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Abstract Automated Machine Learning (AutoML) significantly simplifies the deployment of machine

learning models by automating tasks from data preprocessing to model selection to ensem-

bling. AutoML systems for tabular data often employ post hoc ensembling, where multiple

models are combined to improve predictive accuracy. This typically results in longer infer-

ence times, a major limitation in practical deployments. Addressing this, we introduce a

hardware-aware ensemble selection approach that integrates inference time into post hoc
ensembling. By leveraging an existing framework for ensemble selection with quality diver-

sity optimization, our method evaluates ensemble candidates for their predictive accuracy

and hardware efficiency. This dual focus allows for a balanced consideration of accuracy

and operational efficiency. Thus, our approach enables practitioners to choose from a Pareto

front of accurate and efficient ensembles. Our evaluation using 83 classification datasets

shows that our approach sustains competitive accuracy and can significantly improve en-

sembles’ operational efficiency. The results of this study provide a foundation for extending

these principles to additional hardware constraints, setting the stage for the development of

more resource-efficient AutoML systems.

1 Introduction

Automated Machine Learning (AutoML) aims to automate the entire machine learning pipeline—

from data preprocessing and feature selection to model selection and hyperparameter tuning—

thereby reducing the need for manual intervention and expertise. State-of-the-art AutoML systems

often use post hoc ensembling to further enhance model predictive accuracy (Purucker et al.,

2023; Purucker and Beel, 2023). Post hoc ensembling involves creating ensembles from models

generated during the model selection phase. By combining the predictions of multiple models,

post hoc ensembling leverages the strengths of individual models and mitigates their weaknesses,

resulting in improved predictive accuracy and generalization ability. Here, greedy ensemble selec-

tion (GES) (Caruana et al., 2004) is used in prominent AutoML frameworks like Auto-Sklearn (Feurer

et al., 2020) and AutoGluon (Erickson et al., 2020) to further improve predictive accuracy over the

single best model (Feurer et al., 2020; Purucker et al., 2023; Purucker and Beel, 2023).

Yet, post hoc ensembling also further increases the predictive cost of AutoML systems w.r.t. disk

footprint, memory requirement, and inference time. GES for Auto-Sklearn requires, on average,

∼8.5 models for inference (Purucker et al., 2023), whereby each model has to be stored on disk for

deployment, in memory for inference, and has its own inference overhead. The problem is that

practitioners cannot trade off improved predictive accuracy and increased predictive cost with

existing post hoc ensembling algorithms. Furthermore, a greedy search for improved predictive

accuracy, like in GES, might not provide a good set of options to choose from.

We aim to enable practitioners to balance improved predictive accuracy and increased predictive

cost in AutoML. Therefore, in this work, we study hardware-aware ensemble selection, an approach

to obtain a Pareto front (defined in Appendix A) for predictive accuracy and cost in AutoML. We

focus on ensemble selection because it natively produces smaller, less expensive ensembles (Purucker

and Beel, 2023) and is most often used in state-of-the-art AutoML systems (Purucker et al., 2023).
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Specifically, we amend existing post hoc ensemble selection algorithms with concepts from qual-

ity diversity optimization (Cully et al., 2015; Mouret and Clune, 2015; Chatzilygeroudis et al., 2021)

to obtain a set of solutions with different predictive costs while only optimizing for a single objective,

the predictive performance. In detail, we extend GES (Caruana et al., 2004), quality optimization

ensemble selection (QO-ES), and quality diversity optimization ensemble selection (QDO-ES) (Pu-

rucker et al., 2023) to obtain Pareto fronts for predictive accuracy and cost. Furthermore, we propose

two variants of QDO-ES to obtain better Pareto fronts for hardware-aware ensemble selection.

Our experiments with data from TabRepo (Salinas and Erickson, 2023) on 83 classification

datasets (58 binary, 25 multi-class, see Table 1) and 1416 machine-learning models show that

hardware-aware ensemble selection can effectively trade off predictive accuracy and cost. Moreover,

we show that our proposed variants of QDO-ES produce statistically significantly better Pareto

fronts than just extending post hoc ensemble selection algorithms. At the same time, our results

reproduce the conclusions by Purucker et al. (2023) w.r.t. predictive accuracy for data from Auto-

Sklearn with TabRepo’s data from AutoGluon.

Contributions. In this work, we present (1) hardware-aware ensemble selection, a post hoc method

for trading off predictive accuracy against predictive cost in AutoML, and (2) a strong hardware-

aware ensemble selection algorithm that can serve as a baseline for future work while already

being able to support practitioners’ choices effectively.

2 Related Work
Integrating hardware constraints into AutoML and Neural Architecture Search (NAS) has gained

significant attention over the last few years (Zhang et al., 2019; Benmeziane et al., 2021; Schneider

et al., 2022; Sukthanker et al., 2024), reflecting the diverse demands of deployment environments.

