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Abstract

Large language models (LLMs) have demonstrated impressive results in code
generation tasks, yet it is unclear to what extent they genuinely understand
code semantics and whether this affects their ability to write high-quality
code. To address this question, we introduce SemBench, a novel benchmark
consisting of 1,000 diverse C programs sourced from the CodeParrot GitHub-
code dataset, with 15,404 semantic questions spanning six fundamental
properties: function reachability, loop reachability, data dependency, liveness
of variables, dominator sets, and dead code. These six types of concepts
are taught in undergraduate-level programming language classes and can be
computed precisely and efficiently by deterministic algorithms. In contrast to
existing benchmarks (e.g. HumanEval, MBPP, CodeXGLUE, SWE-bench)
that emphasize code generation or functional correctness, our benchmark
focuses on semantic understanding with deterministic answers. We evaluate
14 popular LLMs across 7 families—including GPT-4o Mini, GPT-3.5
Turbo, DeepSeek-Coder, CodeLlama, Qwen, StarCoder, Mistral, and Phi.
To our surprise, they have very high failure rates, ranging from 21.40% to
81.86%. Category analysis reveals a sharp split between local control-flow
and global data-flow reasoning and highlights performance divergence across
task types, where different models excel on different categories. SemBench
rankings demonstrate high correlation with HumanEval and MBPP, which
proves its potential to be a good indicator of whether an LLM can produce
high-quality code. In fact, further study shows that the LLMs under
evaluation have difficulty even understanding their own coding output. For
example, DeepSeek-Coder-V2-Lite-Instruct fails to identify variable liveness
correctly 58.23% time. Overall, our experiments provide deeper insights into
semantic understanding, reveal the substantial gap between semantics and
code completion in modern LLMs, and open new opportunities for further
improvements of coding LLMs.

1 Introduction

Large Language Models (LLMs) have achieved remarkable progress in code-related tasks,
evolving significantly from demonstrating reasoning capabilities Chen et al. (2021), to
instruction-tuned architectures Ouyang et al. (2022), and retrieval-augmented generation
frameworks Lewis et al. (2020); Borgeaud et al. (2022). To systematically evaluate these
advances, diverse benchmarks have emerged, predominantly assessing metrics like functional
correctness, code generation accuracy, and semantic matching. For instance, HumanEval
Chen et al. (2021) evaluates Python function generation with functional correctness, and
CodeXGLUE Lu et al. (2021) aggregates several tasks across multiple programming languages.
Such benchmarks have been instrumental in driving improvements in LLM performance.
As LLMs progress toward becoming autonomous software development agents, one cares
about the reliability and correctness of the code generated by LLMs. In addition to thorough
testing (which is always limited in coverage), we ask the question "Do LLMs truly understand
code semantics?"
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Despite the flourishing ecosystem of code benchmarks, existing datasets often inadequately
evaluate semantic understanding directly. Most benchmarks predominantly target syntax-
level learning or the overall pass rates of generated programs, such as MBPP Austin et al.
(2021) and APPS Hendrycks et al. (2021a). Although recent works have begun incorporating
semantic evaluation, like SeqCoBench Maveli et al. (2025), they either rely heavily on
manually collected labels or indirectly evaluate semantic understanding. Furthermore,
semantic benchmarks continue to focus largely on high-level languages like Python, leaving
languages like C comparatively neglected.

Current Benchmarks SemBench

Focus on exact match-based 

evaluation metric

Human annotation is expensive

Focus on semantic understanding

Use a clear Q&A format

Automatically generate data

Prompt: Check if in given list of numbers, are any 
two numbers closer to each other than given 
threshold.

Answer: 
for idx, elem in enumerate(numbers):      
    for idx2, elem2 in enumerate(numbers):
        if idx != idx2: 
      distance = abs(elem -elem2)  

            if distance < threshold: …

Check:
assert candidate([1.0, 2.0, 3.9, 4.0], 0.3) == True  
assert candidate([1.0, 2.0, 3.9, 4.0], 0.05) == False  

Code: 
void *func1(void *param)
{   
    int i=0; 
    …   

printf("Process 1: g: %d\n",global);  …

Question: Is it impossible for function 'printf' to 
reach function 'func1'?

Answer: In the given code, function 'func1' calls 
'printf' directly. Hence, it is possible for 'printf' to 
reach 'func1'. Therefore, the answer is: Yes

Figure 1: Comparison between current benchmarks and SemBench.
Evaluating semantic understanding at scale introduces unique challenges, particularly re-
garding question generation and output evaluation. Human-annotated labels are expensive
and limit the scalability of training data Hendrycks et al. (2021a). Additionally, determining
if an LLM truly “understands” code is intrinsically ambiguous, especially given the high
uncertainty associated with LLM interactions Bubeck et al. (2023). To address these chal-
lenges, we propose the automated question generation-evaluation framework (SemBench-QE),
reframing semantic evaluation as a binary question-answer task with explanations. As
illustrated in Figure 1, our approach diverges significantly from popular benchmarks such
as HumanEval. We begin by cleaning and filtering code samples from Hugging Face’s Code-
Parrot corpus Tunstall et al. (2022), and choosing semantically rich examples. Leveraging
compiler frameworks like Clang’s abstract syntax trees (ASTs) and LLVM Lattner and Adve
(2004), or static program analysis, we derive 6 properties, including function reachability,
loop reachability, data dependency, liveness of variables, dominator sets, and dead code,
to evaluate the understanding of the data and control flow semantics, with automatic la-
beling for LLM evaluation. These properties are routinely taught in Computer Science
programming or compiler courses, and are considered basic concepts in code understanding.
These properties are instantiated into natural-language queries through predefined templates,
yielding structured question–answer pairs with automatic ground truth; robust prompting
and syntax-based parsers then validate model outputs, enabling scalable and reproducible
benchmark construction. Using this pipeline, we present SemBench, comprising 15,404
crafted semantic questions about 6 semantic properties of 1000 C programs. To demonstrate
generalizability, we also extend the pipeline and create a pivot set of 540 questions about 30
Python programs under the same 6 categories.

