventional fixed-grid patcher via a three-stage
process. First, a lightweight scoring network predicts a map of information density. Second, a
differentiable partitioning module uses this map to compute adaptive patch boundaries. Third, the
resulting non-uniform patches are resampled to a fixed size and projected into tokens. This partitioning
module has two variants: a grid-preserving method and a more advanced topology-breaking one.

Differentiable Quantile Computation. Our differentiable quantile method is based on inverting the
Cumulative Distribution Function (CDF) of a 1D discrete probability distribution S = {Si}seqlen−1

i=0 .
We model this distribution as a histogram (Figure 3a), which yields a piecewise-linear, monotonically
increasing CDF. The quantile boundaries are found by inverting this function. For each target
cumulative probability qk = k/N , we locate the linear segment of the CDF containing it and then
compute the precise corresponding boundary point. Since this inversion process is differentiable
almost everywhere, the resulting partition boundaries are differentiable with respect to the input
distribution S, enabling end-to-end training (a detailed mathematical formalism is provided in
Appendix E.1).
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(a) 1D differentiable quantile al-
gorithm. (b) DART-Grid partitioning.

Figure 3: Illustration of our core differentiable partitioning mechanism. (a) Boundaries for a 1D
distribution are found by inverting its piecewise-linear CDF at uniform quantiles (e.g., 1/3, 2/3).
(b) The DART-Grid is formed by independently applying this 1D algorithm to the horizontal and
vertical marginal distributions of the 2D score map, where the score map produced by the lightweight
network is overlaid on the image.

3.2 SCORE PREDICTION NETWORK

Given an input image X ∈ RH×W×3, a lightweight CNN extracts a feature map F ∈ RH′×W ′×C ,
from which a shallow MLP learns to predict a single-channel score map {si,j}. To produce a
stable 2D probability distribution {s̃i,j}, these raw scores undergo sequential normalization: a
sigmoid constrains values to [0, 1], and a per-sample normalization ensures they sum to 1. This final
distribution quantifies each location’s relative importance.

3.3 DART-GRID: GRID-PRESERVING PARTITIONING

The most intuitive adaptive partitioning approach creates a non-uniform grid that preserves the
original patch topology. We call this method DART-Grid. It independently partitions the horizontal
and vertical axes based on their marginal probability distributions:

1. The marginal distributions for the y-axis (PY ) and x-axis (PX ) are computed by summing
the 2D probability distribution {s̃i,j} along each axis.

2. Our 1D differentiable quantile algorithm is applied to PY to find Nh − 1 horizontal bound-
aries, defining Nh rows of varying heights.

3. The same algorithm is similarly applied to PX to find Nw − 1 vertical boundaries, defining
Nw columns of varying widths.

The result is a content-aware Nh ×Nw grid where each patch’s area is inversely proportional to its
region’s information density, while the overall grid structure remains intact, as shown in Figure 3b.

3.4 DART-FLOW: TOPOLOGY-BREAKING PARTITIONING WITH TOKEN FLOW

While DART-Grid adapts patch sizes, it constrains the token budget within a rigid grid structure. For
a more powerful, global reallocation of resources, we propose DART-Flow, an advanced version that
breaks this topology. As our primary contribution, it is referred to simply as DART throughout this
paper and operates in two sequential stages:

1. Adaptive Row Partitioning: First, we partition the image horizontally into Nh rows of
varying heights, identical to the y-axis partitioning step in DART-Grid. This initial step
allocates vertical space based on horizontal information density.

2. Global Token Allocation via Virtual Flattening: Next, we conceptually concatenate
these Nh adaptive rows into a single, long 1D sequence. The probability distribution over
this flattened sequence is derived from the original 2D score map. We then apply our 1D
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Figure 4: The DART-Flow process. The partitioning algorithm is applied sequentially: first to create
adaptive horizontal rows, and then to globally allocate tokens across all rows.

differentiable quantile algorithm once to this long sequence to find all Ntotal − 1 boundaries
for the final patches.

This topology-breaking design is DART’s key innovation. It allows the total token budget (Ntotal) to
be distributed globally, enabling a "flow" of tokens away from low-information rows and concentrat-
ing them in high-information rows, far beyond the constraints of a simple grid, as shown in Figure 4.

3.5 APPLICATION TO VIDEO

Our partitioning approach extends naturally to video by vertically concatenating all frames into
a composite image and applying our dynamic partitioning. This enables the uneven distribution
of a fixed token budget across space and time, concentrating resources on key frames or critical
regions. To capture temporal importance, the scoring network processes the feature difference
between consecutive frames, focusing on motion. This design has an ideal effect: a stationary object
is encoded intensively only when it first appears. As it remains unchanged in subsequent frames,
it receives few computational resources, achieving efficient temporal redundancy compression, as
shown in Figure 5.

