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Abstract

Offline reinforcement learning (RL) aims to learn a policy from a fixed dataset
without additional environment interaction. However, effective offline policy
learning often requires a large and diverse dataset to mitigate epistemic uncertainty.
Collecting such data demands substantial online interactions, which are costly or
infeasible in many real-world domains. Therefore, improving policy learning from
limited offline data—achieving high data efficiency—is critical for practical offline
RL. In this paper, we propose a simple yet effective plug-and-play pretraining
framework that initializes the feature representation of a (Q-network to enhance data
efficiency in offline RL. Our approach employs a shared ()-network architecture
trained in two stages: pretraining a backbone feature extractor with a transition
prediction head; training a ()-network—combining the backbone feature extractor
and a -value head—with any offline RL objective. Extensive experiments on
the D4RL, Robomimic, V-D4RL, and ExoRL benchmarks show that our method
substantially improves both performance and data efficiency across diverse datasets
and domains. Remarkably, with only 10% of the dataset, our approach outperforms
standard offline RL baselines trained on the full data.

1 Introduction

Sample efficiency is a long-standing challenge in reinforcement learning (RL). Typical RL algorithms
rely on an online learning process that alternates between collecting experiences through interactions
with the environment and improving the policy [55)]. However, acquiring a large number of online
interactions is often impractical, since data collection can be costly and risky. Offline reinforcement
learning (RL) has emerged as a promising alternative to address this issue by decoupling data
collection from policy learning, enabling agents to learn solely from pre-collected datasets [37].
Learning an offline policy from a static dataset allows the agent to focus on how effectively it can
extract optimal behaviors from a fixed data distribution—unlike online RL, which must continuously
expand its experience data through active exploration. Nevertheless, learning an optimal policy from
limited experience data remains a fundamental challenge in both online and offline RL.

However, prior offline RL approaches have largely focused on improving policy learning within a
fixed dataset through policy constraints |18, |32]], conservative regularization [33]], and model-based
uncertainty estimation [28] to mitigate distributional shift. Other studies, such as data-manipulation
strategies [27, 167, 161] and offline-to-online frameworks [43} 159,47} 3], provide alternative perspec-
tives on improving policy performance with limited data sources. However, understanding how
an offline agent learns an effective policy with minimal data usage offers a distinct perspective.
To address this, we define data efficiency as the ability of an offline RL agent to learn an optimal
policy from as little offline data as possible, which is distinct from sample efficiency in online RL.
Furthermore, we consider truly data-efficient offline RL as learning an optimal policy across datasets
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Figure 1: Overview of the pretraining framework. Our approach decomposes the original Q-
network into two core architectures: a shared backbone network that extracts the representation
z from the concatenated state-action input (s, a), and two shallow head networks for learning the
transition model and estimating (J-values, respectively.

that vary in size, coverage, and behavioral optimality, rather than focusing on performance within a
single fixed dataset.

In this work, we propose a simple yet effective plug-and-play framework that pretrains a shared
Q-network via a two-stage learning strategy toward data-efficient offline RL. As illustrated in Figure/[I]
our shared Q-network consists of a backbone feature extractor h,, and two shallow head networks: gy,
for next-state prediction and fy for ()-value estimation. In the pretraining stage, we train h,, jointly
with gy, through a transition prediction task, encouraging the backbone to encode dynamics-relevant
representations. In the subsequent RL training stage, we fine-tune h, alongside fy using any standard
offline RL objective. This modular design enables seamless integration with existing offline RL
algorithms while improving representation quality for value estimation.

We theoretically analyze the effect of such pretraining using the projected Bellman equation under
linear function approximation. Our analysis reveals that initializing the feature matrix (backbone
feature extractor) with pretrained representations increases its rank, which tightens the upper bound
on the optimal (Q-value estimation error. Consequently, the pretrained QQ-network achieves faster
and more accurate convergence than conventional methods. Empirically, this structural property is
validated by observing higher feature matrix ranks and lower (-value proxy errors, as shown in
Figure [3|and Table[I]

Finally, extensive experiments demonstrate that our approach substantially enhances both the perfor-
mance and data efficiency of existing offline RL algorithms across diverse benchmarks, including
DA4RL [15]], Robomimic [40]], V-D4RL [38]], and ExoRL [62]. Our method maintains strong per-
formance even with limited data subsets and under varying data qualities and collection strategies.
Notably, with only 10% of the dataset, our pretrained Q-network outperforms standard baselines
trained on the full dataset. Moreover, our method surpasses both offline model-based and representa-
tion learning approaches on reduced datasets, confirming its general effectiveness in data-efficient
offline policy learning.

Further discussions on how data efficiency in offline RL differs from sample efficiency in online
RL are in Appendix|Al Additionally, the source code is available in our GitHub repositor With
only a few additional lines on top of the original TD3+BCﬂ implementation, we demonstrate that our
method is simple to implement and easily adaptable to other offline RL algorithms.

2 Related Works

Offline RL. Offline RL aims to learn policies solely from a fixed dataset without further interaction
with the environment. A major challenge in this setting is distribution shift, where queries to
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the Q-function on out-of-distribution actions can lead to overly optimistic value estimates during
training [[18} 132} 137, 133| |16} 29]]. Recent studies have explored scaling offline RL algorithms to larger
datasets and model capacities [9} 144} 56], as well as offline-to-online RL paradigms that pretrain
agents offline before fine-tuning them online to enhance sample efficiency [43} 159,47} 3]

Beyond these standard formulations, other works have investigated diverse data conditions, such as
imbalanced or corrupted datasets and the use of unlabeled data within the offline RL framework [27,
67, 161]. Although several studies [[1,130} 133]] have evaluated performance on data subsets, few have
explicitly addressed data efficiency—that is, how well an offline RL agent can learn with minimal data.
In contrast, our work directly targets this problem. We propose a simple yet effective plug-and-play
pretraining method that enhances data efficiency by initializing a shared )-network for improved
policy learning from limited static datasets.

