
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Do LLMs Really Understand Code? A Seman-
tic Benchmark with Automated Question Gen-
eration and Evaluation

Anonymous authors
Paper under double-blind review

Abstract

Large language models (LLMs) have demonstrated impressive results in code
generation tasks, yet it is unclear to what extent they genuinely understand
code semantics and whether this affects their ability to write high-quality
code. To address this question, we introduce SemBench, a novel benchmark
consisting of 1,000 diverse C programs sourced from the CodeParrot GitHub-
code dataset, with 15,404 semantic questions spanning six fundamental
properties: function reachability, loop reachability, data dependency, liveness
of variables, dominator sets, and dead code. These six types of concepts
are taught in undergraduate-level programming language classes and can be
computed precisely and efficiently by deterministic algorithms. In contrast to
existing benchmarks (e.g. HumanEval, MBPP, CodeXGLUE, SWE-bench)
that emphasize code generation or functional correctness, our benchmark
focuses on semantic understanding with deterministic answers. We evaluate
14 popular LLMs across 7 families—including GPT-4o Mini, GPT-3.5
Turbo, DeepSeek-Coder, CodeLlama, Qwen, StarCoder, Mistral, and Phi.
To our surprise, they have very high failure rates, ranging from 21.40% to
81.86%. Category analysis reveals a sharp split between local control-flow
and global data-flow reasoning and highlights performance divergence across
task types, where different models excel on different categories. SemBench
rankings demonstrate high correlation with HumanEval and MBPP, which
proves its potential to be a good indicator of whether an LLM can produce
high-quality code. In fact, further study shows that the LLMs under
evaluation have difficulty even understanding their own coding output. For
example, DeepSeek-Coder-V2-Lite-Instruct fails to identify variable liveness
correctly 58.23% time. Overall, our experiments provide deeper insights into
semantic understanding, reveal the substantial gap between semantics and
code completion in modern LLMs, and open new opportunities for further
improvements of coding LLMs.

1 Introduction

Large Language Models (LLMs) have achieved remarkable progress in code-related tasks,
evolving significantly from demonstrating reasoning capabilities Chen et al. (2021), to
instruction-tuned architectures Ouyang et al. (2022), and retrieval-augmented generation
frameworks Lewis et al. (2020); Borgeaud et al. (2022). To systematically evaluate these
advances, diverse benchmarks have emerged, predominantly assessing metrics like functional
correctness, code generation accuracy, and semantic matching. For instance, HumanEval
Chen et al. (2021) evaluates Python function generation with functional correctness, and
CodeXGLUE Lu et al. (2021) aggregates several tasks across multiple programming languages.
Such benchmarks have been instrumental in driving improvements in LLM performance.
As LLMs progress toward becoming autonomous software development agents, one cares
about the reliability and correctness of the code generated by LLMs. In addition to thorough
testing (which is always limited in coverage), we ask the question "Do LLMs truly understand
code semantics?"

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Despite the flourishing ecosystem of code benchmarks, existing datasets often inadequately
evaluate semantic understanding directly. Most benchmarks predominantly target syntax-
level learning or the overall pass rates of generated programs, such as MBPP Austin et al.
(2021) and APPS Hendrycks et al. (2021a). Although recent works have begun incorporating
semantic evaluation, like SeqCoBench Maveli et al. (2025), they either rely heavily on
manually collected labels or indirectly evaluate semantic understanding. Furthermore,
semantic benchmarks continue to focus largely on high-level languages like Python, leaving
languages like C comparatively neglected.

Current Benchmarks SemBench

Focus on exact match-based

evaluation metric

Human annotation is expensive

Focus on semantic understanding

Use a clear Q&A format

Automatically generate data

Prompt: Check if in given list of numbers, are any
two numbers closer to each other than given
threshold.

Answer:
for idx, elem in enumerate(numbers):
 for idx2, elem2 in enumerate(numbers):
 if idx != idx2:
 distance = abs(elem -elem2)

 if distance < threshold: …

Check:
assert candidate([1.0, 2.0, 3.9, 4.0], 0.3) == True
assert candidate([1.0, 2.0, 3.9, 4.0], 0.05) == False

Code:
void *func1(void *param)
{
 int i=0;
 …

printf("Process 1: g: %d\n",global); …

Question: Is it impossible for function 'printf' to
reach function 'func1'?

Answer: In the given code, function 'func1' calls
'printf' directly. Hence, it is possible for 'printf' to
reach 'func1'. Therefore, the answer is: Yes

Figure 1: Comparison between current benchmarks and SemBench.
Evaluating semantic understanding at scale introduces unique challenges, particularly re-
garding question generation and output evaluation. Human-annotated labels are expensive
and limit the scalability of training data Hendrycks et al. (2021a). Additionally, determining
if an LLM truly “understands” code is intrinsically ambiguous, especially given the high
uncertainty associated with LLM interactions Bubeck et al. (2023). To address these chal-
lenges, we propose the automated question generation-evaluation framework (SemBench-QE),
reframing semantic evaluation as a binary question-answer task with explanations. As
illustrated in Figure 1, our approach diverges significantly from popular benchmarks such
as HumanEval. We begin by cleaning and filtering code samples from Hugging Face’s Code-
Parrot corpus Tunstall et al. (2022), and choosing semantically rich examples. Leveraging
compiler frameworks like Clang’s abstract syntax trees (ASTs) and LLVM Lattner and Adve
(2004), or static program analysis, we derive 6 properties, including function reachability,
loop reachability, data dependency, liveness of variables, dominator sets, and dead code,
to evaluate the understanding of the data and control flow semantics, with automatic la-
beling for LLM evaluation. These properties are routinely taught in Computer Science
programming or compiler courses, and are considered basic concepts in code understanding.
These properties are instantiated into natural-language queries through predefined templates,
yielding structured question–answer pairs with automatic ground truth; robust prompting
and syntax-based parsers then validate model outputs, enabling scalable and reproducible
benchmark construction. Using this pipeline, we present SemBench, comprising 15,404
crafted semantic questions about 6 semantic properties of 1000 C programs. To demonstrate
generalizability, we also extend the pipeline and create a pivot set of 540 questions about 30
Python programs under the same 6 categories.

In summary, our contributions are threefold:
1. We introduce SemBench, the first large-scale benchmark that contains 15404

questions, which is explicitly designed to evaluate semantic code understanding,
addressing a notable gap in prior research.

2. We introduce an extensible and fully automated question-generation and evaluation
framework (SemBench-QE) that eliminates manual labeling and effectively handles
uncertainties inherent in LLM outputs.

3. We conduct comprehensive empirical analyses connecting our benchmark to prior
work on code reasoning and model evaluation, identifying connections between code
understanding and code generation ability.

And our findings are summarized as follows:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

1. Deficiency in understanding. many widely used models have around 40–70% error
rate on SemBench, even the strongest model attains 21.40%, leaving considerable
headroom for improvement.

2. Local vs. global semantics understanding. Control-flow categories are near-
solved for top models, but the global data-flow property Liveness presents a serious
challenge with error rate 37.81% - 85.24%, revealing a gap in global data-flow
versus local control-flow understanding.

3. Inconsistent reasoning patterns. Model performance varies widely across cate-
gories: strengths in some semantic tasks are offset by weaknesses in others, under-
scoring the fragmented nature of current semantic understanding.

4. Relation to code generation. Aggregate ranks positively correlated with Hu-
manEval/MBPP (ρ=0.61/0.72) in terms of Spearman’s rho, indicating that Sem-
Bench evaluation result is a good indication of coding completion capability.

5. Scaling is broadly effective, with rare exceptions. Larger models generally
achieve higher accuracy, confirming that scale enhances semantic reasoning. The
code-specialized StarCoder2 scales smoothly while the general-purpose Qwen3 shows
one exclusive anomaly given checkpoint instability and corpus imbalance.