Schneider et al. (2022) introduced the application of QDO to NAS, aimed at generating a

diverse set of architectures, each optimized for specific hardware constraints. Unlike traditional

multi-objective NAS that seeks to approximate a Pareto front, this method focuses on optimizing

for predefined, niche-specific requirements. The study illustrates that QDO’s targeted approach

potentially offers improvements over traditional methods in terms of efficiency and solution quality

for hardware-aware NAS.

In the domain of multi-objective ensemble selection, several studies have explored optimiz-

ing model robustness and diversity without directly addressing hardware constraints. Works by

Cavalcanti et al. (2016); Li et al. (2012); Partalas et al. (2010); Martınez-Munoz and Suárez (2004);

Partridge and Yates (1996) have contributed to the understanding of ensemble pruning and selection

by focusing on performance and uncertainty measures, yet typically do not consider hardware

efficiency as a critical objective. To the best of our knowledge, no research has been done on hard-

ware awareness in ensemble selection. We extend this focus by integrating hardware constraints,

thereby enhancing the scope of multi-objective optimization in ensemble methods for AutoML

solutions.

Our approach to hardware-aware ensemble selection builds on applying QDO-ES as proposed

by Purucker et al. (2023). QDO-ES uses principles from QDO and concepts from ensemble diversity

to enhance the performance and robustness of ensemble selection. We extend this by including

hardware-aware metrics, like inference time or ensemble size, when applying QDO to ensemble

selection to create hardware-aware QDO-ES.

3 Method
In this study, we are comparing the performance of five ensembling methods and their ability

to find an optimal Pareto front for predictive accuracy and inference time: (i) GES; (ii) QO-ES;

(iii) QDO-ES; (iv) QDO-ES with ensemble size (Size-QDO-ES); and (v) QDO-ES with inference

time (Infer-QDO-ES).
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Greedy Ensemble Selection. GES was first introduced by Caruana et al. (2004). Starting from the

single best model, GES iteratively adds models to the ensemble that lead to the largest improvement.

Compared to the other methods, GES usually produces only one solution. Thus, we extend GES by

recording the ensemble produced at every iteration. Then, we obtain a set of ensembles that we

use to compute a Pareto front.

Quality (Diversity) Optimization Ensemble Selection. QO-ES and QDO-ES implemented by Pu-

rucker et al. (2023) maintain a population of ensembles, which both methods’ evolution strategies

iterate over to improve performance. QDO-ES extends QO-ES in that it makes sure the popula-

tion includes diverse ensembles. In their application of QO-ES and QDO-ES, the algorithms only

returned one solution. We extended both methods to extract the last population of ensembles of

QO-ES and QDO-ES. Then, we use this population as the set of ensembles to compute the Pareto

front. Apart from this, we left the remaining parameters of the evolutionary algorithms default,

following the prior work. We also include the single best model in this set, i.e., an ensemble with

only one member. This follows the set for GES, which starts with the single best model.

Hardware-Aware Quality Diversity Optimization Ensemble Selection. GES, QO-ES, and QDO-ES
solely optimize for predictive accuracy. Thus, no aforementioned method is hardware-aware

1
.

Therefore, we propose a variant of QDO-ES by adjusting its population management. Instead of

creating a population that includes diverse ensembles, we guarantee that QDO-ES ensures that the

population consists of ensembles with varying degrees of predictive cost.

To this end, we adjust the behavior space (Chatzilygeroudis et al., 2021) that QDO-ES operates

on. The behavior space determines which individuals (i.e., ensembles) are kept in the population

after each iteration. To guarantee that the behavior space becomes hardware-aware, we replace

one of its two dimensions with a measure of predictive cost. In detail, we replace the config space

similarity metrics, an ensemble diversity metric used by QDO-ES, with either inference time or

ensemble size to obtain Infer-QDO-ES and Size-QDO-ES, respectively. Consequently, after each

iteration, the population will contain ensembles with varying degrees of inference time or ensemble

size. As for QO-ES and QDO-ES, we used the last population together with the single best model

as the set of models for computing the Pareto front. While we could have used all ensembles from

all iterations of the genetic algorithm, we want to provide a manageable set of solutions to a user.

We include Size-QDO-ES as an ablation for a different predictive cost measure. Ensemble size is

generally a proxy for predictive cost and inference time but does not necessarily represent the true

predictive cost. We follow the defaults of the implementation provided by Purucker et al. (2023) for

population size and individual selection method.

4 Experiments

We use TabRepo (Salinas and Erickson, 2023) as a foundation for our experiments. TabRepo includes

prediction probabilities on validation and test data for up to 1416 model configurations and 200

datasets, making it an invaluable tool for evaluating and simulating ensemble selection methods.

