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Abstract—Survivorship Care Plans (SCPs) are clinical docu-
ments that summarize treatments, long-term health risks, and
evidence-based recommendations for cancer and hematopoietic
stem cell transplantation (HSCT) survivors. Despite their clinical
value, SCPs remain underutilized due to limited automation,
high documentation burden, and workflow misalignment. Manual
SCP generation is time-consuming, error-prone, and burden-
some—particularly in complex cases requiring hours of chart
review and manual calculation. To address these challenges, we
developed a semi-automated SCP generation system grounded in
principles of Artificial Intelligence (AI) implementation science,
focusing on clinical context-aware integration, sustainable work-
flow alignment, and human-centered design. The system employs
an Extract, Transform, and Load (ETL) pipeline to extract
survivorship-relevant data from Epic Clarity, processing both
structured and unstructured Electronic Health Record (EHR)
data. Structured data are processed using deterministic rules,
whose outputs are reviewed by clinical experts in an iterative,
human-in-the-loop process to validate accuracy and refine rule
logic. Unstructured notes are analyzed using a BERT-based
NLP model to identify documentation of radiation therapy. In
collaboration with a large pediatric healthcare system in the
United States, we retrospectively identified a cohort of patients
less than age 30 treated for cancer or HSCT between January
2011 and December 2021. Using a validation cohort of 864
patients, our system achieved ≥99.5% concordance for 53 out
of 57 chemotherapy agent exposures, with most discrepancies
attributable to human abstraction errors. Ongoing work includes
usability testing with clinicians, co-design with survivorship
coordinators, and evaluation of implementation outcomes such
as trust, safety, and integration into clinical workflows.

Index Terms—Artificial intelligence, artificial intelligence im-
plementation science, clinical informatics, data harmonization
and integration, hematopoietic stem cell transplant, oncology,
survivorship care plans

I. INTRODUCTION

THE current estimated five-year relative survival rate for
all cancers is 68%, with more than 17 million cancer

survivors in the United States [1]. In pediatrics, the sur-
vival rate is even better with greater than 85% of children
surviving five years from their cancer diagnosis, with more
than 500,000 survivors of childhood cancer across the US
[1]. The National Academy of Medicine recommends that
cancer survivors participate in survivor care monitoring to help
mitigate the significant physical, psychosocial, and financial
consequences of cancer and its treatment [2], [3]. The basic
tenets of survivor healthcare for cancer survivors are: 1) early

detection of recurrence and secondary cancers, 2) management
of long-term psychosocial and physical problems (i.e., late
effects), and 3) preventative health care to mitigate the impact
of cancer on health and quality of life. Based on current
evidence in the literature and expert consensus opinion, the
American Cancer Society (ACS), American Society of Clinical
Oncology (ASCO), and National Comprehensive Cancer Net-
work (NCCN) have developed Survivorship Care Guidelines
to provide recommendations to assist healthcare providers in
the long-term care of adult cancer survivors [4]–[9]. These
diagnosis-specific guidelines list late effects survivors are at
risk for, outline the surveillance and tests that are recom-
mended, and detail the frequency at which those tests should
be done. Similarly, the Children’s Oncology Group (COG)
has developed Long-Term Follow-Up Guidelines for Survivors
of Childhood, Adolescent, and Young Adult Cancers. Unlike
their adult counterparts, these guidelines use an exposure-
based approach to recommend surveillance [10].

Oncology providers use these guidelines to develop sur-
vivorship care plans (SCP) for their patients comprising 1)
a cancer treatment summary, 2) potential physical and psy-
chosocial late effects, and 3) recommended evidence-based
late effects surveillance [11]. SCPs are intended to facilitate
the provision and coordination of high-quality survivorship
care and were an integral part of the American College of
Surgeons’ Commission on Cancer (CoC) Guidelines in 2016.
These credentialing guidelines mandated that cancer programs
develop and implement processes to monitor the formation and
dissemination of SCPs, which required discussion with the
patient [12]. However, there were many barriers to implemen-
tation, including the effort required to create SCPs. Therefore,
the updated standards in 2020 no longer required distribution
of SCPs, and instead focused on establishing a survivorship
program with encouragement to provide SCPs to patients [12],
[13].

