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Abstract

Machine learning systems have been widely used to make decisions about individuals who
may behave strategically to receive favorable outcomes, e.g., they may genuinely improve
the true labels or manipulate observable features directly to game the system without chang-
ing labels. Although both behaviors have been studied (often as two separate problems)
in the literature, most works assume individuals can (i) perfectly foresee the outcomes of
their behaviors when they best respond; (ii) change their features arbitrarily as long as it
is affordable, and the costs they need to pay are deterministic functions of feature changes.
In this paper, we consider a different setting and focus on imitative strategic behaviors with
unforeseeable outcomes, i.e., individuals manipulate/improve by imitating the features of
those with positive labels, but the induced feature changes are unforeseeable. We first pro-
pose a Stackelberg game to model the interplay between individuals and the decision-maker,
under which we examine how the decision-maker’s ability to anticipate individual behavior
affects its objective function and the individual’s best response. We show that the objective
difference between the two can be decomposed into three interpretable terms, with each
representing the decision-maker’s preference for a certain behavior. By exploring the roles
of each term, we theoretically illustrate how a decision-maker with adjusted preferences may
simultaneously disincentivize manipulation, incentivize improvement, and promote fairness.
Such theoretical results provide a guideline for decision-makers to inform better and socially
responsible decisions in practice.

1 Introduction
Individuals subject to algorithmic decisions often adapt their behaviors strategically to the decision rule to
receive a desirable outcome. As machine learning is increasingly used to make decisions about humans, there
has been a growing interest to develop learning methods that explicitly consider the strategic behavior of
human agents. A line of research known as strategic classification studies this problem, in which individuals
can modify their features at costs to receive favorable predictions. Depending on whether such feature
changes are to improve the actual labels genuinely (i.e., improvement) or to game the algorithms maliciously
(i.e., manipulation), existing works have largely focused on learning classifiers robust against manipulation
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(Hardt et al., 2016a) or designing incentive mechanisms to encourage improvement (Kleinberg & Raghavan,
2020; Bechavod et al., 2022; Xie et al., 2024). A few studies (Miller et al., 2020; Shavit et al., 2020; Horowitz
& Rosenfeld, 2023) also consider the presence of both manipulation and improvement, where they exploit
the causal structures of features and use structural causal models to capture the impacts of feature changes
on labels.

To model the interplay between individuals and decision-maker, most existing works adopt (or extend based
on) a Stackelberg game proposed by Hardt et al. (2016a), i.e., the decision-maker publishes its policy, following
which individuals best respond to determine the modified features. However, these models (implicitly) rely
on the following two assumptions that could make them unsuitable for certain applications: (i) individuals
can perfectly foresee the outcomes of their behaviors when they best respond; (ii) individuals can change
their features arbitrarily at costs, which are modeled as deterministic functions of the feature.

In other words, existing studies assume individuals know their exact feature values before and after strategic
behavior. Thus, the cost can be computed precisely based on the feature changes (e.g., using functions such
as ℓp-norm distance). However, these may not hold in many important applications.

Consider an example of college admission, where the students’ exam scores are treated as features in admission
decisions. To get admitted, students may increase their scores by either cheating on exams (manipulation)
or working hard (improvement). Here (i) individuals do not know the exact values of their original features
(unrealized scores) and the modified features (actual scores received in an exam) when they best respond,
but they have a good idea of what those score distributions would be like from their past experience; (ii) the
cost of manipulation/improvement is not a function of feature change (e.g., students may cheat by hiring an
imposter to take the exam and the cost of such behavior is more or less fixed). As the original feature was
never realized, we cannot compute the feature change precisely and measure the cost based on it. Therefore,
the existing models do not fit for these applications.

Motivated by the above (more examples are also given in App. B.2), this paper studies strategic classification
with unforeseeable outcomes. We first propose a novel Stackelberg game to model the interactions between
individuals and the decision-maker. Compared to most existing models (Jagadeesan et al., 2021; Levanon &
Rosenfeld, 2022), ours is a probabilistic framework that models the outcomes and costs of strategic behavior
as random variables. Indeed, this framework is inspired by the models proposed in Zhang et al. (2022);
Liu et al. (2020), which only considered either strategic manipulation (Zhang et al., 2022) or improvement
(Liu et al., 2020). In contrast, our model significantly extends their works by considering both manipulation
and improvement behaviors, investigating agents’ choices between them, and providing theoretical results
and practical guideline for socially responsible decision-making in the new setting. Importantly, we focus on
imitative strategic behavior where individuals manipulate/improve by imitating the features of those with
positive labels, due to the following:

• It is inspired by imitative learning behavior in social learning, whereby new behaviors are acquired
by copying social models’ behavior. It has been well-supported by literature in psychology and social
science (Bandura, 1962; 1978). Recent works (Heidari et al., 2019; Raab & Liu, 2021) in ML also
model individuals’ behaviors as imitating/replicating the profiles of their social models to study the
impacts of fairness interventions.

• Decision-makers can detect easy-to-manipulate features (Bechavod et al., 2021) and stop using them
when making decisions, so individuals can barely manipulate their features by themselves without
changing labels. A better option for them is to mimic others’ profiles. Such imitation-based manip-
ulative behavior is very common in the real world (e.g., cheating, identity theft) and even becomes
increasingly worrying during recent years1.

Additionally, our model considers practical scenarios by permitting manipulation to be detected and im-
provement to be failed at certain probabilities, as evidenced in auditing (Estornell et al., 2021) and social

1As COVID-19 hit the world, candidates are more commonly permitted to take exams/assessments (e.g., GRE, TOEFL,
or online assessments of companies) remotely. Although many institutions are diligent in designing novel challenges to prevent
candidates from directly finding the answers on the internet, the remote nature makes it easier to hire qualified imposters to
take the assessments instead of them. Talha (2024) illustrated how students can let others take the GRE instead of them when
the test is permitted to be taken at home.
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learning (Bandura, 1962). App. A provides more related work and differences with existing models are
discussed in App. B.1.

Under this model, we first study the impacts of the decision maker’s ability to anticipate individual behavior.
Similar to Zhang et al. (2022), we consider two types of decision-makers: non-strategic and strategic. We
say a decision-maker (and its policy) is strategic if it has the ability to anticipate strategic behavior and
accounts for this in determining the decision policies, while a non-strategic decision-maker ignores strategic
behavior in determining its policies. Importantly, we find that the difference between the decision-maker’s
learning objectives under two settings can be decomposed into three interpretable terms, with each term
representing the decision-maker’s preference for certain behavior. By exploring the roles of each term on the
decision policy and the resulting individual’s best response, we further show that a strategic decision-maker
with adjusted preferences (i.e., changing the weight of each term in the learning objective) can disincentivize
manipulation while incentivizing improvement behavior.

We also consider settings where the strategic individuals come from different social groups and explore the
impacts of adjusting preferences on algorithmic fairness. We show that the optimal policy under adjusted
preferences may result in fairer outcomes than non-strategic policy and original strategic policy without ad-
justment. Moreover, such fairness promotion can be attained simultaneously with the goal of disincentivizing
manipulation. Our contributions are summarized as follows:

1. We propose a probabilistic model to capture both improvement and manipulation; and establish a novel
Stackelberg game to model the interplay between individuals and decision-maker. The individual’s best
response and decision-maker’s (non-)strategic policies are characterized (Sec. 2).

2. We show the objective difference between non-strategic and strategic policies can be decomposed into
three terms, each representing the decision-maker’s preference for certain behavior (Sec. 3).

3. We study how adjusting the decision-maker’s preferences can affect the optimal policy and its fairness
property, as well as the resulting individual’s best response (Sec. 4). We also illustrate how the decision-
maker can adjust preferences to disincentivize manipulation, incentivize improvement and promote fair-
ness in practice (Sec. 4 and App. B.5).

4. We conduct experiments on both synthetic and real data to validate the theoretical findings (Sec. 5).

2 Problem Formulation
Consider a group of individuals subject to some ML decisions. Each individual has an observable feature
X ∈ R and a hidden label Y ∈ {0, 1} indicating its qualification state (“0" being unqualified and “1" being
qualified).2 Let α := Pr(Y = 1) be the population’s qualification rate, and PX|Y (x|1), PX|Y (x|0) be the
feature distributions of qualified and unqualified individuals, respectively. A decision-maker makes binary
decisions D ∈ {0, 1} (“0" being reject and “1" being accept) about individuals based on a threshold policy
with acceptance threshold θ ∈ R: π(x) = PD|X(1|x) = 1(x ≥ θ). To receive positive decisions, individuals
with information of policy π may behave strategically by either manipulating their features or improving the
actual qualifications.3 Formally, let M ∈ {0, 1} denote individual’s action, with M = 1 being manipulation
and M = 0 being improvement.

Outcomes of strategic behavior. Both manipulation and improvement result in the shifts of feature
distribution. Specifically, for individuals who choose to manipulate, we assume they manipulate by “steal-
ing" the features of those qualified (Zhang et al., 2022), e.g., students cheat on exams by hiring qualified
imposters. Moreover, we assume the decision-maker can identify the manipulation behavior with probability
ϵ ∈ [0, 1] (Estornell et al., 2021). Individuals, once getting caught manipulating, will be rejected directly. For
those who decide to improve, they work hard to imitate the features of those qualified (Bandura, 1962; Raab

2Similar to prior work (Zhang et al., 2022; Liu et al., 2018), we present our model in one-dimensional feature space. Note
that our model and results are applicable to high dimensional space, in which individuals imitate and change all features as a
whole based on the joint conditional distribution PX|Y regardless of the dimension of X. The costs can be regarded as the sum
of an individual’s effort to change features in all dimensions.