We use its data D244_F3_C1530_100, which includes the results for 100 datasets with three-fold

cross-validation and 1416 models. We omitted the 17 regression datasets from our testing because

QDO-ES does not support regression, though it could be extended in the future. Each method was

executed across 10 different seeds per fold to ensure robustness in our findings.

To evaluate Pareto fronts for predictive accuracy and cost for each method, we measure

predictive accuracy using the ROC AUC on test data and predictive cost by inference time. Inference

times are calculated based on the data in TabRepo, where inference times are recorded per dataset

and model. We then define an ensemble’s inference time as the sum of the inference times of all its

models. To measure the quality of Parteo fronts, we employ hypervolume (defined in Appendix A).

1
Ensemble selection by itself is not hardware-aware as sparse solutions can have an extreme predictive cost.
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Figure 1: Hypervolume plots: (a) a critical difference plot of hypervolume, which shows the average

rank (top axis) and a horizontal black bar that connects all methods that are not statistically

significantly different after a Friedman test with a Nemenyi posthoc test (𝛼 = 0.05). (b) a

boxplot showing the distribution of a method’s obtained hypervolume across datasets.

A higher hypervolume indicates a method’s superior capability in constructing an effective

set of ensembles that balances predictive accuracy and cost. We calculate hypervolume using the

pygmo Python package (Biscani and Izzo, 2020). Before computing the hypervolume, we min-max

normalized each metric (ROC AUC and inference time) and ensured that lower values represent

better values. To obtain an aggregate across folds and seeds, we first calculated hypervolumes for

each fold and seed and then averaged them to provide a value for each method per dataset.

In addition to hypervolume, we evaluated each method’s predictive accuracy based on the

best-scoring ensemble, according to ROC AUC on validation data, in the Pareto front. Moreover,

we examined the efficiency of the best-scoring ensembles by analyzing their inference times.

5 Results

Balancing Predictive Accuracy and Cost. To determine which method best balances predictive

accuracy and cost, we examined the hypervolumes of the Pareto fronts produced by each method, as

illustrated in Figure 1. Infer-QDO-ES demonstrated superior performance, outpacing other methods

with a statistically significant margin. It excelled in identifying solutions that balance predictive

performance and cost. GES, QDO-ES, and GES showed similar results regarding hypervolume,

indicating a lower but comparable capability in optimizing the trade-off between efficiency and

performance. QO-ES performedworst, likely attributed to the lack of diversity compared to QDO-ES.

We present exemplary Pareto fronts for all methods in Appendix, Figure 4.

Predictive Accuracy after Balancing. Using Infer-QDO-ES and Size-QDO-ES does not detrimentally

affect predictive performance when returning only the best ensemble of the Pareto front. These

methods even surpassed the performance of QDO-ES, as shown in the Appendix, Figure 2. We

additionally provided ROC AUC results for each method per dataset in the Appendix, Table 2. We

observe that our methods, alongside GES, QDO-ES, and QO-ES, generally yield comparable, not

significantly different high-quality results across the tested datasets. Moreover, including hardware-

aware metrics in QDO-ES might even improve the robustness of the generated ensembles.

Our results, as shown in Figure 2, reproduce the conclusions by Purucker et al. (2023) that

QO-ES and QDO-ES outrank GES w.r.t. ROC AUC on test data. This is particularly interesting since

Purucker et al. (2023) used data from Auto-Sklearn while we used TabRepo’s data from AutoGluon.
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Predictive Cost after Balancing. When assessing the efficiency of the best ensembles, particularly

in inference times, our methods outperformed those created by QDO-ES and QO-ES. This is

depicted in the Appendix, Figure 3. However, they did not achieve the efficiency levels of GES,

which typically produces a smaller final ensemble requiring fewer models during inference. Given

the larger ensemble sizes typically generated by QO-ES and QDO-ES (Purucker et al., 2023), this

outcome aligns with our expectations. Moreover, as seen in Figure 1, practitioners could also choose

a comparable or better ensemble from the Pareto fronts when using Infer-QDO-ES or Size-QDO-ES.

Summary. Our results demonstrate that Size-QDO-ES and Infer-QDO-ES enhance the efficiency of

AutoML solutions and maintain competitive accuracy, effectively managing the trade-offs between

accuracy and operational speed. Our methods’ ability to generate superior Pareto fronts underscores

their effectiveness and provides greater flexibility for practitioners, allowing for choosing models

to meet specific hardware or business constraints.

6 Conclusion
Our study demonstrated the viability of hardware-aware post hoc ensemble selection in AutoML,

presenting a significant advancement in ensemble selection methodologies that integrate hardware

efficiency considerations. By incorporating a hardware constraint like inference time into the

ensemble selection process, we have shown that it is possible to maintain competitive accuracy

and significantly enhance the models’ operational efficiency.

