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Abstract
Elderly portraits, descriptive summaries of001
older individuals, aid caregivers in offering per-002
sonalized care. However, the manual construc-003
tion of these portraits is time-consuming and004
challenging. This paper introduces an auto-005
mated framework for constructing elderly por-006
traits with event elements. The primary objec-007
tive is to efficiently extract relevant features008
from elderly narratives. Traditional named en-009
tity recognition (NER) methods often falter due010
to data limitations and the inherent complex-011
ity of the stories. To address this, we present012
EPNER (Elderly Portrait Named Entity Recog-013
nition), a NER approach leveraging in-context014
learning with large language models. Our ex-015
perimental results confirm that EPNER sur-016
passes existing techniques.017

1 Introduction018

Portraits refers to a descriptive summary of that in-019

dividual, by collecting, organizing, and analyzing020

an individual’s pertinent information and character-021

istics (Maes, 2015). This information and charac-022

teristics span multiple dimensions, encompassing,023

but not limited to, an individual’s basic background024

(e.g., age, gender, occupation), hobbies and inter-025

ests, behavioral habits, social relations, consumer026

behaviors, preferences, and values (Spiliotopoulos027

et al., 2020).028

Every elderly individual possesses unique life029

experiences, personal preferences, distinctive val-030

ues, and individual needs. These factors culminate031

in their unique personalities. By delving into the032

narratives of the elderly, we can gain insights about033

their past life experiences, family backgrounds, ca-034

reer trajectories, hobbies, and pivotal interpersonal035

relationships. These characteristic tags can be em-036

ployed to craft a more comprehensive and meticu-037

lous elderly individual portraits. By amalgamating038

these characteristic insights with associated event039

information, one can intertwine the elderly’s per-040

sonality traits with their life experiences, making041

Figure 1: Elderly portraits combined with event ele-
ments

the portraits more pragmatically valuable. Figure 1 042

shows an example of a portrait of an elderly person 043

combined with event elements. 044

A wealth of information pertinent to elderly por- 045

traits can be extracted from narratives about the 046

elderly. These narratives, often filled with intricate 047

life details. A pressing challenge in this domain, 048

however, is how to automate the process of named 049

entity recognition (NER) for elderly portrait enti- 050

ties from these narratives, as well as how to extract 051

relevant events efficiently. Given the unique nature 052

of elderly narratives, which often come with their 053

own set of complexities such as redundancy, lim- 054

ited data, and intricate entity types, conventional 055

NER methods often fall short in delivering accurate 056

results. 057

Large Language Models (LLMs) like GPT-3 058

(Brown et al., 2020), LLaMA (Touvron et al., 2023) 059

and GPT-4 (OpenAI, 2023). Renowned for their 060

exceptional In-Context Learning (ICL) capabili- 061

ties (Liu et al., 2021), these models can perform 062

a myriad of tasks, ranging from text generation to 063

complex problem-solving, often with minimal in- 064

struction. By tapping into the few-shot learning 065

prowess of such models, many of the aforemen- 066

tioned challenges in elderly portrait construction 067

can be effectively addressed (Wang et al., 2023; 068

Gao et al., 2023). In light of this, our paper intro- 069
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duces a framework for the automated construction070