6. LLMs may not even fully understand the code they generate. Overall
accuracy on self-produced code does not improve over SemBench. This suggests
that models may generate executable code without robust semantic comprehension.

2 Problem Setup

Save Result

Extracting

Parsing &
Execution

Sampling

Raw C files
(100M+)

Executable
files (40K+)

SemBench
Code Corpus

Code Parser

Func()

tcode

Question Bank Generator

Given ..., your response should start with an
option between \"[Final answer: yes]\" or \"

[Final answer: no]\

Liveness analysis determines whether a
variable’s value is used later in the program.

Does variable 'word_len' remain in use at
the end of function 'largest_word'?

tcode

LLM
[Final answer: yes]

The variable 'word_len' remains in use at the
end of the function 'largest_word' because ...

Output parser: yes Gt: yes

Save Result

(a)

AST

LLVM

function reachability

loop reachability

dominators

data dependency

liveness

dead code

Question Bank

Qi

Gti

Output Parser

LLM

Prompt

Bg

Ins

Qi

Func()

Qi

Gti

Question Bank

Compare Result

(c)

(b)

Figure 2: Overview of SemBench construction and SemBench-QE pipeline. Figure 2(a)
describes how we collect, clean, and select C files to construct our raw code files; 2(b)
represents the generation stage of the SemBench-QE pipeline; 2(c) describes the evaluation
process with SemBench.

2.1 Problem Formulation

Past works rely on manually collected labels, which restricts the size of the benchmark, while
some others focus on LLM-generated responses, which are expensive to verify the correctness.
To deal with these challenges, we aim to solve the following question:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Given the source code file tcode, how do we construct an automated pipeline to generate
semantic questions and evaluate the LLM output?

Our automated question generation pipeline is shown in Figure 2(b). It first passes the
cleaned tcode to the code parser, which is built on top of AST and LLVM to generate accurate
code semantic information. Then, the question bank generator, which produces six categories
of semantic questions, takes in both of the semantic information and tcode to produce pairs of
questions Q with real answer ‘yes’ or ‘no’, and ground truth label Gt with value True/False.
After constructing the question bank, we are able to evaluate LLM’s understanding of these
files’ semantics using the generated Q–Gt pairs.

Figure 2(c) demonstrates our evaluation process. The initial prompt x contains four com-
ponents: instruction Ins, background information Bg, tcode and question Q. The example
prompts are listed in Appendix B. Ins provides a general guidance that leads LLM to
produce a response with the given format [Final answer: yes] or [Final answer: no]. And Bg

provides a brief but authoritative explanation of each category of questions. We then feed
the initial prompt into the LLMs to get the response O.

x = concat
(
⟨BOS⟩, τ(Ins), τ(Bg), τ(Q), τ(tcode)

)
, (1)

where τ(·) tokenises a string into sub-word IDs and concat appends sequences left-to-right.

pθ(y | x) =

T∏
t=1

pθ
(
yt

∣∣ x, y<t

)
, yt ∈ V. (2)

ŷt ∼ pθ
(
·
∣∣ x, ŷ<t

)
, t = 1, . . . , T, (3)

giving the final decoded sequence O = ŷ = LLMθ

(
Ins,Bg, Q, tcode

)
.

More details about the evaluation pipeline are included in Appendix A.4.

2.2 Research Questions

By designing such a pipeline, we aim to address the following research questions:

Does an LLM truly understand code semantics? Traditional benchmarks predom-
inantly focus on code generation and completion tasks, such as HumanEval Chen et al.
(2021) and MBPP Austin et al. (2021), however, they do not directly evaluate a model’s
semantic understanding. Recent benchmarks have started to shift focus towards semantics.
For instance, PyX Ding et al. (2024) provides a dataset of executable Python programs with
functional descriptions and execution traces, facilitating the training of models like SemCoder
Ding et al. (2024) that reason about code semantics through monologue reasoning. Similarly,
CodeMMLU Nguyen et al. (2024) offers a comprehensive multiple-choice benchmark assessing
code comprehension across various programming languages. Nevertheless, these benchmarks
either rely heavily on human-labeled data or do not directly evaluate semantic understanding.
Our SemBench-QE framework enables the generation of question banks for any executable
C files, allowing us to test LLMs’ understanding with specific semantic patterns.

How do different types of models perform in semantic understanding tasks?
Given the scarcity of benchmarks focusing on semantic understanding, most popular LLMs
have not been extensively trained on semantic data. Meanwhile, various models have been
introduced to the public, including general-purpose LLMs like ChatGPT-4o mini OpenAI
(2024), reasoning-focused models like DeepSeek-R1 DeepSeek (2025), and a series of code-
specific models. It is both interesting and important to explore their capabilities in code
semantic tasks to understand their strengths and limitations.

What is the relationship between code understanding and code generation
abilities in LLMs? While evaluating LLMs’ semantic understanding is crucial, it is equally
important to investigate the relationship between a model’s understanding and its code
generation capabilities. Can an LLM perform well in code generation tasks without truly
understanding the underlying semantics?

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

3 Methods

1 int inc(int a){ return a+1; }
2 int sum_pos(int n){
3 int s = 0;
4 if (n <= 0) return 0;
5 // dominates early exit
6 for (int i=0;i<n;i++) {s+=inc(i);}
7 // may run if n>0
8 int k = 0;
9 while (k < 0) { s+=k; k++; }

10 // 0-trip => unreachable body
11 int t = s;
12 // def(t), no later use
13 if (0) { t = -1; } // dead branch
14 return s; // s live at exit
15 }
16 int main(){
17 int r=sum_pos(3);
18 printf("%d\n",r);
19 }

(a) Running example (trimmed).

Entry

if(n<=0) return 0

for(i<n) hdr

s+=inc(i)

while(k<0) hdr

s+=k; k++;

t = s

if(0){t=-1;}

return s

true

false

header dominates body

0-trip (unreachable)

s live at exit

Dominance Loop Dead

(b) Illustrative graphs extracted.
Figure 3: Compact illustration of signals used by SemBench-QE: (a) code example; (b)
extracted graphs.

3.1 Source File Collection and Preprocessing

To construct a benchmark that covers as much semantics as possible, and leverages the
power of the compiler, we divided our collection and preprocessing into four steps. The first
step is illustrated in Figure 2(a), to select representative source codes. We collect files from
the CodeParrot GitHub Code dataset Tunstall et al. (2022), which contains more than
one million C files gathered from a large number of GitHub repositories. The statistics are
listed in Appendix A.1. This guarantees that the base code files cover the wide semantics
of real-life applications. The second step aims to select files that can be compiled and
executed. To achieve this, we set two filters: contains the main function and does not import
non-standard libraries, and obtain more than 150, 000 files post-selection. Afterwards, we
verify the execution availability by executing these programs for four to five rounds and get
more than 40, 000 files. Finally, to maintain the difficulty of the question bank, we selected
7792 programs by setting the complexity constraints e.g., loop count and computation count.
1000 files are finally selected, considering the resource limit.

3.2 Question Generation Pipeline

To solve the problem of time-consuming label collection and limited dataset capacity, our
benchmark develops the SemBench-QE pipeline. It automates the whole process by system-
atically transforming tcode into structured semantic information, accompanied by rigorously
verified ground-truth answers. We rely on established static–analysis tools integrated within
LLVM/Clang 17.0.6(LLVM Developers, 2024; Clang Team, 2024) to ensure the reliability
and validity of the resulting dataset. Here, we provide a summary of the six categories, and
full extraction details are deferred to Appendix §A.3.