3We assume all unqualified individuals who stay in the decision-making system either manipulate or improve. In other
words, they already have a sufficiently large initial utility by staying in the system and trying to be qualified. We discuss the
details in App. B.3.
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& Liu, 2021; Heidari et al., 2019). With probability q ∈ [0, 1], they improve the label successfully (overall α
increases) and the features conform the distribution PX|Y (x|1); with probability 1 − q, they slightly improve
the features but fail to change the labels, and the improved features conform a new distribution P I(x).
Throughout the paper, we make the following assumption on feature distributions.
Assumption 2.1. PX|Y (x|1), PX|Y (x|0), P I(x) are continuous; distribution pairs

(
PX|Y (x|1), P I(x)

)
and(

P I(x), PX|Y (x|0)
)

satisfy the strict monotone likelihood ratio property, i.e. P I (x)
PX|Y (x|0) and PX|Y (x|1)

P I (x) are
increasing in x ∈ R.

Assumption 2.1 is relatively mild and has been widely used (e.g., (Tsirtsis et al., 2019; Zhang et al., 2020b)).
It can be satisfied by a wide range of distributions (e.g., exponential, Gaussian) and the real data (e.g., FICO
data used in Sec. 5). It implies that an individual is more likely to be qualified as feature value increases.
Meanwhile, compared to the unqualified individuals, the individuals who improve but fail also tend to have
higher feature values. Individuals have a good knowledge of their true qualifications by observing their peers
or previous individuals who received positive decisions Raab & Liu (2021), and only unqualified individuals
have incentives to take action Dong et al. (2018) since PX|Y (x|1) is always the best attainable outcome (as
manipulation and improvement only bring additional cost but no benefit to qualified individuals).

2.1 Individual’s best response.
An individual incurs a random cost CM ≥ 0 when manipulating the features (Zhang et al., 2022), while
incurring a random cost CI ≥ 0 when improving the qualifications (Liu et al., 2020). The realizations of
these random costs are known to individuals when determining their action M ; while the decision-maker only
knows the cost distributions. Thus, the best response that the decision-maker expects from individuals is the
probability of manipulation/improvement. Figure 1 illustrates the strategic interaction between them.

Original 
population

Decision maker

Publish threshold

Qualified Unqualified

Manipulate

Being 
detected

Yes Being 
rejected

No

Feature distribution 
changes while labels 

remain 0

Improve

Succeed

No

Feature distribution 
and labels change

Take no action

New population 
resulting from 

individuals taking 
different actions

Admit o
r r

eject

Yes

Figure 1: Illustration of the strategic interaction

Formally, given a policy π(x) = 1(x ≥ θ) with threshold θ, an individual chooses to manipulate only if
the expected utility attained under manipulation UM (θ) outweighs the utility under improvement UI(θ).
Suppose an individual benefits w = 1 from the acceptance, and 0 from the rejection. Given that each
individual only knows his/her label y ∈ {0, 1} and the conditional feature distributions PX|Y but not the
exact values of the feature x, the expected utilities UM (θ) and UI(θ) can be computed as the expected benefit
minus the cost of action, as given below.

UM (θ) = FX|Y (θ|0) − FX|Y (θ|1) − ϵ(1 − FX|Y (θ|1)) − CM

UI(θ) = FX|Y (θ|0) − q · FX|Y (θ|1) − (1 − q) · F I(θ) − CI
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where FX|Y (x|1), FX|Y (x|0), F I(x) are cumulative density function (CDF) of PX|Y (x|1), PX|Y (x|0), P I(x),
respectively. Given the threshold θ, the decision-maker can anticipate the probability that an unqualified
individual chooses to manipulate as PM (θ) = Pr (UM (θ) > UI(θ)), which can further be written as follows
(derivations and more explanation details in App. D.1):

PM (θ) = Pr
(

(1 − q) ·
(
F I(θ) − FX|Y (θ|1)

)
− ϵ

(
1 − FX|Y (θ|1)

)
≥ CM − CI

)
(1)

The above formulation captures the imitative strategic behavior with unforeseeable outcomes (e.g., college
admission example in Sec. 1): individuals best respond based on feature distributions but not the realizations,
and the imitation costs (e.g., hiring an imposter) for individuals from the same group follow the same
distribution (Liu et al., 2020), as opposed to being a function of feature changes. equation 1 above can
further be written based on CDF of CM − CI , i.e., the difference between manipulation and improvement
costs. We make the following assumption on its PDF.
Assumption 2.2. The PDF PCM −CI

(x) is continuous with PCM −CI
(x) > 0 for x ∈ (−ϵ, 1 − q).

Assumption 2.2 is mild only to ensure the manipulation is possible under all thresholds θ. Under the
Assumption, we can study the impact of acceptance threshold θ on manipulation probability PM (θ).
Theorem 2.3 (Manipulation Probability). Under Assumption 2.2, PM (θ) is continuous and satisfies the
following: (i) If q + ϵ ≥ 1, then PM (θ) strictly increases. (ii) If q + ϵ < 1, then PM (θ) first increases and
then decreases, thereby existing a unique maximizer θmax. Moreover, maximizer θmax increases in q and ϵ.

Thm. 2.3 shows that an individual’s best response highly depends on the success rate of improvement q
and the identification rate of manipulation ϵ. When q + ϵ ≥ 1 (i.e., improvement can succeed or/and
manipulation is detected with high probability), individuals are more likely to manipulate as θ increases.
Note that although individuals are generally more likely to benefit from improvement than manipulation,
as θ increases to the maximum (i.e., when the decision-maker barely admits anyone), the "net benefit" of
improvement compared to manipulation will finally diminish to 0 because both actions are useless. Thus,
more individuals tend to manipulate under larger θ, making PM (θ) strictly increasing and reaching the
maximum. When q + ϵ < 1, more individuals are incentivized to improve as the threshold gets farther away
from θmax. This is because the manipulation in this case incurs a higher benefit than improvement at θmax.
As the threshold increases/decreases from θmax to the minimum/maximum (i.e., the decision-maker either
admits almost everyone or no one), the "net benefit" of manipulation compared to improvement decreases
to 0 or −ϵ. Thus, PM (θ) decreases as θ increases/decreases from θmax.

2.2 Decision-maker’s optimal policy
Suppose the decision-maker receives benefit u (resp. penalty −u) when accepting a qualified (resp. unqual-
ified) individual, then the decision-maker aims to find an optimal policy that maximizes its expected utility
E[R(D, Y )], where utility is R(1, 1) = u, R(1, 0) = −u, R(0, 1) = R(0, 0) = 0.

As mentioned in Sec. 1, we consider strategic and non-strategic decision makers. Because the former can
anticipate individual’s strategic behavior while the latter cannot, their learning objectives E[R(D, Y )] are
different. As a result, their respective optimal policies are also different.

Non-strategic optimal policy. Without accounting for strategic behavior, the non-strategic decision-
maker’s learning objective Û(π) under policy π is given by:

Û(π) =
∫

X

{uαPX|Y (x|1) − u(1 − α)PX|Y (x|0)}π(x) dx (2)

Under Assumption 2.1, it has been shown in Zhang et al. (2020b) that the optimal non-strategic policy that
maximizes Û(π) is a threshold policy with threshold θ̂∗ satisfying PX|Y (θ̂∗|1)

PX|Y (θ̂∗|0)
= 1−α

α .

Strategic optimal policy. Given cost and feature distributions, a strategic decision-maker can anticipate
an individual’s best response (equation 1) and incorporate it in determining its optimal policy. Under a
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threshold policy π(x) = 1(x ≥ θ), the objective U(π) can be written as a function of θ, i.e.,

U(θ) =u
(

α + (1 − α)(1 − PM (θ))q
)

·
(
1 − FX|Y (θ|1)

)
− u(1 − α)

(
(1 − ϵ) · PM (θ) ·

(
1 − FX|Y (θ|1)

)
+ (1 − PM (θ)) · (1 − q)(1 − F I(θ)

)
(3)

The policy that maximizes the above objective function U(θ) is the strategic optimal policy. We denote the
corresponding optimal threshold as θ∗. Compared to non-strategic policy, U(θ) also depends on q, ϵ, PM (θ)
and is rather complicated. Nonetheless, we will show in Sec. 3 that U(θ) can be justified and decomposed
into several interpretable terms.

3 Decomposition of the Objective Difference
In Sec. 2.2, we derived the learning objective functions of both strategic and non-strategic decision-makers
(expected utilities U and Û). Next, we explore how the individual’s choice of improvement or manipulation
affects decision-maker’s utility. Define Φ(θ) = U(θ) − Û(θ) as the objective difference between strategic and
non-strategic decision-makers, we have:

Φ(θ) = u(1 − α) ·
(

ϕ1(θ) − ϕ2(θ) − ϕ3(θ)
)

(4)

where
ϕ1(θ) =

(
1 − PM (θ)

)
· q ·

(
1 − FX|Y (θ|0) + 1 − FX|Y (θ|1)

)
ϕ2(θ) =

(
1 − PM (θ)

)
· (1 − q) ·

(
FX|Y (θ|0) − F I(θ)

)
ϕ3(θ) = PM (θ)

(
(1 − ϵ)

(
1 − FX|Y (θ|1)

)
−

(
1 − FX|Y (θ|0)

))
As shown in equation 4, the objective difference Φ can be decomposed into three terms ϕ1, ϕ2, ϕ3. It turns
out that each term is interpretable and indicates the impact of a certain type of individual behavior on the
decision-maker’s utility. We discuss these in detail as follows.

1. Benefit from the successful improvement ϕ1: additional benefit the decision-maker gains due to the
successful improvement of individuals (as the successful improvement causes label change). In the college
admission example, ϕ1 stands for the utility gain caused by students studying hard to be qualified.