3.6 DIFFERENTIABLE RESAMPLING AND POSITIONAL TRANSFORMATION

Once patch boundaries are determined, a differentiable sampling module converts the non-uniform
regions into fixed-size tokens. For image content, a regular 16× 16 target grid is defined for each
output token. DART’s dynamic boundaries define an affine transformation mapping this grid to
locations on the input image, from which a standardized 16 × 16 patch is sampled via bilinear
interpolation. These patches, created through a fully differentiable process, are then linearly projected
into tokens. To maintain spatial awareness, positional embeddings (PE) are transformed similarly.
The PE is treated as a learnable, low-resolution map (Hpe×Wpe×D), and each token’s PE is derived
by sampling from this map at the token’s center coordinate using bilinear interpolation. This critical
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Figure 5: Patch partitioning on an example from the SSv2 dataset Goyal et al. (2017).
Table 1: Unprecedented efficiency on high-resolution inputs. † denotes long-sequence fine-tuning.

Backbone Tokenizer Params Patches FLOPs Top-1 (%)

DeiT-S† Baseline 22M 576 15.5G 81.6
DeiT-S† DART 24M 288 7.2G 81.5

VideoMamba-Ti† Baseline 7M 1296 7.11G 79.6
VideoMamba-Ti† DART 8M 392 2.24G 79.7

step preserves spatial relationships by informing the model of each token’s origin. The entire system
is end-to-end differentiable and trained with a standard cross-entropy loss.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Our main image classification experiments are conducted on the ImageNet-1K ILSVRC-2012
dataset Deng et al. (2009), using Top-1 accuracy as the primary metric. The evaluation focuses on the
uniform backbone family, with DeiT (Transformer-based) and Vision Mamba (Vim) (SSM-based)
as our core baselines. For a fair comparison, all training hyperparameters strictly follow the official
configurations of the baseline models, with details provided in the Appendix. All experiments were
performed on a single machine with eight NVIDIA A100 GPUs.

4.2 THE CORE THESIS: UNLOCKING AN INTELLIGENT SCALING PARADIGM

A primary method for enhancing Vision Transformer performance is long-sequence fine-tuning,
which increases input resolution. However, this brute-force approach of uniformly increasing token
density leads to a quadratic explosion in computational cost. We posit that DART’s content-aware
token allocation enables a more intelligent form of test-time scaling. This new paradigm offers two
key benefits: unprecedented computational efficiency on high-resolution inputs, and a superior path
to top-tier performance that avoids training larger models.

First, we demonstrate DART’s value in high-resolution fine-tuning. As shown in Table 1 and Figure 2,
a DART-equipped DeiT-S matches a conventional baseline’s performance (81.5%) with only 46% of
the computational cost (7.2 vs. 15.5 GFLOPs). This efficiency principle is broadly applicable and
sometimes even more dramatic; on VideoMamba-Ti Li et al. (2024), for example, DART delivered
similar accuracy using just 31% of the computational cost.

DART also enables a fundamentally better scaling path, as shown in Table 2. While standard high-
resolution fine-tuning is costly and fails to elevate small models (DeiT-S, Vim-S) to match their larger
Base counterparts, DART-equipped models succeed. A DART-powered DeiT-S matches the accuracy

6
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Table 2: A superior path to top-tier performance. † denotes
long-sequence fine-tuning.

Backbone Params Patches FLOPs Top-1 (%)

DeiT Family

DeiT-B (Target) 86M 196 17.5G 81.8
DeiT-S† 22M 576 15.5G 81.6
DeiT-S† + DART 24M 392 10.1G 81.8

Vim Family

Vim-B (Target) 98M 196 19.9G 81.9
Vim-S† 26M 784 19.6G 81.6
Vim-S† + DART 29M 392 10.9G 82.2
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Figure 6: Ablation on input resolu-
tion.

of DeiT-Base, and a Vim-S with DART surpasses its Vim-Base counterpart. This suggests that using
DART to efficiently process high-resolution data with a smaller model is a more effective strategy
than simply training a larger one.

This flexibility is enabled by DART’s facilitation of true test-time scaling. The presented results
are from a single model checkpoint fine-tuned on longer sequences. Thanks to DART’s dynamic
partitioning, this single model is exceptionally flexible, able to seamlessly process various sequence
lengths at inference time, including non-square numbers like 288 or 392. Crucially, when this
fine-tuned model is fed the original 196-token input, its performance drops by only 0.2% from its
pre-fine-tuning level. This "train once, use flexibly" capability allows users to select their desired
accuracy-compute trade-off at test time, embodying a truly dynamic scaling solution.

This demonstrates a more cost-effective and sustainable path to high performance. Consequently,
our investigation focuses on this intelligent scaling strategy rather than pursuing costly standard-
configuration experiments on the Base-scale models, as our approach already provides a more efficient
means to achieve their performance levels.