• Function Reachability (FR) refers to whether function f1 can (transitively) call f2
in the static call graph. We collect ground truth by parsing with Clang AST to build
a directed call graph and checking reachability via DFS/BFS. For example, in Fig. 3a,
we could build the edges: main→sum_pos and sum_pos→inc, which yield the query “Is it
impossible for sum_pos to reach inc?” with answer No.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

• Loop Reachability (LR) captures whether a loop body executes at least once along
some path. Ground truth is obtained from LLVM’s SCEV trip-count reasoning, where
zero iterations mark the loop body unreachable and otherwise it is considered reachable.
In Fig. 3b, the loop while(k<0) is proven to have zero trips, leading to the query “Is the
body of while(k<0) unreachable?” with answer Yes.

• Dominance (Dom) defines that a block B dominates block C if every path from
function entry to C passes through B. We derive ground truth by constructing the
CFG and applying LLVM’s Dominator Tree algorithm. As shown in Fig. 3b, the header
for(i<n) dominates its body s+=inc(i), producing the query “Does the loop header
strictly dominate every block in its loop body?” with answer Yes.

• Variable Data Dependency (Def–Use) checks whether a variable has a use that occurs
after its definition. We collect these relations by scanning Clang’s AST tokens to pair
definitions with later uses. For instance, Fig. 3a shows s defined before the loop and used
both inside the loop and at the return statement, leading to the query “Is s used after its
definition in sum_pos?” with answer Yes.

• Variable Liveness indicates whether a variable still holds a meaningful value at the end
of a function. We approximate this through conservative backward data-flow analysis
around function exit points. In Fig. 3b, s is live since it is returned, while t is not, giving
rise to the query “Is t live at the end of sum_pos?” with answer No.

• Dead Code (DC) refers to statements that are unreachable under any execution path.
We collect labels using Clang’s path-sensitive Static Analyzer. In Fig. 3b, the branch
if(0){t=-1;} is dead, yielding the query “Are the statements inside if(0){} dead?” with
answer Yes.

3.3 Extension to Runtime-Interpreted Coding Languages

While the original SemBench-QE for C relies on Clang/LLVM to extract AST, CFG, SSA,
and dataflow properties, we extend the framework to Python by substituting those compiler-
based analysis tools with interpreter-side analysis tools. In place of the Clang AST, we use
Python’s ast (or LibCST); for CFG and SSA, we employ frameworks such as Scalpel, and for
interprocedural reachability, we adopt call-graph analyzers like PyCG. These substitutions
allow us to recover the same semantic categories. Importantly, static program analyses
are independent of whether a language is compiled or interpreted, as they are defined over
program structure rather than execution model (Nielson et al., 1999; Alfred V. Aho et al.,
2007).

4 Experiments

Table 1: Statistics of LLMs and their Pass@1 (%) on HumanEval and MBPP. “–” denotes no
official score published.

Family Model Name Type Size (B) HumanEval MBPP

GPT GPT-4o Mini General – 88.4 –
GPT-3.5 Turbo General – 71.9 –

DeepSeek DeepSeek-Coder V2-Lite-Instr Code 16 81.1 68.8
DeepSeek-Coder 7B-Instr v1.5 Code 7 64.1 64.6
DeepSeek-R1-Distill-Qwen-7B Reasoning 7 – 17.2

Llama CodeLlama-13B-Instr Code 13 42.7 49.4
CodeLlama-7B-Instr Code 7 34.8 44.4
Llama-3 8B-Instr General 8 72.6 –

Mistral Mistral 7B-Instr (v0.3) General 7 – –
Mamba Codestral 7B (v0.1) Code 7 75.0 68.5

Qwen Qwen2.5-Coder 14B-Instr Code 14 89.6 86.2
Qwen3 14B General 14 – 73.4

StarCoder StarCoder 2 7B Code 7 30.5 47.4

Phi Phi-4 Reasoning (14B) Reasoning 14 – 12.5

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

4.1 Experiment Setup

Model selection We evaluate SemBench on 14 popular state-of-the-art LLMs across 7
different families to cover a wide range of architectures. We lean to LLMs trained on code,
but also cover reasoning and general models for comparison. Given the Q&A nature of
SemBench, we also include many instructed versions.

Experiment Setting We evaluated all open-source language models with the HuggingFace
Transformers text-generation API (v 4.41) and queried proprietary GPT models via the
OpenAI Python SDK (openai v 1.15). Experiments ran on a SLURM-managed node equipped
with four AMD Instinct MI210 GPUs under the ROCm 5.7 stack. Exact hyperparameters
and launch commands are provided in the scripts.

4.2 Key Findings

Overall Performance As shown in Table 2, selected models perform varies across SemBench.
GPT family outperforms other models, demonstrating its competitive ability across diverse
tasks. While a larger model size usually indicates an advantage, Phi-4 Reasoning performs
even worse than 7B models. This may relate to model types and whether being instructed.
Although code models may not be trained over semantic benchmarks, they usually achieve
better performance. On the other hand, given the question format, instructed models tend to
have a better performance. Overall, it is alarming to see that some of the properties, such as
liveness, are poorly understood by all models under evaluation, with less than 50% correctness
for most of them (note that random guesses can achieve 50% accuracy on average).

Table 2: Overall and per-category accuracy (%) on SemBench.
Family Model Overall Accuracy Data-Dep Dead Code Dominators Func-Reach Liveness Loop-Reach

GPT GPT-4o Mini 78.60 82.97 99.35 100.00 87.99 36.79 67.56
GPT-3.5 Turbo 71.99 66.13 71.95 95.22 67.59 37.71 84.50

DeepSeek DS-Coder V2-Lite 68.71 78.81 81.70 47.63 77.79 50.99 68.17
DS-Coder 7B v1.5 48.09 41.98 76.45 45.14 41.18 36.23 50.41
DS-R1-Distill 17.22 34.87 9.05 4.27 14.40 22.14 18.98

Llama CodeLlama-13B-Instr 42.65 46.69 56.45 31.50 45.38 39.64 38.19
CodeLlama-7B-Instr 47.99 80.31 30.70 12.06 52.31 62.19 47.35
Llama-3 8B-Instr 40.35 37.42 53.75 23.51 48.56 35.47 38.45

Mistral Mistral 7B-Instr 65.50 67.79 68.70 59.69 70.12 52.21 68.07
Codestral 7B v0.1 44.09 37.02 62.50 38.98 54.82 33.38 36.54

Qwen Qwen2.5 14B Instr 53.09 50.65 81.90 73.33 49.38 25.34 46.77
Qwen3 14B 42.94 27.61 83.55 48.50 58.40 19.85 24.89

StarCoder StarCoder 2 7B 33.60 39.98 37.65 17.20 36.08 37.15 32.49

Phi Phi-4 Reasoning 18.14 21.24 17.20 8.60 23.73 14.76 18.45

Performance Over Different Categories Table 2 reveals a sharp contrast between
“shallow” and “deep” semantic tasks.

Dead Code and Dominators are almost trivial for GPT-4o (99–100% accuracy) and remain
above 70% even for 7 B-parameter coders. These patterns can be solved by local syntactic
cues, suggesting that giant language models already act as powerful static analysers for
intra-procedure control flow. Liveness is the clear bottleneck: GPT-4o drops to 36.79%
accuracy, and every other model also falls. Correct reasoning requires tracking variable
definitions across branches and loops, a form of classic data-flow analysis that remains
elusive for purely autoregressive models. Func-Reach scores straddle the middle ground (88%
vs. 68% for GPT-4o and Mistral-7B-Instr, respectively), indicating partial but incomplete
mastery of call-graph reasoning.

Taken together, the plateau on “easy” tasks but steep drop on “deep” tasks implies that current
LLMs internalise many surface semantic signals yet do not possess a unified, compiler-level
understanding of program meaning. SemBench therefore fills a critical gap by exposing
exactly where that boundary lies. We also use the extension SemBench to generate a Python
pilot; the result is in Appendix C.3, which aligns with the C version we present here.

Ablation Study Over Benchmark To further validate the effectiveness of SemBench,
we conducted an intra-family scaling study over both the Qwen3 (general-purpose) and

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

StarCoder2 (code-specialized) model families. As shown in Figure C.1, the overall accuracy
improves with model size increases, confirming the expected scaling-law effect.