While it is difficult to gauge the true prevalence, studies
have consistently shown low SCP utilization in adult oncology
[14]–[17]. SCPs are time-consuming and expensive to create
and there is no consistent method of delivery [14], [16], [18].
Several reviews have examined outcomes associated with SCP
delivery and have found mixed results with limited benefits
[15]–[18]. In studies of primary care providers, there is an
increase in survivorship conversations and knowledge [15].



However, studies focused on survivor outcomes have found
mixed results on the increase in recommended screening or
preventive care [15]–[18].

Unlike in adult oncology, the use of SCPs in pediatric
oncology has increased greatly over time. In a survey of COG
institutions, 88% of responding institutions reported delivery
of a cancer treatment summary in 2017 compared to 67% in
2007 [19]. In this population, there have been limited studies
about the effectiveness of SCPs on outcomes. In a retrospective
study at our collaborating pediatric center, it was found that
56% of 3,394 eligible survivors diagnosed between 2002-2016
received a SCP at a median of 0.7 years from eligibility to
survivor clinic services. In a multivariate model, SCP receipt
was associated with improved survival (aHR 0.31, 95% CI:
0.31-0.46) [20].

While adoption of SCPs in pediatric care has increased
and have shown some potential to improve survival, the
time and cost to create SCPs remains problematic. When
pediatric programs were surveyed about their primary barriers
to survivor care, lack of dedicated time (58%) and not enough
funding (41%) were the two largest barriers. For survivors of
pediatric cancer, SCPs are crucial as often these patients are
too young to remember their treatment and will eventually
transition to adult healthcare [19]. Currently, no tools exist for
automatically generating SCPs from Electronic Health Record
(EHR) data and standard EHR tools do not adequately support
SCP generation. For example, determining lifetime doses of
chemotherapy is critical for determining SCP recommenda-
tions, but the existing lifetime dose calculator tool in Epic
Systems, the most widely used EHR system in the U.S., with
adoption across 45% of all hospitals and 64% of children’s
hospitals [21], is unreliable as it does not take into account
complex age, weight and body surface area (BSA) dosing
rules and conversions in pediatrics. Passport for Care (PFC) is
the closest tool available, but it requires manual data entry to
generate SCPs with no ability to directly access and use EHR
data [22].

To address persistent barriers to SCP creation, we have
designed a novel, modular software pipeline informed by prin-
ciples of Artificial Intelligence (AI) Implementation Science.
Our system employs a human-in-the-loop, semi-automated
workflow that leverages commonly available EHR data fields
to support real-world integration of AI-enabled SCP genera-
tion. Designed for future deployment in a large pediatric health
system with a high-volume oncology program, the pipeline
uses an Extract, Transform, and Load (ETL) framework to
process data from the Epic Clarity clinical data warehouse
[23], extracting and transforming key survivorship-relevant
elements, including antineoplastic medication history and cu-
mulative dosages.

The main contributions of this work focus on implementa-
tion readiness, addressing key determinants of future success
such as technical feasibility, system adaptability, and contex-
tual fit:

• We introduce an ETL framework that cleans, harmonizes,
and standardizes raw EHR data needed for SCP gen-

eration, including normalization of dosage units, drug
identifiers, and structured clinical events. In addition
to chemotherapy exposure and cumulative dosing, our
system calculates a comprehensive range of survivorship-
relevant data elements, including:
– Individual antineoplastic drug exposures and dosages
– Radiation therapy exposure
– Exposure to radiopharmaceutical therapies (e.g.,

metaiodobenzylguanidine (MIBG), Iodine-131 (I-131))
• We emphasize a modular architecture that supports in-

tegration into broader clinical informatics ecosystems
without requiring extensive code refactoring or platform-
specific dependencies. The system was developed en-
tirely using data fields standard to Epic; as a result, it
is engineered for scalability, transportability, and cross-
institutional dissemination to the majority of cancer treat-
ment centers in the U.S. Extension to non-Epic systems
(e.g., Oracle Health) would involve targeted mapping of
source data elements but not a full system re-engineering,
preserving adaptability across healthcare settings. To our
knowledge, we are the first to develop a pipeline that
semi-automates the generation of SCPs using raw EHR
data.