Sample-Efficient RL. A persistent challenge in most RL algorithms is sample inefficiency, as
learning optimal policies typically requires extensive online interactions. Addressing this limitation
has been a long-standing focus of RL research [65, 166, [12]. One prominent approach is model-
based RL, which improves efficiency by learning a (possibly latent) dynamics model to generate
additional synthetic transitions [54, |11} [22] 21} 25]. Alternatively, techniques such as representation
pretraining [50} |51} 166]] and data augmentation [34} 65] have shown strong empirical gains in sample
efficiency by enhancing feature reuse and robustness.

More recently, offline-to-online RL [364 13,147,114, /43] and foundation model approaches [21521 7,16 4]]
have emerged to mitigate the poor sample efficiency of online RL. These methods leverage large-
scale offline data or pretrained models to accelerate subsequent online adaptations, underscoring the
growing convergence between sample-efficient and data-driven RL paradigms.

Data-Efficient Offline RL. In this work, we define data efficiency in offline RL as the ability of an
algorithm to learn an optimal policy from a minimal set of pre-collected samples. This differs from
sample efficiency in online RL, which concerns minimizing environment interactions. While prior
works [50}51]] have discussed “data-efficient” RL, their primary focus was on online settings—thus
addressing sample efficiency rather than true offline data efficiency. These methods typically rely
on self-predictive representation learning in latent spaces, often combined with techniques like data
augmentation [[65] or momentum target encoders [26].

By contrast, our method employs self-supervised pretraining within a shared network architecture
to improve representation quality, without requiring auxiliary techniques or additional data trans-
formations. Through extensive experiments under various dataset qualities and distributions, we
demonstrate that our approach consistently improves performance in offline RL, effectively addressing
the data efficiency problem as defined in this work.

In Appendix [B] we provide additional discussions on related approaches and broader connections to
representation learning and model-based methods in RL.

3 Pretraining Q-network with Transition Prediction Improves Data Efficiency

In this paper, we propose a simple yet effective pretraining framework that transfers learned transition
features into the initialization of ()-network to improve data efficiency in offline RL. To this end,
we design a shared @)-network architecture combining a backbone feature extractor h, and two
shallow head networks: a transition head g, for next-state prediction and a )-value head fy for
estimating ()-value. We further introduce a two-stage learning strategy—a pretraining and an RL
training—built upon the shared ¢ network for data-efficient offline RL. During the pretraining stage,
the transition model gy, o h,, predicts the next state given state-action pairs (s, a):

§'=(gpohy)(s,a), (s,a) €S x A, ¢))
where §’ denotes the predicted next state, and g, is a parameterized linear function.

In the subsequent RL training stage, the same backbone network h,, is shared with the ()-value head
fo, forming the Q-network:

Qpo(s,a) = (foohy)(s,a), (s,0) €S XA, )

where fy represents a linear output layer, and h,, corresponds to the fully connected layers shared
with the transition model in (I)). The overall shared architecture is illustrated in Figure



Algorithm 1 Pretraining a shared Q-network scheme for offline RL

1: Input: Dataset D of transition (s, a, s’), learning rate «, initialized parameters ¢, ¥
2: for each gradient step do
3:  Sample a mini-batch B ~ D
4:  Compute the next-state prediction error
‘Cpre(gpa ¢) = (S/ - (gl/) o htp)(s7 a’))Q
(s,a,s")EB

5:  Update the weights of the backbone feature extractor and the transition prediction head of the
shared network

P p— O[VSD[’PVE(QOa 'l;/))» 1/) — ’l/) - av?/}»cpre(sov 1/’)

6: end for
7: Output: Pretrained weights ¢ of the backbone feature extractor of the shared network

We pretrain the transition model gy, o h,, via self-supervised regression by minimizing the mean-
squared prediction error:

L) = D |Is' = (95 0 h)(s,0)13 ©)

(s,a,s’)eD
where D denotes the static dataset of transition tuples (s, a, s).

After pretraining, the parameters ¢ can be fine-tuned or frozen when training standard RL algorithms
using the @-network structure above, without requiring any architectural modification. By default,
we fine-tune the backbone feature extractor during the RL training stage, and report results with a
frozen backbone in Appendix [F] The complete pretraining procedure is summarized in Algorithm [I]

3.1 Analysis Based on the Projected Bellman Equation and a Proxy Q Error

In this section, we analyze how our method improves data efficiency through the lens of the projected
Bellman equation. For clarity, we assume discrete and finite state—action spaces with deterministic
transitions. However, the core principles naturally extend to continuous domains.

Our analysis begins by noting that the (-function parameterized by neural networks can
be expressed as in (Z). We decompose the network into two parts: a feature extractor
hy, and a linear function approximator 6. Letting z = hy(s,a) € R™, the Q-function

can be rewritten as Q,9(s,a) = > 0;hyi(s,a) = (0,h,(s,a)) where (s,a) € S x A.
i=1

When ¢ is fixed, then the above structure can
be viewed as a linear function approximation
with the feature function h, ;. Our method pre-
trains h,, ; by minimizing the prediction loss in
@). Here, the latent feature z corresponds to
the MLP output before the final layer, while
0 parameterizes the linear output layer; i.e., Figure2: Reduced approximation error through
Qo,,(s,a) = hy(s, a)T0). Thus, interpreting the expanded column space of H,. In linear ap-
our network under the linear approximation proximation, the true value function Q™ may lie
framework provides a useful model to explain outside the column space of H,. The projected
its improved data efficiency. Bellman equation addresses this by projecting Q™
onto its closest representation IIQ™ within the col-
umn space of H,.