of elderly portraits leveraging these large language071

models. The contributions of this paper are delin-072

eated as follows:073

We introduce an elderly portrait generation074

framework rooted in the narratives of the elderly.075

Utilizing generative large language models, we ex-076

tract elderly portrait entities from the narrative texts077

and, in conjunction with event elements, construct078

a portrait encapsulating the life experiences of the079

elderly.080

We devise an ICL based named entity recog-081

nition method EPNER (Elderly Portrait Named082

Entity Recognition), specifically tailored for the083

extraction of portrait entities from elderly narra-084

tives. This method utilizes the ICL capability of085

LLMs and adds protagonist feature as context to086

the prompt, effectively improving the efficiency of087

entity recognition.088

We conduct experiments on Older Adults’ Life089

Stories (OALS) Dataset (An et al., 2023). We com-090

pare our method swith existing few-shot named091

entity recognition methodologies, empirical evalu-092

ations corroborate that our proposed approach sur-093

passes baseline methods in terms of accuracy. Fur-094

thermore, through ablation studies, we authenticate095

the efficacy of our prompt construction strategy.096

We devise an ICL based event extraction method097

EPEE (Elderly Portrait Event eExtraction) by098

adding portrait entities as context to the prompt.099

To assess the efficacy of EPEE, manual evaluations100

were conducted from six distinct perspectives. Ex-101

perimental outputs suggest that the event elements102

extracted by the EPEE do indeed exhibit a high103

correlation with elderly portrait entities.104

2 Framework for Automatic Generation105

of Elderly Portraits106

As depicted in Figure 2, the Framework for auto-107

matic generation of elderly portraits is presented.108

Drawing from OALS Dataset as our data source,109

we initially partition the elderly narratives accord-110

ing to the main protagonist. For each older individ-111

ual, an elderly narrative set is constructed, denoted112

as S = {s1, s2, ..., sn}, where si represents a seg-113

ment of the elderly narrative. Given a specific input114

si, our objective is to discern the elderly portrait115

entities contained within si. These elderly portrait116

entities span six categories, as delineated in Table 1.117

Upon the completion of named entity recognition118

for the elderly portrait elements, specific events cor-119

responding to the identified entity are subsequently 120

extracted from si. These elderly story events 121

are represented as event = {ei, pc, tm, loc, em}, 122

where ei characterizes the action of the event, pc 123

specifies the involved characters, tm indicates the 124

temporal occurrence of the event, loc pinpoints 125

the event’s location, and em is the summary of 126

the event. By consolidating the portrait entities 127

from each si in S that contain corresponding story 128

events, a comprehensive elderly portrait for an in- 129

dividual is formulated (as showed in Figure 1). 130

Table 1: Elderly Portraits Entity illustrate

Entity name Entity illustrate
Location This entity refers to the geographical information mentioned

within the life stories of elderly individuals.
Health This entity pertains to aspects such as diseases, physiological

indicators, injuries, medication intake, mental health, daily
living abilities, and passing away due to illnesses.

Interest This entity encompasses activities such as reading, singing,
physical exercise, arts, writing, board and card games, and
gardening.

Identity This entity refers to an individual’s status, title, or position
within an organization or society, with examples including
manager, director, president, or student council president.

Occupation This entity pertains to the regular, salaried work or duties
that an individual engages in for livelihood, such as doctors,
teachers, engineers, or waitstaff.

Education This entity denotes the level of education an elderly individual
has received, including primary school, middle school, high
school, and university.

3 Methodology 131

3.1 Elderly Portrait Named Entity 132

Recognition 133

We introduce a Named Entity Recognition (NER) 134

method, EPNER (Elderly Portrait Named Entity 135

Recognition), which leverages the in-context learn- 136

ing capabilities of Large Language Models (LLMs). 137

The workflow of this method is illustrated in Fig- 138

ure 3. For a given input si, we construct a prompt 139

prompt(si) as the input to GPT-3.5, resulting in 140

a generated output sequence textoutput. Then, 141

we transform the output sequence textoutput into 142

BIO format for entity recognition through a parser. 143

label = Parser(textoutput) 144

3.1.1 Prompt Construction 145

Distinct from existing prompt construction meth- 146

ods for NER tasks (Wang et al., 2023), the prompt 147

construction method proposed in this paper incor- 148

porates elements of the protagonist about elderly 149

narratives as knowledge into the prompt.This can 150

guide the LLMs to more easily find portrait entities 151

related to the protagonist from redundant informa- 152

tion. 153
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Figure 2: Framework for Automatic Generation of Elderly Portraits

Figure 3: Elderly Portrait Named Entity Recognition
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You are an excellent linguist.

You should mark the entities in the input sentence, the
same format as in the example is required.

Read and understand these instructions carefully.

You can not omit any original information or add or modify
the original text during annotation.

Entity Explain:

Protagonist: This entity refers to the central character or
leading figure in the narratives.