In summary, our contributions are threefold:
1. We introduce SemBench, the first large-scale benchmark that contains 15404

questions, which is explicitly designed to evaluate semantic code understanding,
addressing a notable gap in prior research.

2. We introduce an extensible and fully automated question-generation and evaluation
framework (SemBench-QE) that eliminates manual labeling and effectively handles
uncertainties inherent in LLM outputs.

3. We conduct comprehensive empirical analyses connecting our benchmark to prior
work on code reasoning and model evaluation, identifying connections between code
understanding and code generation ability.

And our findings are summarized as follows:
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1. Deficiency in understanding. many widely used models have around 40–70% error
rate on SemBench, even the strongest model attains 21.40%, leaving considerable
headroom for improvement.

2. Local vs. global semantics understanding. Control-flow categories are near-
solved for top models, but the global data-flow property Liveness presents a serious
challenge with error rate 37.81% - 85.24%, revealing a gap in global data-flow
versus local control-flow understanding.

3. Inconsistent reasoning patterns. Model performance varies widely across cate-
gories: strengths in some semantic tasks are offset by weaknesses in others, under-
scoring the fragmented nature of current semantic understanding.

4. Relation to code generation. Aggregate ranks positively correlated with Hu-
manEval/MBPP (ρ=0.61/0.72) in terms of Spearman’s rho, indicating that Sem-
Bench evaluation result is a good indication of coding completion capability.

5. Scaling is broadly effective, with rare exceptions. Larger models generally
achieve higher accuracy, confirming that scale enhances semantic reasoning. The
code-specialized StarCoder2 scales smoothly while the general-purpose Qwen3 shows
one exclusive anomaly given checkpoint instability and corpus imbalance.

6. LLMs may not even fully understand the code they generate. Overall
accuracy on self-produced code does not improve over SemBench. This suggests
that models may generate executable code without robust semantic comprehension.

2 Problem Setup

Save Result

Extracting

Parsing &
Execution

Sampling

Raw C files
(100M+)

Executable
files (40K+)

SemBench
Code Corpus

Code Parser

Func()

tcode

Question Bank Generator

Given ..., your response should start with an
option between \"[Final answer: yes]\" or \"

[Final answer: no]\ 

Liveness analysis determines whether a
variable’s value is used later in the program.

Does variable 'word_len' remain in use at
the end of function 'largest_word'?

tcode

LLM
[Final answer: yes]

The variable 'word_len' remains in use at the
end of the function 'largest_word' because ...

Output parser: yes Gt: yes

Save Result

(a)

AST

LLVM

function reachability

loop reachability

dominators

data dependency

liveness

dead code

Question Bank

Qi

Gti

Output Parser

LLM

Prompt

Bg

Ins

Qi

Func()

Qi

Gti

Question Bank

Compare Result

(c)

(b)

Figure 2: Overview of SemBench construction and SemBench-QE pipeline. Figure 2(a)
describes how we collect, clean, and select C files to construct our raw code files; 2(b)
represents the generation stage of the SemBench-QE pipeline; 2(c) describes the evaluation
process with SemBench.

2.1 Problem Formulation

Past works rely on manually collected labels, which restricts the size of the benchmark, while
some others focus on LLM-generated responses, which are expensive to verify the correctness.
To deal with these challenges, we aim to solve the following question:
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Given the source code file tcode, how do we construct an automated pipeline to generate
semantic questions and evaluate the LLM output?

Our automated question generation pipeline is shown in Figure 2(b). It first passes the
cleaned tcode to the code parser, which is built on top of AST and LLVM to generate accurate
code semantic information. Then, the question bank generator, which produces six categories
of semantic questions, takes in both of the semantic information and tcode to produce pairs of
questions Q with real answer ‘yes’ or ‘no’, and ground truth label Gt with value True/False.
After constructing the question bank, we are able to evaluate LLM’s understanding of these
files’ semantics using the generated Q–Gt pairs.

Figure 2(c) demonstrates our evaluation process. The initial prompt x contains four com-
ponents: instruction Ins, background information Bg, tcode and question Q. The example
prompts are listed in Appendix B. Ins provides a general guidance that leads LLM to
produce a response with the given format [Final answer: yes] or [Final answer: no]. And Bg

provides a brief but authoritative explanation of each category of questions. We then feed
the initial prompt into the LLMs to get the response O.

x = concat
(
⟨BOS⟩, τ(Ins), τ(Bg), τ(Q), τ(tcode)

)
, (1)

where τ(·) tokenises a string into sub-word IDs and concat appends sequences left-to-right.

pθ(y | x) =

T∏
t=1

pθ
(
yt

∣∣ x, y<t

)
, yt ∈ V. (2)

ŷt ∼ pθ
(
·
∣∣ x, ŷ<t

)
, t = 1, . . . , T, (3)

giving the final decoded sequence O = ŷ = LLMθ

(
Ins,Bg, Q, tcode

)
.

More details about the evaluation pipeline are included in Appendix A.4.

2.2 Research Questions

By designing such a pipeline, we aim to address the following research questions:

Does an LLM truly understand code semantics? Traditional benchmarks predom-
inantly focus on code generation and completion tasks, such as HumanEval Chen et al.
(2021) and MBPP Austin et al. (2021), however, they do not directly evaluate a model’s
semantic understanding. Recent benchmarks have started to shift focus towards semantics.
For instance, PyX Ding et al. (2024) provides a dataset of executable Python programs with
functional descriptions and execution traces, facilitating the training of models like SemCoder
Ding et al. (2024) that reason about code semantics through monologue reasoning. Similarly,
CodeMMLU Nguyen et al. (2024) offers a comprehensive multiple-choice benchmark assessing
code comprehension across various programming languages. Nevertheless, these benchmarks
either rely heavily on human-labeled data or do not directly evaluate semantic understanding.
Our SemBench-QE framework enables the generation of question banks for any executable
C files, allowing us to test LLMs’ understanding with specific semantic patterns.

How do different types of models perform in semantic understanding tasks?
Given the scarcity of benchmarks focusing on semantic understanding, most popular LLMs
have not been extensively trained on semantic data. Meanwhile, various models have been
introduced to the public, including general-purpose LLMs like ChatGPT-4o mini OpenAI
(2024), reasoning-focused models like DeepSeek-R1 DeepSeek (2025), and a series of code-
specific models. It is both interesting and important to explore their capabilities in code
semantic tasks to understand their strengths and limitations.