4.3 FOUNDATIONAL VALUE: A UNIVERSAL ENHANCEMENT

Having established DART’s ability to unlock a new scaling paradigm, we now verify its foundational
value as a universal enhancement in standard, fixed-budget scenarios. We evaluate DART as a
simple drop-in replacement for the standard tokenizer, keeping the total token count fixed at 196.
While this enhancement introduces a minimal overhead of approximately 5% (see Appendix B.2 for
details), Table 4 shows it yields consistent performance improvements across all tested Transformer
and SSM-based backbones. The improvement is particularly notable on DeiT-Ti, which sees a
+1.6% increase in Top-1 accuracy. One potential reason is that improving upon a lower-performance
baseline can result in a larger gain in the absolute accuracy metric as we observe that DeiT-Ti’s
baseline performance (72.2%) is considerably lower than other similarly-scaled models such as
Vim-Ti (76.1%) and VideoMamba-Ti (76.9%).

4.4 GENERALIZING THE PRINCIPLE AND POSITIONING AGAINST ALTERNATIVES

Having established DART’s value in image classification, this section explores its universality. We
extend our evaluation to dense pixel-level prediction and spatiotemporal video classification, followed
by ablation studies that provide deeper insights into the source of its gains.

4.4.1 CASE STUDY: GENERALIZATION TO DENSE PREDICTION

To validate DART on dense prediction, we integrate it into a UPerNet Xiao et al. (2018) with a Swin-T
backbone on the ADE20k dataset Zhou et al. (2017). Swin Transformer presents a unique case, as its
design already addresses the detail-redundancy trade-off by merging small early-layer tokens into
larger ones in deeper layers. However, this merging process is structural and content-agnostic.

DART’s content-aware approach has a similar goal, making their performance gains partially
non-orthogonal, which suggests a more modest improvement than on a standard ViT. Since Swin

7
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Table 3: Semantic segmenta-
tion on the ADE20k validation
set.

Backbone mIoU (%)

Swin-T (Baseline) 44.5
+ DART-Grid 45.0 (+0.5)

Table 4: Performance gains as a drop-in module.

Backbone Tokenizer Params FLOPs Top-1 (%)

DeiT-Ti Baseline 6M 1.26G 72.2
DeiT-Ti DART 7M 1.32G 73.8 (+1.6)

DeiT-S Baseline 22M 4.61G 79.8
DeiT-S DART 24M 4.84G 80.6 (+0.8)

Vim-Ti Baseline 7M 1.60G 76.1
Vim-Ti DART 8M 1.68G 77.2 (+1.1)

Vim-S Baseline 26M 5.30G 80.5
Vim-S DART 29M 5.55G 81.5 (+1.0)

VideoMamba-Ti Baseline 7M 1.08G 76.9
VideoMamba-Ti DART 8M 1.15G 78.2 (+1.3)

Table 5: Video classification results on SSv2 and
Kinetics-400.

Dataset Method Patches Top-1 (%)

SSv2 VideoMamba-Ti 1568 63.2
SSv2 + DART 784 63.7 (+0.5)

Kinetics-400 VideoMamba-Ti 1568 76.9
Kinetics-400 + DART 1568 77.3 (+0.4)

Table 6: Inference speed comparison on a
3090 GPU (batch size 512).

Model Patches Latency Img/s

DeiT-B 196 1951 ms 262

DeiT-S 576 1575 ms 325
+DART 392 1142 ms 448
+DART 288 814 ms 629

Transformer’s mechanisms (e.g., windowed attention and patch merging) require a regular grid,
our topology-breaking DART-Flow method is incompatible. We therefore used our grid-preserving
DART-Grid variant. As shown in Table 3, despite the non-orthogonal gains, adding DART-Grid still
yields a +0.5 mIoU improvement. This confirms that content-aware tokenization provides tangible
benefits even on a strong baseline with a structural multi-scale strategy.

4.4.2 CASE STUDY: EXTENSION TO THE SPATIOTEMPORAL DOMAIN

DART’s effectiveness in the spatiotemporal domain is highlighted by the results in Table 5. On
the motion-reliant Something-Something-V2 (SSv2) dataset, our mechanism improves accuracy by
+0.5% while cutting GFLOPs by 41% by allocating tokens to the most informative moments. On the
more scene-centric Kinetics-400 Carreira & Zisserman (2017), DART still provides a robust +0.4%
accuracy gain. Notably, these gains are achieved with a scoring network whose weights are frozen
after pretraining on ImageNet, demonstrating that its learned features for identifying salient regions
are general enough to transfer effectively to new domains.