II. METHODOLOGY

To enable automated generation of SCPs, we designed and
implemented a modular ETL pipeline that integrates struc-
tured and unstructured data from multiple clinical sources.
The pipeline extracts survivorship-relevant variables such as
radiation exposure, antineoplastic drug histories, and radio-
pharmaceutical treatments, transforming raw clinical data into
computable elements that support SCP creation. Our approach
balances algorithmic performance with clinical interpretability
and fidelity to real-world workflows.

Figure 1 summarizes the core data sources, extraction
methods, and resulting outputs. The pipeline draws from three
primary sources: (1) patient imaging history files, (2) Epic
Clarity patient records, and (3) unstructured clinical notes.
Each data source is processed using a domain-specific method,
ranging from Python-based file parsing to deep learning–based
natural language processing (NLP). Extracted outputs include
binary indicators of radiopharmaceutical therapies (e.g., MIBG
and I-131), detailed drug exposure histories with dosages,
and binary or probabilistic assessments of radiation exposure
inferred from clinical documentation.

This modular architecture allows for parallel development
and validation of each component, ensuring the system can
be iteratively improved and adapted to evolving clinical doc-
umentation practices. In the following sections, we describe
each data extraction module in detail.

A. Drug Exposures and Dosages

The ETL process for drug exposures and dosages integrates
three Epic Clarity datasets: Medication Orders (MO), Medica-
tion Administration Records (MAR), and Patient Height and



Fig. 1. Overview of the Extract, Transform, and Load (ETL) pipeline. The data sources used are from Epic, which consisted of patient imaging history and
patient records, and data from our clinical collaborator, which had clinical notes. The patient medical imaging history was filtered for presence of Iobenguane
(MIBG), a radiopharmaceutical used for diagnosis, and Iodine-131 (I-131), a nuclear cancer treatment; this was concatenated into a drug administration report.
The Epic patient records database filtered for individual drug exposures and separately, captured diagnosis type and date if relevant ICD-10 codes were present.
These attributes were combined into a drug dosages report. For the clinical collaborator notes, we utilized BERT-based NLP models to extract presence of
radiation treatment, which was then added to a separate Radiation Predications report. This modular design supports portability across institutions, and data
processing decisions are clearly documented and reproducible.

Weight History (PHWH). These are pulled via SQL scripts
and fed into the pipeline.

MO includes ordered medications along with patient identi-
fiers (ID, name, Date of Birth (DOB)) and physical data such
as height, weight, and BSA. MAR contains similar identifiers
and physical measurements, plus administration details such
as route (e.g., intravenous, intrathecal), administration time,
dose, and dose units (e.g., milligram, milligram per kilogram
(mg/kg), milligram per meter squared (mg/m2)). PHWH logs
historical height (inches) and weight (ounces).

The ETL process consists of eight steps: preprocessing
height and weight, determining medication order frequencies,
mapping MAR medications to generic names, counting MAR
orders, aggregating dosages at the order and patient levels,
exporting to a standardized validation format, and validating
exposures and dosages.