It is well known that under linear function ap-
proximation, the standard Bellman equation

Q%9(57 a) = R(Sv (Z) +7 Z PW(SI|83 a) Z Q%@(S/v 0,/)
s'€S a’EA
may not admit a solution in general. However, typical TD-learning algorithms are known to converge
to the unique fixed point of the projected Bellman equation [41]. In particular, considering the vector



form of the Bellman equation, Q, 9 = R + 7P™ Q) g, the projected Bellman equation is known to
admit a solution

Qpo =T(R+vP"Qyp0)

where IT denotes the projection operator onto the column space C(H,,) of the feature matrix H,,
defined as

Hy, = | hy(s,a)

The corresponding approximation error is bounded by

T 1 ™ ™
HQap,OfQ HOOSEHHQ *Q ||oca (4)
where Q7 is the true Q-function corresponding to the target policy 7. This bound highlights that
the estimation error depends on the expressiveness of H,. A richer feature representation—i.e., a
column space C'(H,,) that better spans Q"—Ileads to a smaller Bellman error (Figure [2)).

To empirically validate this interpreta-
tion, we compare the rank of the la-
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curate learning with less data.

To further verify that our method reduces Bellman error under limited data, we define a proxy Q-error
based on the left-hand side of {@). We estimate Q™ using the critic of TD3+BC trained with the
full dataset, and estimate (), o from TD3+BC and TD3+BC+Ours trained with only 10% of the
data. Across DARL benchmarks, Table [I] shows that our method consistently yields lower proxy
Q@-error than the baseline. These results demonstrate that our pretrained representation facilitates
more accurate ()-function estimation, leading to superior data efficiency in offline RL.

Table 1: Comparison of proxy Q)-error between TD3+BC and TD3+BC+Ours. We compare the
proxy @Q-error of vanilla TD3+BC and TD3+BC+Ours, both trained on 10% of the D4RL datasets.
The reference optimal )-value is estimated using the critic of TD3+BC trained on the full datasets.
Our method consistently achieves lower proxy @-error, demonstrating more accurate -function
estimation with substantially less data—highlighting its superior data efficiency.

TD3+BC  TD3+BC + Ours

HalfCheetah ~ 503.6851 287.7740

Medium Hopper 536.2078 472.9333
Walker2d 299.1773 138.0320

HalfCheetah  1032.6671 119.9188

Medium Replay =~ Hopper 320.1790 319.9531
Walker2d 379.4456 49.9275

HalfCheetah  522.4211 112.2337

Medium Expert ~ Hopper 437.8861 254.9155
Walker2d 392.7360 148.2040




4 Experiments

Table 2: Average normalized scores on the D4RL benchmark. Each column corresponds to a
different RL baseline. The values on the left represent the baseline scores reported in the original
literature, while the values on the right show the results of our method combined with each baseline.
Performance improvements over the original baselines are highlighted in blue. All results are reported

with the mean and standard deviation scores over five random seeds.
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In this section, we evaluate the effectiveness of our method across a range of offline RL benchmarks,
including standard D4RL, the more complex Robomimic domain, and the image-based V-D4RL
environment. We further examine data efficiency by evaluating performance on partial subsets of
D4RL and ExoRL datasets. We begin by describing the experimental setup and the baselines used for
each experiment. The experimental evaluation is structured as follows: first, we compare performance
improvements on standard offline RL benchmarks; second, we analyze data efficiency across varying
dataset qualities; and finally, we investigate performance across different dataset distributions.

Experimental setup and Baselines. We consider heterogeneous tasks and diverse datasets to
ensure comprehensive evaluation. For locomotion tasks, we evaluate our method on the D4ARL
benchmark [[15] with three agents (HalfCheetah, Hopper, Walker2d) and five dataset types (random,
medium-replay, medium, medium-expert, expert). Our method is applied to popular offline RL
algorithms—AWAC [42], CQL [33]], IQL [29], and TD3+BC [16]—and we compare normalized
scores between the baseline and the baseline augmented with our pretraining framework.

For tabletop manipulation tasks, we use the Robomimic benchmark [40] with Lift and Can tasks and
mixed-quality machine-generated (MG) datasets. We compare the success rates of IQL, TD3+BC,
IRIS [39], and BCQ [18]] with and without our method.

For high-dimensional vision-based tasks, we evaluate on Cheetah Run and Walker Walk in V-
D4RL [38]], building our method on top of DrQ+BC, which applies the same regularization of
TD3+BC into DrQ-v2 [63].

For data-efficient offline RL, we investigate both the impact of dataset quality and dataset collection
strategy. We evaluate reduced D4RL locomotion datasets on MOPO [68], MOBILE [53], and
ACL [60]], and reduced ExoRL datasets [62]] (walker walk: SMM [35|], RND [8|], ICM [46]; point mass
maze: Proto [64)], DIAYN [lI3l]) on TD3 [[17] and CQL. Detailed experimental and implementation
settings are provided in Appendix [D]and Appendix[C]

4.1 Performance Improvement in Offline RL Benchmarks

To validate the effectiveness of our approach, we evaluate it on the D4RL and Robomimic benchmarks.
Table [2] compares the normalized scores of baseline algorithms and their counterparts augmented
with our method across various environments and datasets. When integrated with existing offline RL
methods (i.e., AWAC, CQL, IQL, and TD3+BC), our approach consistently improves performance in
most settings. The blue-highlighted scores in Table [2|indicate gains over the corresponding baseline
algorithms. Notably, AWAC shows an average performance improvement of +140.37% compared to
its original version.
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Figure 4: Learning curves of TD3+BC. We represent the normalized scores of the vanilla TD3+BC
(blue) and TD3+BC (orange) with our pretraining method, respectively. The vertical red dashed lines
indicate the transition between the pretraining and main training phases. After pretraining, TD3+BC
with our method rapidly surpasses the vanilla baseline by a significant margin.
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Figure 5: Average success rates on the Robomimic benchmark. We compare the baseline methods
without pretraining (blue) against those augmented with our pretraining approach (orange) over three
seeds. In seven out of eight tasks, our method yields a substantial improvement in success rate across
both environments.