Interestingly, the scaling behaviors differ. For Qwen3, the 4B model underperforms the
smaller 1.7B variant (16.6% vs. 20.0%), likely due to optimization instability or category
imbalance, as accuracy on Dominators drops sharply at 4B. In contrast, StarCoder2 scales
more smoothly, reflecting its code-focused training pipeline and better alignment with the
program-analysis tasks in SemBench.

4.3 Relationship between Code Semantic and Generation
Table 3: Spearman correlation between SemBench and two code–generation benchmarks.

HumanEval MBPP

Category ρ p ρ p N

All Categories 0.61 0.060 0.73 0.016* 10
DataDep 0.21 0.556 0.28 0.425 10
DeadCode 0.83 0.003* 0.96 0.000* 10
Dominators 0.75 0.013* 0.98 0.000* 10
FuncReach 0.64 0.048* 0.75 0.013* 10
Liveness −0.52 0.128 0.04 0.907 10
LoopReach 0.36 0.310 0.47 0.174 10

* indicates significant correlation at p < 0.05.

40 60 80
(a) HumanEval Pass@1 (%)

40

50

60

70

80

Se
m

Be
nc

h
Ac

cu
ra

cy
 (%

)

HumanEval vs SemBench

25 50 75
(b) MBPP Pass@1 (%)

20

30

40

50

60

70
MBPP vs SemBench Model Mapping

Symbol Model
GPT-4o Mini
GPT-3.5 Turbo
DeepSeek-Coder V2-Lite-Instr
DeepSeek-Coder 7B-Instr v1.5
DeepSeek-R1-Distill-Qwen-7B
CodeLlama-13B-Instr
CodeLlama-7B-Instr
Llama-3 8B-Instr
Mistral 7B-Instr
Mamba Codestral 7B
Qwen2.5-Coder 14B-Instr
Qwen3 14B
StarCoder 2 7B
Phi-4 Reasoning

Figure 4: Scatter Plot of SemBench vs HumanEval and SemBench vs MBPP
Correlation Analysis. To examine whether SemBench performance transfers to estab-
lished code–generation benchmarks, we compute rank–based correlations between each
SemBench accuracy and the official pass@1 reported for HumanEval and MBPP. Let s(k)i
denote the accuracy of model i on SemBench category k (including the overall SemBench),
and hi, mi be its HumanEval and MBPP pass@1 scores, respectively. We report

ρHE
k = Spearman

(
{s(k)i }, {hi}

)
, ρMBPP

k = Spearman
(
{s(k)i }, {mi}

)
,

together with Kendall’s τ and two–sided p–values. Spearman’s ρ is widely adopted for
cross-benchmark studies because it is robust to non-linear scaling and outliers (Liang et al.,
2022), while Kendall’s τ mitigates small-sample bias (Zan et al., 2025). Models lacking an
official score for either benchmark are filtered out pair-wise.

Overall Trends Demonstrate Correlation Between SemBench and Code Gen-
eration Tasks. Table 3 demonstrates a moderate–to–strong association: ρ = 0.61 with
HumanEval (p = 0.060) and ρ = 0.72 with MBPP (p = 0.019). Thus, Figure 4 reveals that
models that rank highly on SemBench tend to do well on established code-completion tasks.

Local control-flow categories align strongly. Dead Code and Dominators correlate
tightly with both HumanEval (ρ = 0.83 and 0.75) and MBPP (ρ = 0.96 and 0.98, all
p < 0.01), reflecting the local control-flow reasoning is included in the code-completion
benchmarks.

Global data-flow categories expose poor code understanding. Data Dep and Loop
Reach reveal significant weakness not covered in the existing coding benchmarks (|ρ| ≤ 0.29,
p > 0.17), while Liveness even correlates negatively with HumanEval (ρ = −0.52) and is
essentially uncorrelated with MBPP (ρ = 0.04). These tasks, therefore, underscore the lack
of semantic understanding not covered in the existing coding examples.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Can LLMs understand the semantics of the code they generate? To address
this problem, we selected 120 problems from the CodeContest dataset (Li et al., 2022),
prompted DeepSeek-Coder V2-Lite-Instruct to generate solutions, and retained 40
programs that executed successfully. We then evaluated these model-generated programs
using our pipeline SemBench-QE.

DeepSeek-Coder does not gain accuracy over semantic understanding when tested on its
own outputs. The model achieves an overall accuracy of 68.3% over 612 semantic questions,
similar to its performance on SemBench (Table 1). While relatively shallow categories such
as Dead Code and Dominators are nearly solved, the accuracy even decreases for deeper
semantic properties, including Liveness (41.8%) and Loop Reachability (54.9%). This
highlights that although the model can generate executable code, it may struggle to reason
about the long-range semantic properties of that same code.

5 Related Work

5.1 LLM and Code Benchmarks

Current benchmarks for code-related LLM evaluation largely fall into two categories: code gen-
eration and debugging. Datasets like HumanEval Chen et al. (2021) and MBPP Austin et al.
(2021) evaluate Python function synthesis via docstrings and test cases, while CodeXGLUE Lu
et al. (2021) expands to multiple languages and tasks such as clone detection and code repair.
These benchmarks prioritize syntactic correctness and execution-based metrics but do not di-
rectly probe semantic understanding. A smaller subset addresses semantics indirectly through
classification tasks like vulnerability detection or API misuse, relying on high-level labels
rather than fine-grained reasoning about behaviors like data flow or reachability. Moreover,
most focus on Python, with limited support for low-level languages like C. To our knowledge,
no public benchmark directly tests LLMs using closed-form semantic questions, motivating
our C-based benchmark designed to evaluate fundamental program understanding.

5.2 Code-oriented Models

Recent advancements in LLMs have led to a variety of code-focused models, each trained
on distinct corpora and optimized for different tasks. Code Llama (7–13B) Rozière et al.
(2024) is fine-tuned from LLaMA using a code-heavy corpus (85% source code) and includes
instruction-tuned variants with synthetic Q&A pairs. DeepSeek-Coder DeepSeek-AI
et al. (2024) includes dense (v1.x) and MoE (V2-Lite) models, trained on up to 6T tokens
across 338 languages, with instruction tuning for efficient code QA. StarCoder 2 Lozhkov
et al. (2024) (3–15B), built on The Stack v2, shows strong performance on C reasoning,
with the 15B model rivaling larger baselines. Qwen 2.5-Coder Hui et al. (2024) adapts
a multilingual base model using a code-centric corpus across 92 languages, with the 14B
instruct variant offering extended context and strong tool-calling support. Codestral-22B
combines instruction tuning with 80+ languages Jiang et al. (2023).

6 Conclusion

We presented SemBench, a benchmark for directly evaluating LLMs’ semantic understanding
through automated question generation and static features-based ground truths. Our study
shows that while local control-flow properties (e.g., dominators, dead code) are nearly solved,
deeper global data-flow tasks (e.g., liveness) remain difficult, exposing substantial room for
improvement. Model scaling generally helps but is inconsistent across families, and evaluation
on self-generated code reveals that producing runnable programs does not imply semantic
comprehension. SemBench further correlates with HumanEval and MBPP, highlighting
semantic reasoning as a key factor in code generation quality. We hope it serves as both a
diagnostic and a resource for developing models with stronger program semantics.

The anonymous link to SemBench is released in the supplementary material.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Reproducibility. We make every effort to ensure reproducibility: dataset construction
(Sec. 3), question-generation pipeline (Sec. A.3), and evaluation procedure (Sec. A.4) are
fully detailed in the main paper and Appendix, with implementation scripts provided in the
supplementary material. All code and processed data will be released under an open license.