Integrating quality diversity optimization principles into ensemble selection has proven particu-

larly effective, yielding Pareto fronts that reflect an optimal balance between predictive performance

and hardware efficiency. Our proposed variant of QDO-ES, Infer-QDO-ES, has outperformed tradi-

tional ensemble methods by producing ensembles that are not only diverse and high-performing but

also tailored for specific hardware limitations. These findings underscore the importance of consid-

ering hardware constraints in the ensemble selection process, particularly in resource-constrained

deployment environments.

The implications of this research extend beyond the immediate improvements in ensemble

selection; they suggest a paradigm shift in how AutoML systems are designed and deployed. By

demonstrating that hardware-aware ensembles can achieve comparable or even superior perfor-

mance to traditional methods, this study paves the way for more sustainable and efficient AutoML

solutions, reducing both computational costs and environmental impacts.

Our work is limited to the evaluation of data from TabRepo and classification tasks. Addition-

ally, we only considered two hardware constraints, omitting others like FLOPs, area, and energy

consumption. Finally, the effectiveness of hardware-aware model selection compared to our post hoc
hardware-aware ensemble selection approach remains unclear. For future work, we suggest several

directions: (1) To broaden their applicability, extend hardware-aware ensemble methods to other

types of machine learning tasks, such as regression. (2) Further exploring hardware constraints or

multiple constraints simultaneously, such as energy consumption or memory usage, to better tailor

models to deployment scenarios. (3) Investigating these methods’ integration and potential user

interface into mainstream AutoML frameworks, making them accessible to a wider range of users.

In conclusion, hardware-aware ensemble selection represents a promising advancement in

AutoML. It aligns model performance with the practical realities of deployment environments.

This approach not only enhances the practicality of AutoML solutions but also contributes to the

broader goal of making machine learning more accessible and sustainable.

Broader Impact Statement. After careful reflection, we determined that this work does not have new

negative broader impacts that are not already present for existing state-of-the-art AutoML systems.

However, we hope that our work will have a positive, broader impact by enabling practitioners to

balance costs and profits when applying AutoML systems. Thus, practitioners can select, e.g., less

energy-consuming ensembles with only minimal loss in performance.
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Submission Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] The abstract and introduction accurately describe our

contributions, which include the introduction of hardware-aware ensemble selection (HA-

ES) and its evaluation of improving operational efficiency while maintaining competitive

accuracy.

(b) Did you describe the limitations of your work? [Yes] We described the limitations in the

conclusion section, specifically the use of only classification datasets from TabRepo, the

consideration of only two hardware constraints, and the lack of comparison with hardware-

aware model selection methods.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] In the broader

impact statement, we noted that our work does not introduce new negative impacts beyond

those already present in existing AutoML systems. We highlighted potential positive impacts

such as enabling more energy-efficient model selection.

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them?

https://2022.automl.cc/ethics-accessibility/ [Yes] We have read the ethics review

guidelines and ensured that our paper conforms to them.

2. If you ran experiments. . .

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same bench-

marks, data (sub)sets, available resources)? [Yes] We used the same datasets, evaluation

metrics, and computational resources for all ensemble selection methods compared in the

experiments.

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing,

search spaces, hyperparameter tuning)? [Yes] We specified the use of data from TabRepo,

the criteria for selecting datasets, and the evaluation metrics used, including the calculation

of hypervolumes for Pareto fronts.

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account

for the impact of randomness in your methods or data? [Yes] We repeated our experiments

across 10 different seeds per fold to ensure robustness and account for randomness.

(d) Did you report the uncertainty of your results (e.g., the variance across random seeds or

splits)? [Yes] We reported the average hypervolumes and included statistical comparisons

to show the variance across datasets.

(e) Did you report the statistical significance of your results? [Yes] We used critical difference

plots and boxplots to show the statistical significance of our results, specifically comparing

the hypervolumes obtained by different methods.

(f) Did you use tabular or surrogate benchmarks for in-depth evaluations? [Yes] We used the

TabRepo dataset, which provides a comprehensive tabular benchmark for evaluating our

methods on multiple machine-learning tasks.

(g) Did you compare performance over time and describe how you selected the maximum

duration? [No] Performance over time was not the primary focus of our study. Instead, we

compared the quality of Pareto fronts and the best-performing ensembles across different

methods.
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(h) Did you include the total amount of compute and the type of resources used (e.g., type

of gpus, internal cluster, or cloud provider)? [Yes] The experiments were conducted on a

variety of server configurations. The experiments ran for roughly four days.

(i) Did you run ablation studies to assess the impact of different components of your approach?