2. Loss from the failed improvement ϕ2: additional loss the decision-maker suffers due to the individuals’
failure to improve; this occurs because individuals who fail to improve only experience feature distribution
shifts from PX|Y (x|0) to P I(x) but labels remain. In the college admission example, ϕ2 stands for the
utility loss caused by students who seem to try but fail to be qualified.

3. Loss from the manipulation ϕ3: additional loss the decision-maker suffers due to the successful
manipulation of individuals; this occurs because individuals who manipulate successfully only change
PX|Y (x|0) to PX|Y (x|1) but the labels remain unqualified. In the college admission example, ϕ3 stands
for the utility loss caused by students who cheat/hire imposters.

Note that in Zhang et al. (2022), the objective difference Φ(θ) has only one term corresponding to the
additional loss caused by strategic manipulation. Because our model further considers improvement behavior,
the impact of an individual’s strategic behavior on the decision-maker’s utility gets more complicated. We
have illustrated above that in addition to the loss from manipulation ϕ3, the improvement behavior also
affects decision-maker’s utility. Importantly, such an effect can be either positive (if the improvement is
successful) or negative (if the improvement fails).

The decomposition of the objective difference Φ(θ) highlights the connections between three types of policies:
1) non-strategic policy without considering individual’s behavior; 2) strategic policy studied in Zhang et al.
(2022) that only considers manipulation, 3) strategic policy studied in this paper that considers both ma-
nipulation and improvement. Specifically, by removing ϕ1, ϕ2, ϕ3 (resp. ϕ1, ϕ2) from the objective function
U(θ), the strategic policy studied in this paper would reduce to the non-strategic policy (resp. strategic
policy studied in Zhang et al. (2022)). Based on this observation, we regard ϕ1, ϕ2, ϕ3 each as the decision-
maker’s preference to a certain type of individual behavior, and define a general strategic decision-maker
with adjusted preferences.
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3.1 Strategic decision-maker with adjusted preferences
We consider general strategic decision-makers who find the optimal decision policy by maximizing Û(θ) +
Φ(θ, k1, k2, k3) with

Φ(θ, k1, k2, k3) = k1 · ϕ1(θ) − k2 · ϕ2(θ) − k3 · ϕ3(θ) (5)

where k1, k2, k3 ≥ 0 are weight parameters; different combinations of weights correspond to different prefer-
ences of the decision-maker. We give some examples below:

1. Original strategic decision-maker: the one with k1 = k2 = k3 = u(1 − α) whose learning objective
function U follows equation 3; it considers both improvement and manipulation.

2. Improvement-encouraging decision-maker: the one with k1 > 0 and k2 = k3 = 0; it only considers
strategic improvement and only values the improvement benefit while ignoring the loss caused by the
failure of improvement.

3. Manipulation-proof decision-maker: the one with k3 > 0 and k1 = k2 = 0; it is only concerned with
strategic manipulation, and the goal is to prevent manipulation.

4. Improvement-proof decision-maker: the one with k2 > 0 and k1 = k3 = 0; it only considers
improvement but the goal is to avoid loss caused by the failed improvement.

The above examples show that a decision-maker, by changing the weights k1, k2, k3 could find a policy
that encourages certain types of individual behavior (as compared to the original policy θ∗). Although the
decision-maker can impact an individual’s behavior by adjusting its preferences via k1, k2, k3, we emphasize
that the actual utility it receives from the strategic individuals is always determined by U(θ) given in
equation 3. Indeed, we can regard the framework with adjusted weights (equation 5) as a regularization
method. We discuss this in more detail in App. B.4.

4 Impacts of Adjusting Preferences
Next, we investigate the impacts of adjusting preferences. We aim to understand how a decision-maker can
adjust preferences (i.e., changing k1, k2, k3) to affect the optimal policy (Sec. 4.1) and its fairness property
(Sec. 4.3), as well as the resulting individual’s best response (Sec. 4.2).

4.1 Preferences shift the optimal threshold
We will start with the original strategic decision-maker (with k1 = k2 = k3 = u(1 − α)) whose objective
function follows equation 3, and then investigate how adjusting preferences could affect the decision-maker’s
optimal policy.

Complex nature of original strategic decision-maker. Unlike the non-strategic optimal policy, the
analytical solution of strategic optimal policy that maximizes equation 3 is not easy to find. In fact, the
utility function U(θ) of the original strategic decision-maker is highly complex, and the optimal strategic
threshold θ∗ may change significantly as α, FX|Y , F I , CM , CI , ϵ, q vary. In App. C.2, we demonstrate the
complexity of U(θ), which may change drastically as α, ϵ, q vary. Although we cannot find the strategic
optimal threshold precisely, we may still explore the impacts of the decision-maker’s anticipation of strategic
behavior on its policy (by comparing the strategic threshold θ∗ with the non-strategic θ̂∗), as stated in
Thm. 4.1 below.
Theorem 4.1 (Comparison of strategic and non-strategic policy). If minθ PM (θ) ≤ 0.5, then there exists
q̂ ∈ (0, 1) such that ∀q ≥ q̂, the strategic optimal θ∗ is always lower than the non-strategic θ̂∗.

Thm. 4.1 identifies a condition under which the strategic policy over-accepts individuals compared to the
non-strategic one. Specifically, minθ PM (θ) ≤ 0.5 ensures that there exist policies under which the ma-
jority of individuals prefer improvement over manipulation. Intuitively, under this condition, a strategic
decision-maker by lowering the threshold (from θ̂∗) may encourage more individuals to improve. Because q
is sufficiently large, more improvement brings more benefit to the decision-maker.
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Figure 2: Illustration of scenario 1 (left) and scenario 2 (right) in Thm. 4.5: adjusting preferences decreases
manipulation probability PM (θ).

Optimal threshold under adjusted preferences. Despite the intricate nature of U(θ), the optimal
strategic threshold may be shifted by adjusting the decision-maker’s preferences, i.e. changing the weights
k1, k2, k3 assigned to ϕ1, ϕ2, ϕ3 in equation 5. Next, we examine how the optimal threshold can be affected
compared to the original strategic threshold by adjusting the decision-maker’s preferences. Denote θ∗(ki)
as the strategic optimal threshold attained by adjusting weight ki, i ∈ {1, 2, 3} of the original objective
function U(θ). The results are summarized in Table 1. Specifically, the threshold gets lower as k1 increases
(Prop. 4.2). Adjusting k2 or k3 may result in the optimal threshold moving toward both directions, but we
can identify sufficient conditions when adjusting k2 or k3 pushes the optimal threshold to move toward one
direction (Prop. 4.3 and 4.4).

Table 1: The impact of adjusted preferences on θ∗(ki) compared to the original strategic threshold θ∗.

Adjusted weight Preference Threshold shift
Increase k1 Encourage improvement θ∗(k1) < θ∗

Increase k2 Discourage improvement θ∗(k2) ≶ θ∗

Increase k3 Discourage manipulation θ∗(k3) ≶ θ∗

Proposition 4.2. Increasing k1 results in a lower optimal threshold θ∗(k1) < θ∗. Moreover, when k1 is
sufficiently large, θ∗(k1) < θ̂∗.
Proposition 4.3. When α ≤ 0.5 (the majority of the population is unqualified), increasing k2 results in a
higher optimal threshold θ∗(k2) > θ∗. Moreover, when k2 is sufficiently large, θ∗(k2) > θ̂∗.
Proposition 4.4. For any feature distribution PX|Y , there exists an ϵ̄ ∈ (0, 1) such that whenever ϵ ≥ ϵ̄,
increasing k3 results in a lower optimal threshold θ∗(k3) < θ∗.

Prop. 4.2 to 4.4 reveal that adjusting preferences may lead to predictable changes of optimal strategic
thresholds under certain conditions. So far we have shown how the optimal threshold can be shifted as
the decision maker’s preferences change. Next, we explore the impacts of threshold shifts on individuals’
behaviors and show how a decision-maker with adjusted preferences can (dis)incentivize manipulation and
influence fairness.

4.2 Preferences as (dis)incentives for manipulation
In Thm. 2.3, we explored the impacts of threshold θ on individuals’ best responses PM (θ). Combined
with our knowledge of the relationship between adjusted preferences and policy (Sec. 4.1), we can further
analyze how adjusting preferences affect individuals’ responses. Next, we illustrate how a decision-maker may
disincentivize manipulation (or equivalently, incentivize improvement) by adjusting its preferences.
Theorem 4.5 (Preferences serve as (dis)incentives). Compared to the original strategic policy θ∗, decision-
makers can adjust preferences to disincentivize manipulation (i.e., PM (θ) decreases) under certain scenarios.
Specifically,
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1. When either of the following is satisfied, and the decision-maker adjusts preferences by increasing k1:

(i). q + ϵ ≥ 1; (ii).
PX|Y (θ∗|1)

P I(θ∗) ≤ 1 − q

1 − q − ϵ
.

2. When both of the followings are satisfied, and the decision-maker adjusts preferences by increasing k2:

(i). q + ϵ < 1 and α < 0.5; (ii).
PX|Y (θ∗|1)

P I(θ∗) >
1 − q

1 − q − ϵ
and PM (θ̂∗) > FCM −CI (0).

Moreover, when k1 (for scenario 1) or k2 (for scenario 2) are sufficiently large, adjusting preferences also
disincentivize the manipulation compared to the non-strategic policy θ̂∗.

Thm. 4.5 identifies conditions under which a decision-maker can disincentivize manipulation directly by
adjusting its preferences. The condition q + ϵ ≶ 1 determines whether the best response PM (θ) is strictly
increasing or single-peaked (Thm. 2.3); the condition PX|Y (θ∗|1)

P I (θ∗) ≶ 1−q
1−q−ϵ implies that θ∗ is lower/higher than

θmax in Thm. 2.3. In Fig. 2, we illustrate Thm. 4.5 where the left (resp. right) plot corresponds to scenario
1 (resp. scenario 2). Because increasing k1 (resp. k2) results in a lower (resp. higher) threshold than θ∗,
the resulting manipulation probability PM is lower for both scenarios. The detailed experimental setup and
more illustrations are in App. C.