Ethics Statement. This work does not involve human subjects, personal data, or sensitive
attributes. All datasets are derived from publicly available GitHub code with license
compliance. We acknowledge potential dual-use concerns, as semantic benchmarks may
expose weaknesses in models; however, we intend to advance safer and more reliable LLMs
for code understanding.

References

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2007. Compilers:
Principles, Techniques, and Tools (2 ed.). Addison-Wesley.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. 2021.
Program synthesis with large language models. arXiv preprint arXiv:2108.07732 (2021).
https://arxiv.org/abs/2108.07732

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie
Millican, George Van den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark,
Diego de Las Casas, Aurelia Guy, Jacob Menick, Roman Ring, Tom Hennigan, Saffron
Huang, Loren Maggiore, Chris Jones, Albin Cassirer, Andy Brock, Michela Paganini,
Geoffrey Irving, Oriol Vinyals, Simon Osindero, Karen Simonyan, Jack W. Rae, Erich
Elsen, and Laurent Sifre. 2022. Improving language models by retrieving from trillions of
tokens. arXiv preprint arXiv:2112.04426 (2022). https://arxiv.org/abs/2112.04426

Sébastien Bubeck, Varun Chandrasekaran, et al. 2023. Sparks of Artificial General Intelligence:
Early experiments with GPT-4. arXiv preprint arXiv:2303.12712 (2023). https://arxiv.
org/abs/2303.12712

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé, Jared Kaplan,
Harrison Edwards, Yura Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mo Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, David W. Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William H. Guss, Alex
Nichol, Igor Babuschkin, Suchir Balaji, Shantanu Jain, Andrew Carr, Jan Leike, Joshua
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew M. Knight, Miles Brundage,
Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish,
Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large Language Models Trained
on Code. ArXiv abs/2107.03374 (2021). https://api.semanticscholar.org/CorpusID:
235755472

Clang Static Analyzer Team. 2024. Clang Static Analyzer. https://clang-analyzer.llvm.
org/ Accessed 2025-05-14.

Clang Team. 2024. Clang 17.0.6: A C/C++/Objective-C Front End for LLVM. https:
//clang.llvm.org/ Accessed 2025-05-14.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and
Kristina Toutanova. 2019. BoolQ: Exploring the Surprising Difficulty of Natural Yes/No
Questions. In Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), Jill Burstein, Christy Doran, and Thamar Solorio (Eds.).
Association for Computational Linguistics, Minneapolis, Minnesota, 2924–2936. https:
//doi.org/10.18653/v1/N19-1300

10

https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2112.04426
https://arxiv.org/abs/2303.12712
https://arxiv.org/abs/2303.12712
https://api.semanticscholar.org/CorpusID:235755472
https://api.semanticscholar.org/CorpusID:235755472
https://clang-analyzer.llvm.org/
https://clang-analyzer.llvm.org/
https://clang.llvm.org/
https://clang.llvm.org/
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz
Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher
Hesse, and John Schulman. 2021. Training Verifiers to Solve Math Word Problems.
arXiv:2110.14168 [cs.LG] https://arxiv.org/abs/2110.14168

DeepSeek. 2025. DeepSeek-R1: Open-Source Reasoning Model. https://github.com/
deepseek-ai/DeepSeek-R1.

DeepSeek-AI, Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin
Xu, Y. Wu, Yukun Li, Huazuo Gao, Shirong Ma, Wangding Zeng, Xiao Bi, Zihui Gu,
Hanwei Xu, Damai Dai, Kai Dong, Liyue Zhang, Yishi Piao, Zhibin Gou, Zhenda Xie,
Zhewen Hao, Bingxuan Wang, Junxiao Song, Deli Chen, Xin Xie, Kang Guan, Yuxiang
You, Aixin Liu, Qiushi Du, Wenjun Gao, Xuan Lu, Qinyu Chen, Yaohui Wang, Chengqi
Deng, Jiashi Li, Chenggang Zhao, Chong Ruan, Fuli Luo, and Wenfeng Liang. 2024.
DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models in Code Intelligence.
arXiv:2406.11931 [cs.SE] https://arxiv.org/abs/2406.11931

Yangruibo Ding, Jinjun Peng, Marcus J. Min, Gail Kaiser, Junfeng Yang, and Baishakhi
Ray. 2024. SemCoder: Training Code Language Models with Comprehensive Semantics
Reasoning. In NeurIPS.

Kaiqiao Han, Tianqing Fang, Zhaowei Wang, Yangqiu Song, and Mark Steedman. 2024.
Concept-Reversed Winograd Schema Challenge: Evaluating and Improving Robust Rea-
soning in Large Language Models via Abstraction. arXiv preprint arXiv:2410.12040
(2024).

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan
Guo, Collin Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. 2021a.
Measuring coding challenge competence with APPS. arXiv preprint arXiv:2105.09938
(2021). https://arxiv.org/abs/2105.09938

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang,
Dawn Song, and Jacob Steinhardt. 2021b. Measuring Mathematical Problem Solving With
the MATH Dataset. NeurIPS (2021).

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun
Zhang, Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang, An Yang, Rui Men,
Fei Huang, Bo Zheng, Yibo Miao, Shanghaoran Quan, Yunlong Feng, Xingzhang Ren,
Xuancheng Ren, Jingren Zhou, and Junyang Lin. 2024. Qwen2.5-Coder Technical Report.
arXiv:2409.12186 [cs.CL] https://arxiv.org/abs/2409.12186

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample,
Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. 2023. Mistral
7B. arXiv:2310.06825 [cs.CL] https://arxiv.org/abs/2310.06825

Keith D. Cooper and Linda Torczon. 2012. Engineering a Compiler (2 ed.). Morgan Kauf-
mann.

Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for lifelong
program analysis & transformation. In Proceedings of the international symposium on
Code generation and optimization: feedback-directed and runtime optimization. 75–86.
https://llvm.org/pubs/2004-01-30-CGO-LLVM.pdf

Thomas Lengauer and Robert Endre Tarjan. 1979. A fast algorithm for finding dominators
in a flowgraph. ACM Transactions on Programming Languages and Systems 1, 1 (1979),
121–141. https://doi.org/10.1145/357062.357071

Patrick Lewis, Ethan Perez, Aleksandara Piktus, et al. 2020. Retrieval-Augmented Generation
for Knowledge-Intensive NLP Tasks. Advances in Neural Information Processing Systems
33 (2020), 9459–9474. https://arxiv.org/abs/2005.11401

11

https://arxiv.org/abs/2110.14168
https://github.com/deepseek-ai/DeepSeek-R1
https://github.com/deepseek-ai/DeepSeek-R1
https://arxiv.org/abs/2406.11931
https://arxiv.org/abs/2105.09938
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2310.06825
https://llvm.org/pubs/2004-01-30-CGO-LLVM.pdf
https://doi.org/10.1145/357062.357071
https://arxiv.org/abs/2005.11401

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi
Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hu-
bert, Peter Choy, Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun Chen,
Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey Cherepanov, James Molloy,
Daniel J. Mankowitz, Esme Sutherland Robson, Pushmeet Kohli, Nando de Freitas,
Koray Kavukcuoglu, and Oriol Vinyals. 2022. Competition-Level Code Generation
with AlphaCode. In Proceedings of the International Conference on Learning Repre-
sentations (ICLR). https://storage.googleapis.com/deepmind-media/AlphaCode/
competition_level_code_generation_with_alphacode.pdf

Percy Liang, Rishi Bommasani, Kevin Lee, Dimitris Tsipras, Hongyu Zhang, Sameer Mir-
chandani, Johannes Welbl, Luke Zettlemoyer, and Pang Wei Koh. 2022. Holistic Evaluation
of Language Models. arXiv preprint arXiv:2211.09110 (2022).

LLVM Developers. 2024. LLVM Project – Version 17.0.6. https://llvm.org/ Ac-
cessed 2025-05-14.

LLVM Project 2024a. Introduction to the Clang AST. LLVM Project. https://clang.
llvm.org/docs/IntroductionToTheClangAST.html Accessed 2025-05-14.