4.5 COMPARISON WITH DYNAMIC INFERENCE METHODS

While motivated by the shared goal of improving efficiency, DART’s approach of optimizing tokens at
their source is fundamentally different from methods that adapt the sequence internally by pruning or
merging tokens. Thanks to its flexible sequence length, DART allows for direct, fair comparisons at
similar computational budgets. As detailed in Table 7, DART consistently outperforms prior methods.
At similar GFLOPs, DART surpasses A-ViT and DynamicViT. More notably, when compared against
methods for the DeiT-Base backbone, our approach using the smaller DeiT-S backbone achieves
superior performance at a lower computational cost.

4.6 ANALYSIS AND ABLATION STUDIES

Ablation on Partitioning Strategy. We compare our main topology-breaking DART-Flow
with the simpler, grid-preserving DART-Grid. While DART-Grid improves over the baseline,
DART-Flow is significantly better (Table 8), confirming the superiority of its design for global
token reallocation. As a crucial sanity check, we verified experimentally that a uniform score map
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Table 7: Comparison with dynamic inference methods.

Method Backbone FLOPs Top-1 (%)

A-ViT Yin et al. (2022) DeiT-Ti 0.8G 71.0
DART (Ours) DeiT-Ti 0.8G 71.8

A-ViT Yin et al. (2022) DeiT-S 3.6G 78.6
DART (Ours) DeiT-S 3.6G 79.9

DynamicViT Rao et al. (2021) DeiT-S 7.0G 80.3
DART (Ours) DeiT-S 7.2G 81.5

DynamicViT Rao et al. (2021) DeiT-B 11.2G 81.3
IA−RED2 Pan et al. (2022) DeiT-B 11.8G 80.3
DART (Ours) DeiT-S 10.1G 81.8

Table 8: Ablation on partition-
ing strategies using DeiT-Ti as
the backbone.

Method Top-1 (%)

Deit-Ti 72.2
+ DART-Grid 73.1
+ DART-Flow 73.8

Epoch 0 Epoch 40 Epoch 70 Epoch 300

Figure 7: Visualization of the learned score map and patch boundaries at different training epochs,
showing the model progressively learning to focus on the salient object.

degenerates our mechanism to the standard ViT tokenizer, matching its baseline performance and
confirming that all gains stem from the learned partitioning itself.

Visualization of the Learning Process. Figure 7 visualizes the evolution of DART’s learned score
map. This smooth, gradual refinement is a direct consequence of our fully differentiable design,
which allows the model to fluidly learn where to allocate its computational budget via end-to-end
optimization. The visualization clearly shows the model learning to concentrate tokens on the
foreground object over time, validating our approach.

Ablation on Input Resolution. To verify that DART’s gains stem from its fine-grained partitioning,
we ablated the input resolution while keeping the token count fixed. Our hypothesis is that resampling
error is primarily confined to the small, dense patches in critical regions. Large background patches
have ample source pixels and thus minimal error even at low input resolutions. The real bottleneck
is the fidelity of critical patches when they are upsampled to the fixed 16 × 16 grid. The results
in Figure 6 confirm this: performance increases as resolution scales from 224 to 448 because the
higher pixel density reduces information loss for these bottleneck patches. Performance saturates
beyond 448×448, as the source resolution is now high enough to faithfully represent even the smallest
patches, justifying our use of this resolution for main experiments.

5 CONCLUSION

We introduced DART, a content-aware tokenizer that resolves the inherent limitations of rigid
tokenization in uniform backbones like ViT and Mamba. More than an incremental improvement,
DART unlocks an intelligent scaling paradigm, empowering smaller models to match or surpass
counterparts four times their size at a fraction of the computational cost. A core principle emerges
from this work: investing a small computational overhead to scout the input allows for a much
more efficient allocation of the main processing budget. By offering a more cost-effective path to
high performance, adaptive tokenization is poised to be a key component for the next generation
of foundation models in multimodal AI, robotics, and content generation. We discuss promising
directions for future work and the broader implications of our approach in Appendix A.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we have made a comprehensive effort to provide all
necessary components. Our approach and resources are organized as follows:

• Source Code: The complete source code for our DART module is provided as a ZIP file in
the supplementary materials. The code includes a detailed README file with instructions
for setting up the environment and running the experiments. We will release the code
publicly upon acceptance.

• Methodology and Implementation: The core methodology of DART is described in
detail in Section 3. To further clarify the implementation, we provide pseudocode for our
main topology-breaking tokenizer (DART-Flow) in the Appendix (Figure 12). Specific
architectural details for the scoring networks used with different backbones are listed in
Appendix Table 11.

• Training Configurations: Our main experimental setup is outlined in Section 4. We
strictly followed the official training configurations of the baseline models to ensure fair
comparisons. Any modifications, specifically the hyperparameters for our long-sequence
fine-tuning experiments, are explicitly documented in Appendix C.2.

• Datasets and Baselines: All experiments were conducted on standard, publicly available
datasets, including ImageNet-1K, ADE20k, Something-Something-V2, and Kinetics-400.
We utilized well-established open-source implementations for all baseline models (e.g.,
DeiT, Vision Mamba), and followed their standard data preprocessing pipelines.

