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Abstract

Speech large language models (LLMs) have
emerged as a prominent research focus in
speech processing. In this work, we introduce
VocalNet, a series of high-performance speech
LLMs featuring a scalable and model-agnostic
training framework as well as a novel multi-
token prediction (MTP) paradigm for speech
generation. We first propose an efficient two-
stage training framework that enables LLMs to
acquire real-time speech interaction capabili-
ties. Through extensive experiments on various
training configurations, we ensure both sim-
plicity and effectiveness in the training strat-
egy. Furthermore, inspired by advances in lan-
guage modeling, we introduce MTP into the
domain of speech LLMs—an alternative to tra-
ditional next-token prediction (NTP)—which
enables the model to predict multiple future to-
kens at each step. Through systematic analysis
and improved implementation, we show that
MTP not only accelerates inference speed but
also significantly enhances speech quality. Ex-
perimental results demonstrate that VocalNet
achieves performance comparable to state-of-
the-art Omni LLMs while outperforming exist-
ing open-source speech LLMs, despite using
limited training data.

1 Introduction

The evolution of speech interaction systems has
progressed from traditional cascade architectures
to modern end-to-end approaches. While conven-
tional systems employ separate modules for auto-
matic speech recognition (ASR), large language
model (LLM), and text-to-speech (TTS) (Shen
et al., 2023; Huang et al., 2024; An et al., 2024),
these pipeline systems suffer from latency accumu-
lation and information degradation. Recent break-
throughs like GPT-40 (OpenAl, 2024) have demon-
strated the superior potential of end-to-end speech
LLMs that process audio inputs and outputs di-
rectly within a unified framework, enabling more
natural and responsive voice interactions.

Current speech LLMs can be broadly catego-
rized into two paradigms (Chen et al., 2025). Na-
tive multimodal models like Mini-Omni (Xie and
Wu, 2024) and Moshi (Défossez et al., 2024) em-
ploy a decoder-only Transformer for joint text and
speech processing, but require massive pretraining
data and face catastrophic forgetting issues. In con-
trast, aligned multimodal models such as LLaMA-
Omni (Fang et al., 2024) and Freeze-Omni (Wang
et al., 2024) preserve LLM capabilities through
separate speech encoders and decoders while re-
quiring less training data. Despite notable advances
in aligned multimodal speech LLMs, two critical
challenges severely limit their widespread adoption
and real-world deployment.

First, the design of training frameworks for
aligned models remains underdeveloped and ex-
cessively complex. Systems like Freeze-Omni and
MinMo (Chen et al., 2025) employ complex multi-
stage training procedures whose empirical benefits
are unclear, introducing computational overhead
and reproducibility challenges. This complexity
not only slows down research progress but also
raises barriers for practical scalability and indus-
trial application. Second, the prevailing autoregres-
sive next-token prediction (NTP) paradigm (Zeng
et al., 2024; Xu et al., 2025) inherently constrains
both the efficiency and quality of speech genera-
tion. Its sequential token-by-token generation leads
to inference latency, incompatible with real-time
or large-scale scenarios. More critically, NTP’s
token-level granularity is poorly aligned with the
hierarchical structure of speech, since meaningful
acoustic units like phonemes or syllables typically
span multiple tokens. This structural mismatch un-
dermines model training efficiency and directly im-
pacts the naturalness and intelligibility of generated
speech. Although non-autoregressive alternatives
using CTC loss (Fang et al., 2024; Luo et al., 2025)
offer accelerated generation, they typically do so at
a substantial cost to output fidelity, failing to fully



resolve the limitations posed by NTP. Addressing
these fundamental challenges is essential to unlock-
ing the full potential of speech LLMs in practical,
high-impact applications.

Therefore, this paper introduces VocalNet, a
breakthrough in speech LLMs that simultaneously
addresses training efficiency and improve speech
generation through two key innovations. First, we
propose a scalable, LLM-agnostic two-stage train-
ing framework designed to efficiently equip LLMs
with real-time speech interaction capabilities using
limited data. We experimentally investigated var-
ious configurations for this framework, including
the necessity of pretraining stages and comparing
the performance of single-stage versus two-stage
training. Based on these experimental results, we
established a streamlined two-stage training frame-
work that maintains effectiveness while preserving
simplicity. Furthermore, aiming to simultaneously
enhance generation speed and speech quality, and
inspired by recent advances in language model-
ing (Qi et al., 2020; Gloeckle et al., 2024; Cai
et al., 2024), we explore the potential of multi-
token prediction (MTP) in the context of speech
LLMs. Through careful analysis of the impact
of MTP on speech generation, we identify limita-
tions in existing approaches and propose a more
effective implementation specifically for speech
LLMs. Our findings demonstrate that, even with
limited training data, this MTP method not only
accelerates generation speed but also significantly
improving speech quality (~50% WER reduction)
compared to conventional NTP. Leveraging the pro-
posed training framework and MTP method, we
successfully trained VocalNet-1B and VocalNet-8B.
Experimental results demonstrate that VocalNet-1B
significantly outperforms existing speech LLMs of
comparable parameter size. VocalNet-8B achieves
performance on par with advanced Omni LLMs
like MiniCPM-o (Yao et al., 2024) and Qwen2.5-
Omni (Xu et al., 2025), despite utilizing consid-
erably less training data. Moreover, VocalNet-8B
markedly surpasses previous open-source speech
LLMs such as Freeze-Omni (Wang et al., 2024).
Our key contributions are as follows:

* Effective Training Framework for Speech
LLMs. We propose a scalable and model-
agnostic training framework that efficiently
integrates speech understanding and genera-
tion capabilities into LLMs through the incor-
poration of a speech encoder and decoder.

e Multi-Token Prediction MTP): A
Paradigm Shift for Enhanced Speech
Generation. We identify inefficiencies in
standard next-token prediction (NTP) for
speech generation and propose multi-token
prediction (MTP) as a novel paradigm
for autoregressive speech modeling. Our
optimized MTP implementation not only
accelerates inference but also improves output
quality, offering new insights into efficient
speech generation.

* High-Performance Speech LLMs: Vocal-
Net Models. Leveraging the proposed train-
ing framework and MTP method, we develop
high-performance speech LLMs—VocalNet.
Experimental results show their strong per-
formance in voice interaction tasks even with
limited training data, demonstrating the effec-
tiveness and efficiency of our approach.