[Yes] We included an ablation study by comparing the original QDO-ES with our proposed

hardware-aware variants, Size-QDO-ES and Infer-QDO-ES, to demonstrate the impact of

incorporating hardware constraints.

3. With respect to the code used to obtain your results. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimental

results, including all requirements (e.g., requirements.txt with explicit versions), random

seeds, an instructive README with installation, and execution commands (either in the

supplemental material or as a url)? [Yes] The GitHub link to the code repository is included

in Appendix B. The repository contains requirements.txt and instructions for running

the experiments.

(b) Did you include a minimal example to replicate results on a small subset of the experiments

or on toy data? [Yes] A small example can be replicated by changing the context used

for the experiments to a toy context provided by TabRepo (e.g., D244_F3_C1530_10). This

allows results to be reproduced on a smaller scale.

(c) Did you ensure sufficient code quality and documentation so that someone else can execute

and understand your code? [Yes] The code is documented with necessary comments and

written expressively to ensure comprehensibility and ease of use.

(d) Did you include the raw results of running your experiments with the given code, data, and

instructions? [Yes] A compressed file named full.zip, which includes the processed raw data

ready for plotting, is provided.

(e) Did you include the code, additional data, and instructions needed to generate the figures

and tables in your paper based on the raw results? [Yes] The necessary code and instructions

for generating figures and tables are included in the provided repository.

4. If you used existing assets (e.g., code, data, models). . .

(a) Did you citep the creators of used assets? [Yes] We cited the creators of the TabRepo dataset

and other relevant works used in our study.

(b) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating if the license requires it? [N/A] The datasets used are publicly available and

do not require additional consent for use.

(c) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] We used publicly available datasets from TabRepo,

which do not contain personally identifiable information or offensive content.

5. If you created/released new assets (e.g., code, data, models). . .

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [Yes]

The code is published under the MIT license, as detailed in the repository.

(b) Did you include the new assets either in the supplemental material or as a url (to, e.g.,

GitHub or Hugging Face)? [Yes] The new assets, including code and data, are available in

the repository linked in Appendix B and included in the supplemental material.
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6. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A]

7. If you included theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A]

(b) Did you include complete proofs of all theoretical results? [N/A]
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A Additional Definitions

Pareto Optimality. : A solution is Pareto optimal if no other solution exists that can improve some

objectives without worsening others. Such solutions are efficient and provide a set of equally valid

alternatives based on different priority scenarios (Van Veldhuizen et al., 1998).

Pareto Front. : The Pareto Front is defined as the collection of all solutions in a multiobjective

optimization problem that are Pareto optimal. A solution is Pareto optimal if no other feasible

solution exists that improves at least one objective without worsening another. Thus, the Pareto

Front represents the boundary in the objective space beyond which no further improvements can

be made without trade-offs (Van Veldhuizen et al., 1998).

Hypervolume. : Hypervolume measures the volume enclosed by the Pareto front and a reference

point, capturing the extent of the objective space covered. It quantifies both the convergence to the

Pareto front and the diversity of solutions, increasing as the set of solutions better approximates

the true Pareto front (Bader and Zitzler, 2011).

B Resource Details

The experiments were conducted on a variety of server configurations at [removed], including

1. Dell R740xd and Asus ESC4000 with Xeon 6254/6354, 756GB/1TB RAM; 2. Dell R920 with E7-4880,

1TB RAM; 3. Dell R740 with Xeon 6134, 756GB RAM; and ran for roughly 4 days. We can use

diverse hardware since TabRepo precalculates the inference times. Code for the experiments can

be found at https://github.com/Atraxus/HA-ES.

C Tabrepo Details

In this section, we provide detailed statistics related to the distribution of dataset classes in the

context of D244_F3_C1530_100. Table 1 enumerates the datasets according to the number of classes

they contain. Entries are only included for class counts where datasets are available. The absence

of a particular class count indicates that there are no corresponding datasets in this context.

Number of Classes Count of Datasets
0 17

2 58

3 6

4 3

5 6

6 3

8 2

9 1

10 1

19 1

20 2

Table 1: Distribution of datasets by number of classes
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Figure 2: Critirical difference plot for ROC AUC test score. The top axis shows the average rank across

all datasets for each method. QO-ES significantly differs from GES here (the horizontal bar
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Figure 3: Distribution of the inference times in seconds of each method’s best solution across datasets.

Table 2: Test ROC AUC - Binary: The mean and standard deviation of the test score over all folds for

each method. The best methods per dataset are shown in bold. All methods close to the best

method are considered best (using NumPy’s default isclose function).