• Computational Environment: Our primary experiments were conducted on a server with
eight NVIDIA A100 GPUs. Details on the inference benchmarks, including latency and
throughput measurements, which were performed on a single NVIDIA RTX 3090 GPU, are
provided in Table 6 and Appendix Table 10.

We believe these resources provide a clear and complete roadmap for replicating our findings.
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A DISCUSSION AND FUTURE WORK

First, our work establishes DART as a foundational component for efficient visual representation. A
significant and promising future direction is to integrate DART as the vision front-end for large-scale
systems such as Large Multimodal Models, Embodied AI agents with Vision-Language-Action
models, and generative models. In these systems, where visual inputs are often complex and
continuous, DART’s ability to intelligently allocate computational resources is not just beneficial but
potentially critical for achieving real-time performance and better grounding. This paper provides the
foundational validation, paving the way for exploring these advanced applications.

Second, our current approach employs a frozen, pretrained scoring network for general applicability.
This design choice opens a clear path for domain-specific adaptation. For specialized applications
such as medical or satellite imagery, where the definition of "information-rich" regions is domain-
specific, fine-tuning the scoring network on task-relevant data presents a compelling opportunity to
further boost performance. This highlights the adaptability of the DART framework to specialized
downstream tasks.

Third, the current framework masterfully optimizes the token budget within each sample. This
naturally opens the door to a more advanced paradigm: inter-sample dynamic allocation, where the
total token budget could vary based on sample complexity. Crucially, DART’s proven ability to
handle arbitrary, non-square sequence lengths provides the essential technical foundation for this next
step. Future models could leverage this capability to allocate more computation to "hard" examples
and less to "easy" ones, further pushing the boundaries of model efficiency.

Fourth, while our primary method, DART-Flow, is tailored for the uniform backbone paradigm, the
core principle of content-aware tokenization remains broadly applicable. We demonstrate this with
our compatible DART-Grid variant, which successfully enhances hierarchical models like Swin
Transformer, as shown in our dense prediction experiments. This not only confirms the versatility of
our approach but also points to a promising research avenue: co-designing novel adaptive tokenizers
that are even more deeply integrated with the architectural priors of hierarchical models.

Finally, this paper’s primary contribution is the validation of a more intelligent and compute-efficient
scaling principle. Our extensive experiments on widely-used model sizes robustly support this
principle. We hypothesize that these significant efficiency gains will persist at extreme scales (e.g.,
on ViT-L/H), and empirically verifying this remains a compelling direction for future work with
access to large-scale computational resources. This positions DART not just as a method, but as a
generalizable strategy for building more scalable and efficient foundation models.

B ADDITIONAL EXPERIMENTS AND ANALYSIS

B.1 IMPACT OF THE SCORING NETWORK.

DART is robust to the choice of scoring network, though a stronger scorer yields better performance
(Table 9). For instance, on DeiT-Ti, using EfficientNet-B0 instead of MobileNetV3-S boosts the
accuracy gain from +1.6% to +2.9%. This presents a flexible trade-off between the tokenizer’s
overhead and the final model’s accuracy.

Table 9: Impact of the scoring network architecture on DeiT-Ti.

Scoring Network Top-1 (%)

w/o (Baseline) 72.2
MobileNetV3-S Howard et al. (2019) 73.8 (+1.6)
MnasNet Tan et al. (2019) 74.0 (+1.8)
SqueezeNet Iandola et al. (2017) 74.3 (+2.1)
EfficientNet-B0 Tan & Le (2019) 75.1 (+2.9)
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B.2 OVERHEAD ANALYSIS OF THE DART MODULE

To isolate and quantify the computational overhead introduced by the DART module itself, we
compared the inference performance of a standard DeiT-S with a DART-equipped model under an
identical configuration (i.e., 196 tokens). Tests were conducted on an NVIDIA RTX 3090 GPU with
a batch size of 128. As shown in Table 10, DART’s tokenizer introduces a minimal latency overhead
of approximately 6ms, resulting in a throughput decrease of about 5%. This minor overhead confirms
DART’s efficiency as a lightweight front-end module.

Table 10: DART module overhead on an NVIDIA RTX 3090 (196 tokens, batch size 128).

Model Throughput (img/s) Latency (ms)

DeiT-S (Baseline) 1110.5 115.3
DeiT-S + DART 1053.2 (-5.2%) 121.5 (+6.2ms)

C EXPERIMENTAL SETUP

C.1 ARCHITECTURE DETAILS

Our DART module requires a small pretrained feature extractor to obtain general image features for
region score prediction. The specific feature extractors used by each model in our experiments are
summarized in Table 11.

Table 11: Feature extractor configurations for various backbone models.