What is the relationship between code understanding and code generation
abilities in LLMs? While evaluating LLMs’ semantic understanding is crucial, it is equally
important to investigate the relationship between a model’s understanding and its code
generation capabilities. Can an LLM perform well in code generation tasks without truly
understanding the underlying semantics?
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3 Methods

1 int inc(int a){ return a+1; }
2 int sum_pos(int n){
3 int s = 0;
4 if (n <= 0) return 0;
5 // dominates early exit
6 for (int i=0;i<n;i++) {s+=inc(i);}
7 // may run if n>0
8 int k = 0;
9 while (k < 0) { s+=k; k++; }

10 // 0-trip => unreachable body
11 int t = s;
12 // def(t), no later use
13 if (0) { t = -1; } // dead branch
14 return s; // s live at exit
15 }
16 int main(){
17 int r=sum_pos(3);
18 printf("%d\n",r);
19 }

(a) Running example (trimmed).

Entry

if(n<=0) return 0

for(i<n) hdr

s+=inc(i)

while(k<0) hdr

s+=k; k++;

t = s

if(0){t=-1;}

return s

true

false

header dominates body

0-trip (unreachable)

s live at exit

Dominance Loop Dead

(b) Illustrative graphs extracted.
Figure 3: Compact illustration of signals used by SemBench-QE: (a) code example; (b)
extracted graphs.

3.1 Source File Collection and Preprocessing

To construct a benchmark that covers as much semantics as possible, and leverages the
power of the compiler, we divided our collection and preprocessing into four steps. The first
step is illustrated in Figure 2(a), to select representative source codes. We collect files from
the CodeParrot GitHub Code dataset Tunstall et al. (2022), which contains more than
one million C files gathered from a large number of GitHub repositories. The statistics are
listed in Appendix A.1. This guarantees that the base code files cover the wide semantics
of real-life applications. The second step aims to select files that can be compiled and
executed. To achieve this, we set two filters: contains the main function and does not import
non-standard libraries, and obtain more than 150, 000 files post-selection. Afterwards, we
verify the execution availability by executing these programs for four to five rounds and get
more than 40, 000 files. Finally, to maintain the difficulty of the question bank, we selected
7792 programs by setting the complexity constraints e.g., loop count and computation count.
1000 files are finally selected, considering the resource limit.

3.2 Question Generation Pipeline

To solve the problem of time-consuming label collection and limited dataset capacity, our
benchmark develops the SemBench-QE pipeline. It automates the whole process by system-
atically transforming tcode into structured semantic information, accompanied by rigorously
verified ground-truth answers. We rely on established static–analysis tools integrated within
LLVM/Clang 17.0.6(LLVM Developers, 2024; Clang Team, 2024) to ensure the reliability
and validity of the resulting dataset. Here, we provide a summary of the six categories, and
full extraction details are deferred to Appendix §A.3.

• Function Reachability (FR) refers to whether function f1 can (transitively) call f2
in the static call graph. We collect ground truth by parsing with Clang AST to build
a directed call graph and checking reachability via DFS/BFS. For example, in Fig. 3a,
we could build the edges: main→sum_pos and sum_pos→inc, which yield the query “Is it
impossible for sum_pos to reach inc?” with answer No.
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• Loop Reachability (LR) captures whether a loop body executes at least once along
some path. Ground truth is obtained from LLVM’s SCEV trip-count reasoning, where
zero iterations mark the loop body unreachable and otherwise it is considered reachable.
In Fig. 3b, the loop while(k<0) is proven to have zero trips, leading to the query “Is the
body of while(k<0) unreachable?” with answer Yes.

• Dominance (Dom) defines that a block B dominates block C if every path from
function entry to C passes through B. We derive ground truth by constructing the
CFG and applying LLVM’s Dominator Tree algorithm. As shown in Fig. 3b, the header
for(i<n) dominates its body s+=inc(i), producing the query “Does the loop header
strictly dominate every block in its loop body?” with answer Yes.

• Variable Data Dependency (Def–Use) checks whether a variable has a use that occurs
after its definition. We collect these relations by scanning Clang’s AST tokens to pair
definitions with later uses. For instance, Fig. 3a shows s defined before the loop and used
both inside the loop and at the return statement, leading to the query “Is s used after its
definition in sum_pos?” with answer Yes.

• Variable Liveness indicates whether a variable still holds a meaningful value at the end
of a function. We approximate this through conservative backward data-flow analysis
around function exit points. In Fig. 3b, s is live since it is returned, while t is not, giving
rise to the query “Is t live at the end of sum_pos?” with answer No.

• Dead Code (DC) refers to statements that are unreachable under any execution path.
We collect labels using Clang’s path-sensitive Static Analyzer. In Fig. 3b, the branch
if(0){t=-1;} is dead, yielding the query “Are the statements inside if(0){} dead?” with
answer Yes.

3.3 Extension to Runtime-Interpreted Coding Languages

While the original SemBench-QE for C relies on Clang/LLVM to extract AST, CFG, SSA,
and dataflow properties, we extend the framework to Python by substituting those compiler-
based analysis tools with interpreter-side analysis tools. In place of the Clang AST, we use
Python’s ast (or LibCST); for CFG and SSA, we employ frameworks such as Scalpel, and for
interprocedural reachability, we adopt call-graph analyzers like PyCG. These substitutions
allow us to recover the same semantic categories. Importantly, static program analyses
are independent of whether a language is compiled or interpreted, as they are defined over
program structure rather than execution model (Nielson et al., 1999; Alfred V. Aho et al.,
2007).

4 Experiments

Table 1: Statistics of LLMs and their Pass@1 (%) on HumanEval and MBPP. “–” denotes no
official score published.