2 VocalNet

2.1 Model Architecture

The model architecture of VocalNet is illustrated in
Figure 1. Align with prior work, VocalNet consists
of a speech encoder to convert waves into speech
representations, a LLM backbone and a speech de-
coder for speech tokens generation. A downsample
adaptor is added after the speech encoder to achieve
a lower frame rate, and a speech projector to bridge
the dimension gap between the LLM hidden state
and decoder inputs. The generated speech token
is sent to the speech vocoder, in which the cor-
responding speech response is constructed. This
architecture effectively preserves the capabilities
inherent in the LLM, thus significantly reducing the
data requirement for training compared with native
multimodal models. In the following statement,
x* refers to the raw speech query, y® represents
the generated text response and y° stands for the
speech response.

Speech Query Encoding The speech encoder
E processes the input speech query x® to pro-
duce a high-level representation z with length I:
z = E(x*) = (20, 21, ..., 21), which encapsulates
rich semantic information. After that, the down-
sample adaptor transforms the speech feature z
into semantic-condensed embedding with a lower
frame rate. Through a concatenation-based projec-
tion module, it reduces the sequence length by a
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Figure 1: On the left: The architecture of the VocalNet model. On the right: A depiction of VocalNet’s dual-stage

training strategy.

factor of k, yielding 2/, and applies linear transfor-
mations with ReL.U to generate z,, which will be
fed into the LLM backbone, as expressed in

Z; = COHC&t(ZiT, Zir41ly-- -y Z(i—l—l)r—l)

1
Z, = WQ(RGLU(WlZ/ + bl)) + by M

where W7 and W, are weight matrices, b; and
b, are bias vectors.

LLM The LLM functions as the core module,
processing the compressed representation 2z, to ex-
tract linguistic and contextual information, yielding
hidden states h 1 5. These states enable the gener-
ation of the corresponding textual response y' and
are essential in speech generation.

Speech Response Generation The speech de-
coder need to model both the LLM hidden states
hr 1 and the speech embedding simultaneously,
but the spaces represented by these two are typ-
ically different (Wang et al., 2024). To address
this space gap, we use a speech projector that
transforms hpyys into vrra. The speech de-
coder then utilizes these vectors to autoregressively
generate a sequence of discrete speech tokens s.
Finally, a pre-trained speech vocoder, incorporat-
ing a chunk-aware flow matching model derived
from CosyVoice2 (Du et al., 2024) along with Hi-
fiGAN (Kong et al., 2020), constructs the mel-
spectrogram from the speech tokens s and then
synthesizes the speech waveform response y°®. Vo-
calNet also supports streaming speech generation;

the detailed implementation is described in Ap-
pendix B.

2.2 Training Strategy

We adopt a dual-stage training strategy (see the
right part of Figure 1), consisting of Multi-Modal
Alignment and Generative Supervised Fine-Tuning,
following the categorization in (Ji et al., 2024). In
the first stage, VocalNet is trained on speech-to-
text tasks (z® — y'). The speech encoder is kept
frozen to preserve its speech representation capa-
bility, while the downsample adaptor is updated to
align speech and text features. The LLM backbone
is fine-tuned using LoRA to enhance multi-modal
understanding, without compromising its original
knowledge and reasoning abilities. A cross-entropy
loss on text tokens is used to guide learning. In
the second stage, VocalNet is trained on speech-
to-speech tasks (° — y*®). Most model com-
ponents are frozen, and only the speech projector
and speech decoder are updated to generate high-
quality speech tokens s that match the ground-truth
response y°. A cross-entropy loss on speech tokens
is applied for training.

Our staged training approach decomposes the
task into two manageable steps, allowing for a more
stable and controlled training process. While our
framework could support training both speech un-
derstanding and generation within a single stage,
our experiments reveal that single-stage training
negatively impacts the performance of speech



LLMs in spoken QA, without offering clear ad-
vantages over the two-stage approach in terms of
speech generation quality. Moreover, we find that
pretraining with separate ASR and TTS tasks does
not yield significant performance improvements,
yet introduces additional computational costs. As a
result, our framework excludes any dedicated pre-
training stages. We provide a detailed discussion
of various training framework configurations and
their experimental results in Section 5.2.

3 Multi-Token Prediction for Speech
Generation

3.1 Motivation

Current speech LLMs predominantly adopt next-
token prediction (NTP) within an autoregressive
(AR) framework (Fang et al., 2024; Wang et al.,
2024), generating speech token-by-token. While
this approach has achieved notable success, it faces
several fundamental limitations due to the unique
characteristics of speech signals, suggesting that
NTP may not be the most efficient or optimal
strategy for speech generation. First, speech to-
kens exhibit a much higher temporal resolution
(~25Hz (Du et al., 2024)) compared to text tokens
(~3Hz (Li et al., 2025a; Défossez et al., 2024)),
resulting in significantly longer sequences. The
sequential nature of NTP—predicting one token
at a time—inherently limits generation speed and
introduces latency, which poses a major challenge
for real-time voice interaction systems. Addition-
ally, human speech exhibits a hierarchical acoustic-
semantic structure encompassing phonemes, sylla-
bles, and prosody, operating over timescales longer
than individual speech tokens (e.g., 40ms segments
in CosyVoice2 (Du et al., 2024)). Unlike text to-
kens, which correspond to discrete semantic units,
speech tokens often lack independent meaning and
must be jointly modeled to capture linguistically
coherent patterns. The myopic focus of NTP on
predicting single tokens struggles to learn such
inter-token dependencies—particularly under lim-
ited training data—Ileading to suboptimal modeling
of the rich temporal dynamics inherent in speech.
Inspired by recent advances in LLMs (Gloeckle
et al., 2024; Li et al., 2024; Cai et al., 2024), we
introduce multi-token prediction (MTP) for speech
generation. MTP addresses the limitations dis-
cussed above by modeling the joint distribution
of multiple tokens, thereby compressing sequence
generation into fewer steps. This leads to two key

benefits: significantly reduced inference steps for
faster generation, and improved modeling of long-
range dependencies and speech’s hierarchical struc-
ture. As a result, MTP enhances both efficiency
and output quality, offering a promising direction
for speech generation. In the following section,
we first analyze the limitations of previous related
MTP approaches and then present a novel imple-
mentation that is both simple in design and highly
effective for speech generation.

3.2 Implementation of MTP

Group Modeling Method To accelerate speech
token generation, prior work has employed the
Group Modeling method (Chen et al., 2024; Zhang
et al., 2024b) to enable multi-token prediction,
as illustrated in Figure 2(a). This approach di-
vides the speech token sequence into fixed-size
groups, merges tokens within each group into a
single embedding, and processes these embeddings
through the backbone. A decomposition layer
then reconstructs the original tokens from each
group embedding. SLAM-Omni (Chen et al., 2024)
uses a linear layer for decomposition, while In-
trinsicVoice (Zhang et al., 2024b) employs a non-
autoregressive Transformer with learnable queries.
However, these methods often degrade speech qual-
ity due to information loss and disruption of intra-
group temporal dependencies. Moreover, the fixed
group size restricts dynamic control over genera-
tion speed during inference.