Health:This entity to aspects such as diseases, physiologi-
cal indicators, injuries, medication intake, mental health,
daily living abilities, and passing away due to illnesses

Figure 4: Context within Prompt

In addition, to realize the automated identifica-154

tion of entities in elderly portraits, it is essential to155

ensure that the output results of LLMs conform to156

the format required for parser input.157

The construction of prompts is comprised of four158

parts: 1) Context, 2) Instruction, 3) ICL Examples,159

and 4) Input Elderly Narratives.160

3.1.2 Context within Prompt161

The Context includes the roles assigned to the162

LLM in the prompts, the tasks, and the background163

knowledge. In this segment, we incorporated de-164

tailed explanations of entity types as foundational165

knowledge, enhancing the model’s comprehension166

of diverse entity classifications, thereby augment-167

ing the recognition accuracy. Figure 4 shows an168

example of background in prompt.169

3.1.3 Instruction within Prompt170

To ensure precision in entity recognition, the171

method iterates over all entity labels for each in-172

put sentence. This approach effectively transforms173

an N-way NER task into N individual 1-way NER174

tasks. The rationale behind this transformation is175

that LLMs, such as GPT-3.5, tend to produce out-176

puts that diverge from the desired format when177

dealing with descriptions for all entity types si-178

multaneously. This phenomenon will be further179

detailed in the results section. Therefore, for each180

input sentence, we generate N distinct prompts,181

each corresponding to a specific entity type.182

We employs an intermediate representation se-183

quence termed auto Chain-of-Thoughts (CoT) (Wei184

et al., 2022). CoT provides background, guidance,185

and clarity to the text generated by LLMs. Addi-186

tionally, it offers insight into the evaluation process187

and results. An example of CoT’s utilization in the188

Marking Steps:

1. Read the input sentence carefully and read the entity
explain of protagonist and Health carefully.

2. Identify the Protagonist and Health entities in the input
sentence.

3. If there is no desired entity in the input sentence, just
output the input sentence.

4. If there is any Health entities, mark these entities using
[] like Example Marked sentence.

5. If there is any Protagonist entities, mark these entities

using {} like Example Marked sentence.

Figure 5: Instruction within Prompt

instruction prompt can be observed in Figure 4. 189

3.1.4 Examples within Prompt 190

In this segment, we elucidate the examples incor- 191

porated within the prompts presented to the LLM. 192

The OALS dataset is partitioned into 15% for train- 193

ing and 85% for validation. Each time a prompt is 194

constructed, k(k = 4 in this paper) elderly narra- 195

tives containing the corresponding entity types and 196

their associated labels are randomly selected from 197

the training set to serve as demonstrations. We em- 198

bed the protagonist elements as context within the 199

examples presented in the prompt. 200

3.1.5 Input Elderly Narratives within Prompt 201

In this segment, the input elderly narratives is ap- 202

pended to the end of the prompt and then fed into 203

the LLM. We anticipate that the LLM will produce 204

an output sequence based on the format defined in 205

Instruction and ICL Examples. As illustrated in the 206

"marked text" segment of Figure 3. For each entity 207

category (e.g., "education"), the LLM will produce 208

a marked text where the protagonist is denoted with 209

’{}’ and ’education’ is enclosed within ’[]’. 210

3.1.6 Parse marked output 211

Upon obtaining the text sequences generated by 212

the GPT-3.5, we construct a parser to scan the 213

marked sections for each entity category. These 214

NER results are then consolidated into BIO-format 215

annotations. 216

3.2 Elderly Portrait Event Extract 217

Upon completing named entity recognition for 218

elderly narratives, we extract events correspond- 219

ing to these entities for the construction of el- 220

derly portraits. We propose an event extraction 221
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...

Input:

entity:[Example entity]k

entity type:[Example entity type]k

story:[Example elderly narratives]k

Output:

ei:[Example ei]k

pc:[Example pc]k

tm:[Example tm]k

loc:[Example loc]k

em:[Example em]k

Input:

entity:[Input entity]

entity type:[Input entity type]

story:[Input elderly narratives]

Output:

Figure 6: Prompt for Event Extract

method based on ICL, Elderly Portrait Event Ex-222

tract (EPEE). Utilizing both the entity type and223

entity name as context, we construct prompts to be224

input into LLMs, ultimately extracting five types225

of event elements. Figure 6 shows the input and226

output formats part defined in the prompt, and the227

complete prompt can be found in the appendix A.228

4 Experiments229

We chose GPT-3.5 as the Large Language Model230

(LLM), accessed via the API (gpt-3.5-turbo). Re-231

garding parameter configurations, to ensure the232

stability of the experimental results as much as233

possible, the temperature is set to 0, with all other234

parameters left at their default settings.235

4.1 Baseline236

4.1.1 Few shot NER237

SpanProto (Wang et al., 2022a): The SpanProto ap-238

proach employs a two-phase method to address the239

low-sample entity extraction challenge. Initially, it240

involves span extraction, followed by mention cat-241

egorization to better adapt to new entity categories.242

Additionally, it enhances model performance by243

introducing a boundary-based loss, specifically ad-244

dressing false positives generated by the span ex-245

tractor.246

ESD (Wang et al., 2022b): An Enhanced Span-247

Decomposition (ESD) technique tailored for Few-248

Shot Sequence Labeling (FSSL). ESD formalizes249

the low-sample sequence tagging as a span-level 250

matching problem between test queries and sup- 251

port instances. This approach decomposes the span 252

matching challenge into a series of span-level pro- 253

cesses, primarily encompassing enhanced span rep- 254

resentation, category prototype aggregation, and 255

span conflict resolution. 256

CONTaiNER (Das et al., 2021): A contrastive 257

learning method based on low samples. This ap- 258

proach optimizes a generalized objective, which 259

distinguishes the intrinsic representation distribu- 260

tion of entities based on their Gaussian distribution 261

embeddings, effectively mitigating overfitting is- 262

sues arising from the training domain. 263

ProtoNet (Snell et al., 2017): This method lever- 264

ages prototype networks to address the challenge 265

of low-sample classification. Prototype networks 266

learn a metric space wherein classification can be 267

executed by computing distances to prototype rep- 268

resentations of each category. 269

NNShot (Yang and Katiyar, 2020): The NNShot 270

approach utilizes a supervised NER model trained 271

on the source domain as a feature extractor. By 272

employing a nearest-neighbor classifier, it achieves 273

more efficient performance across multiple test do- 274

mains. This method can capture label dependencies 275

between entity labels without the necessity for Con- 276

ditional Random Field (CRF) training . 277

4.1.2 Other Prompt Construction 278

In Section 3.1, we enhanced the entity recognition 279

efficacy by incorporating specific illustrate of el- 280

derly portrait entities and protagonist elements as 281

context within the prompt. In the subsequent exper- 282

iments, we omitted these components to quantita- 283

tively assess the tangible impact of these elements 284

in the prompt on recognition performance. 285

EPNER without protagonist and illustrate : Ex- 286

clude the specific illustrate related to elderly por- 287

trait entities and the protagonist elements within 288

the prompt. Consequently, the LLM no longer an- 289

notates the protagonist entity. 290

EPNER without protagonist : Exclude the pro- 291

tagonist elements from the prompt. Again, the 292

LLM does not annotate the protagonist entity in 293

this case. 294

MUti EPNER : We devised a prompt instruct- 295

ing the LLM to annotate all elderly portrait entity 296

types simultaneously, using a tagging strategy like 297

[Entity#EntityType]. 298

When comparing various Prompt Construction, 299

we also consider an additional metric—Marking 300
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Failure Rate. This consideration arises from301