4.3 Preferences shape algorithmic fairness
The threshold shifts under adjusted preferences further allow us to compare these policies against a certain
fairness measure. In this section, we consider strategic individuals from two social groups Ga, Gb distinguished
by some protected attribute S ∈ {a, b} (e.g., race, gender). Similar to Zhang et al. (2019; 2020b; 2022), we
assume the protected attributes are observable and the decision-maker uses group-dependent threshold policy
πs(x) = 1(x ≥ θs) to make decisions about Gs, s ∈ {a, b}. The optimal threshold for each group can be
found by maximizing the utility associated with that group: maxθs E[R(D, Y )|S = s].

Fairness measure. We consider a class of group fairness notions that can be represented in the following
form (Zhang et al., 2020a; Zhang & Liu, 2021):

EX∼P C
a

[πa(X)] = EX∼P C
b

[πb(X)]

where P C
s is some probability distribution over X associated with fairness metric C. For instance, under

equal opportunity (EqOpt) fairness (Hardt et al., 2016b), P
EqOpt
s (x) = PX|Y S(x|1, s); under demographic

parity (DP) fairness (Barocas et al., 2019), P DP
s (x) = PX|S(x|s) .

For threshold policy with thresholds (θa, θb), we measure the unfairness as
∣∣EX∼P C

a
[1(x ≥ θa)]−EX∼P C

b
[1(x ≥

θb)]
∣∣. Define the advantaged group as the group with larger EX∼P C

s
[1(X ≥ θ̂∗

s)] under non-strategic optimal
policy θ̂∗

s , i.e., the group with the larger true positive rate (resp. positive rate) under EqOpt (resp. DP)
fairness, and the other group as disadvantaged group.

Mitigate unfairness with adjusted preferences. Next, we compare the unfairness of different policies
and illustrate that decision-makers with adjusted preferences may result in fairer outcomes, as compared to
both the original strategic and the non-strategic policy.
Theorem 4.6 (Promote fairness while disincentivizing manipulation). Without loss of generality, let Ga be
the advantaged group and Gb disadvantaged. A strategic decision-maker can always simultaneously disincen-
tivize manipulation and promote fairness in any of the following scenarios:

1. When condition 1.(i) or 1.(ii) in Thm. 4.5 holds for both groups, and the decision-maker adjusts the
preferences by increasing k1 for both groups.

2. When condition 2.(i) and 2.(ii) in Thm. 4.5 hold for both groups and the decision-maker adjusts the
preferences by increasing k2 for both groups.

3. When condition 1.(i) or 1.(ii) holds for Ga, condition 2.(i) and 2.(ii) hold for Gb, and the decision-maker
adjusts preferences by increasing k1 for Ga and k2 for Gb.
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Corollary 4.7. If none of the three scenarios in Thm. 4.6 holds, adjusting preferences is not guaranteed to
promote fairness and disincentivize manipulation simultaneously.

Thm. 4.6 identifies all scenarios under which a decision-maker can simultaneously promote fairness and
disincentivize manipulation by simply adjusting k1, k2. Otherwise, it is not guaranteed that both objectives
can be achieved at the same time, as stated in Corollary 4.7.

A practical guideline for socially responsible decisions. The theoretical results in Thm. 4.5 give con-
ditions under which the decision-maker can adjust preferences to disincentivize manipulation and encourage
improvement, while the ones in Thm. 4.6 further sheds light on how the decision-maker can make explainable
and socially responsible decisions under the unforeseeable strategic individual behavior: instead of adding
separate regularizers to prevent manipulation or promote fairness, we show that the decision-maker may
adjust their preferences in an interpretable way to disincentivize manipulation, incentivize improvement and
promote fairness at the same time.

However, applying our theoretical results in practice needs access to several model parameters such as
q, ϵ, CM , CI , F I which can be estimated empirically. In App. B.5, we assume the decision-maker needs to
estimate all parameters except the feature distribution for the qualified individuals PX|Y (x|1) and the quali-
fication rate α. Then we provide an estimation procedure for the parameters using controlled experiments
on an experimental population4. With the model parameters, the decision-maker can derive accurate ex-
pressions for the decompositions ϕ1, ϕ2, ϕ3 and verify whether any condition in Thm. 4.5 and 4.6 holds. This
enables the decision-maker to design a policy by adjusting preferences. For example, if estimated probabili-
ties q + ϵ ≥ 1, then the decision-maker may train a policy with increased k1 to disincentivize manipulation
behavior (by Thm. 4.5, case 1).

5 Experiments
We conduct experiments on both synthetic Gaussian data and FICO score data (Hardt et al., 2016b)5.

FICO data (Hardt et al., 2016b). FICO scores are widely used in the US to predict people’s credit
worthiness. We use the preprocessed dataset containing the CDF of scores FX|S(x|s), qualification likelihoods
PY |XS(1|x, s), and qualification rates αs for four racial groups (Caucasian, African American, Hispanic,
Asian). All scores are normalized to [0, 1]. Similar to Zhang et al. (2022), we use these to estimate the
conditional feature distributions PX|Y S(x|y, s) using beta distribution Beta(ays, bys). The results are shown
in Fig. 9. We assume the improved feature distribution P I(x) ∼ Beta

(
a1s+a0s

2 , b1s+b0s

2
)

and CM − CI ∼
N (0, 0.25) for all groups, under which Assumption 2.2 and 2.1 are satisfied (see Fig. 8). We also considered
other feature/cost distributions and observed similar results. Note that for each group s, the decision-maker
finds its own optimal threshold

(
θ∗

s or θ∗
s(ki) or θ̂∗

s

)
by maximizing the utility associated with that group,

i.e., maxθs
E[R(D, Y )|S = s].

We first examine the impact of the decision-maker’s anticipation of strategic behavior on policies. In Fig. 21
(App. C.1), the strategic θ∗

s and non-strategic optimal threshold θ̂∗
s are compared for each group under

different q and ϵ. The results are consistent with Thm. 4.1, i.e., under certain conditions, θ∗
s is lower than

θ̂∗
s when q is sufficiently large.

We also examine the individual best responses. Fig. 3 shows the manipulation probability PM (θ) as a function
of threshold θ for Caucasians and Asians (blue) versus African Americans and Hispanic (orange) when q =
0.3, ϵ = 0.5. For all groups, there exists a unique θmax that maximizes the manipulation probability. These
are consistent with Thm. 2.3. We also indicate the manipulation probabilities under original strategic optimal
thresholds θ∗

s ; The results indicate that original strategic optimal thresholds may cause the disadvantaged
groups to have higher manipulation probabilities.

Note that the scenario considered in Fig. 3 satisfies the condition 1.(ii) in Thm. 4.5, because the original
strategic θ∗

s < θmax for both groups. We further conduct experiments in this setting to evaluate the impacts
of adjusted preferences. We first adopt EqOpt as the fairness metric, under which EX∼P C

s
[1(X ≥ θ̂)] =

4Miller et al. (2020) already argued that designing policy for any strategic classification problem is a non-trivial causal
modeling problem, thereby making the controlled experiments necessary for applications in practice.

5code available at https://github.com/osu-srml/Unforeseeable-SC/tree/main
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Table 2: Comparison between three types of optimal thresholds (FICO data). For Utility and PM values,
the left value in parenthesis is associated with the advantaged group (Caucasian, Asian), while the right
is for the disadvantaged group (African American, Hispanic). The first tabular is for Caucasian/African
American while the second is for Asian/Hispanic.

Threshold Utility PM Unfairness (EqOpt)
Non-strategic (0.698, 0.171) (0.331, 0.513) 0.136

Original strategic (0.704, 0.203) (0.211, 0.278) 0.055
Adjusted strategic (0.701, 0.189) (0.140, 0.155) 0.028

Threshold category Utility PM Unfairness (EqOpt)
Non-strategic (0.726, 0.427) (0.115, 0.322) 0.089

Original strategic (0.734, 0.448) (0.055, 0.161) 0.047
Adjusted strategic (0.726, 0.434) (0.023, 0.070) 0.022
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Figure 3: PM (θ) of Caucasian and African American (left plot) and of Asian and Hispanic (right plot).

FX|Y S(θ|1, s) and the unfairness measure of group Ga, Gb can be reduced to
∣∣FX|Y S(θ|1, a) − FX|Y S(θ|1, b)

∣∣.
Experiments for other fairness metrics are in App. C.1. The results are shown in Fig. 4, where dashed red and
dashed blue curves are manipulation probabilities under non-strategic θ̂∗ and strategic θ∗(k1), respectively.
Solid red and solid blue curves are the actual utilities U(θ̂∗) and U(θ∗(k1)) received by the decision-maker.
The difference between the two dotted green curves measures the unfairness between Caucasians/African
Americans or Asians/Hispanics. All weights are normalized such that k1 = 1 corresponds to the original
strategic policy, and k1 > 1 indicates the policies with adjusted preferences. Results show that when
condition 1(ii) in Thm. 4.5 is satisfied, increasing k1 can simultaneously disincentivize manipulation (PM

decreases with k1) and improve fairness. These validate Thm. 4.5 and 4.6.
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Figure 4: Impact of adjusted preferences: Caucasian and African American (left plot), Asian and Hispanic
(right plot)
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Figure 5: Impact of adjusted preferences (FICO data) when there is a Gaussian noise on q. The noises have
0 mean, and 0.05, 0.1 standard deviation from the left two plots to the right two plots.
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Figure 6: Impact of adjusted preferences (FICO data) when there is a Gaussian noise on ϵ. The noises have
0 mean, and 0.05, 0.1 standard deviation from the left two plots to the right two plots.