1) Preprocessing Height and Weight: In pediatrics, due to
varying patient sizes, antineoplastic drugs are typically dosed
by BSA or weight (e.g., mg/m2, mg/kg). Accurate cumulative
dosing for SCPs relies on the MO and MAR datasets, but MO
entries often lack BSA or the height and weight needed to
compute it—an issue that contributes to errors in both the Epic
lifetime dose calculator and manual abstraction. To address
this, we use the PHWH dataset to fill in missing BSA or weight
values and improve dosage accuracy. Height and weight are

recorded in inches and ounces and must be converted to
centimeters and kilograms, respectively, to calculate BSA via
the Mosteller Formula:

BSA =

√
Height × Weight

3600
(1)

After conversion, MO data is passed to a function that finds
the nearest height and weight entries from PHWH based on
the MO’s Ordering Date and PHWH’s Recorded Time, one
metric at a time for efficiency. The two values need not be
from the same date but must be within 30 days of the order,
as pediatric growth can make older values unreliable. Once
both values are obtained, BSA is calculated using Equation
1 and substituted into the MO record as Height at Release,
Weight at Release, and BSA at Release.

2) Establishing Medication Order Frequencies: Each med-
ication order in the MO file corresponds to an administration
record in the MAR file for on-site medications. Orders for at-
home administration typically have no matching MAR entries.
Each MO record includes a frequency value, indicating the
maximum number of doses allowed within a time frame—for
example, 5 TIMES A DAY implies up to 5 doses per day,
while Q6H allows up to 4 (i.e., one every six hours).

A mismatch can occur when the actual number of MAR
entries exceeds the order frequency—e.g., a once-daily medi-



Fig. 2. Mapping specific chemotherapy medications (distinguished by dose,
route, etc.) to their general drug names.

cation may appear twice in the MAR. This usually results from
dose splitting based on clinical judgment or re-administration
after a failed dose (e.g., emesis after oral chemotherapy).
Though the total dose remains unchanged, the MAR shows
multiple entries.

To address this, we mapped each possible frequency value
in the MO to a numeric upper limit on daily administrations,
which is then used to guide dosage calculations.

3) Mapping Medications in the MAR to General Drug
Names: Chemotherapy drugs requiring lifetime cumulative
dosage calculations (per BSA or weight) fall into four classes:
anthracyclines, alkylators, heavy metals, and other agents.

Each general drug name corresponds to multiple specific
medications. To accurately calculate lifetime dosages, we
mapped specific medications to their general drug names
through a two-step process: first, pattern matching general
drug names within specific medication names in the MO
data (which often include dosage and administration details);
second, manual mapping of exceptions. Figure 2 illustrates
this process, with doxorubicin mappings detailed in Table I.

TABLE I
EXAMPLE OF A SPECIFIC MEDICATION MAPPING TO A GENERAL DRUG

NAME

General Drug Name Specific Medication
doxorubicin doxorubicin 20 mg/10 ml intravenous solution
doxorubicin doxorubicin pegylated liposomal (doxil) iv so-

lution
doxorubicin doxorubicin 2 mg/ml intravenous solution

wrapper
doxorubicin doxorubicin iv solution

4) Creating Record Counts for Each Order in the MAR
Data: The MAR dataset records administrations for orders
listed in the MO file for on-site medications. Originally, each
MO order has a single record with dosage and frequency data.
To harmonize inpatient data, dosages are calculated from a
modified MO file that expands each order into multiple records
reflecting the number of actual administrations.

This pipeline step maps each order ID to the count of cor-
responding MAR records. The count is then checked against
frequency limits established earlier. Separating these steps
reduces computational complexity compared to analyzing MO
and MAR files simultaneously.

After validating this mapping, the MO data is adjusted
by duplicating records to match MAR counts. This produces
a harmonized MO dataset with accurate records for both
inpatient and outpatient administrations, enabling integrated
chemotherapy dosage calculations.

5) Aggregating Medication Dosages at the Order Level:
Once the MO data are harmonized, for each order ID and
medication pairing, the total dosages are calculated. Calcu-
lating grouped order ID and medications prior to total per
patient dosing reduces latency in the pipeline and provides a
mechanism for quality control, as the data can be checked in
Epic Clarity at the order ID level, enabling debugging without
having to search through a patient’s entire history.

6) Aggregating Medication Dosages at the Patient Level:
Aggregating dosages from the order to patient level begins by
converting doses to milligrams per meter squared (mg/m2).
For example, doses in mg/kg are multiplied by 30 to convert
to mg/m2 according to standard clinical practice, while doses
in milligrams are divided by the dosing BSA at administration,
accounting for BSA changes over time.