Family Model Name Type Size (B) HumanEval MBPP

GPT GPT-4o Mini General – 88.4 –
GPT-3.5 Turbo General – 71.9 –

DeepSeek DeepSeek-Coder V2-Lite-Instr Code 16 81.1 68.8
DeepSeek-Coder 7B-Instr v1.5 Code 7 64.1 64.6
DeepSeek-R1-Distill-Qwen-7B Reasoning 7 – 17.2

Llama CodeLlama-13B-Instr Code 13 42.7 49.4
CodeLlama-7B-Instr Code 7 34.8 44.4
Llama-3 8B-Instr General 8 72.6 –

Mistral Mistral 7B-Instr (v0.3) General 7 – –
Mamba Codestral 7B (v0.1) Code 7 75.0 68.5

Qwen Qwen2.5-Coder 14B-Instr Code 14 89.6 86.2
Qwen3 14B General 14 – 73.4

StarCoder StarCoder 2 7B Code 7 30.5 47.4

Phi Phi-4 Reasoning (14B) Reasoning 14 – 12.5
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4.1 Experiment Setup

Model selection We evaluate SemBench on 14 popular state-of-the-art LLMs across 7
different families to cover a wide range of architectures. We lean to LLMs trained on code,
but also cover reasoning and general models for comparison. Given the Q&A nature of
SemBench, we also include many instructed versions.

Experiment Setting We evaluated all open-source language models with the HuggingFace
Transformers text-generation API (v 4.41) and queried proprietary GPT models via the
OpenAI Python SDK (openai v 1.15). Experiments ran on a SLURM-managed node equipped
with four AMD Instinct MI210 GPUs under the ROCm 5.7 stack. Exact hyperparameters
and launch commands are provided in the scripts.

4.2 Key Findings

Overall Performance As shown in Table 2, selected models perform varies across SemBench.
GPT family outperforms other models, demonstrating its competitive ability across diverse
tasks. While a larger model size usually indicates an advantage, Phi-4 Reasoning performs
even worse than 7B models. This may relate to model types and whether being instructed.
Although code models may not be trained over semantic benchmarks, they usually achieve
better performance. On the other hand, given the question format, instructed models tend to
have a better performance. Overall, it is alarming to see that some of the properties, such as
liveness, are poorly understood by all models under evaluation, with less than 50% correctness
for most of them (note that random guesses can achieve 50% accuracy on average).

Table 2: Overall and per-category accuracy (%) on SemBench.
Family Model Overall Accuracy Data-Dep Dead Code Dominators Func-Reach Liveness Loop-Reach

GPT GPT-4o Mini 78.60 82.97 99.35 100.00 87.99 36.79 67.56
GPT-3.5 Turbo 71.99 66.13 71.95 95.22 67.59 37.71 84.50

DeepSeek DS-Coder V2-Lite 68.71 78.81 81.70 47.63 77.79 50.99 68.17
DS-Coder 7B v1.5 48.09 41.98 76.45 45.14 41.18 36.23 50.41
DS-R1-Distill 17.22 34.87 9.05 4.27 14.40 22.14 18.98

Llama CodeLlama-13B-Instr 42.65 46.69 56.45 31.50 45.38 39.64 38.19
CodeLlama-7B-Instr 47.99 80.31 30.70 12.06 52.31 62.19 47.35
Llama-3 8B-Instr 40.35 37.42 53.75 23.51 48.56 35.47 38.45

Mistral Mistral 7B-Instr 65.50 67.79 68.70 59.69 70.12 52.21 68.07
Codestral 7B v0.1 44.09 37.02 62.50 38.98 54.82 33.38 36.54

Qwen Qwen2.5 14B Instr 53.09 50.65 81.90 73.33 49.38 25.34 46.77
Qwen3 14B 42.94 27.61 83.55 48.50 58.40 19.85 24.89

StarCoder StarCoder 2 7B 33.60 39.98 37.65 17.20 36.08 37.15 32.49

Phi Phi-4 Reasoning 18.14 21.24 17.20 8.60 23.73 14.76 18.45

Performance Over Different Categories Table 2 reveals a sharp contrast between
“shallow” and “deep” semantic tasks.

Dead Code and Dominators are almost trivial for GPT-4o (99–100% accuracy) and remain
above 70% even for 7 B-parameter coders. These patterns can be solved by local syntactic
cues, suggesting that giant language models already act as powerful static analysers for
intra-procedure control flow. Liveness is the clear bottleneck: GPT-4o drops to 36.79%
accuracy, and every other model also falls. Correct reasoning requires tracking variable
definitions across branches and loops, a form of classic data-flow analysis that remains
elusive for purely autoregressive models. Func-Reach scores straddle the middle ground (88%
vs. 68% for GPT-4o and Mistral-7B-Instr, respectively), indicating partial but incomplete
mastery of call-graph reasoning.

Taken together, the plateau on “easy” tasks but steep drop on “deep” tasks implies that current
LLMs internalise many surface semantic signals yet do not possess a unified, compiler-level
understanding of program meaning. SemBench therefore fills a critical gap by exposing
exactly where that boundary lies. We also use the extension SemBench to generate a Python
pilot; the result is in Appendix C.3, which aligns with the C version we present here.

Ablation Study Over Benchmark To further validate the effectiveness of SemBench,
we conducted an intra-family scaling study over both the Qwen3 (general-purpose) and

7
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StarCoder2 (code-specialized) model families. As shown in Figure C.1, the overall accuracy
improves with model size increases, confirming the expected scaling-law effect.

Interestingly, the scaling behaviors differ. For Qwen3, the 4B model underperforms the
smaller 1.7B variant (16.6% vs. 20.0%), likely due to optimization instability or category
imbalance, as accuracy on Dominators drops sharply at 4B. In contrast, StarCoder2 scales
more smoothly, reflecting its code-focused training pipeline and better alignment with the
program-analysis tasks in SemBench.

4.3 Relationship between Code Semantic and Generation
Table 3: Spearman correlation between SemBench and two code–generation benchmarks.