LLVM Project 2024b. LLVM Dominator Tree Pass. LLVM Project. https://llvm.org/
docs/Passes.html#dominator-tree Accessed 2025-05-14.

LLVM Project 2024c. LLVM Scalar Evolution (SCEV) Analysis Pass. LLVM Project. https:
//llvm.org/docs/Passes.html#scalar-evolution-analysis Accessed 2025-05-14.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier,
Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu,
Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu,
Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li,
Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu,
Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun
Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki,
Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel
Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten
Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados,
Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming
Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
2024. StarCoder 2 and The Stack v2: The Next Generation. arXiv:2402.19173 [cs.SE]
https://arxiv.org/abs/2402.19173

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco,
Colin B. Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou, Linjun
Shou, Long Zhou, Michele Tufano, Ming Gong, Ming Zhou, Nan Duan, Neel Sundaresan,
Shao Kun Deng, Shengyu Fu, and Shujie Liu. 2021. CodeXGLUE: A machine learning
benchmark dataset for code understanding and generation. arXiv preprint arXiv:2102.04664
(2021). https://arxiv.org/abs/2102.04664

Nickil Maveli, Antonio Vergari, and Shay B. Cohen. 2025. What Can Large Language Models
Capture About Code Functional Equivalence?. In Findings of the Association for Computa-
tional Linguistics: NAACL 2025. https://aclanthology.org/2025.findings-naacl.
382

Dung Manh Nguyen et al. 2024. CodeMMLU: A Multi-Task Benchmark for Assessing Code
Understanding Capabilities of CodeLLMs. arXiv preprint arXiv:2410.01999 (2024).

Flemming Nielson, Hanne R. Nielson, and Chris Hankin. 1999. Principles of Program
Analysis. Springer.

OpenAI. 2024. GPT-4o mini: Advancing Cost-Efficient Intelligence. https://openai.com/
index/gpt-4o-mini-advancing-cost-efficient-intelligence/.

12

https://storage.googleapis.com/deepmind-media/AlphaCode/competition_level_code_generation_with_alphacode.pdf
https://storage.googleapis.com/deepmind-media/AlphaCode/competition_level_code_generation_with_alphacode.pdf
https://llvm.org/
https://clang.llvm.org/docs/IntroductionToTheClangAST.html
https://clang.llvm.org/docs/IntroductionToTheClangAST.html
https://llvm.org/docs/Passes.html#dominator-tree
https://llvm.org/docs/Passes.html#dominator-tree
https://llvm.org/docs/Passes.html#scalar-evolution-analysis
https://llvm.org/docs/Passes.html#scalar-evolution-analysis
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2102.04664
https://aclanthology.org/2025.findings-naacl.382
https://aclanthology.org/2025.findings-naacl.382
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Long Ouyang, Jeffrey Wu, , et al. 2022. Training language models to follow instructions
with human feedback. arXiv preprint arXiv:2203.02155 (2022). https://arxiv.org/
abs/2203.02155

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. SQuAD:
100,000+ Questions for Machine Comprehension of Text. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing, Jian Su, Kevin Duh,
and Xavier Carreras (Eds.). Association for Computational Linguistics, Austin, Texas,
2383–2392. https://doi.org/10.18653/v1/D16-1264

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen
Tan, Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer,
Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo
Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and Gabriel Synnaeve. 2024.
Code Llama: Open Foundation Models for Code. arXiv:2308.12950 [cs.CL] https:
//arxiv.org/abs/2308.12950

Steven S. Muchnick. 1997. Advanced Compiler Design and Implementation. Morgan Kauf-
mann.

Ted Kremenek, Paul Ongton, Jing Xia, and David Gay. 2008. Finding Software Bugs with
the Clang Static Analyzer. In Proceedings of the 2008 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’08). 5–6.

Lewis Tunstall, Leandro von Werra, and Thomas Wolf. 2022. Natural Language Processing
with Transformers. https://transformersbook.com/ Cited for Hugging Face corpus
(CodeParrot).

Yuchen Zan, Rui Wang, Mingjun Shen, and Qian Li. 2025. Benchmark Correlation Analysis
for Large Language Models. Proceedings of the AAAI Conference on Artificial Intelligence
(2025). to appear.

13

https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://doi.org/10.18653/v1/D16-1264
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://transformersbook.com/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A Benchmark

A.1 SemBench Statistics

Table A.1 provides an overview of key attributes of SemBench, including the number of
programs, the total number of questions (problems), and the count of questions in each
semantic category.

Table A.1: Overview of the SemBench

Question Bank Size

Program counts 1 000
Problem counts 15 404

Problem counts by category

Data dependency 1 996
Dead code 2 000
Dominators 1 965
Function reachability 3 548
Liveness 1 965
Loop reachability 3 930

Feature statistics

File size (bytes) 3 108 (min: 85, max: 491 196)
Max nesting depth 2 (min: 0, max: 10)
Avg dependency distance 21 (min: 0, max: 630)
Max dependency distance 67 (min: 0, max: 2 071)

In Table A.1, each category lists the number of Yes/No questions (problems) that test that
aspect of code semantics.

A.2 Notations in Tables

For brevity, we use shorthand labels for model names in the tables of the main paper.
Table A.2 provides a mapping between these shorthand labels and the models’ full repository
or API identifiers.

Table A.2: Shorthand mapping in other tables and full model identifiers.

Shorthand in other tables Full repo/API identifier

GPT-4o Mini openai/gpt-4o-mini (chat.completions API)
GPT-3.5 Turbo openai/gpt-3.5-turbo (chat.completions API)
DeepSeek-Coder V2-Lite-Instr deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct
DeepSeek-Coder 7B-Instr v1.5 deepseek-ai/deepseek-coder-7b-instruct-v1.5
DeepSeek-R1-Distill-Qwen-7B deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
CodeLlama-13B-Instr codellama/CodeLlama-13b-Instruct-hf
CodeLlama-7B-Instr codellama/CodeLlama-7b-Instruct-hf
Llama-3 8B-Instr meta-llama/Llama-3-8B-Instruct
Mistral 7B-Instr (v0.3) mistralai/Mistral-7B-Instruct-v0.3
Mamba Codestral 7B (v0.1) mistralai/Mamba-Codestral-7B-v0.1
Qwen2.5-Coder 14B-Instr Qwen/Qwen2.5-Coder-14B-Instruct
Qwen3 14B Qwen/Qwen3-14B
StarCoder 2 7B bigcode/starcoder2-7b
Phi-4 Reasoning (14B) microsoft/Phi-4-reasoning

A.3 Ground Truth Collection Methods

Function Reachability Function reachability queries explore whether a function can poten-
tially invoke another within a call graph derived from static analysis. The pipeline is able to
utilize tools such as Clang’s Abstract Syntax Tree (AST) parsing capabilities(LLVM Project,
2024a) to accurately identify function declarations and calls. A directed call graph is
constructed where nodes represent functions and edges denote explicit call relationships.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Reachability checks (e.g., depth–first or breadth–first search) provide precise ground–truth
answers, as C’s static call semantics exclude indirect calls unless explicitly encoded via
function pointers(Alfred V. Aho et al., 2007). Consequently, ground–truth answers for
function reachability are exact, reflecting definitive interprocedural call paths. As shown
in Figure 1, the question template is "Is it impossible for function fun1 to reach function
fun2?", The call graph connectivity provides us with ground-truth, and we save the fun1,
fun2, and Gt as the semantic information to fill into the template.

Loop Reachability Loop reachability determines whether loops can potentially be skipped
or are guaranteed to be executed. We employ LLVM’s Scalar Evolution (SCEV) analy-
sis(LLVM Project, 2024c) to identify loops with determinable trip counts. If the maximum
iteration count computed by SCEV is zero, loops are marked unreachable; otherwise, loops
are conservatively considered reachable. The correctness of Scalar–Evolution analysis—widely
used in compiler optimisations—is well established(Steven S. Muchnick, 1997), rendering our
ground-truth labels robust.