Besides unit conversion, minor rules address combination
drugs. For instance, the medication Daunorubicin 44 mg and
Cytarabine 100 mg in liposome IV solution is a mixture
containing two drug components. In this case, dosages are split
by extracting general drug names via regular expressions and
applying transformation rules, yielding two records instead of
one.

The stage outputs a table with Patient ID, Medication, and
mg/m2 Dose. Sample synthetic data from this step is shown
in Table II, where specific medications are aggregated at the
patient level before general drug name aggregation in the next
stage.

TABLE II
SAMPLE OUTPUT FROM AGGREGATING MEDICATION DOSAGES AT THE

PATIENT LEVEL ILLUSTRATING HOW CUMULATIVE ANTINEOPLASTIC
DRUG EXPOSURES ARE COMPUTED BY THE ETL PIPELINE.

Patient ID Medication mg/m2 Dose
100 Doxorubicin 10mg/5ml intravenous solution 255.00
101 Daunorubicin 5mg/ml intravenous solution 300.00
102 Busulfan 60 mg/10ml intravenous solution 266.78

7) Converting the Output to a Standard File Format used
to Validate Against Internal Data by our Collaborator: In
this stage, patient drug exposures and aggregated dosages are
converted into a collaborator-defined file format for validation.
Each drug is represented by a binary variable indicating
exposure, alongside the cumulative lifetime dose calculated
previously. This step ensures full integration with the collab-
orator’s established format for manual data inspection.

8) Validating the Exposures and Dosages: The final
pipeline step performs quality control by comparing binary
exposure variables and doses against a supposed ground truth
validation data file from a manually curated clinical registry.
While validation is conducted with clinical collaborators, this
stage improves the informatics pipeline by displaying current
values, previous values, and the ground truth to monitor



changes and ensure the intended effects of pipeline modifi-
cations.

B. Cancer Diagnoses and Diagnoses Dates

To identify cancer diagnoses, we queried the Epic problem
list file for active and resolved entries containing ICD-10
codes in the ranges C00–D49, which encompass malignant
neoplasms and other neoplastic conditions, and Z85, which
denotes a personal history of malignant neoplasm. For each
identified record, we extracted both the diagnosis code and
the associated diagnosis date. This allowed us to capture active
and historical cancer diagnoses as well as the temporal context
necessary for downstream survivorship care plan generation
and clinical validation.

C. MIBG and I-131 Therapy

To identify patients who received I-131 or MIBG therapy,
we analyzed the institutional imaging history data. For I-
131 exposure, we filtered for imaging procedures labeled
“NM THYROID ABLATION”, which corresponds to nu-
clear medicine–based thyroid ablation procedures typically
involving I-131. For MIBG, we extracted records with pro-
cedure descriptions of either “RADIOTHERAPY” or “NON-
THYROID”, both of which encompass therapeutic MIBG
scans administered for neuroblastoma and other relevant in-
dications. This approach enabled structured extraction of ex-
posure data for these radiopharmaceuticals from unstructured
imaging clinical reports, providing a reliable method to detect
and validate patient-level treatment history.

D. Radiation Therapy Exposure

To classify radiation exposure from clinical notes, we de-
veloped a binary classification model using Bidirectional En-
coder Representation from Transformers (BERT) models [24].
We manually labeled 1,500 clinical notes from 76 patients,
identifying whether each note indicated evidence of radiation
exposure. These labeled data were split into training and test
sets using an 80/20 ratio. Standard text preprocessing steps
were applied, including lowercasing and tokenization using
the ‘BertTokenizer’ from the pretrained ‘bert-base-uncased’
model. Fine-tuning was performed over 50 epochs with a batch
size of 16 for both training and evaluation. The model was
optimized to identify mentions of radiation exposure at the
clinical note level, enabling patient-level classification when
aggregated. We used base BERT rather than domain-specific
variants (e.g., ClinicalBERT, BioBERT) due to its strong base-
line performance, broad generalization ability across varied
clinical note formats, and compatibility with our local fine-
tuning corpus. Given the diversity of radiation documentation
in our institution’s EHR, base BERT offered a flexible and ef-
fective solution without requiring domain-specific pretraining.