Figure [] presents the learning curves of TD3+BC, demonstrating the clear benefit of our pretraining
strategy. After the pretraining phase (denoted by the red vertical lines), the pretrained agent quickly
outperforms the vanilla TD3+BC and achieves higher returns throughout training. These results
indicate that our method accelerates convergence and enhances asymptotic performance with only
minimal architectural or algorithmic modifications. Complete learning curves for TD3+BC are
provided in Figure [T2]of Appendix

We further evaluate our method on large-scale robotic manipulation tasks from the Robomimic bench-
mark to assess its effectiveness in complex, real-world scenarios. These tasks include suboptimal
transitions, providing a challenging testbed beyond the D4RL benchmark. Figure [5| reports the
averaged success rates of four offline RL baselines, both with and without our pretraining method.
As shown, incorporating our approach consistently improves performance in seven out of eight cases,
demonstrating its robustness in complex tasks.

Additional experiments on the Adroit benchmark (24-DOF control) are presented in Appendix [E] We
apply our method to AWAC, IQL, and TD3+BC across twelve settings (i.e., four environments X
three datasets) and evaluate each over five random seeds. In most cases, our method achieves clear
performance gains, further confirming its effectiveness in high-dimensional control.

Finally, we examine the scalability of our approach to high-dimensional visual input using the V-
D4RL benchmark [38]. Similar to other vision-based offline RL methods, our framework integrates
seamlessly by replacing the state input with latent representations extracted from a visual encoder. As
shown in Figure[3] our method consistently enhances the performance of DrQ+BC [63]], validating
its applicability to image-based environments.



Table 3: Average episode returns on the V-D4RL benchmark. We evaluate our approach in the
image-based environment over three seeds. The results show that integrating our method consistently
improves the performance of DrQ+BC.

DrQ+BC DrQ+BC + Ours
Walker walk 306.93+£28.21 338.77£29.55

Medium Cheetah Run 340.33£7.55 379.80£45.83
Humanoid Walk 12.57+6.73 20.03+3.80
Walker walk 30.09+0.75 28.684+2.29
Medium Replay Cheetah Run 21.154£2.04 25.13£2.04

Humanoid Walk ~ 40.76+£16.27 19.38+6.10

Walker walk 352.46£37.15  369.66+20.86
Medium Expert Cheetah Run 251.52+£34.37  258.76£50.33
Humanoid Walk 4.11£2.72 5.12+1.89
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Figure 6: Average normalized scores across varying dataset sizes and qualities. We present the
performance of our method on progressively reduced datasets (1%, 3%, 10%, 30%, 100%) across
three D4RL environments: HalfCheetah, Hopper, and Walker2d. We demonstrate that our method
remains highly data-efficient, achieving strong performance even with only 10% of the data— and as
little as 1% for random datasets and 3% for medium datasets—regardless of data quality.

4.2 Data Efficiency across Data Qualities

To evaluate the data efficiency of our method across different dataset qualities, we tested it with
TD3+BC on progressively reduced subsets of the DARL datasets (1%, 3%, 10%, 30%, and 100%)
spanning various data qualities (random, medium, medium-replay, medium-expert, expert). Each
reduced dataset was constructed by uniformly sampling transition segments (s, a, r, s") from the full
dataset, followed by both pretraining and RL training using these subsets.

As shown in Figure[T4] our method demonstrates remarkable data efficiency. On the random datasets,
training with only 1% of the data surpasses the performance of the vanilla TD3+BC trained on the
full dataset for the HalfCheetah and Walker2d environments. Similarly, on the medium datasets, our
method achieves comparable or higher performance with only 3% of the data. For higher-quality
datasets (medium-replay, medium-expert, and expert), our method using merely 10% of the data
consistently outperforms the vanilla TD3+BC trained on the entire dataset. Overall, as summarized
in Figure [6] our method delivers robust performance with as little as 10% of the original dataset,
confirming its strong data efficiency in offline RL.

We further compare our approach with representative offline model-based and representation-learning
methods. Experiments are conducted on the medium, medium-replay, and medium-expert datasets of
D4RL over three seeds. Figure[7]presents the aggregate results, while Figure [I5] provides detailed
comparisons. The results show that our method preserves high performance under reduced data
conditions, unlike competing methods that incur additional training overhead (e.g., transition model
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methods degrade significantly.
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Figure 8: Average episode returns in reduced datasets across data collection strategies. We
evaluate our method under different dataset collection strategies (SMM, RND, ICM). Across all cases,
TD3 combined with our method consistently outperforms vanilla TD3, even when trained with only
10% of the data—surpassing the performance of the full-data baseline. These results demonstrate
that our method achieves strong data efficiency regardless of the underlying data distribution.

training and inference). Consequently, our method emerges as a more effective and computationally
efficient choice for data-efficient offline RL.

4.3 Data Efficiency across Data Distributions

We hypothesize that smaller datasets induce distributional shifts compared to larger ones, as they
often exhibit narrower coverage of the visited state space. To examine this effect, we evaluate our
method across datasets generated by different collection strategies, each producing distinct data
distributions. Using the ExoRL benchmark, we select TD3 as the baseline and consider datasets
collected with SMM, RND, and ICM for the walker walk task. As reported in [62], ICM achieves the
highest performance among the three, followed by RND and SMM. We compare vanilla TD3 and
TD3 augmented with our method using reduced subsets of the datasets (%, 10%, 100%) over three
random seeds. Reduced datasets are constructed by taking the initial segments of the trajectories, and
both pretraining and RL training are conducted on these subsets. As shown in Figure[8] our method
consistently outperforms vanilla TD3 across all dataset types, even when using only 10% of the data.
Notably, on the RND dataset, training with just 1% of the data achieves remarkably high returns,
exceeding the full-data baseline.

We further investigate the robustness of our method on datasets with highly limited state coverage
using the point mass maze environment from ExoRL. Figure [9 visualizes the trajectories from
reduced datasets collected via DIAYN and Proto strategies (/% of DIAYN, 7% of Proto). Compared
to Figure 2 in [62], our settings exhibit even narrower state support. For example, the DIAYN dataset
shows sparse trajectories near the top-right goal, while the Proto dataset shows limited coverage
near the bottom-right goal. To assess performance under such constrained coverage, we evaluate
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Figure 9: Effectiveness of our method on datasets with narrow state coverage. (Left) Visualization
of goal-reaching agents and their trajectories under different goals, dataset fractions, and exploration
strategies. (Right) Average episode returns of CQL trained with two datasets, with and without our
pretraining method. Our approach yields significant performance gains even when the available data
has limited state coverage.