MTP Implementation in LLMs Inspired by the
implementation of MTP in Gloeckle et al. (2024)
and DeepSeek-V3 (Liu et al., 2024), we designed
two speech decoder architectures to achieve multi-
token prediction: MTP-Parallel-Linear and MTP-
DeepSeek. As shown in Figure 2(b), MTP-Parallel-
Linear predicts n future tokens in parallel using
independent linear heads. While efficient and com-
monly used in LLMs, this approach fails to explic-
itly model temporal dependencies among speech
tokens—crucial for capturing the continuous and
sequential nature of speech. This limitation often
results in reduced output coherence, especially as
the number of prediction heads increases.

In contrast, MTP-DeepSeek generates tokens se-
quentially, preserving causal dependencies at each
depth (Figure 2(c)). However, during training, this
method inputs the ground truth x<;, to the k-th
MTP module to predict x;4 41 and computes the
loss of a teacher-forced next-step prediction. Con-
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Figure 2: Illustration of various accelerate implementations. (a): Group Modeling; (b): MTP-Parallel-Linear; (c):

MTP-DeepSeek; (d): Our MTP implementation.

sequently, this implementation actually optimizes
the loss function — > >, log (@44 kt1|T<itk)s
which is essentially the same as the NTP loss. As
a result, despite enabling multi-token prediction,
it does not effectively help capture local speech
patterns or alleviate error accumulation. We fur-
ther analyze this limitation in Section 5.3 and Ap-
pendix C.

Our MTP Implementation Based on our anal-
ysis of existing MTP methods, we propose a sim-
ple yet more effective MTP implementation for
speech LLMs. Given the sequential nature of
speech and its reliance on temporal coherence,
our method—illustrated in Figure 2(d)—employs
N — 1 sequential Transformer layers as MTP mod-
ules to predict N future speech tokens in a sin-
gle step, while preserving causal dependencies be-
tween them. Unlike MTP-DeepSeek, our approach
uses previously computed hidden states instead of
ground-truth tokens as input. Let h(1];( Litt) denote
the initial hidden state generated by the speech de-
coder backbone, conditioned on the vy, and ¢
history tokens. This state is sequentially passed
through N — 1 MTP modules:

k _ k—1
hl:(LH—t) - MTPk(hl;(Ltth))

2

where h¥ represents the hidden state output
1:(L¢+t)
of the k-th MTP module. This layer-wise prop-
agation preserves the causal dependencies of the
speech sequence. The resulting /N hidden states
. N-1
at index L; + ¢, h%t+t, hiﬁt, ..., hy, 1, are then
fed into NV independent output heads to produce

token predictions:

st = OutHeadk(h’ZtH)

, . 3)

= Lineary(RMSNorm(h7j, ,,))
where k € {0,1,..., N — 1}, and p§+k+1 denotes
the predicted probability distribution for the (¢ +
k + 1)-th token.

To train this architecture, we minimize the pre-
diction error across all depths of the MTP modules.
Specifically, the loss is defined as a weighted aver-
age of cross-entropy losses from each output head:

N-1

Lty = Z AF CE(P£+1;L57 Sk41:Ls)
k=0

“)

where L is the total speech sequence length, CE(+)
denotes the cross-entropy loss, and sjy;.1,, de-
notes the ground-truth tokens from index k& + 1
to Ls. Here, the decay factor A € (0,1) con-
trols the importance of predictions at different



depths of the MTP modules. Specifically, it assigns
higher weights A* to the losses from earlier layers
(smaller k), as these layers typically produce more
reliable and immediate predictions. Conversely,
losses from deeper layers (larger k), which tend
to have higher uncertainty, receive progressively
lower weights A*. This prioritizes short-term ac-
curacy while still leveraging long-range context
modeling.

4 Experiments Setup

4.1 Datasets

The training data for VocalNet combines
VoiceAssistant-400K  from Mini-Omni  and
UltraChat from SLAM-Omni (Xie and Wu, 2024;
Chen et al., 2024). VoiceAssistant-400K contains
approximately 470K samples generated by
GPT-4o0; after removing instances with overly long
responses, we retain 430K query-response pairs.
For UltraChat, we split multi-round dialogues into
single rounds due to missing initial turns and weak
contextual links, resulting in approximately 300K
samples. Speech responses for both datasets are
synthesized using CosyVoice2-0.5B (Du et al.,
2024). In total, VocalNet is trained on 730K
examples, corresponding to approximately 6,000
hours of speech—substantially less than other
advanced models such as Baichuan-Omni-1.5
(887K hours of multi-modal pretraining) and
Minmo (around 1.4M hours).

4.2 Model Configuration

We propose VocalNet-1B and VocalNet-8B built
upon LLaMA-3.2-1B-Instruct ! and LLaMA-3.1-
8B-Instruct 2 respectively. Both models employ
Whisper-large-v3 (Radford et al., 2023) as the
speech encoder, and use the flow-matching model
and HiFi-GAN vocoder from CosyVoice2 for
speech synthesis. A two-layer linear downsam-
ple adaptor reduces feature dimension with a factor
of 5. The speech projector consists of two LLaMA
decoder layers, while the speech decoder contains
four. Each MTP module is implemented with a
single LLaMA decoder layer followed by a linear
output head.

"https://huggingface.co/meta-1lama/Llama-3.
2-1B-Instruct

2https://huggingface.co/meta—llama/Llama—B.
1-8B-Instruct

4.3 Training and Evaluation Details

VocalNet is trained in two stages: the first focuses
on the downsample adaptor and LLLM, while the
second trains the speech projector and decoder.
Both stages use a learning rate of 2 x 10~ with
cosine annealing and a warmup ratio of 0.03. All
experiments are conducted on A100 GPUs.

To evaluate the capabilities of voice interac-
tion, we utilize the English subsets from OpenAu-
dioBench (Li et al., 2025b), including AlpacaE-
val (Li et al., 2023), LLaMA Questions (Nachmani
et al., 2023), TriviaQA (Joshi et al., 2017), and
Web Questions (Berant et al., 2013). For the eval-
uation process, we employ Qwen-max > to score
and determine the correctness of responses. All
scores are scaled and normalized to a range of 0 to
10. Further details are provided in Appendix E.