III. RESULTS

We correctly validated the specific cancer diagnosis for 756
patients (87.5%), an insufficient specific cancer diagnosis in
72 patients (8.3%), no cancer diagnosis for 20 patients (2.6%),

Fig. 3. Proportion of patients with correct diagnoses (dark blue) across
four cancer categories based on comparison with manual chart review. The
ETL pipeline achieved highest concordance for hematologic malignancies
(91.1%) and lowest for CNS tumors (71.4%), with remaining discrepancies
due to nonspecific documentation, missing diagnosis codes, or cancer registry
mismatches.

Fig. 4. Proportion of errors in total lifetime dose (mg/m²) by drug type,
showing remaining errors and those corrected through validation and pipeline
refinements (errors >5% discrepancy).

and found a diagnosis more correct than the cancer registry
validation dataset for 16 patients (1.9%), as shown in Fig. 3,
date of diagnosis was correct within 30 days for 89.8% of
patients.

Our ETL pipeline demonstrated high accuracy in identifying
patient chemotherapy exposures, correctly matching ≥99.5%
of exposures for 53 out of 57 chemotherapy agents. Notable
agents with slightly lower match rates included thioguanine
(99.2%), dinutuximab (98.6%), anti-thymocyte globulin (ATG,
98.4%), and sirolimus (98.0%). Among the 100 total discrep-
ancies identified, 45% were due to human abstraction errors in
the validation data detected by our pipeline, 21% were related
to treatment administered at outside institutions, 16% were
exposures that were not cancer-related, 15% were exposures
missed by the pipeline, 2% were prescriptions that were never
administered, and 1% were intracavitary administrations not
captured in structured data.

For cumulative dosage validation, initial error rates (defined
as discrepancies greater than 5% from the validation data)
for anthracyclines (n = 4), alkylating agents (n = 9), and
heavy metals (n = 2) were 29.6%. Following refinement



Fig. 5. Reasons for Total Lifetime Dose Discrepancies >5%. IBW: Ideal Body
Weight, OSH: Outside Hospital. Data errors include: Missing administrations,
partial dosing orders, IV medications ordered through home health.

of the pipeline and correction of errors in the validation
dataset uncovered by our pipeline, the discrepancy rate was
reduced to 6.6%, as illustrated in Figure 4. Most of the
original discrepancies were due to either human abstraction
error (62%) in the validation data or administration at and
outside hospital (19%), as shown in Fig. 5.

In radiopharmaceuticals, our pipeline identified one dis-
cordant I-131 exposure due to administration after the man-
ual abstraction date. All seven patients who received MIBG
treatment at our institution were correctly detected. The NLP
model for radiation exposure achieved a 98% AUROC with a
0.009% false positive rate and zero false negatives at the note
level. While some notes were misclassified, every patient with
radiation had at least one correctly identified note—meaning
a patient was labeled positive if any of their notes were true
positives.

IV. DISCUSSION

SCPs have shown benefits in pediatric oncology [20] and are
increasingly adopted [19]. To accelerate adoption and reduce
provider burden, SCP creation must be faster, minimize errors,
and enable quicker information delivery, which is especially
critical for smaller programs with limited resources. Manual
abstraction errors must also be eliminated.

In our pipeline evaluation, 45% of treatment exposure
discrepancies were due to errors in external validation data
that our pipeline correctly identified, underscoring the need for
more accurate, semi-automated processes to improve clinical
workflows and patient outcomes. Incorrect exposures and
dosages risk inappropriate surveillance or education, poten-
tially delaying interventions or causing costly over-screening.