Dataset QDO-ES Size-QDO-ES Infer-QDO-ES GES QO-ES

madeline 0.9380(±0.0073) 0.9379(±0.0070) 0.9374(±0.0076) 0.9370(±0.0097) 0.9395(±0.0064)
kc2 0.8892(±0.0205) 0.8882(±0.0202) 0.8868(±0.0190) 0.8914(±0.0240) 0.8914(±0.0206)
fri_c2_500_50 0.9560(±0.0160) 0.9559(±0.0139) 0.9562(±0.0154) 0.9552(±0.0156) 0.9573(±0.0139)
ozone-level-8hr 0.9438(±0.0215) 0.9444(±0.0215) 0.9434(±0.0210) 0.9457(±0.0208) 0.9442(±0.0217)
analcatdata_dmf... 0.6015(±0.0320) 0.6022(±0.0317) 0.6013(±0.0331) 0.6126(±0.0310) 0.6045(±0.0278)
splice 0.9965(±0.0005) 0.9965(±0.0005) 0.9965(±0.0006) 0.9964(±0.0007) 0.9965(±0.0005)
colleges_usnews 0.8152(±0.0243) 0.8134(±0.0246) 0.8139(±0.0246) 0.8117(±0.0278) 0.8133(±0.0244)

Continued on next page
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Dataset QDO-ES Size-QDO-ES Infer-QDO-ES GES QO-ES