HumanEval MBPP

Category ρ p ρ p N

All Categories 0.61 0.060 0.73 0.016* 10
DataDep 0.21 0.556 0.28 0.425 10
DeadCode 0.83 0.003* 0.96 0.000* 10
Dominators 0.75 0.013* 0.98 0.000* 10
FuncReach 0.64 0.048* 0.75 0.013* 10
Liveness −0.52 0.128 0.04 0.907 10
LoopReach 0.36 0.310 0.47 0.174 10

* indicates significant correlation at p < 0.05.
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Figure 4: Scatter Plot of SemBench vs HumanEval and SemBench vs MBPP
Correlation Analysis. To examine whether SemBench performance transfers to estab-
lished code–generation benchmarks, we compute rank–based correlations between each
SemBench accuracy and the official pass@1 reported for HumanEval and MBPP. Let s(k)i
denote the accuracy of model i on SemBench category k (including the overall SemBench),
and hi, mi be its HumanEval and MBPP pass@1 scores, respectively. We report

ρHE
k = Spearman

(
{s(k)i }, {hi}

)
, ρMBPP

k = Spearman
(
{s(k)i }, {mi}

)
,

together with Kendall’s τ and two–sided p–values. Spearman’s ρ is widely adopted for
cross-benchmark studies because it is robust to non-linear scaling and outliers (Liang et al.,
2022), while Kendall’s τ mitigates small-sample bias (Zan et al., 2025). Models lacking an
official score for either benchmark are filtered out pair-wise.

Overall Trends Demonstrate Correlation Between SemBench and Code Gen-
eration Tasks. Table 3 demonstrates a moderate–to–strong association: ρ = 0.61 with
HumanEval (p = 0.060) and ρ = 0.72 with MBPP (p = 0.019). Thus, Figure 4 reveals that
models that rank highly on SemBench tend to do well on established code-completion tasks.

Local control-flow categories align strongly. Dead Code and Dominators correlate
tightly with both HumanEval (ρ = 0.83 and 0.75) and MBPP (ρ = 0.96 and 0.98, all
p < 0.01), reflecting the local control-flow reasoning is included in the code-completion
benchmarks.

Global data-flow categories expose poor code understanding. Data Dep and Loop
Reach reveal significant weakness not covered in the existing coding benchmarks (|ρ| ≤ 0.29,
p > 0.17), while Liveness even correlates negatively with HumanEval (ρ = −0.52) and is
essentially uncorrelated with MBPP (ρ = 0.04). These tasks, therefore, underscore the lack
of semantic understanding not covered in the existing coding examples.
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Can LLMs understand the semantics of the code they generate? To address
this problem, we selected 120 problems from the CodeContest dataset (Li et al., 2022),
prompted DeepSeek-Coder V2-Lite-Instruct to generate solutions, and retained 40
programs that executed successfully. We then evaluated these model-generated programs
using our pipeline SemBench-QE.

DeepSeek-Coder does not gain accuracy over semantic understanding when tested on its
own outputs. The model achieves an overall accuracy of 68.3% over 612 semantic questions,
similar to its performance on SemBench (Table 1). While relatively shallow categories such
as Dead Code and Dominators are nearly solved, the accuracy even decreases for deeper
semantic properties, including Liveness (41.8%) and Loop Reachability (54.9%). This
highlights that although the model can generate executable code, it may struggle to reason
about the long-range semantic properties of that same code.

5 Related Work

5.1 LLM and Code Benchmarks

Current benchmarks for code-related LLM evaluation largely fall into two categories: code gen-
eration and debugging. Datasets like HumanEval Chen et al. (2021) and MBPP Austin et al.
(2021) evaluate Python function synthesis via docstrings and test cases, while CodeXGLUE Lu
et al. (2021) expands to multiple languages and tasks such as clone detection and code repair.
These benchmarks prioritize syntactic correctness and execution-based metrics but do not di-
rectly probe semantic understanding. A smaller subset addresses semantics indirectly through
classification tasks like vulnerability detection or API misuse, relying on high-level labels
rather than fine-grained reasoning about behaviors like data flow or reachability. Moreover,
most focus on Python, with limited support for low-level languages like C. To our knowledge,
no public benchmark directly tests LLMs using closed-form semantic questions, motivating
our C-based benchmark designed to evaluate fundamental program understanding.

5.2 Code-oriented Models

Recent advancements in LLMs have led to a variety of code-focused models, each trained
on distinct corpora and optimized for different tasks. Code Llama (7–13B) Rozière et al.
(2024) is fine-tuned from LLaMA using a code-heavy corpus (85% source code) and includes
instruction-tuned variants with synthetic Q&A pairs. DeepSeek-Coder DeepSeek-AI
et al. (2024) includes dense (v1.x) and MoE (V2-Lite) models, trained on up to 6T tokens
across 338 languages, with instruction tuning for efficient code QA. StarCoder 2 Lozhkov
et al. (2024) (3–15B), built on The Stack v2, shows strong performance on C reasoning,
with the 15B model rivaling larger baselines. Qwen 2.5-Coder Hui et al. (2024) adapts
a multilingual base model using a code-centric corpus across 92 languages, with the 14B
instruct variant offering extended context and strong tool-calling support. Codestral-22B
combines instruction tuning with 80+ languages Jiang et al. (2023).

6 Conclusion

We presented SemBench, a benchmark for directly evaluating LLMs’ semantic understanding
through automated question generation and static features-based ground truths. Our study
shows that while local control-flow properties (e.g., dominators, dead code) are nearly solved,
deeper global data-flow tasks (e.g., liveness) remain difficult, exposing substantial room for
improvement. Model scaling generally helps but is inconsistent across families, and evaluation
on self-generated code reveals that producing runnable programs does not imply semantic
comprehension. SemBench further correlates with HumanEval and MBPP, highlighting
semantic reasoning as a key factor in code generation quality. We hope it serves as both a
diagnostic and a resource for developing models with stronger program semantics.

The anonymous link to SemBench is released in the supplementary material.
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Reproducibility. We make every effort to ensure reproducibility: dataset construction
(Sec. 3), question-generation pipeline (Sec. A.3), and evaluation procedure (Sec. A.4) are
fully detailed in the main paper and Appendix, with implementation scripts provided in the
supplementary material. All code and processed data will be released under an open license.

Ethics Statement. This work does not involve human subjects, personal data, or sensitive
attributes. All datasets are derived from publicly available GitHub code with license
compliance. We acknowledge potential dual-use concerns, as semantic benchmarks may
expose weaknesses in models; however, we intend to advance safer and more reliable LLMs
for code understanding.
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A Benchmark

A.1 SemBench Statistics

Table A.1 provides an overview of key attributes of SemBench, including the number of
programs, the total number of questions (problems), and the count of questions in each
semantic category.