CQL with and without our pretraining method on these datasets for both short-horizon (reach top-
right) and long-horizon (reach bottom-right) goals. As shown in Figure 9] our method significantly
improves performance even under severe state-distribution limitations. These results collectively
demonstrate that our approach achieves strong data efficiency and remains effective across diverse
and distributionally shifted offline datasets.

5 Conclusion

In this paper, we propose a simple yet effective data-efficient offline reinforcement learning method
that pretrains a shared Q-network through a transition prediction task. The proposed framework
leverages a shared network architecture that jointly predicts the next state and the ()-value, allowing
efficient feature reuse between the transition model and value function. This design makes our
approach easily applicable to a wide range of existing offline RL algorithms and substantially
improves data efficiency, maintaining strong performance even when trained on limited data.

To verify the effectiveness of our method, we analyzed it under the framework of the projected
Bellman equation and performed extensive experiments across diverse offline RL benchmarks,
including D4RL, Robomimic, and V-D4RL. The results demonstrate that our approach consistently
enhances the performance of existing offline RL methods. Furthermore, evaluations on reduced
datasets and shifted data distributions confirm that our method is robustly data-efficient across varying
data qualities and distributions.

Limitations & Future Works. This study focuses on standard model-free offline RL settings, where
popular algorithms primarily rely on (Q-function learning. Consequently, our design is tailored to
complement such architectures. Nonetheless, prior works [51 58] suggest that offline pretraining can
be beneficial in broader contexts, such as unsupervised learning or goal-conditioned RL. Owing to its
simplicity and plug-and-play compatibility, our method has strong potential for broader applications.
Future research will extend our framework to more general settings, including offline-to-online RL,
goal-conditioned RL, and real-world control scenarios.
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A Comparison over Sample Efficiency and Data Efficiency

In this section, we further expand the discussion on comparing the sample efficiency and data
efficiency. In both online and offline RL, learning an optimal policy from limited experience data
remains a fundamental challenge. Agents in both paradigms aim to extract maximal information from
a finite set of interactions with the environment. This shared motivation arises from the practical
constraints of data acquisition, as gathering experience in real-world or high-fidelity simulation
environments is expensive and time-consuming. Consequently, both settings emphasize effective
data utilization through methods such as representation learning [50l 51} (66l |60], model-based
RL [22} 121,128 168]], and off-policy optimization [20} 18], which aim to accelerate learning without
proportional increases in data volume. In essence, both sample efficiency in online RL and data
efficiency in offline RL quantify how effectively an agent transforms its available experience—whether
gathered online or provided offline—into improved decision-making performance.

Despite this shared goal, their underlying desiderata differ substantially. In online RL, an agent
alternates between two intertwined phases: experience gathering and policy update. The policy
controls the distribution of collected data, which in turn affects subsequent policy updates. As a result,
the experience distribution is non-stationary and tightly coupled with the evolving policy, making
it theoretically and practically challenging to analyze or control [49, |45]]. In contrast, offline RL
learns from a fixed dataset collected by a separate behavior policy, where data distribution is static but
often limited in coverage. While online RL suffers from issues such as incremental network updates
and weak inductive biases [5], offline RL must contend with distribution shift and extrapolation
errors [37]], which hinder generalization beyond the support of the dataset.

B Extended Discussion on Methodological Connections

In this section, we address potential concerns regarding the novelty of our method, given its conceptual
connection to several prior approaches in related research areas. We provide detailed comparisons
and clarifications across two primary themes: representation learning and model-based reinforcement
learning.

Representation Learning. Recent years have witnessed a surge of research on predictive repre-
sentations in reinforcement learning. Our approach—pretraining a shared Q-network through a
next-state prediction task—shares the spirit of prior work on representation learning for improving
data efficiency [50l [19]], yet differs in key methodological aspects.

Specifically, Schwarzer et al. [S0] proposed an online self-supervised pretraining scheme based on
latent-space prediction, relying heavily on auxiliary design choices such as data augmentation [[65]]
and target encoders [26]. In contrast, our method adopts a supervised pretraining objective directly
on the next-state prediction task, avoiding such additional mechanisms. This simplicity enables our
approach to be seamlessly integrated with diverse offline RL algorithms while consistently improving
data efficiency and performance across locomotion and manipulation benchmarks.

Similarly, Guo et al. [[19] introduced an unsupervised belief-state encoder for partially observable
settings (POMDPs). Their focus lies in inferring the hidden state from a trajectory using a recurrent
GRU-based network that predicts future observations. In contrast, our approach operates in the fully
observable MDP setting using a simple MLP-based architecture that predicts the next state ;41 from
the current state—action pair (s¢, a;). Thus, while both approaches leverage predictive modeling, our
contribution lies in unifying this principle with offline RL through a shared ()-network architecture
that enhances data efficiency without sequential modeling or partial observability assumptions.

Model-based RL. While our method employs a transition prediction objective, its design philosophy
and application differ fundamentally from conventional model-based RL. Classical model-based
approaches [54] explicitly use the learned dynamics for planning or policy improvement, whereas
our approach leverages transition prediction solely for representation pretraining.

Recent methods such as TD-MPC [25] and TD-MPC2 [24] integrate model-based objectives by
recursively feeding outputs of a shared encoder for transition and value learning. Our approach
instead introduces a dueling-style shared architecture [57], where distinct shallow heads are used for
the transition model and -value estimation. Moreover, we propose a two-phase training scheme:
first, a transition-prediction pretraining phase that shapes the shared backbone; and second, a standard
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RL training phase that fine-tunes the (Q-network initialized from the pretrained backbone. This staged
training framework reduces complexity and training cost while yielding substantial data efficiency
gains.