our observation during experiments that, upon302

feeding the constructed prompt to instruct the303

LLM for a text labeling task, the LLM does not304

consistently produce outputs that adhere to the305

required format. Such deviations encompass306

the emergence of fictitious marking formats,307

alterations to the original content, and the gen-308

eration of irrelevant content, among others. We309

categorize these non-compliant output texts as310

Tf = {tf1, tf2, ..., tfm}. Assuming the entire set311

of output texts is represented by Textoutput =312

{textoutput1 , textoutput2 , ..., textoutputn}, the313

Marking Failure Rate is computed using the314

formula Scoref = m/n, where m denotes the315

number of texts in Tf and n signifies the number316

of texts in Textoutput.317

4.2 Result for NER318

Table 2 presents a compare of our method with319

other Few-Shot NER methods. The results indi-320

cate that our approach (EPNER) achieved the high-321

est performance in terms of the F1 score(35.8%).322

Although the SpanProto and CONTaiNER meth-323

ods respectively secured optimal results in Pre-324

cision(44.9%) and Recall(54.0%), their corre-325

sponding low scores in Recall(21.3%) and Preci-326

sion(0.1%) respectively rendered their overall per-327

formance inferior to EPNER.328

Table 2: Result of different few shot NER

Method Precision(%) Recall(%) F1(%)
SpanProto 44.9 21.3 28.9

ESD 2.7 35.0 5.1
CONTaiNER 0.1 54.0 0.2

Protobert 17.9 37.4 24.3
NNShot 5.8 31.3 9.8
EPNER 38.9 34.7 35.8

Table 3 illustrates the impact on our method after329

omitting the specific explanations of elderly por-330

trait elements and protagonist features from the331

event elements within the prompt. The table re-332

veals that upon entirely removing both the protago-333

nist and explanation from the prompt, the Marking334

Failure Rate reaches its lowest at 1.0%, but corre-335

spondingly, the F1 value also plunges to its lowest336

at 14.6%. The table also presents the results of337

experiments recognizing all entity types simultane-338

ously. The F1 score for this approach, at 27.4%,339

is inferior compared to recognizing different entity340

types separately, and notably, the Marking Failure341

Rate escalates significantly to 32.1%.342

Table 4 delineates the recognition performance343

Question 1: Does the event type correspond with the fea-
ture entity? A match is scored as 1, and a mismatch as 0.
In cases of mismatch, subsequent questions are bypassed.

Question 2: Does the event trigger word align with the
entity feature? A match is scored as 1, and a mismatch as
0.

Question 3: Does the temporal occurrence of the event
correspond with the entity feature? A match is scored as
1, and a mismatch as 0.

Question 4: Does the event location align with the entity
feature? A match is scored as 1, and a mismatch as 0.

Question 5: Does the protagonist of the event correspond
with the entity feature? A match is scored as 1, and a
mismatch as 0.

Question 6: Is the event description associated with physi-

cal features? Set the 7-level correlation level of 1-7, where

1 is completely unrelated and 7 is completely related.

Figure 7: Question for evaluating EPEE

of our method across diverse entity types. As dis- 344

cerned from the table, with the exception of the 345

’Occupation’ entity, the F1 score for all entity cat- 346

egories exceed 26.3%. The recognition efficacy 347

for the ’Location’ entity is the most commendable, 348

achieving a score of 46.0%. Conversely, the per- 349

formance for the ’Occupation’ entity is the least 350

impressive, registering a mere 9.4%. 351

4.3 Manual Evaluation for EPEE 352

To assess the efficacy of EPEE, manual evaluation 353

is conducted on feature-associated events extracted 354

from the OALS dataset. The primary aspects eval- 355

uated in Figure 7. 356

Table 5 shows the evaluation results of event cor- 357

relation after event extraction for different types 358

of elderly portrait entities. The events extracted 359

using EPEE method demonstrate high relevance to 360

the corresponding portrait entities across various 361

elements (the average scores for Q1 to Q5 are all 362

above 0.8, and for Q6, they are consistently above 363

4.5). Notably, the events related to the "Identity" 364

entity exhibit the highest degree of extraction rele- 365

vance. 366

5 Discussion 367

5.1 Overall Recognition Performance 368

As shown in the Table 2, the F1 scores of traditional 369

few-shot entity recognition methods are somewhat 370

underwhelming when applied to elderly narrative 371

texts. This subpar performance can be attributed 372

to a confluence of factors inherent to these texts: 373
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Table 3: Result of different prompt

Method Precision(%) Recall(%) F1(%) Marking failure rate(%)
EPNER without protagonist and explanation 8.5 29.0 14.6 1.0

EPNER without protagonist 14.8 31.8 19.6 1.3
Muti-EPNER 38.5 24.1 27.4 32.1

EPNER 38.9 34.7 35.8 2.8

Table 4: Result of different entities

Entity type Precision(%) Recall(%) F1(%)
Location 51.6 41.5 46.0
Health 26.8 38.1 31.5
Interest 28.5 31.0 29.7

Occupation 6.1 20.0 9.4
Identity 31.4 22.6 26.3

Education 21.4 41.4 28.3

Table 5: Result of manual evaluation for elderly portrait

Entity type Q1 Q2 Q3 Q4 Q5 Q6
Location 0.957 0.898 0.893 0.954 0.941 4.575
Health 0.886 0.910 0.919 0.897 0.902 4.691
Interest 0.902 0.855 0.945 0.905 0.910 4.667