Table A.1: Overview of the SemBench

Question Bank Size

Program counts 1 000
Problem counts 15 404

Problem counts by category

Data dependency 1 996
Dead code 2 000
Dominators 1 965
Function reachability 3 548
Liveness 1 965
Loop reachability 3 930

Feature statistics

File size (bytes) 3 108 (min: 85, max: 491 196)
Max nesting depth 2 (min: 0, max: 10)
Avg dependency distance 21 (min: 0, max: 630)
Max dependency distance 67 (min: 0, max: 2 071)

In Table A.1, each category lists the number of Yes/No questions (problems) that test that
aspect of code semantics.

A.2 Notations in Tables

For brevity, we use shorthand labels for model names in the tables of the main paper.
Table A.2 provides a mapping between these shorthand labels and the models’ full repository
or API identifiers.

Table A.2: Shorthand mapping in other tables and full model identifiers.

Shorthand in other tables Full repo/API identifier

GPT-4o Mini openai/gpt-4o-mini (chat.completions API)
GPT-3.5 Turbo openai/gpt-3.5-turbo (chat.completions API)
DeepSeek-Coder V2-Lite-Instr deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct
DeepSeek-Coder 7B-Instr v1.5 deepseek-ai/deepseek-coder-7b-instruct-v1.5
DeepSeek-R1-Distill-Qwen-7B deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
CodeLlama-13B-Instr codellama/CodeLlama-13b-Instruct-hf
CodeLlama-7B-Instr codellama/CodeLlama-7b-Instruct-hf
Llama-3 8B-Instr meta-llama/Llama-3-8B-Instruct
Mistral 7B-Instr (v0.3) mistralai/Mistral-7B-Instruct-v0.3
Mamba Codestral 7B (v0.1) mistralai/Mamba-Codestral-7B-v0.1
Qwen2.5-Coder 14B-Instr Qwen/Qwen2.5-Coder-14B-Instruct
Qwen3 14B Qwen/Qwen3-14B
StarCoder 2 7B bigcode/starcoder2-7b
Phi-4 Reasoning (14B) microsoft/Phi-4-reasoning

A.3 Ground Truth Collection Methods

Function Reachability Function reachability queries explore whether a function can poten-
tially invoke another within a call graph derived from static analysis. The pipeline is able to
utilize tools such as Clang’s Abstract Syntax Tree (AST) parsing capabilities(LLVM Project,
2024a) to accurately identify function declarations and calls. A directed call graph is
constructed where nodes represent functions and edges denote explicit call relationships.
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Reachability checks (e.g., depth–first or breadth–first search) provide precise ground–truth
answers, as C’s static call semantics exclude indirect calls unless explicitly encoded via
function pointers(Alfred V. Aho et al., 2007). Consequently, ground–truth answers for
function reachability are exact, reflecting definitive interprocedural call paths. As shown
in Figure 1, the question template is "Is it impossible for function fun1 to reach function
fun2?", The call graph connectivity provides us with ground-truth, and we save the fun1,
fun2, and Gt as the semantic information to fill into the template.

Loop Reachability Loop reachability determines whether loops can potentially be skipped
or are guaranteed to be executed. We employ LLVM’s Scalar Evolution (SCEV) analy-
sis(LLVM Project, 2024c) to identify loops with determinable trip counts. If the maximum
iteration count computed by SCEV is zero, loops are marked unreachable; otherwise, loops
are conservatively considered reachable. The correctness of Scalar–Evolution analysis—widely
used in compiler optimisations—is well established(Steven S. Muchnick, 1997), rendering our
ground-truth labels robust.

Dominance Analysis At the code level, dominance captures mandatory execution order
between program blocks. A block B is said to dominate block C if every execution of C must
first pass through B. In practice, this means that (i) function entries dominate all statements
in the function, (ii) loop headers dominate their loop bodies, and (iii) branch conditions
(e.g., if) dominate the statements within their guarded regions. LLVM’s Dominator Tree
analysis(LLVM Project, 2024b), based on the Lengauer–Tarjan algorithm(Lengauer and
Tarjan, 1979), computes these exact relationships, and we instantiate them into binary
queries such as “does the loop header dominate every block within its loop body?”.

Variable Data Dependency Data dependency queries examine whether variables are
used after their definitions, capturing essential def–use relationships within the program.
The pipeline leverages Clang’s AST–based token analysis to accurately identify variable
definitions and subsequent uses(Steven S. Muchnick, 1997). Variables identified as having a
use after definition are explicitly marked. The correctness and completeness of libclang’s AST
parsing ensure accurate representation of data dependencies, making these labels trustworthy.
One example is shown in Figure 2(c), given the extracted var and fun pair, this generator
can generate a rich combination of data dependency questions.

Variable Liveness Variable liveness analysis identifies variables still holding meaningful
values (“live”) at the exit points of functions. Our pipeline approximates standard data–flow
analysis(Keith D. Cooper and Linda Torczon, 2012) by examining explicit variable usage
near function–exit points. A variable is conservatively considered live if it appears after its
final definition within the function’s terminating region. This heuristic approach, though
conservative, closely aligns with conventional compiler–liveness analysis(Steven S. Muchnick,
1997), ensuring reliable ground truth.

Dead Code Detection Dead code detection queries determine the executability of program
statements. Our pipeline employs Clang’s Static Analyzer, specifically its interprocedural,
path–sensitive dead–code checker(Clang Static Analyzer Team, 2024). Statements flagged
by the analyzer as unreachable under any execution path are marked as dead. The Static
Analyzer’s rigorous and extensively validated techniques(Ted Kremenek et al., 2008) guarantee
high reliability for these ground–truth labels.

Task Design Mindmap To make SemBench a robust and decomposable benchmark, we
intentionally assign different difficulty levels to different categories of tasks. Dead code and
Dominators tasks are relatively easy, as they do not need too much information. Liveness
and Data Dependency are relatively hard as they may rely on understanding the whole
program. Users are free to explore the combinational and decompositional application of
SemBench.