Tab. 2 compares the non-strategic θ̂∗, original strategic θ∗, and adjusted strategic θ∗(k1) when k1,c =
k1,aa = 1.5. It shows that decision-makers by adjusting preferences can significantly mitigate unfairness and
disincentivize manipulation, with only slight decreases in utilities.

Robustness of results when q, ϵ are noisy. We also present experiments to relax the assumption that
the decision-maker knows q, ϵ exactly on the Caucasian/African groups. Instead, they only know q + δ or
ϵ + δ where δ is a Gaussian noise. We do 10 rounds of simulations and produce plots with expectation and
error bars similar to Fig. 4 (Fig. 5 shows the results with noisy q, while Fig. 6 shows the results with noisy
ϵ). The results show adjusting k still works under noisy q and ϵ.

Gaussian Data. We also validate our theorems on synthetic data with Gaussian distributed PX|Y S in
App. C.2. Specifically, we examined the impacts of adjusting preferences on decision policies, individual’s
best response, and algorithmic fairness. As shown in Fig. 19, 20 and Tab. 5, 6, 7, these results are consistent
with theorems, i.e., adjusting preferences can effectively disincentivize manipulation and improve fairness.
Notably, we considered all three scenarios in Thm. 4.5 when condition 1.(i) or 1.(ii) or 2 is satisfied. For
each scenario, we illustrate the individual’s best response PM in Fig. 19 and show that manipulation can be
disincentivized by adjusting preferences, i.e., increasing k1 under condition 1.(i) or 1.(ii), or increasing k2
under condition 2.

6 Conclusions & Limitations

This paper proposes a novel probabilistic framework and formulates a Stackelberg game to tackle imitative
strategic behavior with unforeseeable outcomes. Moreover, the paper provides an interpretable decomposition
for the decision-maker to incentivize improvement and promote fairness simultaneously. The theoretical
results depend on some (mild) assumptions and are subject to change when ϵ, q, CM , CI change. Although
we provide a practical estimation procedure to estimate the model parameters, it still remains a challenge
to estimate model parameters accurately due to the expensive nature of doing controlled experiments. This
may bring uncertainties in applying our framework accurately in real applications.
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Broader Impact Statement
We believe our proposed framework can promote socially responsible machine learning under strategic clas-
sification settings since the outcomes of strategic behaviors in many real-world settings are imitative and
unforeseeable, thereby being more appropriately captured by our model. However, as mentioned in Sec. 6,
we need certain assumptions and an estimation procedure to apply the model in practice, which may bring
unexpected social outcomes.
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A Related Work
A.1 Strategic classification
Generally, strategic behaviors can cause feature and label distribution of individuals to shift, which have
long been closely related to concept drift (Lu et al., 2018), preference shift (Carroll et al., 2022), and
algorithm recourse (Karimi et al., 2022). Strategic classification has been extensively studied since (Hardt
et al., 2016a) formally modeled the interaction between individuals and a decision maker as a Stackelberg
Game, and proposed a framework for strategic classification. While taking the individuals’ best response into
account, the decision maker can make the optimal decision by anticipating strategic manipulation. During
recent years, more complex models on strategic classification have been proposed (Ben-Porat & Tennenholtz,
2017; Dong et al., 2018; Braverman & Garg, 2020; Jagadeesan et al., 2021; Izzo et al., 2021; Ahmadi et al.,
2021; Tang et al., 2021; Zhang et al., 2020b; 2022; Eilat et al., 2022; Liu et al., 2022; Lechner & Urner, 2022;
Chen et al., 2020b; Xie & Zhang, 2024a). Ben-Porat & Tennenholtz (2017) developed a best response linear
regression predictor where two players compete and each gets a payoff depending on the proportion of the
points he/she predicts more accurately than the other player. Dong et al. (2018) focused on the online version
of the strategic classification algorithm. Chen et al. (2020b) developed a strategic-aware linear classifier to
minimize the Stacelberg regret. Tang et al. (2021) considered the setting where the decision maker only knew
a subset of individuals’ actions. Levanon & Rosenfeld (2022) generalized strategic classification to situations
where individuals and the decision maker have aligned interests. Lechner & Urner (2022) proposed a novel loss
function considering both the accuracy of the prediction rule and its vulnerability to strategic manipulation.
Eilat et al. (2022) relaxed the assumption that individual best responses are independent of each other and
proposed a robust learning framework based on a Graph Neural Network. Horowitz et al. (2024) considered
the self-selection problem in strategic classification where agents decide whether to participate in the system.
Xie & Zhang (2024b) proposed a welfare-aware optimization framework in strategic learning settings.

Regarding randomness, Braverman & Garg (2020) proposed that randomized linear classifiers can be more
robust to strategic behaviors. Moreover, Jagadeesan et al. (2021) added noise to standard strategic classi-
fication and modified the standard microfoundations into alternative microfoundations to let a portion of
individuals be irrational and not have perfect knowledge about the decision maker’s policy. However, they
just consider directly adding noise to the best response without modeling the unforeseeable and imitative
nature of human agents’ behavior.

A.2 Improvement with a label change
Another line of research takes improvement into account(Liu et al., 2018; Zhang et al., 2020b; Liu et al.,
2020; Rosenfeld et al., 2020; Chen et al., 2020a; Haghtalab et al., 2020; Kleinberg & Raghavan, 2020; Alon
et al., 2020; Miller et al., 2020; Shavit et al., 2020; Bechavod et al., 2021; Jin et al., 2022; Barsotti et al.,
2022; Ahmadi et al., 2022a; Raab & Liu, 2021; Heidari et al., 2019; Somerstep et al., 2024). Liu et al. (2018;
2020); Zhang et al. (2020b); Rosenfeld et al. (2020); Ahmadi et al. (2022b) studied the conditions under
which individuals will choose to improve their qualifications. Specifically, Liu et al. (2018) investigated how
different decision rules (e.g. maxutil, fair) influence population qualification. Liu et al. (2020) modeled the
improvement cost as a random variable and further pointed out that a subsidizing mechanism for individual
costs can be beneficial for improving behaviors. Zhang et al. (2020b) studied the dynamic of population
qualification under a partially observed Markov decision problem setting, where improvement probability is
given as a parameter. Rosenfeld et al. (2020) proposed a Look-ahead regularization to directly penalize the
drop of population qualification. Ahmadi et al. (2022b) proposed a common improvement capacity model
and a individualized improvement capacity model to optimize social welfare and fairness while considering
individual improvement. Jin et al. (2022); Chen et al. (2023) focused on designing subsidy mechanisms to
incentivize improvement.

A.3 Studies considering both behaviors
There are other studies considering both strategic manipulation and improvement, but most of them modeled
manipulation and improvement in a similar way(Chen et al., 2020a; Haghtalab et al., 2020; Kleinberg &
Raghavan, 2020; Alon et al., 2020; Miller et al., 2020; Shavit et al., 2020; Bechavod et al., 2021; Jin et al.,
2022; Barsotti et al., 2022; Ahmadi et al., 2022a; Harris et al., 2022b; Horowitz & Rosenfeld, 2023; Yan
et al., 2023; Chen et al., 2023). Specifically, as illustrated in the abstract, the above-listed works all assume
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the agents can foresee the outcomes of their actions and they can change their features arbitrarily as long
as the cost function permits. Moreover, these works modeled improvement and manipulation by assigning
causal/non-causal features, which may not cover the practical cases in our paper such as college admission
and job application. We further compare the differences between our model and causal strategic learning
in App. B.1. Additionally, Perdomo et al. (2020); Izzo et al. (2021); Hardt et al. (2022); Jin et al. (2024)
proposed and elaborated the concept of performative prediction where predictive decisions can influence the
outcomes to predict. In general, this framework can model both manipulation and improvement but lacks
interpretability.

There are only a few works considering both actions while incorporating randomness (Harris et al., 2022a;
Bracale et al., 2024). Harris et al. (2022a) mainly focused on the situation where the decision-maker can
choose from disclosing partial information of the model (namely, persuasion) and the agents estimate the
best response using the partial information. Since the randomness completely comes from the information
revealed by the decision-maker, this setting is different from ours where the randomness comes from the
unforeseeable and imitative nature of agent improvement and manipulation. As a concurrent work, Bracale
et al. (2024) considered a general setting where different actions incur random costs and lead to different
feature-label distributions. However, they only focused on estimating the distribution map generally, which is
tangential to our focus on disincentivizing manipulation, incentivizing improvement, and promoting fairness.
Their contribution to estimating the distribution map may further facilitate the practical applications of our
model.

A.4 Machine learning fairness
While machine learning algorithms are able to achieve high accuracy in different tasks, they are likely to
be unfair to individuals from different ethnic groups. To measure the fairness of algorithms, various metrics
have been proposed including demographic parity (Feldman et al., 2015), equal opportunity (Hardt et al.,
2016b), equalized odds (Hardt et al., 2016b) and equal resource (Gupta et al., 2019).

More importantly, several works have studied how strategic behaviors impact fairness (Liu et al., 2018; Zhang
et al., 2020b; Liu et al., 2020; Zhang et al., 2022). Specifically, Liu et al. (2018) considered one-step feedback
where static fairness does not promote dynamic fairness. Zhang et al. (2020b) analyzed the long-term impact
of static fairness metrics based on dynamics of population qualification. Liu et al. (2020) studied how hetero-
geneity across groups and the lack of realizability can destroy long-term fairness in strategic classification.
Zhang et al. (2022) has proposed a probabilistic model to demonstrate strategic manipulation as well as
the fairness impacts of strategic behaviors, where the individuals shift their feature distribution instead of
directly changing their features. The work also assumed randomness in manipulation cost. Meanwhile, it
explored influences on different fairness metrics when strategic manipulation is present(Barocas et al., 2019;
Hardt et al., 2016b).