Furthermore, we employ two metrics to evaluate
the quality of the generated speech. To assess the
overall speech quality, we use the UTMOS (Saeki
et al., 2022) to predict mean opinion scores (MOS).
To assess the alignment between speech and text
responses, we transcribe the speech by Whisper-
large-v3 (Radford et al., 2023) and compute the
word error rate (WER) between the transcription
and the corresponding text response.

S Experiments Results

5.1 Opverall Result

Table 1 presents the performance of VocalNet in
voice assistant scenario compared to other main-
stream speech LLMs and omni LLMs. For all eval-
uated models, we input speech queries and require
the models to generate both speech and text re-
sponses simultaneously, which are then assessed
separately. For the s — ¢ modality, we evaluate the
text response directly, while for the s — s modal-
ity, we first transcribe the speech response using
Whisper-large-v3 before conducting the evaluation.

For small-scale speech LLMs (LLM size <
1B), VocalNet-1B significantly outperforms Mini-
Omni and SLAM-Omni, both based on Qwen2-
0.5B. Despite having roughly twice the parameter
count, VocalNet-1B achieves substantial improve-
ments—for instance, 71.7% accuracy on LLaMA
Questions, compared to 2.7% and 29.4% for Mini-
Omni and SLAM-Omni respectively. Notably,
VocalNet-1B even surpasses several base-sized
models (~8B) on specific subsets. On AlpacaE-

Shttps://qwenlm.github.io/blog/qwen2.5-max/
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Table 1: Comparison with different speech LLMs and omni LLMs on OpenAudioBench. Bold indicates the optimal

result in each subgroup.

val, it outperforms LLaMA-Omni, Freeze-Omni,
and Baichuan-Omni-1.5; on LLaMA Questions, it
exceeds LLaMA-Omni. VocalNet-8B achieves per-
formance on par with MiniCPM-o and Qwen?2.5-
Omni, and consistently outperforms other base-
sized models. It ranks the top two on AlpacaEval,
LLaMA Questions, and TriviaQA in both s — ¢
and s — s modalities. On Web Questions, it places
third, slightly behind MiniCPM-o and Qwen2.5-
Omni, demonstrating strong overall performance
across the evaluated models.

To assess the quality of generated speech, we
report the average WER and UTMOS scores.
As shown in Table 2, VocalNet-1B outperforms
all other small-scale models across all metrics.
VocalNet-8B preserves its advantage in speech
fidelity and achieves the second-lowest WER,
slightly behind only Qwen2.5-Omni.

5.2 Training Strategy

Previous speech LLMs often adopt a multi-stage
training pipeline that includes ASR and TTS pre-
training. However, the necessity of these pre-
training stages has not been sufficiently validated,
and they introduce additional computational costs.
To investigate their effectiveness, we conducted
experiments with and without ASR and TTS pre-
training. As shown in Table 3, ASR pre-training
demonstrated minimal impact on model perfor-
mance, which remained close to that of the model

Model WER| UTMOStT
Mini-Omni 8.66 443
SLAM-Omni 6.17 4.46
VocalNet-1B 5.31 4.49
LLaMA-Omni 15.90 3.96
Freeze-Omni 18.31 4.40
GLM-4-Voice 8.99 4.23
Baichuan-Omni-1.5 22.67 4.35
MiniCPM-o 8.72 4.14
Qwen2.5-Omni 2.63 4.34
VocalNet-8B 3.56 4.49

Table 2: Comparison with different models in generated
speech quality. Bold indicates the optimal result in each
subgroup.

without any pre-training. While TTS pre-training
improved multi-modal alignment, evidenced by a
lower WER, it substantially degraded the model’s
scores on OpenAudioBench, particularly the aver-
age score (s2s), which dropped from 5.43 to 4.99.
These results suggest that neither ASR nor TTS
pre-training provides a substantial improvement to
overall model capabilities, while both contribute to
computational overhead. Therefore, for simplicity
and efficiency, we have removed both stages from
our final training framework.

We further explore whether the two stages de-
scribed in Section 2.2 can be merged into a sin-



Setting Score(s2t)t  Score(s2s)t WER| UTMOST Method G.S./M.N. Tokens per Step WER| UTMOS?T

VocalNet-1B 543 479 531 449 Baseline(NTP) - 1 1062 4488
-w / ASR pre-training 548 4.65 6.18 4.49 Group-Linear 3 3 11.50 4.488

-w / TTS pre-training 4.99 4.62 4.92 4.50 S § S 757 - 177.6717 o ft.fl}{ o
3 3 1434 4489
. Group-Trans 5 5 1790 4.468
Table 3: Ablation study on the effect of ASR and TTS | g6l 1492
pre-training. s2¢ denotes s — ¢ and s2s denotes s — s. MTP-Parallel-Linear 5 3 8.00 4.494
5 1057 4467

I 9.14 4493
X L. A MTP-DeepSeeck 5 3 9.02 4.498
gle unified training phase. As shown in Table 4, 5 1823 4488
: 1 6.84 4.494
the one-stage approach achieves comparable per- MTP-VocalNet s 3 66 1495
formance for VocalNet-1B. Although it leads to a 5 646 4486

slight drop in spoken QA tasks under the s — ¢
setting, it yields a marginally lower WER. Consid-
ering the overall performance in spoken QA tasks
and greater flexibility for speech generation ex-
periments in Section 5.3, we ultimately adopt the
two-stage training framework. More detailed ex-
perimental setups are provided in Appendix D.

Setting Score(s2t)T  Score(s2s)t WER] UTMOS?T
One-stage 5.21 4.78 5.18 4.48
Two-stage 5.43 4.79 5.31 4.49

Table 4: Performance comparison between one-stage
and two-stage training strategies for VocalNet-1B.