On the other hand, even for codes that have been exposed to LLMs, these semantic features
would not be leaked. Experiment in Section 4.3 proves that LLMs could fail to improve
understanding even for the programs generated by themselves.
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A.4 Evaluation Pipeline

As shown in Figure 2(c), we also built the automated evaluation pipeline. Same as discussed
in section 2.1, we concatenate four components to form the rich-context initial input from the
constructed question bank. Then we feed the initial input into the LLM to get O. Afterwards,
we will pass O through our well-designed output parser to extract the LLM’s answer.

The output parser is designed to reduce mislabeling outputs produced by LLMs.

Output Parser

To guarantee the correctness of the evaluation, parsing O correctly matters. Our output
parser processes O by following these steps:

• Cleaning non-English characters and non-instructed symbols.
• Search for and collect declared patterns in the Ins within each line.
• Remove ambiguous answers, e.g., yes or no when it does not clearly answer.

Besides syntactically verifying its correctness, we also tested the parser over sixty real outputs
generated by Phi-4-reasoning, which tends to produce diverse, noisy outputs. And our output
parser passes all the tests.

Overall, our automated analysis pipeline combines rigorously validated compiler analy-
ses(LLVM Developers, 2024; Clang Team, 2024; LLVM Project, 2024c;b; Clang Static Ana-
lyzer Team, 2024) and established compiler theory(Alfred V. Aho et al., 2007; Steven S. Much-
nick, 1997; Keith D. Cooper and Linda Torczon, 2012) to produce a semantically accurate,
robust benchmark dataset suitable for evaluating code–semantic understanding by Large
Language Models (LLMs).

B Prompt Engineering

B.1 Full Prompts

As described in Section 2.1, each prompt to the LLM is constructed by concatenating four
parts: (

Ins, Bg, tcode, Q
)
,

where

• Ins is the instruction to the model to format the output;
• Bg is the background information describing the category of each question;
• tcode is the source C code;
• Q is the specific question text (generated via the templates from Section 3.2).

Below we give the full text of the Ins and Bg.

Instruction (Ins):

Given the C code and background information, your response should start
with either: [Final answer: yes] or [Final answer: no], and then
briefly explain your reasoning step by step.

Background information (Bg) for each semantic category: We supply the model
with relevant definitions for each task. The background prompts are as follows:

function reachability Examines whether one function can transitively call another (i.e., if a
call path exists).

loop reachability Examines whether a loop is executed during the program execution
based on its condition and structure.

dominators Identifies whether certain code sections (like loop headers) must execute
before other parts of the loop.
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data dependency Determines if a variable’s defined value is used and influences subsequent
computations.

liveness Determines whether a variable’s value is used later in the program.
dead code Identifies segments that are never executed, such as code following an

unconditional return or unreachable branches.

B.2 Ablation Study of Prompt and Explanation

While SemBench relies on the automated framework to collect judgments made by models,
prompts to generate responses, and explanations matter in the response quality.

We conducted experiments to determine the effect of prompt style and token limits. A naive
Insnaive prompt simply asks for decision:

Given the C code and background information, answer each test question
with an option between [yes] and [no].

However, we found that this often produces invalid answers (e.g. missing the required tags).
Therefore, we experimented with a Chain of Thought (CoT) version Inspost:

Given the C code and background information, your response should start
with an option between [Final answer: yes] or [Final answer: no],
then you should explain your solution step by step briefly.

Shifting from Insnaive to Inspost with a large token limit substantially increases performance:
for example, increasing Phi4-reasoning from 12.54% to 18.14% and CodeLlama-7b-Instruct-hf
from 37.30% to 47.99%.

While the Inspost prompt enhances overall performance, the maximum token limit of 256
tokens results in wasted resources, as many outputs conclude their reasoning early but
continue generating unnecessary tokens. Moreover, evaluating each 7B model fully requires
over 8 hours. To address these issues, two solutions are promising: reducing the maximum
token length or modifying the prompt to let LLMs answer in the beginning. Reducing
the token limit can prevent excessive token generation, but risks truncating valid answers.
Alternatively, switching to the answer-first style Ins prompt from Section B.1 provides
greater flexibility regarding token limits.

To balance efficiency and performance, we conducted an ablation study on batch size and
prompt effects. As shown in Table B.1, prompting LLMs to answer only after completing
their reasoning causes a sharp performance drop when reducing the maximum token count
from 128 to 64. Conversely, adopting the Ins prompt preserves good performance while
significantly improving processing speed.

Table B.1: Overall Accuracy (%) on SemBench for different batch-size / prompt settings

Inspost64 Inspost128 Inspost256 Ins64

SemBench 11.84 42.92 44.70 44.72

Therefore, SemBench is by no means a shallow Yes/No task, but provides tangible insights
into LLMs’ performance over code semantics understanding.

C Experiments

C.1 Intra-family Scaling Result

Figure C.1 shows the overall accuracy and per-category accuracy of Qwen3 and StarCoder2
families.

The result of this experiment, along with the nature of the semantic tasks we have constructed,
proves the robustness and data-contamination-free nature of SemBench.
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Figure C.1: Qwen3 and StarCoder2 family accuracy scaled by model size

Table C.1: Correlation between SemBench categories and two code–generation benchmarks.

HumanEval MBPP

Category ρ p τ p ρ p τ p N

SemBench 0.61 0.060 0.47 0.073 0.73 0.016 0.60 0.017 10
DataDep 0.21 0.556 0.11 0.727 0.28 0.425 0.20 0.484 10
DeadCode 0.83 0.003 0.64 0.009 0.96 0.000 0.87 0.000 10
Dominators 0.75 0.013 0.60 0.017 0.98 0.000 0.91 0.000 10
FuncReach 0.64 0.048 0.51 0.047 0.75 0.013 0.60 0.017 10
Liveness -0.52 0.128 -0.42 0.108 0.04 0.907 -0.02 1.000 10
LoopReach 0.36 0.310 0.24 0.381 0.47 0.174 0.38 0.156 10

C.2 Complete Correlation Study

In Section 4.3, we reported overall rank correlations between SemBench and the code-
generation benchmarks HumanEval and MBPP. Table C.1 gives the full Spearman (ρ)
and Kendall (τ) correlations for each SemBench category. Figure C.2 visualizes these
Spearman correlations for all categories. To demonstrate the effectiveness, Figure C.3 plots
the relationship between Dead Code accuracy and HumanEval pass@1, illustrating their
strong association.