Occupation 0.867 0.952 0.952 0.889 0.900 4.767
Identity 0.931 0.947 0.857 0.941 0.958 4.806

Education 0.859 0.862 0.882 0.923 0.885 5.721

a paucity of samples, an imbalanced distribution374

of entity types, and the prevalence of noise in the375

text. These combined challenges exacerbate the376

difficulties for traditional methods.377

Incorporating context into entity recognition378

prompts led to significant accuracy improvements.379

This highlights the efficacy of LLMs, especially380

with appropriate prompts, in tasks with limited381

samples and complex contexts.382

5.2 Deliberations on the Context within the383

Prompt384

We observed a critical relationship between the385

amount of context included and entity recognition386

efficiency. As shown in Table 3, increased knowl-387

edge can improve accuracy. However, overloading388

with knowledge can adversely affect the large lan-389

guage model’s output, leading to deviations from390

the expected format.391

5.3 Recognition Strategies for Different392

Labels393

Generally, our approach demonstrated strong per-394

formance for most entity categories, with F1 scores395

exceeding 28%, as shown in the Table 2. However,396

accurately identifying "Occupation" and "Identity"397

labels proved challenging.398

To address this, we considered implementing a399

two-stage or multi-stage entity recognition work-400

flow, building on the LLM’s initial results. This it-401

erative process aims to continuously refine recogni-402

tion. We also considered adding contrasting exam- 403

ples for ambiguous entity categories in the prompts, 404

to aid the model in differentiating these entities 405

without significantly increasing annotation errors. 406

6 Related Work 407

6.1 Few-shot NER 408

Named Entity Recognition (NER) is a task that 409

identifies key information within text and catego- 410

rizes it into a set of predefined classes. A common 411

approach to address NER is to treat it as a sequence 412

tagging task (Hammerton, 2003). Few-shot NER 413

requires recognizing entities with the support of 414

only very few labeled instances (Hofer et al., 2018; 415

Fritzler et al., 2019). Due to limited information 416

contained in labeled instances, methods for few- 417

shot NER mainly resort to a rich-resource source 418

domain to help train models, resulting in transfer- 419

learning and meta-learning frameworks. 420

Contemporary meta-learning techniques pre- 421

dominantly cater to few-shot learning scenarios and 422

can be broadly categorized into three paradigms: 423

Metric-based, Optimization-based, and Memory- 424

based approaches (Li et al., 2020). Metric-based 425

techniques predicate label predictions on similarity 426

measures between samples, such as Euclidean dis- 427

tances or cosine similarities (Vinyals et al., 2016). 428

Optimization-based strategies endeavor to expedite 429

learning through explicitly learned update rules or 430

weight initializations (Ravi and Larochelle, 2016). 431

Memory-based methods, conversely, instantiate 432

memory or storage units, enabling the model to re- 433

tain and leverage previously observed experiences, 434

thereby fostering rapid learning and generalization 435

(Santoro et al., 2016). Existing Few-Shot NER 436

techniques typically emphasize metric-based learn- 437

ing, deriving entity recognition by discerning rep- 438

resentations within semantic spaces. For instance, 439

ProtoNet (Snell et al., 2017) employs prototype 440

networks to discern prototype representations for 441

each entity category, while NNShot (Yang and Kati- 442

yar, 2020) directly utilizes word embeddings as 443

representations, subsequently employing nearest 444

neighbor classification for inference. 445

Lately, prompt learning has witnessed substan- 446
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tial advancements in few-shot tasks by designing447