JOWA [10] also employs shared Transformer-based backbones for multi-task offline RL through
sequence modeling. However, while JOWA focuses on scaling across tasks and environments with
few-shot fine-tuning, our objective is to improve data efficiency in conventional single-task offline
RL without additional architectural or training overhead.

Dreamer [23] further advanced model-based RL with sophisticated latent world models and recon-
struction objectives for planning. Although highly effective, such designs introduce considerable
computational and data requirements. In contrast, our method provides a lightweight, plug-and-play
alternative that enhances sample efficiency within existing offline RL frameworks, offering a practical
balance between architectural simplicity and empirical performance.

Summary. In essence, our work departs from both model-based and representation-learning
paradigms by introducing a shared ()-network architecture with two-phase supervised pretrain-
ing. This simple yet powerful mechanism enhances feature reuse, reduces approximation error, and
consistently improves data efficiency—without the need for auxiliary objectives, sequential modeling,
or complex multi-stage optimization.

C Implementation Details

This section provides the detailed implementation setup used in our experiments. Since our proposed
method is a plug-and-play pretraining approach applicable to popular offline RL algorithms, we build
directly on open-source implementations for fair and consistent comparisons. Specifically, we adopt
publicly available PyTorch-based repositories for each baseline:

« D4RL
- AWAdY

- cQLf]
- 1QLf]

- TD3+B
e Robomimic

— Official Robomimic repository for all baselines

We restrict our comparisons to PyTorch-based baselines to ensure implementation consistency.

For DARL experiments, each agent is trained for 1 million gradient steps per environment across five
random seeds. Evaluation is conducted every 5k gradient steps for AWAC, CQL, and TD3+BC, and
every 10k steps for IQL, using five rollouts per evaluation. For Robomimic experiments, each agent
is trained for 200k gradient steps per environment and evaluated using 50 rollouts across five seeds.
All reported results in tables and figures correspond to the best evaluation scores achieved during
training. All experiments were conducted on a single NVIDIA RTX A5000 GPU for both training
and evaluation.

D Tasks and Datasets

In this section, we describe the experimental setups for the tasks and datasets used in our study. The
corresponding environments are illustrated in Figure[10]

“https://github.com/hari-sikchi/AWAC
*https://github.com/young-geng/CQL
Shttps://github.com/Manchery/iql-pytorch
"https://github.com/sfujim/TD3_BC
$https://github.com/ARISE-Initiative/robomimic
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(a) HalfCheetah (b) Hopper (c) Walker2d

Figure 10: Illustrations of tasks. (a-c) Locomotion tasks on the OpenAl Gym MuJoCo and D4RL
benchmark; (d-e) Tabletop manipulation tasks on the Robomimic benchmark; (f) Locomotion task on
the ExoRL benchmark.

D.1 D4RL

The D4RL benchmark consists of eight distinct task families. For our main experiments, we focus on
the OpenAl Gym MuJoCo continuous control suite, which includes four environments: HalfCheetah,
Walker2d, Hopper, and Ant.

Each environment provides five datasets that differ in data quality and collection strategy:

* Random (1M samples): Collected using a randomly initialized policy.
» Expert (1M samples): Collected from a policy fully trained with SAC.

* Medium (1M samples): Collected from a partially trained policy, achieving roughly one-third
of the expert’s performance.

* Medium-Expert ( 2M samples): A 50-50 combination of the medium and expert datasets.
* Medium-Replay ( 3M samples): Collected from the replay buffer of the medium-level agent
during training.

All environments have an episode horizon of 1000 steps, and each agent’s objective is to maximize
forward velocity while avoiding instability. More details can be found in the official D4RL repository:
https://github.com/Farama-Foundation/D4RL.

D.2 Robomimic

The Robomimic benchmark provides a large and diverse collection of robotic manipulation demon-
strations, including both human and machine-generated data of varying quality. In our experiments,
we use the machine-generated (MG) datasets, which are produced by training SAC agents on each
task and saving demonstrations from intermediate checkpoints to obtain mixed-quality data. We select
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these datasets because our method consistently demonstrates strong performance on suboptimal data,
as observed in D4RL. Each environment has an episode length of 400 steps. The Lift task requires
the robot to lift a cube above a designated height, whereas the Can task requires placing a can into the
appropriate container. More details are available at: https://github.com/ARISE-Initiative/robomimic.

D.3 ExoRL

The ExoRL benchmark provides exploratory datasets for six domains from the DeepMind Control
Suite: Cartpole, Cheetah, Jaco Arm, Point Mass Maze, Quadruped, and Walker, comprising a
total of 19 tasks. Each dataset is collected using nine unsupervised RL algorithms—APS, APT,
DIAYN, Disagreement, ICM, ProtoRL, Random, RND, and SMM—implemented in the Unsupervised
Reinforcement Learning Benchmark (URLB), each trained for 10 million steps. Further information
can be found in the official ExoRL repository: https://github.com/denisyarats/exorl?tab=readme-ov-
file.

E Experiments in Dexterous Manipulation

We further evaluate our method on the Adroit benchmark from D4RL [[15]], to examine its applicability
to more complex domains—specifically, dexterous manipulation. An illustration of the Adroit
environment is shown in Figure The Adroit domain involves controlling a 24-DoF robotic hand
to perform four distinct manipulation tasks: Pen, Door, Hammer, and Relocate. Each task provides
three datasets of varying quality:

* Human: 25 expert demonstrations collected from human teleoperation, as provided in the
DAPG repository [48].

* Cloned: A 50-50 combination of human demonstrations and 2,500 trajectories generated by
a behavior-cloned policy trained on the demonstrations. The demonstration trajectories are
duplicated to match the number of cloned trajectories.

» Expert: 5,000 trajectories collected from an expert policy that successfully solves each task,
also provided in the DAPG repository.

Figure 11: Dexterous manipulation tasks of Adroit hands. (Top-left) Pen - aligning a pen with a
target orientation; (Top-right) Door - opening a door with a door handle; (Bottom-left) Hammer -
hammering a nail into a board; (Bottom-right) Relocate - moving a ball to a target position.