Model Feature Extractor

DeiT-Ti MobileNetV3 Small[:11]
DeiT-S MobileNetV3 Large[:15]
Vim-Ti MobileNetV3 Small[:13]
Vim-S MobileNetV3 Large[:17]
VideoMamba-Ti MobileNetV3 Small[:13]

C.2 TRAINING CONFIGURATIONS

To ensure a fair and direct comparison, our experimental setup adheres closely to the established
training protocols of the baseline models. Unless otherwise specified, all models were trained
using the official, publicly available configurations provided by the original authors of DeiT, Vim,
VideoMamba, and Swin Transformer.

The only exception is the long-sequence fine-tuning experiments conducted on DeiT-S, as detailed
in Section 4.2. For these specific experiments, we used the following fine-tuning hyperparameters,
which can be summarized with the command-line arguments: ‘–epochs 30 –weight-decay 1e-8 –lr
5e-6 –warmup-epochs 0 –sched step –decay-rate 1‘.

D QUALITATIVE ANALYSIS AND VISUAL COMPARISON

D.1 QUALITATIVE ANALYSIS OF CHALLENGING CASES

To further probe the behavior of DART, we present a qualitative analysis of two challenging cases
that reveal both its strengths and inherent limitations. These examples demonstrate how the model
dynamically adapts its tokenization strategy in response to vastly different image characteristics.

Case 1: The "Attention Averaging" Bottleneck in High-Density Scenes. Figure 8a presents a
difficult sample where both the baseline and DART models failed to classify correctly at the standard
196 token length. The challenge lies in the multitude of small, densely packed shoe objects. However,
it is crucial to distinguish the nature of this failure. While the baseline model wastes a significant
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(a) A difficult case with high-density small objects.
DART focuses on the correct region, but the token
budget is spread too thinly across too many targets,
leading to an "attention averaging" effect.

(b) A simple case where the subject fills the entire
frame. DART exhibits "adaptive degeneration," re-
verting to a near-uniform grid, as no specific region
warrants higher importance.

Figure 8: Qualitative comparison of DART’s behavior on two distinct types of challenging inputs.
These cases highlight the model’s adaptive nature, showing how it intelligently shifts between highly
focused and uniform partitioning strategies based on image content.

portion of its tokens on irrelevant background, DART successfully concentrates its entire token budget
on the correct region of interest. This represents a far more effective, albeit still insufficient, use of
resources. The core issue remains that its strategy of attending to all targets simultaneously becomes
suboptimal when the number of targets is excessively large, leading to an "attention averaging" effect
that prevents any single object from being resolved in high fidelity.

This case highlights a key difference from human visual attention, which can inspire future work.
A human would likely fixate on one or two representative shoes to identify them, and then infer
the similarity of the surrounding objects with lower attention. This "sampling" strategy offers a
potential shortcut for classification. Interestingly, this limitation is primarily contextualized within
such classification tasks; in dense prediction, which inherently demands exhaustive analysis of all
objects and typically operates at higher resolutions, DART’s tendency to cover all targets is not
a drawback but an aligned strategy. Ultimately, this difficult sample does not reveal a new flaw
introduced by our method, but rather defines the boundary of its capabilities. It illustrates an inherent
challenge that DART addresses more effectively than its baseline counterpart, pointing towards even
more sophisticated, human-like attention mechanisms as a future possibility.

Case 2: "Adaptive Degeneration" on Global-Feature Samples. In stark contrast, Figure 8b
illustrates a scenario where the image is characterized by a global texture, lacking a distinct foreground
or background. In this situation, DART exhibits a robust behavior we term "adaptive degeneration."
The scoring network produces a relatively uniform score map, correctly assessing that no specific
sub-region is more informative than another. Consequently, the partitioning algorithm naturally yields
a near-uniform grid, effectively degenerating to the standard ViT tokenizer’s strategy.

D.2 QUALITATIVE ANALYSIS OF PARTITIONING

To provide a more intuitive understanding of DART’s behavior, we present additional partitioning
visualizations on images from the ImageNet-1K validation set in Figures 9 and 10. These examples
further demonstrate that DART successfully learns to allocate a denser token budget to information-
rich areas, such as object contours and complex textures, while merging low-information background
regions into larger patches.

D.3 PARTITIONING STRATEGY COMPARISON

In our main paper, we introduced two partitioning strategies: the grid-preserving DART-Grid and
the more advanced, topology-breaking DART-Flow. Figure 11 provides a clear visual comparison.
The DART-Grid method (middle) adapts patch sizes but is constrained to a fixed row-column
structure. This approach is effective for objects with relatively convex shapes, such as the hartebeest
(top row), where salient features are somewhat vertically aligned. However, it struggles with more
complex geometries like the snake (bottom row). The reason is that row heights and column widths

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 9: Partition examples produced by our DART model (Part 1).
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Figure 10: Partition examples produced by our DART model (Part 2).
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are adjusted globally; the method cannot efficiently focus tokens when the regions of interest in each
row do not fall within the same set of columns.