5.3 MTP Implementation

In this section, we conduct experiments with the
five MTP implementations discussed in Section 3.2,
utilizing the LLaMA-3.2-1B-Instruct as the back-
bone and trained with the VoiceAssistant-400K
dataset. Results are shown in Table 5. Group-
linear and Group-Trans denote the group modeling
approaches employed in SLAM-omni and Intrin-
sicVoice respectively. We test the group sizes of 3
and 5. The results show that while group modeling
can improve the generation speed of speech tokens,
it leads to a decline compared to NTP. This is es-
pecially noticeable with a larger group size, where
both metrics exhibit considerable deterioration.
For the other MTP implementations, the number
of tokens predicted per step can be flexibly adjusted
during inference. In this study, we fix the number
of MTP modules to 5 during training and evaluate
performance when predicting 1, 3, and 5 tokens per
step during inference. For MTP-Parallel-Linear,
the use of parallel linear layers disrupts the tempo-
ral dependencies among speech tokens, leading to a
noticeable degradation in both WER and UTMOS
as more tokens are predicted per step. This suggests
that without explicit modeling of inter-token tem-
poral dependencies, the quality of generated speech
deteriorates significantly when predicting a larger

Table 5: Comparison of different MTP implementations.
G.S.: Group Size; M.N.: MTP Module Number during
Training. Tokens per Step: Number of tokens predicted
per inference step. Bold indicates the best result.

number of tokens simultaneously. Similarly, MTP-
DeepSeek exhibits a substantial performance drop
when predicting 5 tokens per step. This decline is
likely due to the teacher-forcing next-step predic-
tion strategy used during training, as discussed in
Section 3.2.

In contrast to these approaches, our proposed ar-
chitecture demonstrates superior performance. No-
tably, even when predicting 5 tokens per step, our
method maintains a high UTMOS score and an
exceptionally low WER. These results strongly val-
idate the effectiveness of our MTP implementation,
as it successfully addresses the limitations observed
in previous methods. We attribute the improve-
ments in speech generation brought by the MTP
paradigm to two key factors: reduced error accu-
mulation in autoregressive modeling and enhanced
modeling of local speech patterns and temporal de-
pendencies. A detailed analysis and validation of
these aspects are provided in Appendix C.

6 Conclusion

We present VocalNet, a series of advanced speech
LLMs overcoming key efficiency and quality
challenges through two innovations. First, a
streamlined two-stage training efficiently integrates
speech capabilities into pre-trained LLMs. Sec-
ond, multi-token prediction (MTP) offers a supe-
rior alternative to autoregressive speech genera-
tion, achieving faster inference and enhanced qual-
ity. Experiments show VocalNet rivals leading
Omni models (e.g., MiniCPM-o0, Qwen2.5-Omni)
on OpenAudioBench and markedly surpasses prior
open-source speech LLMs in speech quality. These
results affirm the efficacy of our methodology for
developing high-performance speech LLMs.



Limitations

Our work has the following limitations. First,
although VocalNet achieves strong performance
trained on a limited amount of data, it currently
lacks the capability for controllable speech genera-
tion and paralinguistic modeling. As a result, we
plan to collect and incorporate more high-quality,
diverse speech data in future work to enhance and
explore these aspects. Second, VocalNet currently
relies on the speech tokenizer from CosyVoice2
as the target for speech tokens. This choice may
limit the model’s ability in controllable speech gen-
eration and paralinguistic modeling, as semantic
speech tokens are used. Furthermore, converting
these speech tokens into audio requires a flow-
matching model, which, according to results in
the Appendix B, is the primary source of latency
in VocalNet. Therefore, we also identify speech
token design and further optimization of the speech
decoder as key directions for future research.

Ethical Considerations

All pre-trained models used in this work were ob-
tained from publicly available sources like Hug-
gingFace and ModelScope. We strictly adhered to
the respective license and usage terms associated
with each model. No models were used outside
the scope of their intended licenses. The datasets
employed in our experiments are publicly available
and were used in compliance with their specified
licenses. We did not collect or curate any origi-
nal data for this study. The speech data utilized
in our experiments were either sourced from pub-
licly available datasets or synthesized using open-
source text-to-speech tools based on these datasets.
Thereby, we minimized potential risks related to
privacy, consent, and data misuse. By relying on
established, ethically sourced data and avoiding
any form of private or sensitive information, we
ensured that our research adhered to responsible
Al practices throughout the development and eval-
uation process.
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A Related Work
A.1 End-to-End Speech Interaction System

End-to-end speech interaction systems have be-
come a key research focus in the speech processing
community. As discussed in Chen et al. (2025),
speech LLLMs can be categorized into two types:
native multimodal models and aligned multimodal
models. Native multimodal speech LLMs generate
tokens for both modalities using a unified back-
bone. These models can be further divided into
two categories: one type, represented by Mini-
Omni (Xie and Wu, 2024), Moshi (Défossez et al.,
2024), PSLM(Mitsui et al., 2024) and SLAM-
Omni (Chen et al., 2024), adopts a multi-stream
architecture that simultaneously generates audio
and text outputs. The other type, including Omni-
Flatten (Zhang et al., 2024a), GLM-4-Voice (Zeng
et al., 2024), SpiRit LM (Nguyen et al., 2025) and
Baichuan-Omni-1.5 (Li et al., 2025b), generates
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interleaved audio and text outputs to handle both
modalities. However, these models require large
amounts of speech-text pairs for training to avoid
catastrophic forgetting. Even using a large amount
of training data, their knowledge and reasoning ca-
pabilities often fall short compared to similar-sized
LLM:s.

Alternatively, aligned multimodal models intro-
duce separate encoders, decoders, and vocoders
for speech processing. This architecture has the
advantage of preserving the original abilities of
LLMs while also generating high-quality speech
responses. LLaMA-Omni (Fang et al., 2024) uses a
non-autoregressive method based on connectionist
temporal classification (CTC) (Graves et al., 2006)
for speech generation. Although it offers low la-
tency, the quality of the generated speech is rel-
atively poor. Freeze-Omni (Wang et al., 2024),
MiniCPM-o0 (OpenBMB, 2025), MinMo (Chen
et al., 2025) and VITA-1.5 (Fu et al., 2025) all em-
ploy autoregressive speech decoders trained with
the next-token prediction task for speech genera-
tion. Qwen2.5-Omni (Xu et al., 2025) introduces
a dual-track autoregressive Transformer decoder
architecture for speech decoding, which enables
more natural streaming inference without modify-
ing the training process. However, the superiority
of this dual-stream framework in speech model-
ing still requires further investigation in future re-
search.

A.2 Multi-token Prediction

Multi-token prediction has emerged as an impor-
tant advancement in language modeling, offering
improvements in sample efficiency, reasoning ca-
pabilities, and inference speed. The concept of
multi-token prediction was initially explored by Qi
et al. (2020), who proposed training models to pre-
dict several future tokens in parallel. Building upon
this foundation, Gloeckle et al. (2024) introduced a
refined architecture that incorporated multiple out-
put heads operating over a shared model backbone.
Their approach demonstrated that multi-token pre-
diction could lead to models that are both better and
faster. Furthermore, Cai et al. (2024) proposed a
speculative decoding method based on multi-token
prediction to accelerate LLM inference.