qsar-biodeg 0.9361(±0.0416) 0.9365(±0.0408) 0.9361(±0.0412) 0.9328(±0.0436) 0.9372(±0.0411)
volcanoes-a2 0.9475(±0.0076) 0.9468(±0.0082) 0.9468(±0.0083) 0.9474(±0.0077) 0.9472(±0.0074)
volcanoes-e1 0.8497(±0.0685) 0.8445(±0.0696) 0.8469(±0.0707) 0.8538(±0.0685) 0.8580(±0.0628)
ilpd 0.7255(±0.0614) 0.7239(±0.0611) 0.7247(±0.0625) 0.7296(±0.0564) 0.7273(±0.0588)
climate-model-s... 0.8911(±0.0814) 0.8923(±0.0801) 0.8916(±0.0796) 0.8966(±0.0812) 0.8907(±0.0811)
volcanoes-a4 0.9063(±0.0191) 0.9051(±0.0192) 0.9059(±0.0195) 0.9053(±0.0134) 0.9061(±0.0177)
hill-valley 0.9641(±0.0679) 0.9756(±0.0260) 0.9435(±0.0918) 0.9757(±0.0089) 0.9788(±0.0079)
fri_c4_500_100 0.9570(±0.0106) 0.9569(±0.0109) 0.9564(±0.0140) 0.9591(±0.0096) 0.9579(±0.0092)
OVA_Kidney 0.9978(±0.0019) 0.9978(±0.0019) 0.9977(±0.0020) 0.9978(±0.0019) 0.9979(±0.0017)
eucalyptus 0.9420(±0.0185) 0.9419(±0.0184) 0.9410(±0.0180) 0.9365(±0.0172) 0.9433(±0.0186)
autoUniv-au6-75... 0.6038(±0.0176) 0.6070(±0.0152) 0.6049(±0.0206) 0.5747(±0.0238) 0.6016(±0.0076)
LED-display-dom... 0.9632(±0.0092) 0.9632(±0.0092) 0.9633(±0.0092) 0.9588(±0.0089) 0.9631(±0.0096)
diabetes 0.8505(±0.0705) 0.8511(±0.0702) 0.8511(±0.0678) 0.8127(±0.0737) 0.8506(±0.0711)
pc3 0.8902(±0.0468) 0.8888(±0.0470) 0.8869(±0.0472) 0.8862(±0.0535) 0.8914(±0.0473)
GAMETES_Epistas... 0.7332(±0.0407) 0.7369(±0.0438) 0.7367(±0.0462) 0.7598(±0.0226) 0.7411(±0.0190)
fri_c0_1000_5 0.9753(±0.0088) 0.9752(±0.0089) 0.9750(±0.0089) 0.9767(±0.0099) 0.9755(±0.0086)
cmc 0.7429(±0.0307) 0.7426(±0.0306) 0.7426(±0.0307) 0.7506(±0.0248) 0.7424(±0.0310)
blood-transfusi... 0.7785(±0.0615) 0.7774(±0.0618) 0.7769(±0.0629) 0.7874(±0.0551) 0.7788(±0.0603)
kc1 0.8509(±0.0080) 0.8513(±0.0082) 0.8503(±0.0098) 0.8556(±0.0089) 0.8540(±0.0042)
wine-quality-re... 0.8811(±0.0105) 0.8798(±0.0129) 0.8796(±0.0126) 0.8874(±0.0068) 0.8849(±0.0090)
car 1.0000(±0.0000) 1.0000(±0.0000) 1.0000(±0.0000) 1.0000(±0.0000) 1.0000(±0.0001)
fri_c3_500_50 0.9561(±0.0225) 0.9562(±0.0240) 0.9558(±0.0247) 0.9548(±0.0290) 0.9565(±0.0223)
volcanoes-a3 0.9129(±0.0164) 0.9125(±0.0172) 0.9123(±0.0174) 0.9057(±0.0165) 0.9133(±0.0157)
parity5_plus_5 1.0000(±0.0000) 1.0000(±0.0000) 0.9993(±0.0166) 1.0000(±0.0000) 1.0000(±0.0000)
OVA_Prostate 0.9988(±0.0018) 0.9989(±0.0018) 0.9987(±0.0019) 0.9993(±0.0019) 0.9988(±0.0018)
analcatdata_aut... 1.0000(±0.0001) 1.0000(±0.0001) 1.0000(±0.0001) 1.0000(±0.0001) 1.0000(±0.0002)
synthetic_contr... 1.0000(±0.0000) 1.0000(±0.0000) 1.0000(±0.0000) 1.0000(±0.0001) 1.0000(±0.0001)
autoUniv-au7-11... 0.7209(±0.0068) 0.7200(±0.0089) 0.7186(±0.0108) 0.7134(±0.0135) 0.7213(±0.0042)
arsenic-female-... 0.8231(±0.0125) 0.8225(±0.0139) 0.8228(±0.0171) 0.8224(±0.0127) 0.8245(±0.0087)
baseball 0.9711(±0.0092) 0.9708(±0.0095) 0.9705(±0.0093) 0.9721(±0.0109) 0.9713(±0.0093)
fri_c3_1000_25 0.9771(±0.0212) 0.9770(±0.0217) 0.9755(±0.0223) 0.9796(±0.0178) 0.9779(±0.0207)
arcene 0.9205(±0.1119) 0.9231(±0.1076) 0.9239(±0.1064) 0.9357(±0.1086) 0.9181(±0.1162)
UMIST_Faces_Cro... 1.0000(±0.0001) 1.0000(±0.0001) 1.0000(±0.0001) 1.0000(±0.0002) 1.0000(±0.0002)
dna 0.9963(±0.0015) 0.9963(±0.0015) 0.9963(±0.0015) 0.9960(±0.0016) 0.9963(±0.0014)
pc4 0.9449(±0.0190) 0.9451(±0.0197) 0.9446(±0.0192) 0.9435(±0.0208) 0.9448(±0.0209)
MiceProtein 0.9999(±0.0004) 0.9999(±0.0004) 0.9999(±0.0003) 0.9991(±0.0017) 0.9999(±0.0004)
boston_correcte... 0.9689(±0.0210) 0.9693(±0.0212) 0.9681(±0.0211) 0.9670(±0.0212) 0.9696(±0.0210)
tokyo1 0.9815(±0.0062) 0.9814(±0.0063) 0.9814(±0.0063) 0.9802(±0.0064) 0.9815(±0.0061)
GAMETES_Epistas... 0.7498(±0.0198) 0.7533(±0.0177) 0.7464(±0.0359) 0.7492(±0.0130) 0.7446(±0.0150)
fri_c3_1000_10 0.9808(±0.0071) 0.9803(±0.0076) 0.9806(±0.0075) 0.9799(±0.0063) 0.9809(±0.0076)
credit-g 0.7898(±0.0452) 0.7883(±0.0447) 0.7885(±0.0461) 0.7846(±0.0424) 0.7875(±0.0439)
no2 0.7589(±0.0539) 0.7593(±0.0514) 0.7582(±0.0511) 0.7540(±0.0593) 0.7604(±0.0534)
balance-scale 0.9982(±0.0091) 0.9999(±0.0006) 0.9984(±0.0075) 1.0000(±0.0001) 1.0000(±0.0001)
madelon 0.9319(±0.0056) 0.9326(±0.0046) 0.9321(±0.0056) 0.9314(±0.0062) 0.9337(±0.0031)
fri_c3_500_10 0.9751(±0.0151) 0.9748(±0.0159) 0.9746(±0.0168) 0.9694(±0.0215) 0.9747(±0.0153)
cylinder-bands 0.9467(±0.0139) 0.9445(±0.0133) 0.9462(±0.0159) 0.9410(±0.0119) 0.9474(±0.0111)
GAMETES_Epistas... 0.7013(±0.0178) 0.7007(±0.0189) 0.6994(±0.0202) 0.6940(±0.0196) 0.7001(±0.0170)
soybean 0.9986(±0.0006) 0.9985(±0.0006) 0.9985(±0.0007) 0.9983(±0.0007) 0.9986(±0.0006)
autoUniv-au1-10... 0.6610(±0.0402) 0.6583(±0.0401) 0.6585(±0.0403) 0.6618(±0.0317) 0.6603(±0.0370)
GAMETES_Heterog... 0.7713(±0.0496) 0.7704(±0.0480) 0.7712(±0.0487) 0.7737(±0.0461) 0.7700(±0.0501)