In contrast, our main DART-Flow method (left) resolves this issue. By allowing the token budget
to "flow" across row boundaries, it can concentrate tokens in the most salient regions without being
constrained by the grid topology, effectively tracing the object’s shape.

Figure 11: A visual comparison of partitioning strategies. Left: Our main DART-Flow method.
Middle: The grid-preserving DART-Grid method. Right: A visualization simulating the model’s
input for the DART-Grid method, created by reassembling the non-uniform patches into a uniform
grid. In this view, high-density regions (e.g., the animal’s body) appear magnified while low-density
background areas are compressed. It is important to note that this is purely a visualization aid;
the model’s understanding of the original geometry is preserved through transformed positional
embeddings and is not distorted.

E METHOD DETAILS

E.1 MATHEMATICAL FORMALISM OF THE DIFFERENTIABLE QUANTILE ALGORITHM

Our objective is to compute quantile boundaries from a discrete probability density function
(PDF) within a fully differentiable framework. Given a 1D discrete probability distribution
S = {s0, s1, . . . , sL−1}, where

∑L−1
i=0 si = 1 and si ≥ 0, we aim to find a set of boundary

points {x1, x2, . . . , xK−1} corresponding to a set of target cumulative probabilities (quantiles)
Q = {q1, q2, . . . , qK−1}.

1. From Discrete PDF to Piecewise-Constant Function. We model the discrete PDF S as a
piecewise-constant function f(x) over the continuous interval [0, L). For any integer index i ∈
[0, L− 1), the function’s value is constant within the interval [i, i+ 1):

f(x) = s⌊x⌋ for x ∈ [0, L) (1)

2. Constructing a Piecewise-Linear Cumulative Distribution Function (CDF). The Cumulative
Distribution Function (CDF), C(x) =

∫ x

0
f(t)dt, is derived from this PDF. This results in a continu-

ous, piecewise-linear function. The value of the CDF at any integer point j is the sum of all preceding
probabilities:

C(j) =

j−1∑
i=0

si (with C(0) = 0) (2)
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Within any interval [j, j + 1), the CDF increases linearly with a slope equal to sj :

C(x) = C(j) + (x− j) · sj for x ∈ [j, j + 1) (3)

3. Solving for Quantiles via CDF Inversion. Finding the quantile boundary xk for a target
probability qk is equivalent to solving the inverse problem C(xk) = qk. This is achieved in two steps:

1. Locate the Interval: For each target quantile qk, we first identify the interval [j, j + 1) in
which it falls. This is done by finding the first index j such that the cumulative probability at
the end of the interval, C(j + 1), is greater than or equal to qk. That is, we find j such that:

C(j) ≤ qk < C(j + 1) (4)

In our implementation, this search is performed efficiently using a vectorized argmax
operation over a boolean mask.

2. Linear Interpolation: Once the interval [j, j + 1) is identified, we use the linear CDF
equation for that segment to solve for the exact position of xk:

qk = C(j) + (xk − j) · sj (5)

By rearranging the terms, we obtain the analytical solution for xk:

xk = j +
qk − C(j)

sj
(6)

Here, C(j) is the cumulative probability mass before the start of the interval, and sj is the
probability density within the interval.

4. Differentiability. The final expression for xk in Equation 6 is composed of differentiable
operations (addition, subtraction, division, and summation). Although the interval selection step
(argmax) is discrete and non-differentiable, it merely acts as a selector to determine which elements
of S participate in the final continuous calculation. As long as an infinitesimal change in the input
distribution S does not cause the index j to change, the gradient of xk with respect to the elements of
S is well-defined and can be computed smoothly. This "differentiable almost everywhere" property
is sufficient for end-to-end optimization using modern automatic differentiation frameworks like
PyTorch.

E.2 ALGORITHM PSEUDOCODE

To enhance clarity and facilitate reproducibility, we present detailed pseudocode for our main
topology-breaking DART (DART-Flow) algorithm in Figure 12. This pseudocode distills the
core logic of our method, outlining the key sequential stages: generating an importance score
map, performing adaptive row partitioning, reallocating the token budget globally across virtually
flattened rows, and finally, executing the differentiable sampling of image content and positional
information. It is important to note that while the description illustrates the conceptual flow, our actual
implementation is highly parallelized and vectorized in PyTorch to fully leverage the computational
power of modern GPUs.