For evaluation, we compare AWAC, IQL, and TD3+BC, with and without our pretraining method,
across five random seeds. Table [ reports the averaged normalized scores for each task. Across
all three algorithms, integrating our pretraining phase consistently improves performance. These
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results demonstrate that our approach generalizes effectively to complex, high-dimensional do-
mains—extending beyond tabletop manipulation to dexterous hand control tasks.

Table 4: Average normalized scores on Adroit. Each column corresponds to a different RL baseline.
The values on the left represent the baseline scores reported in the original literature, while the values
on the right show the results of our method combined with each baseline. Performance improvements
over the original baselines are highlighted in blue. All results are reported with the mean and standard

deviation scores over five random seeds.

AWAC IQL TD3+BC
Pen 146.1945.29—157.60+£5.28 101.874+14.34—104.66+17.30 20.324+5.97—20.78+10.93
Human  Hammer 7.98+9.41—36.95+35.13 14.33+5.22—17.78+9.27 2.40+0.16—2.384+0.17
Door 60.82£12.38—29.96422.43 6.74£1.31—5.814+3.20 -0.09£0.00—-0.04=£0.04
Relocate 1.51+£1.05—3.91£2.21 1.20+£1.05—1.52+1.11 -0.2940.01—-0.18+£0.13
Pen 145.374+4.19—144.48+3.42 98.38+16.13—97.76£16.90 39.69+18.95—48.18£11.27
Cloned  Hammer 10.37£7.88—12.6148.66 8.94+2.07—11.38+£4.46 0.59+£0.17—1.1740.61
Door 2.95+2.97—9.594+7.73 5.61+3.02—5.00+1.44 -0.2340.11—-0.03£0.03
Relocate 0.04£0.09—0.184+0.21 0.91£0.45—1.061+0.40 -0.0240.09—-0.13£0.09
Pen 163.994+1.19—163.73+1.88 148.38+2.46—147.79+£3.06 131.73+19.15—141.10£10.28
Expert Hammer 130.08+1.30—130.04+£0.48 129.46+0.42—129.50+0.36 33.36+34.61—59.76+£52.35
Door 106.6740.28—106.951+0.16 106.4540.29—106.711+0.28 0.99+£0.83—0.87+1.48
Relocate 109.70£1.32—111.2740.35 110.134+1.52—109.82+1.45 0.57+£0.33—0.2240.13
Total 885.674+47.35—907.26+87.94  732.40£48.27—738.794+59.23  229.03£80.40—274.08+87.49

F RL Training with Pretrained Frozen Backbone Feature Extractor

In this section, we investigate the effect of shallow linear heads of the shared network architecture.
Specifically, we pretrained TD3+BC and subsequently froze all network parameters except for
the final linear layer during the RL training stage. The blue-colored entries in Table [3 indicate
performance improvements relative to the original TD3+BC results.

Interestingly, even when only the final linear layer was trained and the shared backbone remained
frozen, the model achieved higher performance than the vanilla CQL baseline. Furthermore, this
frozen variant consistently outperformed others on suboptimal datasets (i.e., random, medium, and
medium-replay), suggesting that the pretrained shared representation captures sufficiently rich features
for effective downstream value learning, even without full fine-tuning.

Table 5: Average normalized scores of RL training with the frozen backbone on the D4RL
benchmark. Performance improvements over the original baselines are highlighted in blue. All
results are reported with the mean and standard deviation scores over five random seeds.

AWAC CQL IQL TD3+BC  freezed TD3+BC

HalfCheetah 2.6 21.7 10.3 10.2+1.3 6.03+2.65
Random Hopper 28.6 10.7 9.4 11.040.1 11.59+£10.56

Walker2d 7.8 2.7 7.9 1.4+1.6 7.18£0.58

HalfCheetah 48.4 372 46.6  42.84+0.3 42.64£1.19

Medium Hopper 88.4 442 76.9 99.5£1.0 67.16£3.56
Walker2d 53.0 57.5 83.8 79.7£1.8 72.03£0.78

HalfCheetah 46.1 419 434  433%05 40.21£0.79
Medium Replay =~ Hopper 101.3 28.6 96.2 31.4£3.0 64.41+£19.54
Walker2d 88.1 15.8 77.9 252451 41.02+12.05

HalfCheetah 76.4 27.1 94.8 97.9+4.4 47.35£8.73
Medium Expert  Hopper 113.0 1114 101.8 112.2+0.2 95.07£15.27
Walker2d 103.3 68.1 111.6 101.1£9.3 74.75£0.59
HalfCheetah 94.4 824 964  105.7£1.9 61.93£10.71
Expert Hopper 112.8  111.2  113.1 112.2+0.2 113.134+0.39
Walker2d 1104 103.8 110.7 105.7£2.7 57.14£44.96

19



G Learning Curves

In this section, we provide the full learning curves in Section .| for further insights.
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Figure 12: Learning curves of TD3+BC on the D4RL benchmark. We represent the normalized
scores of the vanilla TD3+BC and TD3+BC with our method on progressively reduced datasets (3%,
10%, 30%), respectively. The vertical red dashed lines indicate the transition between the pretraining
and main training phases.

H Rank of Latent Space during the Learning Time

We further depict the rank of the latent feature space across tasks and datasets in Section [3.1] for a
comprehensive view.
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Figure 13: Rank of the latent feature space of ()-network during the entire training. We provide
the rank of the vanilla TD3+BC and TD3+BC with our method, respectively. The horizontal red
dashed lines stand for the full rank of the latent feature space.
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I Experiments with Varying Data Qualities and Sizes
This section provides more details on ablating the data quality and size, which is an extension of