B Additional discussions
B.1 The comparison between our model and causal strategic learning
Previous works in causal strategic learning model every strategic classification problem as a structural causal
model (SCM). SCM is a graphic model depicting the causal relationships between different features and the
label, where features can be classified as causal or non-causal after a causal discovery process (Miller et al.,
2020). Strategic manipulation means intervening in the non-causal nodes and improvement corresponds to
intervening in the causal nodes. Though the model takes both behaviors into account and can accommodate
complex causal structures, it has the following weaknesses: (i) The individuals can intervene in any feature
node arbitrarily with a deterministic outcome to any value once their budgets permit, which is not practical
as illustrated in 1; (ii) In most real-world cases, individuals are not able to intervene the observable features
directly. Instead, they intervene in other unobserved features (causal or non-causal) to change the observable
features. So it is sometimes meaningless to distinguish whether an observable feature is causal or non-causal,
because the root causes of its value change may be diverse.

We illustrate (ii) more clearly in Fig. 7, a causal graph where U, V are unobserved. However, U is non-causal
and V is causal. It is easy to see only X is observable and correlated to Y , but its change can be either
“causal" or “non-causal" with respect to Y .
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By contrast, our probabilistic framework does not classify X as causal or non-causal. It models both ma-
nipulation and improvement as imitating qualified individuals and incorporates the randomness of outcomes
and costs. With limited control over their features, individuals can only expect a distribution shift and
may even fail when they take certain actions. We believe the concise yet effective design of our model is
more suitable for many practical situations nowadays, while the causal strategic models sometimes assign
too much power to individuals.

Figure 7: An example causal graph where only X is observable and U, V are unobserved.

B.2 More practical examples fitting to our model
In Sec. 1 and Appendix B.1, we already explain the motivation of our model in detail. Here we provide
more motivating examples besides college admission:
1. Loan application:

(a) Manipulation: an unqualified applicant may “steal" the features from qualified ones by purchasing a
social security card (SSN) from the hackers. The “stolen" features are still random when the applicant
decides to purchase an SSN because the card is often randomly drawn from many stolen cards of
qualified individuals.

(b) Improvement: an unqualified applicant may observe the qualified individuals’ profiles and strive to
imitate their behaviors. However, the applicant never knows the realization of his/her features before
trying to improve. The applicant can only try their best to mimic qualified individuals and expects
the successful imitation will cause his/her feature distribution to shift.

2. Job application:

(a) Manipulation: an unqualified applicant may “steal" the features from qualified ones by hiring an
imposter to take the interview instead of him/her (especially when remote interviews are prevalent
today). Similar to previous examples, the applicant does not know the exact feature realization when
making the decision to manipulate.

(b) Improvement: an unqualified applicant may still observe the features of qualified ones by reading
their interview preparation tips or looking at their technical portfolios. Then they may try hard to
imitate the qualified individuals. Similar to previous examples, the applicant still has no idea of the
exact outcome when he/she decides to improve.

B.3 The option of "doing nothing"
Our model implicitly includes the action of "doing nothing". Specifically, our model assumes improvement
only succeeds with probability q; and the improvement cost differs among agents which is modeled as a
random variable CI . For agents who do nothing, we may consider them as those who take improvement
action at zero costs but fail to improve. Because no cost is incurred and the improvement fails, the
resulting features remain the same and the outcome is equivalent to "doing nothing".

Although it may be intuitive to model "doing nothing" as a separate action, we argue that it is more realistic in
practice for individuals to always take an action. As pointed out by Horowitz et al. (2024), agents who decide
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to participate in a system will pay an unavoidable cost, and the cost is a part of the "improvement cost".
On the contrary and as we argued before, unqualified individuals in our model are not given an explicit
option of "doing nothing" with a deterministic 0 cost and 0 utility in the first place. In our framework
where improvement is modeled as the imitative behavior in social learning (the third paragraph on page
2), all unqualified individuals staying in the system are influenced by the desire to be qualified and must
do something to imitate the qualified profiles because they know they are unqualified. Otherwise, they will
just quit the system and are not in our interest. In the college admission example, all unqualified students
who do not give up applications and do not cheat are doing similar things: striving to learn more courses,
take tests, and prepare for application packages. The only difference is the realization of the improvement
outcomes (some students really improve, some do not). To concretely answer your question of CM , CI , we
slightly modify the "budget" to "utility" in footnote 3: For all agents already in the decision-making system,
they already have a sufficiently large initial utility exceeding CM , CI . This means if they choose to quit,
they lose the initial utility.

B.4 Discussion on adjusted preferences
Utility loss from the adjusted preferences. Although adjusting preferences is a simple yet effective
way to promote fairness and disincentivize manipulation, the actual utility received by the decision-maker
inevitably diminishes as k1 or k2 changes (as the actual utility the decision-maker receives is always de-
termined by the original function U(θ) in equation 3). Nonetheless, such diminished utilities may still be
higher than the utility under non-strategic policy θ̂∗. This is illustrated empirically in Sec. 5 and Appendix
C.

Adjusted preference as a regularizer to promote fairness. We have shown that adjusting weights
k1, k2, k3 in learning objective (equation 5) can control the individual behavior and algorithmic fairness.
Indeed, we can view this adjustment mechanism as a regularization method: by adjusting weights, we are
essentially changing the objective U(θ) by adding a regularizer, i.e.,

Û(θ) + Φ(θ, k1, k2, k3) = U(θ) + ∆Φ(θ, k1, k2, k3)︸ ︷︷ ︸
regularizer

with the regularizer ∆Φ(θ, k1, k2, k3) defined as follows:

Φ(θ, k1, k2, k3) − Φ(θ, u(1 − α), u(1 − α), u(1 − α))

Weights k1, k2, k3 are the regularization parameters. The analysis in Sec. 4.2 and 4.3 suggests that to
learn optimal policies that satisfy certain constraints such as bounded fairness violation and/or bounded
individual’s manipulation, we may transform this constrained optimization into a regularized unconstrained
optimization. This view, by incorporating fairness and strategic classification in a simple unified framework,
may provide insights for researchers from both communities.

B.5 Estimate Model Parameters
A complete estimation procedure. With only the knowledge of conditional distribution of qualified in-
dividuals PX|Y (x|1) and the population’s qualification rate α, we introduce a complete procedure to estimate
PX|Y (x|0), q, P I , ϵ, PCM −CI

(x) sequentially. Specifically, we need to do controlled intervention experiments
on an experimental population as follows.
1. Estimate PX|Y (x|0): Set the lowest decision threshold θ = 0 to estimate PX|Y (x|0). Since all un-

qualified individuals will be accepted, the resulting distribution is the original mixture distribution
(1 − α) · PX|Y (x|0) + α · PX|Y (x|1). Thus, with minor assumptions on the feature distribution fami-
lies, we can estimate PX|Y (x|0).

2. Estimate q: Apply the strictest auditing procedures (e.g., audit everyone in [26]) to the population
to disable manipulation. With manipulation disabled and arbitrary decision threshold θ applied, all
unqualified people choose to improve, and the resulting qualification rate is (1 − α)q + α. Thus, by
examining the qualification rate after the intervention we can get the estimation of q.

20



Published in Transactions on Machine Learning Research (10/2024)

3. Estimate P I : Apply an arbitrary decision threshold θ to the population, the resulting population prob-
ability density distribution will be a mixture of (1 − α)(1 − q)P I + [(1 − α)q + α]PX|1. Similarly, with
minor assumptions on the distribution family of P I , we can estimate P I .

4. Estimate ϵ: With q, P I known, the decision-maker can first apply another arbitrary θ to new samples
from the population and observe the resulting new population. This gives the new qualification rate αp.
Because αp = α + (1 − α)(1 − PM (θ)q) where PM (θ) is the probability of manipulation under θ, we can
then compute the value of PM (θ). Note that the decision-maker also knows how many individuals (among
all individuals) are discovered to manipulate (cheat), and let this proportion be ϵc, then we can estimate
the manipulation detection probability ϵ as ϵc

PM (θ) .

5. Finally, with all previous parameters known, we can apply different θ to the population several times to
obtain data points of PM . Then since PM corresponds to points of FCM −CI

, with minor assumptions on
the distribution family of PM , we can directly fit the distribution and get PCM −CI

.

It is worth noting that all the above steps can be more robust by doing multiple intervention experiments,
and controlled experiments are necessary Miller et al. (2020). We will add the above discussion to the
paper to improve its significance. Finally, with all the parameters, the decision-maker can first apply
Thm. 4.6 to see how to adjust its preferences, and then perform a grid search to find the best k.

Robustness of results when q, ϵ are noisy. We also present an experiment to relax the assumption that
the decision-maker knows q, ϵ exactly on FICO data. Instead, they only know q + δ or ϵ + δ where δ is a
Gaussian noise. Table 3 show the results with noisy q, while Table 4 show the results with noisy ϵ). The
results show adjusting k still works under noisy q and ϵ although inconsistency exists.

Table 3: Comparison between three types of optimal thresholds (FICO data) when there is a Gaussian noise
on q with standard deviation 0.1 and k1,c = k1,aa = 1.25. For utility and PM , the left value in parenthesis
is for Group a, while the right is for Group b. The fairness metric is eqopt.

Threshold category Utility PM Unfairness
Non-strategic (0.698, 0.171) (0.331, 0.513) 0.136

Original average noisy strategic (0.703, 0.201) (0.212, 0.284) 0.057
Adjusted average noisy strategic (0.700, 0.192) (0.170, 0.220) 0.043

Table 4: Comparison between three types of optimal thresholds (FICO data) when there is a Gaussian noise
on ϵ with standard deviation 0.1 and other settings stay the same.