bespoke templates to guide models towards perti-448

nent information, emerging as a novel paradigm449

in natural language processing. As such, a slew450

of methods integrating prompt learning into Few-451

Shot NER tasks have been proposed (Cui et al.,452

2021)(Liu et al., 2022).453

6.2 In-Context Learning454

Large Language Models (LLMs) (Brown et al.,455

2020; Rae et al., 2021; Smith et al., 2022; Hoff-456

mann et al., 2022; Chowdhery et al., 2022) have457

achieved significant performance improvements458

across various Natural Language Processing tasks459

(Hegselmann et al., 2023; Vilar et al., 2022; Perez460

et al., 2021; Swanson et al., 2021; Wei et al., 2021).461

Strategies to leverage LLMs for downstream tasks462

can be classified into two categories: fine-tuning463

and in-context learning. Fine-tuning strategies use464

a pre-trained model as initialization and run addi-465

tional epochs on downstream supervised data (Raf-466

fel et al., 2020; Gururangan et al., 2018; Roberts467

et al., 2020; Guu et al., 2020). In contrast to the fine-468

tuning strategy, In-Context Learning (ICL) prompts469

LLMs to generate text under few-shot demon-470

strations. Radford was the first to use prompts471

containing demonstrations to reformulate down-472

stream tasks (Radford et al., 2019). Many studies473

showed that better prompts and demonstrations can474

enhance the performance of in-context learning475

(Perez et al., 2021; Lu et al., 2021; Rubin et al.,476

2021; Min et al., 2022; Liu et al., 2021). There477

has been research applying the in-context learn-478

ing to applications like entity recognition (Wang479

et al., 2023), event extraction (Gao et al., 2023),480

and information extraction (Wei et al., 2023).481

7 Limitation482

7.1 Limited Dataset Volume483

Research pertaining to elderly narratives is still484

in its nascent stages, and there isn’t a substantial485

dataset dedicated to these narratives available. The486

efficacy of both our proposed elderly portrait au-487

tomatic construction framework and the EPNER488

method must be further validated through practical489

applications, given the current dataset constraints.490

7.2 Inconsistent Recognition Performance491

Owing to the inherent probabilistic of general lan-492

guage models, the entity recognition process for493

elderly portraits doesn’t always proceed seamlessly.494

We’ve endeavored to mitigate the likelihood of pro- 495

ducing erroneously formatted outputs by adjusting 496

the temperature parameter and meticulously opti- 497

mizing the prompts. However, instances of such 498

discrepancies still manifest, which invariably im- 499

pacts the reproducibility of our results. 500

7.3 Optimization for Cross-Domain Usage 501

Our EPNER method can be transposed to NER 502

tasks in diverse domains. Nevertheless, when ap- 503

plied in practice, there’s a requisite for manual 504

prompt adjustments. For LLMs, even minute alter- 505

ations at the word level can substantially influence 506

the model’s output. Crafting the optimal prompt 507

tailored for varied domains remains a pressing chal- 508

lenge that warrants further exploration. 509

8 Conclusion 510

In this paper, we propose an event-based elderly 511

portrait and developed a framework that Large Lan- 512

guage Models (LLM) to autonomously construct 513

portraits from elderly narratives. Our findings sug- 514

gest that incorporating specific contextual informa- 515

tion within prompts can substantially enhance the 516

recognition performance when deploying LLMs 517

for Named Entity Recognition (NER) tasks. Stem- 518

ming from this insight, we proposed EPNER, a in- 519

context learning based elderly portrait named entity 520

recognition method, tailored to address the chal- 521

lenge of extracting elderly portrait features from 522

their narratives. Experimental evaluations on the 523

OALS dataset revealed that our approach outper- 524

forms baseline methods. Additionally, manual eval- 525

uations corroborated the efficacy of the event-based 526

elderly portraits that our framework autonomously 527

generates from elderly narratives. 528
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You are an excellent linguist.

You should extract event elements in the input sentence,
the same format as in the example is required.

Read and understand these instructions carefully.

You can not omit any original information during annota-
tion.

Event Elements Explain:

pc: The person in the event.

tm: Time of the event.

loc: The location of the event.

ei: The action of the event.

em: Summary of the event

Extract Steps:

1. Read the input sentence carefully and read the event
elements explain carefully.

2. Identify event elements in the input sentence.

3. If there is no event element in the input sentence, Just
output None after the corresponding element class .

For example:

· · ·

Input:

entity:[Example entity]k

entity type:[Example entity type]k

story:[Example elderly narratives]k

Output:

ei:[Example ei]k

pc:[Example pc]k

tm:[Example tm]k

loc:[Example loc]k

em:[Example em]k

Input:

entity:[Input entity]

entity type:[Input entity type]

story:[Input elderly narratives]

Output:

Figure 8: Prompt for Event Extract

11