Additionally, 21% of exposure discrepancies stemmed from
administration at outside institutions, highlighting the ne-
cessity for manual review alongside automation for multi-
institution patients. Integrating external treatment data is chal-
lenging; data often arrives in unstructured formats like PDFs
rather than interoperable standards-based files and are not

integrated into the corresponding EHR data fields containing
locally administered treatment details. To address this, we plan
to develop NLP models to detect external treatments from
clinical notes and flag entries prone to errors (e.g., certain
combination drugs, mg dosing in young patients) for manual
review, adding a human-in-the-loop component.

There are also notable challenges we currently face. One
of the primary obstacles is data interoperability and stan-
dardization. EHR systems, like Epic, store heterogeneous
data—ranging from structured medication records to unstruc-
tured clinical notes—often in siloed databases. Extracting,
transforming, and harmonizing this data for AI use, partic-
ularly in NLP applications, demands significant engineering
effort. This challenge is amplified in pediatric oncology, where
longitudinal care records include varied treatment modalities
and long-term follow-up data that may span multiple institu-
tions and clinical domains.

Another core challenge is model reliability and clinician
trust. Even when AI tools like BERT-based NLP systems
achieve high performance, their adoption in clinical work-
flows depends on transparency, explainability, and alignment
with decision-making. Clinicians are often hesitant to rely on
opaque models, particularly for tasks with direct patient-care
implications such as generating SCPs. To foster trust, models
must not only perform accurately but also present outputs in
ways that clinicians can interpret, verify, and adjust as needed.

Operationally, scaling AI solutions across large hospital
systems requires institutional buy-in, governance frameworks,
and ongoing maintenance. This includes IT support for con-
tinuous data pipeline operation, mechanisms for monitoring
model drift and retraining, and compliance with institutional
privacy and security policies. AI tools must also accommodate
differences in workflows across specialties and clinical teams,
which can necessitate configurable, modular designs rather
than one-size-fits-all deployments. Our pipeline currently runs
on a 32GB RAM, 4-core CPU Red Hat server and takes
approximately 30 minutes to process our sample institutional
cohort. To improve scalability and performance, we are migrat-
ing to a cloud-based system with 64GB RAM and 16 CPU
cores. Trained model weights and pipeline code are stored
and version-controlled on GitHub to support reproducibility,
ongoing updates, and maintenance.

Finally, regulatory and ethical considerations, such as com-
pliance with healthcare laws, data provenance, and patient
consent, must be carefully addressed when deploying AI in
clinical settings. These factors are particularly salient when
working with vulnerable populations like pediatric cancer
survivors, whose data may be subject to additional privacy
protections and ethical oversight.

V. CONCLUSIONS

Large-scale clinical informatics systems that operate on
EHR data in major healthcare organizations often face sub-
stantial data engineering challenges, regardless of the spe-
cific application [25]. In the domain of SCP generation, the
only currently available system, PFC, remains limited as it



lacks EHR integration, requiring manual chart review and
data entry outside the EHR. In a PFC study, 43% of users
reported that documenting a simple case of uncomplicated
acute lymphoblastic leukemia treatment required more than
30 minutes for medical record abstraction and data entry, with
more complex cases increasing this burden substantially [26].

To our knowledge, we are the first to develop a semi-
automated SCP generation system in a real-world clinical
setting aimed at improving pediatric cancer survivorship care
and team efficiency. Grounded in AI implementation science,
our work emphasizes not only a technically sound solution but
also workflow integration, frontline usability, and scalability.
Implemented within a large pediatric oncology program, our
pipeline extracts SCP data elements from a widely used
EHR, potentially reducing documentation time while validat-
ing chemotherapy drug calculations against manual methods.
It addresses key implementation challenges by (1) integrating
with EHR data to minimize workflow disruption and support
decision-making, (2) enabling SCP data use in research to
promote continuous learning, and (3) incorporating pediatric-
specific factors such as age-, weight-, and BSA-based dos-
ing—features lacking in current EHR solutions. Designed for
interoperability and sustainability, our system is compatible
with Epic Clarity and adaptable to other EHRs via a common
data model.
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