Dominance Analysis At the code level, dominance captures mandatory execution order
between program blocks. A block B is said to dominate block C if every execution of C must
first pass through B. In practice, this means that (i) function entries dominate all statements
in the function, (ii) loop headers dominate their loop bodies, and (iii) branch conditions
(e.g., if) dominate the statements within their guarded regions. LLVM’s Dominator Tree
analysis(LLVM Project, 2024b), based on the Lengauer–Tarjan algorithm(Lengauer and
Tarjan, 1979), computes these exact relationships, and we instantiate them into binary
queries such as “does the loop header dominate every block within its loop body?”.

Variable Data Dependency Data dependency queries examine whether variables are
used after their definitions, capturing essential def–use relationships within the program.
The pipeline leverages Clang’s AST–based token analysis to accurately identify variable
definitions and subsequent uses(Steven S. Muchnick, 1997). Variables identified as having a
use after definition are explicitly marked. The correctness and completeness of libclang’s AST
parsing ensure accurate representation of data dependencies, making these labels trustworthy.
One example is shown in Figure 2(c), given the extracted var and fun pair, this generator
can generate a rich combination of data dependency questions.

Variable Liveness Variable liveness analysis identifies variables still holding meaningful
values (“live”) at the exit points of functions. Our pipeline approximates standard data–flow
analysis(Keith D. Cooper and Linda Torczon, 2012) by examining explicit variable usage
near function–exit points. A variable is conservatively considered live if it appears after its
final definition within the function’s terminating region. This heuristic approach, though
conservative, closely aligns with conventional compiler–liveness analysis(Steven S. Muchnick,
1997), ensuring reliable ground truth.

Dead Code Detection Dead code detection queries determine the executability of program
statements. Our pipeline employs Clang’s Static Analyzer, specifically its interprocedural,
path–sensitive dead–code checker(Clang Static Analyzer Team, 2024). Statements flagged
by the analyzer as unreachable under any execution path are marked as dead. The Static
Analyzer’s rigorous and extensively validated techniques(Ted Kremenek et al., 2008) guarantee
high reliability for these ground–truth labels.

Task Design Mindmap To make SemBench a robust and decomposable benchmark, we
intentionally assign different difficulty levels to different categories of tasks. Dead code and
Dominators tasks are relatively easy, as they do not need too much information. Liveness
and Data Dependency are relatively hard as they may rely on understanding the whole
program. Users are free to explore the combinational and decompositional application of
SemBench.

On the other hand, even for codes that have been exposed to LLMs, these semantic features
would not be leaked. Experiment in Section 4.3 proves that LLMs could fail to improve
understanding even for the programs generated by themselves.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

A.4 Evaluation Pipeline

As shown in Figure 2(c), we also built the automated evaluation pipeline. Same as discussed
in section 2.1, we concatenate four components to form the rich-context initial input from the
constructed question bank. Then we feed the initial input into the LLM to get O. Afterwards,
we will pass O through our well-designed output parser to extract the LLM’s answer.

The output parser is designed to reduce mislabeling outputs produced by LLMs.

Output Parser

To guarantee the correctness of the evaluation, parsing O correctly matters. Our output
parser processes O by following these steps:

• Cleaning non-English characters and non-instructed symbols.
• Search for and collect declared patterns in the Ins within each line.
• Remove ambiguous answers, e.g., yes or no when it does not clearly answer.

Besides syntactically verifying its correctness, we also tested the parser over sixty real outputs
generated by Phi-4-reasoning, which tends to produce diverse, noisy outputs. And our output
parser passes all the tests.

Overall, our automated analysis pipeline combines rigorously validated compiler analy-
ses(LLVM Developers, 2024; Clang Team, 2024; LLVM Project, 2024c;b; Clang Static Ana-
lyzer Team, 2024) and established compiler theory(Alfred V. Aho et al., 2007; Steven S. Much-
nick, 1997; Keith D. Cooper and Linda Torczon, 2012) to produce a semantically accurate,
robust benchmark dataset suitable for evaluating code–semantic understanding by Large
Language Models (LLMs).

B Prompt Engineering

B.1 Full Prompts

As described in Section 2.1, each prompt to the LLM is constructed by concatenating four
parts: (

Ins, Bg, tcode, Q
)
,

where

• Ins is the instruction to the model to format the output;
• Bg is the background information describing the category of each question;
• tcode is the source C code;
• Q is the specific question text (generated via the templates from Section 3.2).

Below we give the full text of the Ins and Bg.

Instruction (Ins):

Given the C code and background information, your response should start
with either: [Final answer: yes] or [Final answer: no], and then
briefly explain your reasoning step by step.

Background information (Bg) for each semantic category: We supply the model
with relevant definitions for each task. The background prompts are as follows:

function reachability Examines whether one function can transitively call another (i.e., if a
call path exists).

loop reachability Examines whether a loop is executed during the program execution
based on its condition and structure.

dominators Identifies whether certain code sections (like loop headers) must execute
before other parts of the loop.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

data dependency Determines if a variable’s defined value is used and influences subsequent
computations.

liveness Determines whether a variable’s value is used later in the program.
dead code Identifies segments that are never executed, such as code following an

unconditional return or unreachable branches.

B.2 Ablation Study of Prompt and Explanation

While SemBench relies on the automated framework to collect judgments made by models,
prompts to generate responses, and explanations matter in the response quality.

We conducted experiments to determine the effect of prompt style and token limits. A naive
Insnaive prompt simply asks for decision:

Given the C code and background information, answer each test question
with an option between [yes] and [no].

However, we found that this often produces invalid answers (e.g. missing the required tags).
Therefore, we experimented with a Chain of Thought (CoT) version Inspost:

Given the C code and background information, your response should start
with an option between [Final answer: yes] or [Final answer: no],
then you should explain your solution step by step briefly.

Shifting from Insnaive to Inspost with a large token limit substantially increases performance:
for example, increasing Phi4-reasoning from 12.54% to 18.14% and CodeLlama-7b-Instruct-hf
from 37.30% to 47.99%.

While the Inspost prompt enhances overall performance, the maximum token limit of 256
tokens results in wasted resources, as many outputs conclude their reasoning early but
continue generating unnecessary tokens. Moreover, evaluating each 7B model fully requires
over 8 hours. To address these issues, two solutions are promising: reducing the maximum
token length or modifying the prompt to let LLMs answer in the beginning. Reducing
the token limit can prevent excessive token generation, but risks truncating valid answers.
Alternatively, switching to the answer-first style Ins prompt from Section B.1 provides
greater flexibility regarding token limits.

To balance efficiency and performance, we conducted an ablation study on batch size and
prompt effects. As shown in Table B.1, prompting LLMs to answer only after completing
their reasoning causes a sharp performance drop when reducing the maximum token count
from 128 to 64. Conversely, adopting the Ins prompt preserves good performance while
significantly improving processing speed.

Table B.1: Overall Accuracy (%) on SemBench for different batch-size / prompt settings

Inspost64 Inspost128 Inspost256 Ins64

SemBench 11.84 42.92 44.70 44.72

Therefore, SemBench is by no means a shallow Yes/No task, but provides tangible insights
into LLMs’ performance over code semantics understanding.

C Experiments

C.1 Intra-family Scaling Result

Figure C.1 shows the overall accuracy and per-category accuracy of Qwen3 and StarCoder2
families.

The result of this experiment, along with the nature of the semantic tasks we have constructed,
proves the robustness and data-contamination-free nature of SemBench.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Figure C.1: Qwen3 and StarCoder2 family accuracy scaled by model size

Table C.1: Correlation between SemBench categories and two code–generation benchmarks.