In the context of speech generation, several
works have employed group modeling techniques
to implement multi-token prediction. SLAM-
Omni (Chen et al., 2024) proposes a semantic
group modeling approach to accelerate speech to-



ken generation and model training. This method
partitions the speech token sequence into fixed-
size groups and uses a linear layer to reconstruct
each group embedding into multiple speech tokens.
Similarly, IntrinsicVoice (Zhang et al., 2024b) in-
troduces GroupFormer, a non-autoregressive Trans-
former module to perform token reconstruction.
While group modeling methods can accelerate
speech generation, they often lead to quality degra-
dation, particularly as the group size increases.

B Streaming Speech Decoding

B.1 Attention Mask Design

To enable efficient speech decoding in stream-
ing scenarios while ensuring high-quality non-
streaming speech decoding, we employ two at-
tention mask mechanisms tailored for complete
sequence processing and real-time speech genera-
tion respectively, inspired by (OpenBMB, 2025).
During the generative supervised fine-tuning stage,
these two mask mechanisms are used simultane-
ously in a batch, allowing the model to flexibly
adapt to diverse decoding requirements.

Non-Streaming Attention Mask The non-
streaming attention mask as shown in Figure 3
(a), is optimized for scenarios involving the one-
time processing of complete input sequences. BOS
and SOS refer to ‘begin of stream’ and ‘switch of
stream’, two identified special tokens. The yellow
blocks refer to the attended text positions during
speech generation, and the blue and red ones are
the attended positions within the same modality. In
this mode, the text hidden states vy )s generated
by the speech projector from hy ;s are fully visi-
ble to themselves, while the attention for the speech
component adheres to an autoregressive property,
meaning each speech token s’ depends solely on
itself and preceding tokens. Additionally, speech
tokens s’ have unrestricted access to the text hidden
states vy s, leveraging global contextual informa-
tion comprehensively.

Given the text hidden state vy € R
with length L; and the speech hidden state s €
R%Ys with length Lg, the attention mask A €
{0,1}(FetLe)x(LetLs) for a single instance is de-
fined:

1
1

0 otherwise

1< Ly

AZ’J‘: i>Lt,i2j

12

Streaming Attention Mask The streaming atten-
tion mask as shown in Figure 3 (b), is specifically
designed for real-time speech generation, support-
ing the incremental processing of input sequences.
In this mode, both the text hidden states v, ;s and
speech hidden states s are constrained by an autore-
gressive mask, permitting access only to preceding
positions.

Let the speech sequence length L be divided
into chunks of length Cy, with each along with
increased visible real text positions (excluding BOS
token) of length C}. In Figure 3 (b), C and C} is
shown as 6 and 3 respectively. The streaming mask
is formally defined as follows:

1 i>Ly,t>5> 1,
Aij=19q1 i> L j < min(Ly, (6)

[(i — Ly —1)/Cs] - Cr +1)
0 otherwise

B.2 Performance Analysis

To provide a comprehensive evaluation of Vocal-
Net, we conduct both latency analysis and perfor-
mance comparison between streaming and non-
streaming decoding modes. For speech genera-
tion, we measure the latency from receiving the
speech input to producing the first chunk of gen-
erated speech response. As shown in Table 6, the
speech response delay is broken down into four
stages: (1) speech query encoding via Whisper,
(2) LLM hidden state generation, (3) speech token
prediction by the decoder, and (4) waveform con-
struction using the vocoder. The latency for the
LLM and speech decoder is measured based on
generating 5 text tokens(C; = 5) and 15 speech
tokens(C's = 15), with the MTP decoder predicting
3 speech tokens per step. We evaluate the model’s
latency on the LLaMA Questions dataset and report
the average results.

The overall latency of VocalNet-1B and
VocalNet-8B is approximately 320 ms and 430 ms,
respectively. Notably, over half of this delay stems
from the speech vocoder, particularly during the
flow-matching model. All measurements are con-
ducted on a single L20 GPU.

In addition to latency analysis, we compare the
model’s performance in both streaming and non-
streaming modes, as shown in Table 7. Experimen-
tal results indicate that while streaming mode intro-
duces some degradation in multi-modal alignment
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Figure 3: (a) Non-Streaming Attention Mask: v ; ,, attends to itself and all text positions, and s attends to itself,
all text positions, and its previous speech positions; (b) Streaming Attention Mask: v ; ;, attends to itself and its
previous text positions, and s* attends to itself, chunk-limited text positions, and its previous speech positions.

Model

Speech Encoder (ms) LLM (ms) Speech Decoder (ms)

Speech Vocoder (ms) Sum (ms)

VocalNet-1B
VocalNet-8B

35.86
36.08

33.95
126.71

24.74
40.02

225.18 319.73
225.56 428.38

Table 6: Speech generation latency of VocalNet. Experiments are conducted on 1 NVIDIA L20 GPU.

Model

Streaming  Avg. Score(s2t)T  Avg. Score(s2s)T Avg. WER| Avg. UTMOST

4.79 5.31 4.49

VocalNet-1B ; 343

VocalNet-8B

Table 7: Comparison of streaming vs. non-streaming
modes in VocalNet.

and speech quality, the impact remains relatively
small. Specifically, the average scores of s2s de-
crease slightly under streaming (e.g., 4.79 vs. 4.70
for VocalNet-1B, and 6.38 vs. 6.33 for VocalNet-
8B), suggesting that the model maintains strong
voice interaction capability even under real-time
scenario. Meanwhile, speech quality, as reflected
by WER and UTMOS, experiences a moderate
drop in streaming mode, but overall performance
remains acceptable.

C Supplement to Multi-Token Prediction

In this section, we provide an in-depth analysis of
the role of multi-token prediction (MTP) in speech
generation from two perspectives: its effectiveness
in mitigating error accumulation and its benefits
in helping the model learn local speech character-
istics. Furthermore, we conduct ablation studies
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on the configuration of MTP modules, investigat-
ing how the number of modules impacts overall
performance.