Threshold category Utility PM Unfairness
Non-strategic (0.698, 0.171) (0.331, 0.513) 0.136

Original average noisy strategic (0.700, 0.195) (0.192, 0.251) 0.050
Adjusted average noisy strategic (0.698, 0.185) (0.158, 0.194) 0.037

C Additional empirical results
C.1 Additional results on FICO score
Firstly, Fig. 9 shows the conditional distribution PX|Y S and P I of each ethnic group. Fig. 8 demonstrates
Assumption 2.1 is satisfied. Fig. 21 shows the (non)-strategic optimal thresholds under different combinations
of q, ϵ for each ethnic group. All four plots demonstrate the correctness of Thm. 4.1.

Experiments with demographic parity as a new fairness metric.

We also reconducted the above experiments with demographic parity (DP) as the new fairness metric. As
illustrated in Sec. 4.3, P DP

s (x) = PX|S(x|s). Similar to Fig. 4 and Fig. 4, we produce Fig. 11 based on DP,
which demonstrate the same patterns as the figures based on Eqopt.
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Figure 8: Illustration of Assumption 2.1 on FICO Data
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Figure 9: Manipulation curve and manipulation probability for both groups under optimal non-strategic
thresholds

C.2 Results for Gaussian Data
Assume there are two groups For s ∈ {a, b}, we both have:

PX|Y S(x|0, s) ∼ N (0, 1)
P I

s ∼ N (0.5, 1)
PX|Y S(x|1, s) ∼ N (1, 1)

CM − CI ∼ N (0, 0.25) (6)

We first illustrate the conditional feature distributions for Gaussian data in Fig. 10. With these parameters
pre-determined, we still need to vary α, ϵ, q to obtain θ̂∗, θ∗ under different parameter combinations.

(Non)-strategic optimal threshold and utility

To illustrate the complex nature under different permutations of parameters, with the pre-determined pa-
rameters in equation 6 and α = 0.6, we vary q and plot both non-strategic optimal thresholds and regular
strategic ones with respect to different ϵ as shown in the bottom plot of Fig. 12, where the lower graphs
illustrate Thm. 4.1, i.e. the red line is always under the blue line.

We also demonstrate the strategic utility under different combinations of q, ϵ with pre-determined parameters
in equation 6 and α = 0.3 or α = 0.6. Fig. 13 and 14 suggest the complicated nature of regular strategic
utility under different parameter combinations. It is possible to have 0,1 or 2 extreme points.

Illustration of threshold shifts while adjusting k

To illustrate 4.5, we demonstrate the effects of adjusting each of k1, k2, k3. According to Fig. 15 and 16,
we can see when k1 is large enough, the optimal strategic threshold is definitely lower than the optimal
non-strategic ones. However, when α is small, we need larger k1 to pull θ∗ downward. According to Fig.
17 and 18, we can see when the population is majority qualified, adjusting k2 is not guaranteed to shift θ∗

upward (Fig. 18).

22



Published in Transactions on Machine Learning Research (10/2024)

−4 −2 0 2 4
x

0.0

0.1

0.2

0.3

0.4

pd
f

unqualified
fail to improve
qualified

−4 −2 0 2 4
x

0.0

0.2

0.4

0.6

0.8

1.0

cd
f

unqualified
fail to improve
qualified

Figure 10: Illustration of equation 6
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Figure 11: Illustration of Thm. 4.5 and Thm. 4.6 in FICO Data with fairness metric DP. Left figure is for
Caucasian and African American, while the right is for Asian and Hispanic

Illustration of condition 1.(i), Thm. 4.5

We first show a parameter setting satisfying condition 1.(i) in Thm. 4.5. With pre-determined parameters
in equation 6 , we set q = ϵ = 0.5 and αa = 0.2, αb = 0.25. This matches the notation tradition in Sec. 4.3
where group a is the disadvantaged group with a lower qualified percentage. Also, because q + ϵ ≥ 1, the
setting satisfies condition 1.(i) in Thm. 4.5. We first illustrate the manipulation probability under optimal
original strategic threshold θ∗

s as in Fig. 10. From Fig. 20, we can set k1a = k2a = 1.25 to let the strategic
utility still be larger than the one under non-strategic optimal threshold(i.e. the solid blue line is above the
solid red line), while lower the cumulative density dramatically (i.e. the dotted green line) to admit more
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Figure 12: (Non)-strategic optimal threshold. We regularize y-axis to be [-5,5] to prevent numerical issues.

qualified individuals and disincentivize manipulation (i.e. the dashed blue line). The details of comparisons
are shown in Table 6.

Illustration of condition 1.(ii), Thm. 4.5

With pre-determined parameters in equation 6 , we set q = ϵ = 0.25 and αa = 0.4, αb = 0.6. This
matches the notation tradition in Sec. 4.3 where group a is the disadvantaged group with a lower qualified
percentage. We first illustrate the manipulation probability under optimal original strategic threshold θ∗

s

as in Fig. 19. Fig. 19 reveals that 1.(ii) in 4.5 is satisfied because the orange and green points are both
located before the extreme large point of PM (θ). Thus, we could increase k1s to disincentivize manipulation
while improving fairness as shown in Fig. 20. From Fig. 20, we can set k1a = k2a = 1.25 to let the
strategic utility still be larger than the one under non-strategic optimal threshold(i.e. the solid blue line
is above the solid red line), while lower the cumulative density dramatically (i.e. the dotted green line) to
admit more qualified individuals and disincentivize manipulation (i.e. the dashed blue line). In Table 5,
We summarize the comparison between non-strategic θ̂∗, original strategic θ∗, and adjusted strategic θ∗(k1)
(when k1,c = k1,aa = 1.25). It shows that decision-makers by adjusting preferences can significantly mitigate
unfairness and disincentivize manipulation, with only slight decreases in utilities.

Illustration of condition 2, Thm. 4.5

Besides, we also show one more parameter setting satisfying condition 2 in Thm. 4.5. With pre-determined
parameters in equation 6 , we also set q = ϵ = 0.2 and αa = 0.3, αb = 0.35. This matches the notation
tradition in Sec. 4.3 where group a is the disadvantaged group with a lower qualified percentage. Also, based
on Fig. 19, q + ϵ < 1 and αa, αb < 0.5, the setting satisfies condition 2 in Thm. 4.5. We first illustrates
the manipulation probability under optimal original strategic threshold θ∗

s and non-strategic threshold θ̂∗
s as

in Fig. 19. As shown in Fig. 20, for both groups, we demonstrate the manipulation probability for θ̂∗, θ∗

and θ(k1) when k1 varies, (non)-strategic utility and cumulative density conditioned on Y = 1 (i.e. this
measures the unfairness based on equal opportunity). This plot suggests we can find suitable k2a and k2b to
disincentivize manipulation and promote fairness, while also making the utility higher than the one under
non-strategic optimal threshold. From Fig. 20, we can set both k2a and k2b at 1.25 to let the strategic utility
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Figure 13: Regular strategic utility when α = 0.6. The left figure has ϵ = 0, q = 0.5 and the right has
ϵ = 0.75, q = 0.25
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Figure 14: Regular strategic utility when α = 0.3. The left figure has ϵ = 0, q = 0.5 and the right has
ϵ = 0.75, q = 0.25
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Figure 15: Strategic optimal threshold θ∗(k1) after increasing k1 while keeping k2, k3 fixed. Left figure has
q = 0.01 and right figure has q = 0.99, while both figures have α = 0.6

still be larger than the utility under non-strategic optimal threshold (i.e. the solid blue line is above the
solid red line), while keeping the cumulative density function closer (i.e. the green dotted line) to mitigate
unfairness, and also disincentivize manipulation (i.e. the blue dashed line). The details of comparisons are
shown in Table 7.
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Figure 16: Strategic optimal threshold θ∗(k1) after increasing k1 while keeping k2, k3 fixed. Left figure has
q = 0.01 and right figure has q = 0.99, while both figures have α = 0.3.We regularize y-axis to be [-5,5] to
prevent numerical issues.
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Figure 17: Strategic optimal threshold θ∗(k2) after increasing k2 while keeping k1, k3 fixed. Left figure has
q = 0.01 and right figure has q = 0.99, while both figures have α = 0.3. We regularize y-axis to be [-5,5] to
prevent numerical issues.
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Figure 18: Strategic optimal threshold θ∗(k2) after increasing k2 while keeping k1, k3 fixed. Left figure has
q = 0.01 and right figure has q = 0.99, while both figures have α = 0.6
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Figure 19: Manipulation probability PM (θ): from left to right are plots for condition 1.(i), 1.(ii), 2
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Figure 20: Illustration of Thm. 4.5 and Thm. 4.6. From left to right are illustrations for condition
1.(i),1.(ii),2

Table 5: Comparison between three types of optimal thresholds for Gaussian data satisfying condition 1.(i).
For utility and PM , the left value in parenthesis is for Group a, while the right is for Group b. The fairness
metric is eqopt.

Threshold category Utility PM Unfairness
Non-strategic (0.054, 0.327) (0.519, 0.368) 0.280

Original strategic (0.081, 0.384) (0.266, 0.168) 0.073
Adjusted strategic (0.088, 0.385) (0.176, 0.159) 0.008
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Figure 21: (Non)-strategic optimal thresholds under different q, ϵ for different ethnic groups (top left: Cau-
casian; top right: African American; bottom left: Asian; bottom right: Hispanic)

Table 6: Comparison between three types of optimal thresholds for Gaussian data satisfying condition 1.(ii).
For utility and PM , the left value in parenthesis is for Group a, while the right is for Group b. The fairness
metric is eqopt.