Section[f.2] All experimental results are reported with the mean and standard deviation normalized
scores over five random seeds, following the same configuration in Section {.1]
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Figure 14: Average normalized scores across dataset optimal quality and sizes. We compare the
performance of our method with TD3+BC in progressively reduced datasets (i.e., 1%, 3%, 10%, 30%,
100% of each dataset) to vanilla TD3+BC across the data qualities (i.e., random, medium, medium
replay, medium expert, expert) on DARL. Aggregated results (Bottom Right) suggest that our method
guarantees better performance even in 10% of the datasets regardless of the data quality of the dataset.
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Figure 15: Comparison with offline model-based RL and representation approaches. We
compare TD3+BC, AWAC, CQL with ours to offline model-based RLs (i.e., MOPO, Mobile) and
a representation RL (i.e., ACL) on D4RL over three seeds. The graph shows results over medium,
medium-replay, medium-expert datasets. The results show that our method maintains the performance
in reduced datasets, especially 1%, unlike the other approaches.
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Table 6: Average normalized scores of AWAC across dataset sizes and qualities.

w/o pretrain ~ w/ pretrain, 10%  w/ pretrain, 30%  w/ pretrain, full

HalfCheetah 2.6 9.71£3.08 36.37+£1.47 51.10£0.89
Random Hopper 28.6 97.05+3.24 93.35+6.32 59.47£33.79
Walker2d 7.8 8.57+0.47 8.36+1.30 13.11+£3.91
HalfCheetah 48.4 55.47£1.52 56.64+2.68 54.63£1.45
Medium Hopper 88.4 101.28+0.78 101.32£0.20 101.734+0.20
Walker2d 53.0 95.14+£1.46 91.38+1.37 89.51+0.88
HalfCheetah 46.1 51.00£0.69 52.12+0.76 55.75£1.30
Medium Replay =~ Hopper 101.3 103.67+£1.81 107.69+1.71 106.6740.59
Walker2d 88.1 104.10£1.57 105.42+1.97 100.31£2.11
HalfCheetah 76.4 83.18+1.69 86.55+0.94 90.05+£1.89
Medium Expert ~ Hopper 113.0 113.01£0.71 113.34£0.09 113.23+0.22
Walker2d 103.3 117.26+1.77 114.68+2.18 111.88+0.28
HalfCheetah 94.4 91.54£1.04 93.46+0.54 93.48+0.11
Expert Hopper 112.8 113.02+0.17 113.18£0.20 112.86+0.10
Walker2d 110.4 117.9242.07 112.55+0.56 111.2240.35

Table 7: Average normalized scores of IQL across dataset sizes and qualities.

w/o pretrain ~ w/ pretrain, 10%  w/ pretrain, 30%  w/ pretrain, full

HalfCheetah 10.3 6.9240.63 12.654+2.53 18.28+1.02
Random Hopper 9.4 8.17£0.54 9.93+1.19 10.67+0.41
Walker2d 7.9 8.26+£0.64 9.084+0.96 8.88+0.71
HalfCheetah 46.6 46.511+0.18 47.87+0.21 48.8510.16
Medium Hopper 76.9 75.72+3.23 80.76£3.51 78.6242.21
Walker2d 83.8 82.62+1.03 83.89+1.69 83.63+1.14
HalfCheetah 434 33.49+£1.26 41.16+0.50 45.484+0.17
Medium Replay  Hopper 96.2 80.59+8.25 91.08+3.67 99.43+1.71
Walker2d 77.9 39.08+£10.42 75.33+4.17 87.95+1.68
HalfCheetah 94.8 87.44£2.52 93.66+0.46 95.254+0.14
Medium Expert ~ Hopper 101.8 93.89£10.67 91.05£18.78 105.77+11.31
Walker2d 111.6 111.234+0.83 111.654+0.93 112.09£0.93
HalfCheetah 96.4 77.85+3.82 95.88+0.44 97.40+0.13
Expert Hopper 113.1 109.1643.25 112.85+1.30 113.344+0.46
Walker2d 110.7 113.76+2.55 112.53+1.35 112.80+1.08

In addition to depicting results on varying dataset qualities and sizes, we numerically compare the
performance of baselines for a comprehensive view in Table[6]and Table[7]
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction, we summarize our work and explain the goal
of this research.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We describe the limitations of our work and potential future work to overcome
those issues in Section

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer:

Justification: In Section [3] we support the implication on how pretraining the shared Q-
network with the transition model prediction task affects the convergence of Q-value via
linear function approximation and the projected Bellman equation. However, we do not
provide any theorems, assumptions, or proofs for addressing a rigorous connection between
prior theorems and our method.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We explain experiment and implementation details in Appendix [D]and[C|] We
further provide a pseudo code for outlining the two-phase learning strategy in Algorithm T]

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide reference webpages for implementing baselines in Appendix [C]
Additionally, we describe training details with a desirable computing resource.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In Section[d Appendix D] and Appendix [C] we explain the experimental setup
and training details.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the statistical significance via the mean and standard deviation over
a few random seeds in every experimental result-figures and tables.

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Appendix |C] we denote the computing resource used for training and
evaluation.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: All authors thoroughly confirm the NeurIPS Code of Ethics, and there are no
violations in our work.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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12.

Justification: We present a shared ()-network architecture via two-phase learning strategy
for data-efficient offline RL. We conduct extensive experiments on diverse offline RL
benchmarks, including D4RL, Robomimic, and ExoRL. We further suggest the theoretical
justification for how our pretraining strategy improves the convergence of ()-value learning
and data efficiency. However, we do not expect any negative societal impacts regarding our
work, since our results mainly rely on simulated continuous control tasks.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not provide any checkpoints or source codes for reproducing the results
in this paper. Since our method can be readily reimplemented on top of any off-policy offline
RL methods with a few lines of modification, we have decided to refrain from releasing an
official source code.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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Justification: We cite the previous works on relevant fields in the Reference. Additionally,
we explicitly provide the original repository of each baseline in Appendix [C]

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:

Justification: We provide a pseudo code block in Section [3] We further provide an example
code in https://github.com/daisophila/PSQN.git.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our research does not involve crowdsourcing or research with human subjects.
We only conduct extensive experiments on simulated locomotion and manipulation tasks.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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16.

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our research does not involve crowdsourcing or research with human sub-
jects. We only conducted extensive experiments on MuJoCo locomotion and Robomimic
manipulation simulation tasks.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: Our work is not related to LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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