To complement the mathematical formalism presented in Section E.1, we also provide detailed
pseudocode for our differentiable quantile algorithm. Figure 13 describes the practical, highly-
optimized implementation used in our work. Rather than a naive, iterative approach, it showcases a
fully parallelized and vectorized solution that processes an entire batch of distributions simultaneously.
The algorithm leverages efficient tensor operations like broadcasting to find interval indices and
‘gather‘ to retrieve the necessary values for interpolation, completely avoiding slow, sequential loops.
This design is critical for performance, as it fully exploits the parallel architecture of modern GPUs,
ensuring the DART tokenizer remains a computationally lightweight component.

F USE OF LLM

In the preparation of this manuscript, we utilized Large Language Models (LLMs) as a writing
assistant. The role of the LLM was strictly limited to improving the clarity, flow, and grammatical
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# Inputs:
# x: Input image tensor, shape (B, C, H, W)
# scoring_net: A lightweight network to generate importance scores
# pos_embed: The original positional embedding defined on a uniform grid
# N_h, N_w: Target number of patch rows/columns (e.g., 14)
#
# Outputs:
# final_tokens: The final sequence of tokens after dynamic sampling

def DART_tokenizer(x, scoring_net, pos_embed, N_h=14, N_w=14):
N_total = N_h * N_w

# 1. Generate 2D Probability Distribution from scores
score_map = scoring_net(x)
# ... (Normalization steps: sigmoid, per-sample sum to 1)
prob_map_2d = normalize_scores(score_map)
initial_pdf = prob_map_2d.flatten(1)

# 2. Stage 1: Compute y-axis marginal and solve for horizontal boundaries
pdf_2d_view = initial_pdf.view(-1, H_score, W_score) # Reshape for marginal
marginal_prob_y = pdf_2d_view.sum(dim=2)
cdf_y = torch.cumsum(marginal_prob_y, dim=1)
y_boundaries = inverse_cdf(cdf_y, num_quantiles=N_h)
row_heights = y_boundaries.diff(prepend=0)

# 3. Stage 2: Virtually flatten rows and solve for all token boundaries
resampled_pdf = resample_1d_by_grid(initial_pdf, grid=row_heights)
resampled_pdf /= resampled_pdf.sum(dim=-1, keepdim=True)

cdf_resampled = torch.cumsum(resampled_pdf, dim=1)
final_edges = inverse_cdf(cdf_resampled, num_quantiles=N_total)

# 4. Perform dynamic patch sampling from the original image
patches = dynamic_image_patch_sample(x, row_heights, final_edges, (16, 16))

# 5. Project patches and add transformed positional embeddings
tokens = proj(patches)
# ... (Positional embeddings are also resampled based on the new grid)
final_pos_embed = transform_pos_embed(pos_embed, row_heights, final_edges)
final_tokens = tokens + final_pos_embed

return final_tokens

Figure 12: Pseudocode for our main DART (topology-breaking) tokenizer.
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# Function: inverse_cdf
# Computes quantile boundaries from a batch of PDFs in a parallelized manner.
#
# Inputs:
# pdf: A batch of probability density functions, shape (N, L)
# p_values: A 1D tensor of K target quantile probabilities, e.g., [0.25, 0.5, 0.75]
# eps: A small constant to prevent division by zero (e.g., 1e-8)
#
# Outputs:
# quantiles: The computed quantile boundaries, shape (N, K)

def inverse_cdf(pdf, p_values, eps):
N, L = pdf.shape
K = p_values.shape

# 1. Compute Cumulative Distribution Function (CDF) in parallel for the batch.
cumsums = torch.cumsum(pdf, dim=1) # Shape: (N, L)

# 2. Find the interval index for each quantile in parallel.
# This is done by comparing each CDF against all p_values using broadcasting.
mask = (cumsums.unsqueeze(-1) >= p_values.view(1, 1, -1)) # Shape: (N, L, K)
j_indices = torch.argmax(mask.int(), dim=1) # Shape: (N, K)

# 3. Gather all values required for interpolation in parallel using the indices.
# ‘gather‘ selects elements from the source tensor based on the index tensor.
prev_j = torch.clamp(j_indices - 1, min=0)
prev_area = torch.gather(cumsums, dim=1, index=prev_j)
# Handle the edge case where the index is 0.
prev_area = torch.where(j_indices == 0, 0.0, prev_area)

pdf_val = torch.gather(pdf, dim=1, index=j_indices)

# The start of the interval is simply the index j.
edge_val = j_indices.float()

# 4. Perform parallel linear interpolation using the gathered tensors.
# The formula is applied element-wise across the batch and quantiles.
quantiles = edge_val + (p_values.unsqueeze(0) - prev_area) / (pdf_val + eps)

return quantiles

Figure 13: Pseudocode for the parallelized, differentiable quantile computation algorithm (‘in-
verse_cdf‘).

correctness of the text. Specific tasks included rephrasing sentences for better readability, correcting
spelling and grammatical errors, and ensuring a consistent and professional tone. The authors
have carefully reviewed and edited all text and take full responsibility for the final content of the
manuscript.
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