Based on these per-category results, we define an adjusted SemBench metric (Adj. accuracy)
by retaining only the highly correlated categories. Specifically, we include Dead Code,
Dominators, and Function Reachability (each having Spearman ρ > 0.5 with the benchmarks),
and exclude categories with low correlation (e.g., Liveness, Loop Reachability). This adjusted
metric focuses on the semantic tasks most aligned with code-generation performance.

Table C.3 presents the comparison between Adj. Accuracy with code generation benchmarks.
Keeping categories with high correlation, the ranking of SemBench tends to be more similar
to HumanEval and MBPP. Table C.4 shows that the Adj. SemBench has a higher correlation
with code generation benchmarks. All of this shows that SemBench has the flexibility to
adjust to not only overall code understanding tasks but also code generation tasks.
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Figure C.2: Spearman ρ between SemBench@1 and HumanEval / MBPP

Figure C.3: Relationship between dead code problems and HumanEval

C.3 SemBench Python Extension Result

To show generality, we create a Python version pilot SemBench and run experiments on it.
The results are shown in Table C.2. Here are some key findings

1. Overall accuracies over Python are higher than C.

2. The models that perform well over C keep dominating performance over Python.
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Table C.2: Model accuracy and ranking on SemBench-C and SemBench-Python.

Model C accuracy Py accuracy C rank Py rank

DeepSeek V2-Lite-Instr 68.71 81.85 1 3
Mistral 7B-Instr v0.3 65.50 83.52 2 1
Qwen2.5-Coder 14B-Instr 53.09 82.04 3 2
CodeLlama-7B-Instr 47.99 67.04 4 6
Qwen3 14B 42.94 71.67 5 5
CodeLlama-13B-Instr 42.65 74.81 6 4
StarCoder 2 7B 33.60 65.74 7 7
Phi-4 Reasoning (14B) 18.14 46.30 8 8
DeepSeek-R1-Distill-Qwen-7B 17.22 44.63 9 9

Table C.3: Pass@1 (%) on HumanEval, MBPP, and the Adj. accuracy from SemBench.

Family Model Name Type Size (B) HumanEval MBPP Adj. accuracy

GPT GPT-4o Mini General – 88.4 – 94.2
GPT-3.5 Turbo General – 71.9 – 76.0

DeepSeek DeepSeek-Coder V2-Lite-Instr Code 16 81.1 68.8 70.9
DeepSeek-Coder 7B-Instr v1.5 Code 7 64.1 64.6 51.6
DeepSeek-R1-Distill-Qwen-7B Reasoning 7 – 17.2 10.3

Llama CodeLlama-13B-Instr Code 13 42.7 49.4 44.7
CodeLlama-7B-Instr Code 7 34.8 44.4 36.0
Llama-3 8B-Instr General 8 72.6 – 43.4

Mistral Mistral 7B-Instr (v0.3) General 7 – – 67.0
Mamba Codestral 7B (v0.1) Code 7 75.0 68.5 52.7

Qwen Qwen2.5-Coder 14B-Instr Code 14 89.6 86.2 64.3
Qwen3 14B General 14 – 73.4 62.5

StarCoder StarCoder 2 7B Code 7 30.5 47.4 31.6

Phi Phi-4 Reasoning (14B) Reasoning 14 – 12.5 18.0

C.4 Unexpected Results Analysis

Table C.4: Correlation between SemBench Adj. Accuracy and code generation benchmarks.

Benchmark ρ pρ τ pτ N

HumanEval 0.770 9.22×10−3 0.644 9.15×10−3 10
MBPP 0.939 5.48×10−5 0.822 3.58×10−4 10

Almost all results in Section 4 followed expected trends that (i) code-specialised models
outperform general-purpose ones and (ii) larger parameter counts generally improve scores.
We highlight two notable exceptions: Phi-4 Reasoning and CodeLlama-13B-Instr.

Phi-4 Reasoning — weak code scores are consistent with prior reports. Microsoft’s
technical report shows that Phi-4 variants excel at maths and logic but lag on coding
benchmarks (e.g., MBPP). Our SemBench findings (18.14 % accuracy) align with that
pattern: the model was tuned with reasoning-centric synthetic data, not large volumes of
real-world code, so its generation strategies transfer poorly to code tasks and code semantic
questions.

CodeLlama-13B-Instr vs. CodeLlama-7B-Instr — a modest, task-dependent gap.
Meta AI’s release notes report only a 5 – 8 % advantage of the 13 B variant over the 7 B on
HumanEval and MBPP. In SemBench, we observe a more nuanced picture: the 13B model
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underperforms the 7B on Data Dependency questions (46.7% vs. 80.3% accuracy), though it
outperforms or ties the 7B on other categories.

Table C.3 provides a possible explanation for the performance disorder between 7B and
13B models. When we refine SemBench to include only code generation-related categories,
CodeLlama-13B-Instr achieves a better performance than CodeLlama-7B-Instr. This reveals
that it is questions that are less correlated to code generation ability that play a role in the
difference.

D Additional Related Work

D.1 Automation Dataset construction

Automation is key to scaling benchmarks for evaluating complex reasoning tasks like code
semantics Han et al. (2024). Existing benchmarks, e.g., HumanEval, MBPP, APPS, depend
heavily on manual annotation, limiting dataset size, diversity, and consistency. In contrast,
fields like math and NLP have successfully used automation (e.g., GSM8K, MATH, SQuAD)
to generate large, diverse datasets Cobbe et al. (2021); Hendrycks et al. (2021b); Clark
et al. (2019); Rajpurkar et al. (2016). However, code understanding benchmarks lack such
automation. Recent work like SeqCoBench explores semantics but still relies on human
input. We address this gap by leveraging compiler infrastructure (ASTs and LLVM) to
automatically generate diverse, accurate semantic questions and answers. This enables
scalable, reproducible evaluation of LLMs’ semantic reasoning, advancing the benchmarking
of code understanding.
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