C.1 Analysis of the Impact of MTP in Speech
Generation

C.1.1 Mitigating Error Accumulation

Autoregressive models are commonly trained using
teacher forcing, where the model is provided with
the correct history tokens as input during training.
However, during inference, the model generates
outputs based on the predicted history in the au-
toregressive manner, which leads to the accumula-
tion of errors. In speech generation tasks, we ob-
serve that the multinomial distributions predicted
by our model tend to exhibit a flattened pattern.
Figure 4 illustrates the distribution of maximum
probabilities and entropy values across 70k pre-
dicted speech token distributions from VocalNet-
1B trained with the NTP task. The results show that
the maximum probabilities predominantly cluster
below 0.25, while the entropy values generally ex-
ceed 3. Our observation indicates that most of the
speech predictions contain multiple tokens with
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Figure 4: Distribution of maximum probabilities and entropy values for 70k predicted speech tokens from VocalNet-
1B, trained with the NTP task. Red dashed lines represent the means.

similar probabilities, reflecting high uncertainty in
the model’s predictions. This phenomenon con-
tributes to the worsening of error accumulation
during speech generation. With an MTP loss added
to the model training, this issue could be mitigated.
The MTP loss is expressed as follows:

Lytp = — Z log ¢(x¢ 4144+ K|T<t),

xT
— Y ) logg(wikle<t),
T k

where ¢ denotes the model’s predictions, t repre-
sents the current time step, x refers to the data
sample, & <; denotes the historical sequence up to
time ¢, and K > 1 indicates the number of future
steps that need to be predicted.

As shown in Equation 7, the MTP loss function
compels the model to learn to generate the correct
future tokens x:,; based on incomplete history
x . This strategy allows the model to better han-
dle the inherent uncertainty in the autoregressive
process, leading to more accurate and robust pre-
dictions even when faced with noisy input history.
As a result, the model becomes less dependent on
perfect target sequences and more resilient to the
noise introduced during inference.

(7N

C.1.2 Effectively Capturing Local Patterns in
Speech

The MTP loss, by directly learning the joint distri-
bution p(@441.4+1|T<¢) of speech tokens, encour-
ages the model to capture short-term temporal re-
lationships and understand the underlying local
dependencies within speech. In practice, multiple
MTP modules can generate predictions for several
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future tokens based on the hidden state of the final
layer of the speech decoder. This setup enables the
model to anticipate the potential impact of future to-
kens while predicting the current token, effectively
modeling local dependencies between them.

From an information-theoretic perspective,
Gloeckle et al. (2024) demonstrate that in a two-
token prediction setting, the MTP loss increases the
weight of relative mutual information in a loss de-
composition, which aids the model in better captur-
ing the local relationship between adjacent tokens.
Specifically, let p(-) denote the true data distribu-
tion and ¢(+) represent the densities of the model’s
predictions. Let D(p||q) be the Kullback-Leibler
divergence from ¢ to p, and H (p, q) be the cross-
entropy from ¢ to p. Gloeckle et al. (2024) show
that the NTP loss can be decomposed as:

H(px,qx) = H(px)y: ax|y)

(®)
+ Lo (X5Y)

where X denotes the current token and Y de-
notes the second-next token, with conditioning on
the preceding context C' omitted for notational sim-
plicity. The relative mutual information 7, (X;Y")
of X and Y from q relative to p is defined as:

Lyo(X3Y) = D(pllax ® av) — D(pllg) (9
Accordingly, the MTP loss can be expressed as:

H(px,qx)+ H(py,qv) = H(px|y, ax|y)
+2Ipl|q(X§ Y)+ H(pY|X7 QY|X)
(10)
Here, H(py|x, qy|x) corresponds to the next-
step NTP loss. Compared to NTP, MTP intro-
duces an additional term H (py|x, qy|x) and dou-
bles the weight of the relative mutual information



AlpacaEval LLaMA Questions TriviaQA ‘Web Questions Avg
Module Num  Tokens per Step  ywpp' ypyvos WER UTMOS WER UTMOS WER UTMOS WER UTMOS

3 | 538 448 524 4504 759 4500 923 4484 779 4493

3 337 4493 395 4498 597 4498 643 4485 570 4493
S B 414 4485 448 4502 652 4497 841 4491 684 4495
s 3 343 4495 3,65 4498 597 4499 640 4489 566 4495
D 5 384 4478 428 4493 640 4480 770 4483 646 4486
1 538 4489 524 4502 759 4480 923 4490 779 4487
; o3 340 4490 392 4499 591 4498 757 4494 614 4496

5 426 4481 433 4480 632 4496 876 4484 689 4489

77777 7 550 4470 519 4474 828 4478 920 4462  8.06 4.470

Table 8: Comparison of performance using different numbers of MTP modules (Module Num) during training,
evaluated with varying numbers of tokens predicted per inference step (Tokens per Step). Bold indicates the
optimal result and underline indicates the sub-optimal result.

term Ip4(X;Y). On one hand, this additional
term implies that the MTP paradigm makes more
efficient use of the training data—particularly ben-
eficial when data is limited. On the other hand,
by placing greater emphasis on relative mutual in-
formation, the model can more effectively exploit
the mutual information between adjacent tokens
under the true data distribution p, thereby enhanc-
ing its predictive capability and ability to capture
subtle interdependencies. This is especially cru-
cial in speech modeling, where understanding such
local structures significantly improves predictive
accuracy.

Local patterns are particularly important in
speech modeling. Neighboring speech tokens typ-
ically correspond to related linguistic units, such
as phonemes or syllables. If the model fails to ade-
quately learn these patterns, it is prone to making
pronunciation errors during speech generation. As
shown in the Table 9, we further decompose the
WER of VocalNet-1B trained with NTP and MTP
on the VoiceAssistant-400K dataset. For MTP-
VocalNet, we use the best configuration shown in
Table 5, which involves training with five MTP
modules and predicting 3 tokens per step during
inference. The results indicate that the majority of
errors stem from substitutions, while insertions and
deletions remain minimal. This suggests that the
primary issue with the NTP-trained model lies in
incorrect pronunciations, rather than over- or under-
generating speech segments. With our MTP im-
plementation, substitution errors are significantly
reduced, indicating that the model achieves a better
understanding of local speech structures. Under-
standing these relationships is vital for maintaining
coherence and rhythm in speech. By encouraging
the model to capture these local dependencies, the
MTP loss enhances its ability to generate speech
that is not only contextually accurate but also nat-
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urally fluent. In this way, the MTP loss plays a
crucial role in helping the model learn short-term
dependencies, enabling it to more effectively han-
dle the complex temporal structures that character-
ize natural speech.

Method Substitutions Insertions Deletions Overall WER
Baseline(NTP) 6.71 2.38 1.53 10.62
MTP-VocalNet 3.92 1.01 0.73 5.66

Table 9: WER breakdown by error type for VocalNet-
1B trained under NTP and MTP objectives.