Threshold category Utility PM Unfairness
Non-strategic (0.029, 0.060) (0.434, 0.393) 0.086

Original strategic (0.204, 0.251) (0.046, 0.040) 0.019
Adjusted strategic (0.191, 0.241) (0.023, 0.023) 0

Table 7: Comparison between three types of optimal thresholds for Gaussian data satisfying condition 2.
For utility and PM , the left value in parenthesis is for Group a, while the right is for Group b. The fairness
metric is eqopt.

Threshold category Utility PM Unfairness
Non-strategic (−0.036, −0.014) (0.674, 0.686) 0.088

Original strategic (0.001, 0.004) (0.508, 0.547) 0.084
Adjusted strategic (0, 0) (0.500, 0.500) 0.002
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D Derivations and Proofs
D.1 Derivations of equation 1
UM (θ) is the expected utility gain of an unqualified agent if choosing to manipulate: i. If the manipulation
is not exposed, the probability of admission is 1 − FX|Y (θ|1) because the manipulation leads the agents
to get his/her new feature from PX|Y =1, which happens at a probability 1 − ϵ; ii. If the manipulation
is exposed, the probability of admission is 0, which happens at a probability ϵ; iii. If the agent does not
manipulate, the probability of admission is 1−FX|Y (θ|0) because now his/her feature is from the unqualified
population, and keep in mind that the agents will never know the exact values of his/her feature when
he/she makes decisions; Then according to the total probability theorem, the expectation of utility gain
UM (θ) = (1 − ϵ) · (1 − FX|Y (θ|1)) + ϵ · 0 − (1 − FX|Y (θ|0)) − CM .

UI(θ) is the expected utility gain of an unqualified agent if choosing to improve: i. If the improvement
succeeds, the probability of admission is 1 − FX|Y (θ|1) because the improvement leads the agents to get
his/her new feature from PX|Y =1, which happens at a probability q; ii. If the manipulation is exposed,
the probability of admission is 1 − F I(θ), which happens at a probability 1 − q; iii. If the agent does not
manipulate, the probability of admission is 1 − FX|Y (θ|0).

Then according to the total probability theorem, we can derive UI(θ) as well. Finally, substitute above two
terms into PM (θ) = Pr (UM (θ) > UI(θ)) and we get equation 1.

D.2 Proof of Thm. 2.3
Assumption 2.2 ensures that PCM −CI

> 0 when θ in its domain. Thus, we can directly take the derivative
inside equation 1, we can get (1 − q) · P I(θ) − (1 − q − ϵ)PX|Y (θ|1). To get its sign, we only need to consider
(1 − q) − (1 − q − ϵ) PX|Y (θ|1)

P I (θ) .

Thus, if 1 − q − ϵ ≤ 0, the derivative is always larger than 0 (since q < 1). So under this situation, PM is
always increasing. Otherwise, since PX|Y (θ|1)

P I (θ) is increasing according to Assumption 2.1, it will first increase
and then decrease, with PX|Y (θmax|1)

P I (θmax) = 1−q
1−q−ϵ .

Since PX|Y (θmax|1)
P I (θmax) is monotonically increasing and 1−q

1−q−ϵ = 1 + ϵ
1−q−ϵ , when q increases 1 + ϵ

1−q−ϵ increases,
making θmax increases. The same also holds when ϵ increases. Note that while q or ϵ increases, we still need
q + ϵ ≤ 1.

D.3 Proof of Thm. 4.1
Assume θ ∈ (a, b). When q → 1, improvement will always succeed. Also, Thm. 2.3 reveals PM (θ) reaches
its minimum when θ → a, so PM (a) < 0.5. Thus, improvement will always bring a benefit that is larger
than manipulation to the strategic decision-maker (since improvement always succeeds). Thus, the decision
maker may set a threshold as low as possible (→ a) to maximize its utility, which will always be lower than
the non-strategic optimal threshold.

D.4 Proof of Prop. 4.2
Assume θ ∈ (a, b). Consider the situation when k2, k3 both stay fixed and k1 → ∞, U = Φ + Û is dominated
by k1ϕ1. Noticing ϕ1 reaches its maximum when θ → a, we will also have the new optimal θ∗(k1) → a.
Since a is the minimum possible value of the threshold, the optimal threshold when ka is large enough
will definitely be smaller than the optimal non-strategic threshold as well as the original optimal strategic
threshold.

D.5 Proof of Prop. 4.3
Assume θ ∈ (a, b). Consider the situation when k1, k3 both stay fixed and k2 → ∞, U = Φ + Û is dominated
by −k2ϕ2. ϕ2 → 0 both when θ → b or a (i.e. ϕ2 reaches its minimum). However, the non-strategic utility
should be 0 when θ → b but smaller than 0 when θ → a if not majority of people are qualified. This will
make the new optimal θ∗(k2) → b. Since b is the maximum possible value of the threshold, the optimal
threshold when k2 is large enough will definitely be larger than the optimal non-strategic threshold as well
as the original optimal strategic threshold.
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D.6 Proof of Prop. 4.4
Assume θ ∈ (a, b). Consider the situation when k1, k2 both stay fixed and k3 → b, U = Φ+Û is dominated by
−k3ϕ3. Take the derivative of (1−ϵ) ·(1−FX|Y (θ|1))−(1−FX|Y (θ|0)) (the term multiplied by PM in ϕ3), we
get 1− (1− ϵ) PX|Y (X|1)

PX|Y (X|0) . This suggests the term will first increase and then decrease. Thus, the maximizer of

−k3 ·ϕ3 = −k3 ·PM ·(1−(1−ϵ) PX|Y (X|1)
PX|Y (X|0) ) will locate before the root of (1−ϵ)·(1−FX|Y (θ|1))−(1−FX|Y (θ|0)).

Then noticing that increasing ϵ will lower the value of the root, we can confirm the existence of ϵ̄ to make the
root small enough, thereby making the maximizer of −k3 · ϕ3 smaller enough. Then because U is dominated
by −k3ϕ3, θ∗(k3) will also be small enough.

D.7 Proof of Thm. 4.5
Assume θ ∈ (a, b). Then: 1. Under condition 1.(i), Thm. 2.3 shows PM (θ) strictly increases. Because
increasing k1 will cause θ∗(k1) to left shift until approaching a, PM (θ∗(k1)) will keep decreasing to its
minimum value.

2. Under condition 1.(ii), Thm. 2.3 shows PM (θ) strictly increases before θmax, where PX|Y (θmax|1)
P I (θmax) = 1−q

1−q−ϵ .
Since PX|Y (θ|1)

P I (θ) is increasing, we would know θ∗ < θmax. Because increasing k1 will cause θ∗(k1) to left shift
until approaching a, PM (θ∗(k1)) will keep decreasing to its minimum value.

3. Under condition 2, Thm. 2.3 shows PM (θ) strictly decreases after θmax, where PX|Y (θmax|1)
P I (θmax) = 1−q

1−q−ϵ .
Since PX|Y (θ|1)

P I (θ) is increasing, we would know θ∗ > θmax. Because increasing k2 when α ≤ 0.5 will cause
θ∗(k2) to right shift until approaching a, PM (θ∗(k2)) will keep decreasing to FCM −CI

(0), which is smaller
than PM (θ̂∗).

D.8 Proof of Thm. 4.6
Define Fc

s as some cumulative density function (CDF) associated with fairness metric C. The unfairness∣∣EX∼P C
a

[1(x ≥ θa)] − EX∼P C
b

[1(x ≥ θb)]
∣∣ can also be written as Fc

a(θa) − Fc
a(θb).

1. Under situation 1, Thm. 4.5 already reveals increasing k1 can disincentivize strategic manipulation.
Meanwhile, Fc

s(θ∗
s(k1)) will decrease for both groups because θ∗

s(k1) decreases for both group. Thus, there
must exist k1a, k1b to mitigate the difference between Fc

a(θ∗
a(k1)) and Fc

b(θ∗
b (k1)), which is promoting the

fairness at the same time of disincentivizing manipulation.

2. Under situation 2, Thm. 4.5 already reveals increasing k2 can disincentivize strategic manipulation.
Meanwhile, Fc

s(θ∗
s(k2)) will increase for both groups because θ∗

s(k2) increases for both group. Thus, there
must exist k2a, k2b to mitigate the difference between Fc

a(θ∗
a(k2)) and Fc

b(θ∗
b (k2)), which is promoting the

fairness at the same time of disincentivizing manipulation.

3.Under situation 3, Thm. 4.5 already reveals increasing k1 for group a and increasing k2 for group b can
disincentivize strategic manipulation. Meanwhile, Fc

s(θ∗
a(k1)) will decrease for a and Fc

s(θ∗
b (k2)) increase for

b. Thus, because a is already the disadvantaged group, the difference between Fc
s(θ∗

a(k1)) and Fc
s(θ∗

b (k2))
will be mitigated, which is promoting the fairness at the same time of disincentivizing manipulation.

D.9 Proof of Corollary 4.7
Corollary 4.7 can be derived directly from Thm. 4.5 and Thm. 4.6. To recap, Thm. 4.5 identifies all
scenarios under which manipulation is guaranteed to be disincentivized via adjusting preferences; Theorem
reftheorem:fairness finds all scenarios when promoting fairness and disincentivizing manipulation can be
attained simultaneously; Corollary 4.7 emphasizes all scenarios where disincentivizing manipulation does
not guarantee fairness improvement.

In Corollary 4.7, to ensure the manipulation to always be disincentivized, both groups a, b should satisfy
either scenario identified in Thm. 4.5. This results in four possible combinations, and three out of these
four are the scenarios found in Thm. 4.6. The left one situation is the case in Corollary 4.7 (group a
satisfies condition 2 and group b satisfies condition 1). In this case, group a can be disincentivized only by
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increasing k2. However, increasing k2 can only make the decision threshold θ̂∗
a higher, which will exacerbate

the unfairness (since group a has αa < 0.5, by condition 2.(i)).
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