HumanEval MBPP

Category ρ p τ p ρ p τ p N

SemBench 0.61 0.060 0.47 0.073 0.73 0.016 0.60 0.017 10
DataDep 0.21 0.556 0.11 0.727 0.28 0.425 0.20 0.484 10
DeadCode 0.83 0.003 0.64 0.009 0.96 0.000 0.87 0.000 10
Dominators 0.75 0.013 0.60 0.017 0.98 0.000 0.91 0.000 10
FuncReach 0.64 0.048 0.51 0.047 0.75 0.013 0.60 0.017 10
Liveness -0.52 0.128 -0.42 0.108 0.04 0.907 -0.02 1.000 10
LoopReach 0.36 0.310 0.24 0.381 0.47 0.174 0.38 0.156 10

C.2 Complete Correlation Study

In Section 4.3, we reported overall rank correlations between SemBench and the code-
generation benchmarks HumanEval and MBPP. Table C.1 gives the full Spearman (ρ)
and Kendall (τ) correlations for each SemBench category. Figure C.2 visualizes these
Spearman correlations for all categories. To demonstrate the effectiveness, Figure C.3 plots
the relationship between Dead Code accuracy and HumanEval pass@1, illustrating their
strong association.

Based on these per-category results, we define an adjusted SemBench metric (Adj. accuracy)
by retaining only the highly correlated categories. Specifically, we include Dead Code,
Dominators, and Function Reachability (each having Spearman ρ > 0.5 with the benchmarks),
and exclude categories with low correlation (e.g., Liveness, Loop Reachability). This adjusted
metric focuses on the semantic tasks most aligned with code-generation performance.

Table C.3 presents the comparison between Adj. Accuracy with code generation benchmarks.
Keeping categories with high correlation, the ranking of SemBench tends to be more similar
to HumanEval and MBPP. Table C.4 shows that the Adj. SemBench has a higher correlation
with code generation benchmarks. All of this shows that SemBench has the flexibility to
adjust to not only overall code understanding tasks but also code generation tasks.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Figure C.2: Spearman ρ between SemBench@1 and HumanEval / MBPP

Figure C.3: Relationship between dead code problems and HumanEval

C.3 SemBench Python Extension Result

To show generality, we create a Python version pilot SemBench and run experiments on it.
The results are shown in Table C.2. Here are some key findings

1. Overall accuracies over Python are higher than C.

2. The models that perform well over C keep dominating performance over Python.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Table C.2: Model accuracy and ranking on SemBench-C and SemBench-Python.

Model C accuracy Py accuracy C rank Py rank

DeepSeek V2-Lite-Instr 68.71 81.85 1 3
Mistral 7B-Instr v0.3 65.50 83.52 2 1
Qwen2.5-Coder 14B-Instr 53.09 82.04 3 2
CodeLlama-7B-Instr 47.99 67.04 4 6
Qwen3 14B 42.94 71.67 5 5
CodeLlama-13B-Instr 42.65 74.81 6 4
StarCoder 2 7B 33.60 65.74 7 7
Phi-4 Reasoning (14B) 18.14 46.30 8 8
DeepSeek-R1-Distill-Qwen-7B 17.22 44.63 9 9

Table C.3: Pass@1 (%) on HumanEval, MBPP, and the Adj. accuracy from SemBench.

Family Model Name Type Size (B) HumanEval MBPP Adj. accuracy

GPT GPT-4o Mini General – 88.4 – 94.2
GPT-3.5 Turbo General – 71.9 – 76.0

DeepSeek DeepSeek-Coder V2-Lite-Instr Code 16 81.1 68.8 70.9
DeepSeek-Coder 7B-Instr v1.5 Code 7 64.1 64.6 51.6
DeepSeek-R1-Distill-Qwen-7B Reasoning 7 – 17.2 10.3

Llama CodeLlama-13B-Instr Code 13 42.7 49.4 44.7
CodeLlama-7B-Instr Code 7 34.8 44.4 36.0
Llama-3 8B-Instr General 8 72.6 – 43.4

Mistral Mistral 7B-Instr (v0.3) General 7 – – 67.0
Mamba Codestral 7B (v0.1) Code 7 75.0 68.5 52.7

Qwen Qwen2.5-Coder 14B-Instr Code 14 89.6 86.2 64.3
Qwen3 14B General 14 – 73.4 62.5

StarCoder StarCoder 2 7B Code 7 30.5 47.4 31.6

Phi Phi-4 Reasoning (14B) Reasoning 14 – 12.5 18.0

C.4 Unexpected Results Analysis

Table C.4: Correlation between SemBench Adj. Accuracy and code generation benchmarks.

Benchmark ρ pρ τ pτ N

HumanEval 0.770 9.22×10−3 0.644 9.15×10−3 10
MBPP 0.939 5.48×10−5 0.822 3.58×10−4 10

Almost all results in Section 4 followed expected trends that (i) code-specialised models
outperform general-purpose ones and (ii) larger parameter counts generally improve scores.
We highlight two notable exceptions: Phi-4 Reasoning and CodeLlama-13B-Instr.

Phi-4 Reasoning — weak code scores are consistent with prior reports. Microsoft’s
technical report shows that Phi-4 variants excel at maths and logic but lag on coding
benchmarks (e.g., MBPP). Our SemBench findings (18.14 % accuracy) align with that
pattern: the model was tuned with reasoning-centric synthetic data, not large volumes of
real-world code, so its generation strategies transfer poorly to code tasks and code semantic
questions.

CodeLlama-13B-Instr vs. CodeLlama-7B-Instr — a modest, task-dependent gap.
Meta AI’s release notes report only a 5 – 8 % advantage of the 13 B variant over the 7 B on
HumanEval and MBPP. In SemBench, we observe a more nuanced picture: the 13B model

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

underperforms the 7B on Data Dependency questions (46.7% vs. 80.3% accuracy), though it
outperforms or ties the 7B on other categories.

Table C.3 provides a possible explanation for the performance disorder between 7B and
13B models. When we refine SemBench to include only code generation-related categories,
CodeLlama-13B-Instr achieves a better performance than CodeLlama-7B-Instr. This reveals
that it is questions that are less correlated to code generation ability that play a role in the
difference.

D Additional Related Work

D.1 Automation Dataset construction

Automation is key to scaling benchmarks for evaluating complex reasoning tasks like code
semantics Han et al. (2024). Existing benchmarks, e.g., HumanEval, MBPP, APPS, depend
heavily on manual annotation, limiting dataset size, diversity, and consistency. In contrast,
fields like math and NLP have successfully used automation (e.g., GSM8K, MATH, SQuAD)
to generate large, diverse datasets Cobbe et al. (2021); Hendrycks et al. (2021b); Clark
et al. (2019); Rajpurkar et al. (2016). However, code understanding benchmarks lack such
automation. Recent work like SeqCoBench explores semantics but still relies on human
input. We address this gap by leveraging compiler infrastructure (ASTs and LLVM) to
automatically generate diverse, accurate semantic questions and answers. This enables
scalable, reproducible evaluation of LLMs’ semantic reasoning, advancing the benchmarking
of code understanding.

21

	Introduction
	Problem Setup
	Problem Formulation
	Research Questions

	Methods
	Source File Collection and Preprocessing
	Question Generation Pipeline
	Extension to Runtime-Interpreted Coding Languages

	Experiments
	Experiment Setup
	Key Findings
	Relationship between Code Semantic and Generation

	Related Work
	LLM and Code Benchmarks
	Code-oriented Models

	Conclusion
	Benchmark
	SemBench Statistics
	Notations in Tables
	Ground Truth Collection Methods
	Evaluation Pipeline

	Prompt Engineering
	Full Prompts
	Ablation Study of Prompt and Explanation

	Experiments
	Intra-family Scaling Result
	Complete Correlation Study
	SemBench Python Extension Result
	Unexpected Results Analysis

	Additional Related Work
	Automation Dataset construction