C.2 Limitations of MTP-Deepseek

While MTP-Deepseek, as described in Section 3.2,
is capable of performing multi-token prediction
during inference, its training methodology is es-
sentially the same as that of standard next-token
prediction (NTP). This is because the method feeds
the ground truth token x<;, into the k-th MTP
module to predict ;4 1, and computes the loss
based on teacher-forced one-step predictions:

LMTP-Deepseck = — Z Z log ¢( ¢t 1lT<ivr),

z  k
(1)
This formulation is identical to the standard NTP
training objective. Consequently, the analyses pre-
sented in Section C.1 regarding mitigating error
accumulation and effectively capturing local pat-
terns in speech do not apply to MTP-Deepseek.

C.3 Ablation Study for MTP

To determine the optimal configuration for MTP
modules, we conduct ablation studies on the num-
ber of MTP modules, as detailed in Table 8. The
results indicate that the number of tokens predicted
per inference step primarily affects modality align-
ment performance, with the best results typically



achieved when predicting 3 tokens per step. Acous-
tic performance remains high and only slightly de-
creases as more tokens are predicted per step (e.g.,
5 or 7). Overall, the number of MTP modules used
during training has a relatively small impact, with
the best performance achieved when training with
5 modules and inferring 3 tokens per step. The
results of VocalNet in Section 5.1 are also based on
this configuration.

D Details of the Ablation Study on
Training Strategy

This section provides detailed descriptions of the
ablation study introduced in Section 5.2, focus-
ing on the implementation of ASR and TTS pre-
training, as well as the one-stage training approach.
For ASR pre-training, we conduct experiments
using the LibriSpeech (Panayotov et al., 2015)
dataset. We first reformulate the ASR data into
instruction-following format, as illustrated in the
Figure 5. During this stage, only the Downsample
Adaptor is trained, while other components remain
frozen. Afterward, we proceed with the standard
two-stage training process as shown in Figure 1.

Reformulated ASR Data

Query: “<speech> \n Please transcribe
the speech to text.”

Response: “The Duchess Josiana
towards seventeen oh five, although Lady
Josiana was twenty-three and Lord David
forty-four, the wedding had not yet taken
place, and that for the best reasons in the
[ world.”

Figure 5: ASR Data Format.

For TTS pre-training , we introduce an addi-
tional pre-training phase between Stage 1 and
Stage 2 to provide a better initialization for the
speech decoder. We use the LibriTTS dataset (Zen
et al., 2019), reformatted into the instruction for-
mat shown in Figure 6. Speech tokens are extracted
using the tokenizer from CosyVoice2. During this
stage, we train the speech projector, speech de-
coder, and LLM backbone with LoRA. After TTS
pre-training is completed, we proceed to Stage 2
training. Notably, and in contrast to the methodol-
ogy described in Section 2.2, the LLM backbone is
also trained with LoRA during this Stage 2.

For the one-stage approach , we use the same
training data as in the two-stage framework but
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Reformulated TTS Data

Query: “Please repeat after me: Haughty,
inaccessible, and audacious, he
addressed sonnets to her, which Josiana
sometimes read.”

Response: “Haughty, inaccessible, and
audacious, he addressed sonnets to her,
which Josiana sometimes read.”

Figure 6: TTS Data Format.

merge both stages into a single training phase. In
this setup, we jointly fine-tune the Downsample
Adaptor, LLM backbone (with LoRA), speech pro-
jector, and speech decoder throughout the entire
training process.

E Evaluation Details

Prompts for AlpacaEval

[Instruction]

Please act as an impartial judge and
evaluate the quality of the response
provided by a voice assistant to the user's
question displayed below. Your evaluation
should consider factors such as clarity,
helpfulness, relevance, accuracy,
conciseness, and ease of understanding.
Begin your evaluation by providing a short
explanation of your reasoning. Be as
objective as possible. After providing your
explanation, you must rate the response
on a scale of 1 to 10 by strictly following
this format: '[rating]', for example: 'Rating:
(511"

[Question]

{instruction}

[The Start of Assistant’s Answer]
{response_txt}

[The End of Assistant's Answer]

Figure 7: Prompt for AlpacaEval.

To assess model performance, we employ the
LLM-based evaluation approach. We use the eval-
uation prompts from OpenAudioBench (Li et al.,
2025b) to evaluate both open-ended and semi-open
QA tasks, including AlpacaEval (open-ended), and
LLaMA Questions, TriviaQA, and Web Questions
(semi-open). For semi-open QA tasks, reference
answers are included in the evaluation prompt to




Prompts for TriviaQA and Web Questions

Your will be given a question, the
reference answers to that question, and
an answer to be judged. Your tasks is to
judge whether the answer to be judged is
correct, given the question and reference
answers. An answer considered correct
expresses or contains the same meaning
as at least **one of** the reference
answers. The format and the tone of the
response does not matter.

You should respond in JSON format. First
provide a one-sentence concise analysis
for the judgement in field ‘analysis *,
then your judgment in field ‘judgment ‘.
For example,

"json
{{"analysis": "<a one-sentence concise
analysis for the judgement>", "judgment":
< your final judgment, "correct" or

"incorrect">}}

# Question
{instruction}

# Reference Answer
{targets}

# Answer To Be Judged

Prompts for LlaMA Questions

\ {answer_to_be_judged_text}

J

Figure 8: Prompt for TriviaQ and Web Questions.

assist the LLLM in judging the correctness of the
model’s responses. For open-ended tasks, and the
LLM directly scores the responses based on mul-
tiple qualitative aspects such as relevance, clarity,
and coherence. The detailed evaluation prompts
are shown in Figure 7, 8 , and 9.
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## Background

You are a professional QA evaluation
expert. You need to assess whether the
model's answer is correct based on the
standard answer.\n\n

## Scoring Criteria

Correct: The answer matches or is
equivalent to the standard answer \n
Incorrect: The answer is wrong or
irrelevant to the question \n\n

## Evaluation Guidelines
1. The expression of answers can be
flexible, not requiring exact matches. For
example: \n

- Numbers can be expressed in either
Arabic numerals or words \n

- Proper nouns can be in either English
or Chinese \n

- Differences in punctuation can be
ignored \n
2. Focus on whether the core meaning of
the answer is correct \n

## Output Format

Provide the reasoning for your score, then
generate the result in "[J" format and make
sure it contains "the score is [Correct]" or
"the score is [Incorrect]", for example:

The answer is correct and equivalent to
the standard answer, the score is [Correct]

or

The answer is incorrect and does not
match the standard answer, the score is
[Incorrect]

\n\n
#Ht Question:
{prompt}

#Ht Standard Answer:
{gt_answer}

#Ht Model's Answer:
{answer_text}

Figure 9: Prompt for LLaMA Questions.
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