Continued on next page
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Dataset QDO-ES Size-QDO-ES Infer-QDO-ES GES QO-ES

fri_c1_1000_50 0.9781(±0.0063) 0.9778(±0.0066) 0.9767(±0.0142) 0.9763(±0.0049) 0.9790(±0.0062)
fri_c0_500_5 0.9510(±0.0200) 0.9514(±0.0189) 0.9514(±0.0192) 0.9508(±0.0189) 0.9522(±0.0188)
micro-mass 0.9987(±0.0009) 0.9987(±0.0009) 0.9987(±0.0010) 0.9988(±0.0007) 0.9988(±0.0008)
fri_c2_1000_25 0.9888(±0.0105) 0.9885(±0.0108) 0.9880(±0.0108) 0.9871(±0.0110) 0.9889(±0.0110)
dresses-sales 0.6274(±0.0616) 0.6263(±0.0601) 0.6257(±0.0621) 0.6427(±0.0644) 0.6255(±0.0605)
cnae-9 0.9981(±0.0018) 0.9977(±0.0023) 0.9978(±0.0022) 0.9980(±0.0017) 0.9980(±0.0019)
pc1 0.9132(±0.0404) 0.9111(±0.0413) 0.9121(±0.0417) 0.9038(±0.0371) 0.9141(±0.0387)
kdd_el_nino-sma... 0.9878(±0.0060) 0.9875(±0.0066) 0.9878(±0.0063) 0.9825(±0.0086) 0.9882(±0.0057)
Australian 0.9363(±0.0159) 0.9355(±0.0169) 0.9350(±0.0164) 0.9353(±0.0183) 0.9360(±0.0171)
Bioresponse 0.8872(±0.0051) 0.8864(±0.0059) 0.8852(±0.0065) 0.8863(±0.0051) 0.8873(±0.0053)
OVA_Colon 0.9711(±0.0243) 0.9713(±0.0233) 0.9732(±0.0230) 0.9790(±0.0198) 0.9709(±0.0236)
Titanic 0.8037(±0.0234) 0.8051(±0.0250) 0.8043(±0.0239) 0.7981(±0.0186) 0.8037(±0.0231)
vehicle 0.9640(±0.0090) 0.9638(±0.0093) 0.9626(±0.0101) 0.9644(±0.0071) 0.9649(±0.0085)
rmftsa_ladata 0.9763(±0.0057) 0.9762(±0.0059) 0.9751(±0.0059) 0.9764(±0.0065) 0.9766(±0.0054)
GAMETES_Heterog... 0.7822(±0.0231) 0.7824(±0.0222) 0.7812(±0.0227) 0.7789(±0.0261) 0.7829(±0.0234)
OVA_Ovary 0.9753(±0.0052) 0.9752(±0.0054) 0.9746(±0.0057) 0.9748(±0.0045) 0.9753(±0.0050)
pbcseq 0.9452(±0.0081) 0.9464(±0.0083) 0.9469(±0.0092) 0.9224(±0.0191) 0.9467(±0.0055)
jasmine 0.8953(±0.0200) 0.8949(±0.0200) 0.8941(±0.0206) 0.8992(±0.0189) 0.8962(±0.0208)
OVA_Lung 0.9752(±0.0254) 0.9745(±0.0245) 0.9749(±0.0244) 0.9779(±0.0258) 0.9760(±0.0245)
GAMETES_Epistas... 0.8465(±0.0113) 0.8466(±0.0115) 0.8461(±0.0141) 0.8510(±0.0089) 0.8461(±0.0102)
Internet-Advert... 0.9866(±0.0073) 0.9862(±0.0078) 0.9858(±0.0078) 0.9876(±0.0073) 0.9868(±0.0070)
meta 0.9602(±0.0278) 0.9588(±0.0283) 0.9582(±0.0303) 0.9549(±0.0326) 0.9576(±0.0279)
pm10 0.5931(±0.0884) 0.5886(±0.0825) 0.5905(±0.0882) 0.5668(±0.0814) 0.5890(±0.0756)
autoUniv-au7-70... 0.7140(±0.0331) 0.7146(±0.0327) 0.7130(±0.0346) 0.6984(±0.0276) 0.7120(±0.0289)
gina 0.9892(±0.0048) 0.9892(±0.0049) 0.9887(±0.0051) 0.9902(±0.0045) 0.9898(±0.0045)
OVA_Endometrium 0.9776(±0.0175) 0.9780(±0.0171) 0.9781(±0.0167) 0.9728(±0.0178) 0.9789(±0.0147)
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Figure 4: Pareto Fronts (lower is better for both metrics) for the "baseball" dataset.
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